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Abstract. In this sequence of two papers, we introduce a curvature flow on (mixed) weighted
graphs which is based on the Bakry-Emery calculus. The flow is described via a time-
continuous evolution through the weighting schemes. By adapting this flow to preserve the
Markovian property, its limits turn out to be curvature sharp. Our aim is to present the
flow in the most general case of not necessarily reversible random walks allowing laziness,
including vanishing transition probabilities along some edges (“degenerate” edges). This
approach requires to extend all concepts (in particular, the Bakry-Emery curvature related
notions) to this general case and it leads to a distinction between the underlying topology
(a mixed combinatorial graph) and the weighting scheme (given by transition rates). We
present various results about curvature sharp vertices and weighted graphs as well as some
fundamental properties of this new curvature flow. This paper is accompanied by another
paper discussing the curvature flow implementation in Python for practical use, where we
present various examples and exhibit further properties of the flow, like stability properties
of curvature flow equilibria.
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1. Introduction

This paper is based on a Ricci-type curvature notion for finite weighted graphs
due to Bakry and Emery. We will introduce a continuous time curvature flow on
its weights, and of special importance will be the concept of curvature sharpness.
The flow aims to be convergent to curvature sharp weighting schemes. The paper
presents various curvature sharpness results and some fundamental flow properties.
While this paper deals mainly with the theoretical background of this curvature flow,
our paper [7] focusses on various practical flow features by investigating different
examples with the help of an implementation of the curvature flow in Python.

Let us discuss the general setup. A weighted graph is a simple mixed combina-
torial graph G = (V, E) (with vertex set V and set £ = E 1'U E2 of one-sided and
two-sided edges) together with a set of not necessarily symmetric weights pyy, > 0
(transition rates) which are only non-zero if x = y or if there is a (one- or two-sided)
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edge from x to y. The graph induces a generally non-symmetric combinatorial dis-
tance function dg : V x V. — N U {0, oo}, where dg (x, y) is the length of the
shortest directed path from x to y. The weights p,, are combined in a square matrix
P, the weighting scheme, after enumeration of the vertices.

The Bakry-Emery curvature of a vertex x € V,denotedby Ky (x) = Kp y(x),
depends on a dimension parameter N € (0, oo] and is based on the Laplacian

Apfx) =) poy(f) = (X)) ey

yeV

The precise definition of this curvature notion is given in the next subsection.
Usually we assume the weighting scheme to be Markovian, that is, P to be a
stochastic matrix whose row entries add up to one. In the Markovian case we can
interpret the values py,, for fixed x € V as transition probabilities of a random walk.
The Bakry-Emery curvature K p.n (x) depends only on P and not on the topology
of the underlying graph G (which can have edges even though the corresponding
transition rates may be zero).

In a weighted graph (G, P), we distinguish between degenerate and non-
degenerate edges and vertices. A one-sided edge (x, y) € E! is called degenerate
if pyy = 0, and a two-sided edge {x, y} € E 2 is called degenerate if at least one
of the transition probabilities pyy, pyx is zero. An example of a non-degenerate
weighted graph (G, P) is the (non-lazy) simple random walk p,y, = d% for all pairs
x ~ y of adjacent vertices, where d, denotes the combinatorial vertex degree of
x € V (thatis the cardinality of its outgoing one- and two-sided edges).

Since Bakry-Emery curvature and curvature sharpness are behind all our inves-
tigations, we start our paper with a brief introduction into these notions.

1.1. Bakry-Emery curvature, curvature sharpness and curvature flow

Bakry-Emery curvature can be defined on the states of a Markov chain given by
the stochastic matrix P. Since we are in the setting of Markovian weighted graphs
(G, P), the (Markov chain) states correspond to the vertices of G = (V, E). Bakry-
Emery curvature is motivated by a fundamental identity in Riemannian geometry,
called Bochner’s formula. The definition involves two “carré du champ operators”
I" and I';. More precisely, these operators are defined as

2T(f, 8) = A(fg) — fAg — gAf,
2 (f, 8) = AT(f, 8) = T'(f, Ag) —T'(g, Af),

where A = Ap is the random walk Laplacian, acting on function f : V. — R and
introduced in (1). Bakry-Emery curvature for vertices is now defined as follows. In
the case of an isolated vertex x € V (thatis p,, = 0 for all y # x), we define it
to be zero at such a vertex for all dimensions. (Alternatively, there are also valid
arguments to define it to be infinity.) The definition for non-isolated vertices reads
as follows.
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Definition 1.1. (Bakry-Emery curvature). The Bakry-Emery curvature of a non-
isolated vertex x € V for a fixed dimension N € (0, oo] is the supremum of all
values K € R, satisfying the curvature-dimension inequality

1
D2 (f)x) = N(Af(JC))2 + KT'(f)x) )

for all functions f : V — R. We use the simplified notation I'(f) = I'(f, f) and
[2(f) = Ta(f, f). We denote the curvature at x € V by Ky (x) = Kp n(x).

Bakry-Emery curvature was introduced for the smooth setting in [3]. The cur-
vature was then reintroduced several times in the setting of graphs, see [15,30,43].
For further research about Bakry-Emery curvature on finite graphs see, e.g., [2,5,
6,9,12,17,19,20,25-29,31-35,39-42,45].

In the case of a Markovian weighted graph (G, P) and x € V, we have

—1 < Kny(x) <2

for all dimensions N > 2. Even more precise lower and upper curvature bounds
are given in Theorem 2.4. Any function f : V — R with I'(f)(x) # 0 gives rise
to an upper curvature bound Ky (x) < K 1{, (x) with

- 1
Kf(x) = K} () = (Fz(f)(X) - N(Af(x))z) LB

1
INGRIEY
In fact, Ky (x) is the infimum of all values K 1{, (x) of such functions f, that is

Kn(x)= _inf  KL(x). 4)

FiD(Hx)#0
The upper curvature bound for the particular function f(-) = dg(x, -) leads to the
notion of curvature sharpness which will be of central importance in this paper. The

idea to use the combinatorial distance function for an upper curvature bound goes
back to [24, Proof of Theorem 1.2].

Definition 1.2. (Curvature sharpness). Let (G, P) be a Markovian weighted graph.
A vertex x € V is called N-curvature sharp (for a fixed dimension parameter N)
if

Kn(x) = K99 (x),

that is, if the infimum in (4) is assumed for the combinatorial distance function
f() = dg(x, ). Moreover, a vertex x is called curvature sharp if it is curvature
sharp for some dimension N € (0, oo], and (G, P) is called curvature sharp if
each vertex of G is curvature sharp.

Note that, while Bakry-Emery curvature at a vertex x € V of a weighted graph
(G, P) depends only on the weighting scheme P, curvature sharpness is based
on the combinatorial distance function dg (x, -) of the graph G, which means that
this notion depends also on the underlying topology. Examples of non-degenerate
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curvature sharp weighted graphs are simple random walks without laziness on

complete graphs K, (with constant curvature Koo (x) = % + ﬁ) or simple
random walks without laziness on triangle-free d-regular graphs (with Koo (x) <
2

)

Curvature sharpness plays a central role in this paper. It was originally intro-
duced for arbitrary dimensions in [11, Definition 1.4] for the non-normalized Lapla-
cian on combinatorial graphs, and it was further investigated for quartic graphs and
dimension N = oo in [9]. It was originally an upper curvature bound derived via
a particular submatrix consideration (see [11, Section 3]). This notion was then
extended in [8, Theorem 1.5] to general weighted graphs. At that time, we were not
aware that our curvature sharpness notion was essentially the same as another upper
bound derived in [24], involving the combinatorial distance function. Therefore, the
curvature sharpness definitions in our earlier papers differ from the very general
one given here based on the (not necessarily symmetric) combinatorial distance
function, which includes potentially degenerate one- and two-sided edges. We will
see in due course (Proposition 2.16 below) that all these definitions are consistent
with each other.

Following ideas in [8] (see also [44] for the unweighted case), the curvature
Koo (x) of a non-degenerate vertex x € V can also be expressed as the smallest
eigenvalue of a particular symmetric matrix A (x) = Ap o(x) of size d,, the
number of outgoing edges from x. The matrix Ao (x) is called the curvature matrix
atx € V,and we view it as a discrete version of the Ricci curvature tensor acting as
a quadratic form on the tangent space Ty M in the smooth setting of a Riemannian
manifold (M, g). Moreover, we can view the vector

VO(x) = (\/ ny1 s e A/ px}’m)T (5)

involving the weights to the neighbours y1, ..., ¥, € V of x as a discrete analogue
of the lengths of coordinate tangent vectors at x. This viewpoint was the guiding
principle for the definition of our (Ricci) curvature flow, which takes—in the case
of a non-degenerate Markovian weighted graph (G, Py)—the form

VO, 1) = —Ap(.ee (Vo (x. 1) + K35 ()vo(x. 1), P(0) = Py, (6)

and which resembles the equation

%g, = —2Ricg, @)
of the Ricci flow in the setting of Riemannian manifolds (M, g;). The curvature
related term in (6) is a normalization term which guarantees that the Markovian
property of the smooth matrix valued flow solution P (#);¢[0,00) 15 preserved (see
Theorem 1.6 below). A striking property of our curvature flow is that its limits
P = lim;_, o P(t), if they exist, are curvature sharp (Theorem 1.7). This fact
leads to the conjecture, that our flow is always convergent (Conjecture 1.8). While
we cannot prove this conjecture, we are not aware of a non-convergent example
and all numerically computed examples in the accompanying paper [7] (random
graphs, paths, cycles, complete graphs, wedge sums and Cartesian products of
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complete graphs, and hypercubes with various initial weighting schemes) support
this conjecture. Since we do not want to include too many details at this point, we
refer readers to [8, formula (1.2)] and to (43) at the end of Sect. 2.4 in this paper
for the definition of the matrix Ao, (x) and to Sect. 1.3 for more information about
the motivation of our curvature flow.

1.2. Structure of the paper and results

This paper has three parts. In the first very substantial part (Sects. 2 and 3) we intro-
duce all relevant notions associated to a very general setting of Markovian weighted
graphs (G, P) and derive fundamental properties of curvature sharp vertices. The
second part (Sect.4) is concerned with relations between a combinatorial graph
G = (V, E) and associated Markovian weighting schemes P such that all vertices
in V are curvature sharp. In the third part (Sects. 5 and 6) we introduce the curvature
flow as a particular system of differential equations. It is often the case that many
vertices of curvature flow limits (G, P°°) are degenerate even if the flow started at
a non-degenerate weighted Markov chain (G, Py). For that reason, we discuss in
Sect. 5 semicontinuity (Theorem 5.1) and jump phenomena (Examples 5.2 and 5.3)
of Bakry-Emery curvatures as functions of the underlying weigting schemes P.
The last section of this paper is concerned with the proof of some fundamental
properties of this curvature flow.

Let us now turn to the discussion of the main results of this paper. Markovian
weighted graphs (G, P) have a (non-symmetric) distance function dg. Since we
allow degenerate vertices, there exists a natural mixed subgraph (G p, P) which is
non-degenerate and which is obtained by dropping all edges which have vanishing
transition rates (details are given in Definitions 2.1 and 2.2). This subgraph has its
own distance function dp withdp > dg. While Bakry-Emery curvature Ky (x) ata
vertex x depends only on the weighting scheme P, curvature sharpness depends on
the distance function (see Definition 1.2), and it is therefore important to understand
relations between curvature sharpness with respect to dg and with respect to dp.
It turns out that curvature sharp vertices in (G, P) are also curvature sharp in
(G p, P) but not vice-versa (see Proposition 3.4). Our main results about curvature
sharp vertices in (G, P) is listed in the following theorem, which is a short version
of a more extensive collection of results presented in Theorem 3.10.

Theorem 1.3. (Curvature sharpness at vertices). Let (G, P) be a Markovian
weighted graph. Then the following statements about avertex x € V are equivalent:

(1) x is curvature sharp in (G, P).
(2) x is 2-curvature sharp in (G, P).
(3) We have

1
01, = EKgg“")(x)px,

with Q(x) defined in (26) below.
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It is important to clarify the notions used in statement (3) of the theorem: 1,, is
the all-one column vector of size m, with m the cardinality of the 1-sphere

Six) ={yeV:dcx,y) =1} ={y1,.... ym},

and px = (Pay;s---» pxym)T. The constant Kgg(x")(x) is a special case of the
upper curvature bound K 1(, (x), defined earlier in (3).

Let us now discuss the matrix Q(x): As mentioned before (for the case
N = 00)—in the non-degenerate case—Bakry-Emery curvature Ky (x) agrees
with the smallest eigenvalue of the curvature matrix Ay (x). This symmetric cur-
vature matrix is derived from the matrix Q(x), which is obtained via a Schur
complement construction associated to the I'>-operator (details can be found in
Sect. 2.4). While Ay (x) exists only in the case of a non-degenerate vertex x, the
matrix Q(x) can also be defined for degenerate vertices, and the identity in (3)
of Theorem 1.3 can then be viewed as a generalisation of the curvature sharp-
ness description (10) for non-degenerate weighted graphs to the case of weighted
graphs with both degenerate and non-degenerate vertices. Before we discuss other
results, let us briefly reflect on the equivalences in Theorem 1.3: Note that curvature
sharpness for dimension N implies curvature sharpness for any smaller dimension
N’ < N (see Proposition 3.1). The equivalence “(1) < (2)” states that there is
universal threshold, namely N = 2, such that any curvature sharp vertex is auto-
matically 2-curvature sharp and, therefore, is curvature sharp for all dimensions in
the range (0, 2]. It is by no means obvious that such a universal threshold exists.
We also show that this is a maximal threshold, that is, there exist curvature sharp
vertices which are not curvature sharp for any dimension N > 2 (see Remark 3.8).
The equivalence “(1) < (3)” provides a description of curvature sharpness via an
explicit identity. This identity has various important consequences: It implies that
curvature sharpness is fully determined by the transition rates of the one-ball

Bix)={yeV:dg(x,y) <1}

(see Theorem 3.11). This is surprising since neither Bakry-Emery curvature nor
oo-curvature sharpness are already determined by the one-ball—both require infor-
mation about the transition rates of the 2-ball. Another consequence of this identity
becomes apparent when we generalize the curvature flow equation (6) to be appli-
cable to Markovian weighted graphs with both degenerate and non-degenerate
vertices, using Q-matrix reformulations. These reformulations read as follows (see
Sect. 6.1 for details):

Definition 1.4. (Curvature flow). Let (G, Pyp) be a finite Markovian weighted graph.
The associated curvature flow is given by the differential equations for all x € V
and allt > 0:

() =0,
P (1) = =40 ()1 + 2K 355 (0P (1),
Wlthm = |Sl(-x)|’ Sl(-x) = {)’17 LR ] ym},

p«(t) = (ny. ),..., Pxym (1)),
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and inital condition P(0) = Py.

Note that our Q-matrices in Definition 1.4 depend on both the vertex x and the
time parameter ¢, and we express here the vertex dependence of Q by using x as an
index. It follows from the identity in (3) of Theorem 1.3 that any curvature sharp
Markov chain (G, P) is a stationary solution of the curvature flow.

Remark 1.5. An alternative description of the curvature flow using the I"-calculus
is the following description

— 3, AP f(x)
YO (x, 9)(x)

_ P(1) . T A PO I e oy
_4<r2 dx,-), Hx) (APDd(x, ) (x)

AP(’)f(x)) forall f:V — R,

where f is independent of time ¢ and AP® and Ff @ are operators defined via

the weighting scheme P (). Note that A”® (1y)(x) = pxy(t), so that this equation
determines the weighting scheme evolution P(¢) under the curvature flow. Obvi-
ously, we have 3, AP (d(x,))(x) = 0, which means that the laziness value at x
is preserved. Note that, in general, I'2(f, g)(x) depends on f|p, (). However, if
g =d(x,-), then I'2(f, g)(x) depends only on f|p, (x)-

Let us now present other basic properties of our curvature flow, which are both
proved in Sect. 6.2.

Theorem 1.6. (Curvature flow preserves Markovian property). Let (G, Py) be a
Markovian weighted graph. Then the curvature flow (G, P(t));>0 (given in Defini-
tion 1.4) associated to (G, Py) is well defined for allt > 0 and preserves the Marko-
vian property. If (G, Py) is non-degenerate, then (G, P(t)) is also non-degenerate
forallt > 0.

The second flow result is about its limits—it is another consequence of Theo-
rem 1.3 and the flow equations. Moreover, note that a flow limit often represents a
degenerate weighted graph, even in the case when (G, Pp) is non-degenerate.

Proposition 1.7. (Curvature sharpness of curvature flow limit). Let (G, Py) be a
Markovian weighted graph such that the curvature flow (G, P(t)) converges for
t — oo with P%° = lim;_ « P(t). Then the weighted graph (G, P®°) is curvature
sharp.

As mentioned before, we do not know of any initial condition (G, Py) for
which the curvature flow does not converge. This observation suggests the following
conjecture.

Conjecture 1.8. (Curvature flow convergence). The curvature flow converges for
any initial condition (G, Py), that is, (G, P(¢)) has a well defined limit P> =
lim;—, 00 P(2).
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In the remainder of this subsection, we only consider Markovian weighted
graphs (G, P) which do not have one-sided edges and all vertices have vanishing
laziness. In this case, we say that G = (V, E) is unmixed and that its weighting
scheme P is without laziness.

For complete graphs K, with n vertices, our observations support the following
conjecture.

Conjecture 1.9. (Curvature flow of complete graphs). If Py is a non-degenerate
Markovian weighting scheme without laziness on the complete graph K, with
n > 2, then the curvature flow has a limit P°° which is the simple random walk,
that is, p;’f, = 1/(n — 1) for all pairs x, y € V of different vertices.

Since complete graphs have various degenerate curvature sharp weighting
schemes we cannot drop the non-degeneracy assumption in the above conjec-
ture. Complete graphs are amongst the few examples where non-degenerate initial
weighting schemes seem always to converge to a non-degenerate limit. If we could
prove this observation, the following result would then confirm Conjecture 1.9 in
the case n = 3.

Proposition 1.10. (Curvature sharp weighting schemes for K3). Let K3 be the com-
plete graph with vertex set {0, 1, 2} and Markovian weighting schemes P = (p;;)
without laziness represented by the vectors

(pot1, po2, P10> P12, P20, P21) -

There are only four such curvature sharp weighting schemes on K3, namely

I 11111 11 11 11
N A’ A A~ A~ ] 07]’_7_1170 B _7_705170’1 i 15071507_1_ .
222222 2°2 2°2 22

Consequently, the simple random walk is the only non-degenerate curvature sharp
Markovian weighting scheme without laziness on K3.

Proposition 1.10 is proved in Sect. 4.1 with the help of symbolic Maple com-
putations. It is conceivable that the only non-degenerate curvature sharp weighting
scheme without laziness on any complete graph K, is the simple random walk, but
we are currently not able to prove this for any natural number n > 4.

For many interesting practical features of this curvature flow, we refer readers
to our paper [7], which contains many examples and further observations and is
accompanied by a Python program which can be used to run a numerical curvature
flow.

Let us now shift our attention to curvature sharp Markov weighted graphs. The
following result shows that every unmixed graph G admits a (generally degenerate)
weakly connected curvature sharp Markovian weigthing scheme without laziness.
It is proved in Sect. 4.2.

Theorem 1.11. (Weakly connected curvature sharp weighting schemes). Let G =
(V, E) be a simple finite connected unmixed graph and Gy = (Vy, Eo) be a com-
plete subgraph (clique) withn = |Vy| > 2. Then there exists a Markovian weighting
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scheme P without laziness which is curvature sharp on (G, P) such that its (mixed)
induced subgraph Gp = (V, Ep) is weakly connected and the restriction of P to
Gy is a simple random walk.

The weighting scheme P = (pxy)x,y € V hasthefollowing explicit description:

(i) We have py, = n%for all {x, y} € Eq (that is, we have a simple random walk
in Go),
(ii) For every x € V with dg(x, Vo) = 1, we have pyy = %for all vertices y € Vy
adjacent to x, where k is the number of neighbours of x in G,
(iii) For every x € V with dg(x, Vo) > 2, there exists a unique y € V with
dg(y, Vo) = dg(x, Vo) — 1 such that py, = 1.

The importance of this theorem stems from the fact that it provides some support
for our observation that any initial Markovian weighted graph is convergent under
the curvature flow: recall that its limit must be curvature sharp and Theorem 1.11
confirms that curvature sharp weighting schemes exist for any initial combinatorial
configuration.

The existence of a non-degenerate curvature sharp Markovian weighting
schemes P is rare if the underlying combinatorial graph G has a leaf.

Proposition 1.12. (Curvature sharp weighted graphs with leaves). Let G = (V, E)
be an unmixed simple finite connected graph and y € V be a leaf, that is, y
has vertex degree 1. Then G does not admit a non-degenerate curvature sharp
Markovian weighting scheme without laziness unless G is a star graph (that is,
there is avertex x € V with V. = {x}U S1(x) and there are no edges between pairs
of vertices in S1(x)).

Note that any random walk without laziness is a non-degenerate curvature sharp
weighting scheme on a star graph (see Example 4.3). Proposition 1.12 as well as
the next three results are proved in Sect. 4.3.

Theorem 1.13. (Curvature sharpness for triangle-free graphs). Let G = (V, E) an
unmixed simple finite connected graph without triangles and Ag be its adjacency
matrix. Then the set of all non-degenerate curvature sharp Markovian weighting
schemes without laziness is in 1 — 1 correspondence to solutions ¢ € (0, v of the
equation

Age =1y,

where 1y is the all-one vector of size M = |V|. This correspondence is given
by the relation pyy = cy for all x,y € V with x ~ y. In particular, the graph
G cannot have a unique non-degenerate curvature sharp Markovian weighting
scheme without laziness unless Ag is invertible.

Moreover, the set of all non-degenerate curvature sharp Markovian weighting
schemes without laziness on G is a convex set.

This theorem has the following two immediate consequences.
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Corollary 1.14. (Unique curvature sharpness for bipartite graphs). Let G = (V, E)
be an unmixed simple finite connected bipartite graph. If |V | is odd, then G does
not have a unique non-degenerate curvature sharp Markovian weighting scheme
without laziness.

We like to mention that bipartite graphs may not admit any non-degenerate
curvature sharp weighting schemes, so this corollary is only a statement about their
uniqueness and not about their existence. For example, any path of length > 3 does
not admit non-degenerate curvature sharp Markovian weighting schemes without
laziness because of Proposition 1.12.

Corollary 1.15. (Unique curvature sharpness for hypercubes). The simple random
walk without laziness on the hypercube Q" = (K3)" is curvature sharp. It is the
only non-degenerate curvature sharp Markovian weigthing scheme without laziness

on Q" if and only if n is odd.

This finishes our list of results in this paper. There are various other results
presented throughout the paper which are of their own interest like, e.g., the lower
and upper curvature bounds in Theorem 2.4.

1.3. Motivation for our curvature flow

The motivation for the work in this paper was to introduce a (Bakry-Emery) cur-
vature flow on finite weighted graphs, similar in spirit to the Ricci curvature flow
of a Riemannian manifold. Let us explain our initial thoughts in the setting of non-
degenerate weighted graphs (G, P). The Bakry-Emery curvature of a vertex x € V
can be expressed as a minimal eigenvalue, namely,

KN (x) = Amin(An (X))
with )
An(x) 1= Aso(x) — Nw(x)vO(x)T, (8)

where Ao (x) = Ap oo(x) is a special symmetric matrix (the curvature matrix) of
sizem = dy and vo(x) given in (5). The matrix Ao (x) is defined in [8, (1.2)] and is
related to another matrix Q(x) which is defined as a Schur complement of a matrix
['>(x) related to the I'>-operator earlier (see formula (26) below). The variational
eigenvalue characterisation via the Rayleigh quotient yields the estimate

Vo) T AN (¥)Vo(x)
vo(x) Tvo(x)
where the right hand side turns out to agree with the upper curvature bound
K 1‘\116 (x:) (x), defined earlier in (3) (see Proposition 2.16). Henceforth, we will denote
the right hand side of (9) by K 1(\), x)=K g’ n (x). These considerations provide an
alternative equivalent description of curvature sharpness in the non-degenerate case

(see also [8, Proposition 1.7(i)]): x € V is curvature sharp if and only if

Ky (x) = €))

Aso(X)Vo(x) = K (x)vo(x). (10)
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Our first Ansatz for the curvature flow was the system of ordinary differential
equations

Vo(x, 1) = —Ap(p),e0(X)Vo(x, 1),  P(0) = P, 1D

with one such equation for every vertex x € V. Moreover, we added the conditions
P () =0 forallx €V, (12)

which means that the laziness values do not change in time. Note that P (¢) and the
system of vectors vo(x, ¢) for all x € V determine each other mutually.

A problem with the flow (11) is that it does not preserve the Markovian prop-
erty. For that reason, we modified the differential equations in (11) by adding a
normalization term, which lead to the system in (6). It turns out that this modifi-
cation preserves the Markovian property. It is in some sense similar to the idea of
a normalized Ricci curvature flow in the setting of Riemannian manifolds, which
has the property to be volume preserving.

Recall that we restricted our above considerations to the case of non-degenerate
weighting schemes. The generalization to arbitrary weighting schemes requires a
description of the curvature flow which no longer involves the curvature matrix
Ao (x) but the Schur complement matrix Q(x).

1.4. Other curvature flows on discrete spaces

To our knowledge, the (Ricci) curvature flow for weighting scheme on discrete
Markov chains in this paper is the first one which is based on Bakry-Emery curva-
ture. However, in the meantime, another (Ricci) curvature flow for Bakry-Emery
curvature with fixed edge weights and varying vertex measures was proposed
in [21]. Moreover, curvature flows were introduced for various other curvature
notions for discrete spaces like, e.g., networks, weighted graphs, simplicial com-
plexes or discrete Markov chains.

e Combinatorial Ricci flows on surfaces were introduced in [10] in connection
with a discretization of the Uniformization Theorem via circle packings.

e Weber et al. introduced a Forman-Ricci curvature flow in [47] and discussed
applications for data mining, including denoising and clustering of experimental
data, as well as extrapolation of network evolution. For theoretical background
of Forman-Ricci curvature, see [18,23]

e The question about a reasonable curvature flow for Ollivier-Ricci curvature
was already mentioned as Problem N in Ollivier’s problem list [37,38]. Ni et
al. introduced a slight modification of Ollivier’s proposal in [36] with a view on
community detection and Bai et al. [4] investigated existence and uniqueness
properties of its solutions.

e A discrete version of a super Ricci flow for weighted graphs with respect to
entropic curvature was introduced in [14,16] with a discussion about its con-
nections to the heat flow.

e Balanced Forman curvature was introduced in [46] and can be viewed as a
hybrid between Forman and Ollivier-Ricci curvature. Their stochastic discrete
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Ricci flow algorithm is based on the idea to remove edges with high curva-
ture and to replace them by new edges around somewhere with low curvature.
This algorithm is designed to avoid oversquashing of graph neural networks.
Intuitively this means that it increases the Cheeger constant by getting rid of
bottlenecks.

e The resistance curvature defined in [13] seems like a Forman curvature with
respect to the (non-local) resistance metric. The authors introduce an associated
Ricci flow and show that the finite path graph contracts under the flow as
expected.

2. Bakry-Emery curvature and Schur complement

The main results in this section are lower and upper curvature bounds given in The-
orem 2.4, a reformulation of Bakry-Emery curvature via the Schur complement and
using the Q-matrix in Proposition 2.11, agreement of the upper curvature bounds
K I‘flp *x:) (x) and K 1(3, (x) in the non-degenerate case, stated in Proposition 2.16, and

relations between the upper curvature bounds K sz](x ) (x) for different distance func-
tions d corresponding to subgraphs, given in Theorem 2.17.

2.1. Graph theoretical notions

In this subsection, we collect graph theoretical notions for combinatorial mixed
graphs and for weighted graphs. Some of these notions were already mentioned in
the Introduction. All our graphs are usually assumed to be finite and connected, but
many results hold also true for locally finite infinite graphs.

Definition 2.1. A mixed graph G = (V, E) has a vertex set V and an edge set
E = E' U E? comprising one- and two-sided edges. Any pair x, y € V of distinct
vertices can either be non-adjacent or connected by a two-sided edge {x, y} € E?
or by a one-sided edge from x to y, denoted by (x, y) € E!, or by a one-sided edge
from y to x. Other relevant notions are defined as follows.

e The graph distance function dg denotes the (non)-symmetric distance func-
tion in G, that is, dg (x, y) is the length of the shortest directed path from x to
y. If there is no such directed path, we set dg (x, y) = oo.

e For r € N, a (combinatorial) sphere and a ball of radius » about x € V are
respectively defined as

Sx)i={z eV dg(x,z) =7},
BP(x):={z €V :dg(x,2) <r}.

For simplicity, we often denote distance, spheres and balls by d(, -), S,(-) and
B, (-) (that is, we drop the label G).

e A subgraph of G = (V, E' U E?) is a mixed graph G = (Vj, E(l) U Eg) with
vertex set Vp C V and edge set Eé U Eé such that
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(D Eé C E?, that is, every two-sided edge of Ej is also a two-sided edge of
E, and

(2) Every one-sided edge (x, y) € E(l) is either also a one-sided edge in E' or
a two-sided edge {x, y} € E2.

We write G > Gy if Gy is a subgraph of G. Supergraphs are defined in the

opposite way and G is a supergraph of G if and only if G is a subgraph of G.

Usually, all our mixed graphs are finite. By an enumeration V = {vg, vy, ...,
v,—1} of the vertices of G, we obtain a non-symmetric adjacency matrix Ag of size
|V| where (Ag);; = 1 if there is an edge from the i-th vertex to the j-th vertex.
Two-sided edges give rise to symmetric 1-entries in Ag.

Next, we give the definition of weighted graphs and related notions.

Definition 2.2. A weighted graph (G, P) is a mixed graph G = (V, E! U E?)
together with a weighting scheme P = (p.y), yev, where p,, > O represents
the transition rate from x to y. Moreover, for x # y, pxy > 0 only if there is
either a one-sided edge (x, y) € E ! or a two-sided edgex,y e E 2 Note however,
that even if p,, > 0, we do not have a loop at the vertex x, since we require
our underlying graph to be simple (no loops, no multiple edges). Further relevant
notions are defined as follows.

e For a weighted graph (G, P),
(1) A one-sided edge (x, y) € E! is called degenerate if Pxy = 0;
(2) A two-sided edge {x, y} € E? is called degenerate if Pxy =001 py, =0;
(3) A vertex x € V is called degenerate if at least one of the transition rates

Dxy corresponding to one- and two-sided edges emanating from x is zero.

A weighted graph is called degenerate if it has at least one degenerate edge or,
equivalently, if it has at least one degenerate vertex.

e For a fixed vertex x € V of a weighted graph (G, P), the transition rate pyy is
called the laziness at x. We define D, := Zy#x Dxy to be the weighted degree

of x. Moreover, for any pair x, z € V, we define p)(czz) =), PxyPyz-

e The weighting scheme P is called Markovian if }_ ., pxy = 1 for every
vertex x € V. In this case, we have D, = 1 — p,,. The set of all Markovian
weighting schemes of G is denoted by M.

e The induced subgraph of G by P is a subgraph Gp = (V, Ep) with Ep =
E}, u E%, such that
(1) There is a one-sided edge (x, y) € E}, if and only if p,y, > O and pyx =0,

and
(2) There is a two-sided edge {x, y} € Ef, if and only if pyy, pyx > 0.
Note that the weighted subgraph (G p, P) is non-degenerate, by construction.

e The corresponding distance function of G p is denoted by dp and corresponding
spheres and balls are denoted by S’ (x) and BY (x).

Bakry-Emery curvature rescales linearly in the weighting scheme, that is, we
have K, p v(x) = uKp n(x) for p > 0. For that reason, we can restrict our
considerations in the case of finite graphs to Markovian weighting schemes P (by
a suitable rescaling and a modification of the diagonal entries p,, which have no
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influence on the Bakry-Emery curvature). In contrast to much other work, we do
not require reversibility of the Markov chain described by the matrix P (which
means that there is a stationary distribution 7 : V' — (0, oo) satisfying 7 (x) pxy =
7 (y)pyx forall x, y € V). A consequence of reversibility is that the spectrum of
the Laplacian A p in (1) is real, but this particular property is not relevant for our
considerations. Moreover, while the normalized curvature flow in Definition 1.4
preserves the Markovian property, it does not generally preserve reversibility.
Bakry-Emery curvature of a vertex x € V is alocal value and is fully determined
by (the transition probabilities of the induced subgraph of) the 2-ball BZP (x). This
follow directly from the fact that I'2(f)(x) is fully determined by B2P (x) and
both I'(f)(x) and Af (x) are fully determined by BfD (x). Note also that the upper

curvature bounds K Af, (x) defined in (3) remain the same if we replace f by ¢; f +¢2

with ¢ # 0, that is, we have K{,(x) = K]C\,l fHe (x). Finally, recall the following
formula:

2N(f, 2)(x) = Y puy(f(3) = L)) — g(x)),

which immediately implies I'(f)(x) > 0 and that the curvature function N
K (x) is monotone non-decreasing on (0, co]. Moreover, since there exists f :
V — Rwith I'(f)(x) > 0, we have limy_,o Ky (x) = —o0.

2.2. Lower and upper curvature bounds

We start with the following useful proposition.

Proposition 2.3. Let (G, P) be a Markovian weighted graph. Then we have for
any vertexx € V:

XX 1
L)@ = (<1+ 55 T(He + 3 (Af ()2
1
+3 ; Py Y Pye(f () = 2£ () + f(0))%. (13)
Y#X z

Moreover, using the notation py; A p,y := min{py., p.y}, this implies the following
inequality:

. 1
DO = |1+ 254 min |2p+5 D prapy | [T
YEST( zesP(0nsP (y)
1
+5 (AL (0. (14)

In particular, if f = dg(x, ), we have Af(x) = 2I'(f)(x) = Dy, and another
implication of (13) is

1 2 2 2 2
Dadg(r, )() = 7 | DI +3p% =3p%, = 3 P2

z€5 (x)
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Proof. The proof of (13) follows the arguments given in [15, Proof of Lemma
1], [30, Proof of Theorem 1.2] and [22, Proof of Theorem 9]. Recall that we have

202 () x) = AT ()K) =20 (f, Af)(x). s)

The first term on the right hand side can be rewritten as follows:

1
AT = 53 ey D Pyl (F @) = O = (F ) = f@))]
y z
=Y pupy(f@ = FONFO) = f()
V.2

1
+ <§ Y popy(f@ =2 () + f(X))2> —2(H ). (16)
¥,z

For the second term on the right hand side of (15), we compute

V(S AL =Y Py (f () = FEOAL () — Af (x)
y

= (Z PxyPy:(f () = FN(f (@) — f(y))) — (Af ()%

¥,z
(17)
Plugging (16) and (17) into (15) gives

1
202 (F)(0) = =20 (@) + (AL’ + 5 D Peypye(F @) =2 () + (1))
¥,z

= (prx — DT(F)(X) + (Af (x))?
1
+5 2P 2 (f @) = 2f () + f(x)

y#X 2

which finishes the proof of the equality in (13). The inequality (14) follows from
the observations that

(f@) =2 ) + f))mx = 4(f(X) — F())?
and for z € S1(x) N S1(y)

(f(2) =2 + FON? + (f(») = 2f(2) + f(x))*
> (f(x) = fFON? + (f(x) — f(2)2

In the special case f = dg(x, -), we have for y € Sy (x):

D Py (f@ =2 () + f(x))?

= 4pyx + Z Pyy = 3pyx + (1 - Z pyz)

V'eSi(x) z€85(x)



Bakry-Emery curvature sharpness and curvature flow. .. Page 17 of 53 11

and, therefore,
D Py Y pu(f@ =2f )+ f)F=3pR —3pl, + D= > pd.
VF#X b4 €8 (x)

Using

20(Hx) = Af(x) = Z Pxy = Dy (13)
v

and plugging this into (13) yields

(2) 2
Dy D2 —3p2. +Dy -3 P
o(dg(x, ) (x) = (—l + p;") TX T 7’C + xx : z€8(x) Pxz
2 2
_ g% + ( ) B 3pxx Zzesz(x) P)(cz)
= ) ’
]

The main result of this subsection, the curvature bounds in the following theo-
rem, is now an immediate consequence of Proposition 2.3. In particular, we have
—1 < Ky(x) <2for N > 2, as stated in the Introduction.

Theorem 2.4. (Curvature bounds). Let (G, P) be a Markovian weighted graph.
Then we have forall x € V and N > 2:

1 .
—1+%+ min Zpyx—i—i Z Pyz Apzy | < Kn(x) §K§,G(x’)(x)
yesy @) zeSP (NS (v)
< 2D,
with
2) 2 @
. Dy 3pxy —3pxx — p 2D
K[a\l](;(x, )(x) et + XX ZzeSz(x) Xz X (19)

2 2D, N~

Moreover, the upper curvature bound holds for all dimensions N € (0, oo].

Remark 2.5. Using the Markovian property, we can remove the sum involving z €
S5 (x) in formula (19) and we obtain

dg(x,-) Pxx 2Dx
Kyl = o4 X popwet D0 popw |-5T - @QO)

yeSsi(x) V.Y €S1(x)
This alternative presentation will be useful later in Sect. 6.1.

Corollary 2.6. For x € V, if I'(f)(x) =0, then Af(x) = 0and I'(f)(x) > 0.



11 Page 18 of 53 D. Cushing et al.

2.3. I'y-minimizing functions

In this subsection, we discuss another application of Proposition 2.3, namely how to
determine the function values on two-spheres from the prescribed function values
on one-sphere to minimize I'.

Proposition 2.7. We have for any vertex x € V:

(a) For any set of prescribed values f (x) and f(y) forally € SfJ (x), the following
values f(z) forall z € SZP (x) are the unique choice to minimize I'y(f)(x):

2
f@==f@) + =5 D PPy f ). @1
Pxz y2x

(b) For any set of prescribed values f(x) and f(y) forall y € SlG (x), the values
f() in (21) for all 7 € Sg(x) n S;(x) are the unique choice to minimize

P2 () ().
(c) Moreover, there exists afunction f : V. — Rwith f(x) = 0and2T' (f)(x) =1,

such that the corresponding upper curvature bound K 1{, (x) agrees with the
Bakry-Emery curvature:

Kn(x) = K{(x),
and it satisfies
2
min{,/pyry : dp(x,y) =1}

It is important to note that the distance function f = dg(x, -) satisfies the
condition in (b) since we have f(x) = 0 and f(y) = 1 for y € SIG (x), and
f(z) =2forz e SY(x) N SF (x) satisfy (21).

||f||oo:SU‘I/)|f(Z)| =< (22)

z€

Proof of Proposition 2.7. For the proof of (a) and (b), we employ (13) and deduce
that I'> ( f) (x) is minimized precisely when choosing each unassigned value of f(z)
(that is, for z € SZP (x) in case (a) and for z € S>(x) N Sf (x) in case (b)) to be

f (@) = argmin ; PeyPy=(t =2 () + f(0)?

The above term is a quadratic polynomial in ¢ with strictly positive leading coeffi-
cient p,(czz) = Zy#)( DxyPyz > 0 (since we only consider z € Sf (x) in either case),
so the minimizer is uniquely given by
Zy;é)c nypyzf()’)

Z y#x PxyPyz

For the statement in (c), we start with a sequence f, : V — R, ['(f,,)(x) # 0,
such that

f@)=—fx)+2

Kn(x) = lim_ KL ().
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The existence of such a sequence follows from Corollary 2.6, since functions f
with I'(f) = 0 are not relevant for the curvature determination. Since K ]{,” x) =
K;vl f"+cz, c1 # 0, we can assume w.l.o.g. that f,(x) = 0 and 2I'(f,)(x) = 1.
Moreover, we can also assume that the values f;,(z) for z € SZP (x) are determined
by the values in f,(y) for y € Sf) (x) via (21) in (a), since this choice only non-
increases ['2(f;)(x) and the corresponding upper bound K }Cn (x). The condition
2T (f,)(x) = 1 implies for all y € S¥ (x):

1/2
1 QL(f)a)'? 1
| < Y p G| = . = :
/ Pxy yEx ~/ Pxy / Pxy
Employing (21), we conclude for all vertices z € Sf (x) that
) 2
£ < 2Zy;éx Px)[’yz|fn(}’)| -

< max .
Zy;ﬁx DPxyPyz yeSF(x) o/ Pxy
Since all other values f;,(w) with dp(x, w) > 3 do not influence K /{,", we can
assume w.l.o.g. that f;,(w) = 0. Consequently, we have
2
min{,/pxy : dp(x,y) =1}

The existence of a function f : V — R with f(x) =0,2I'(f)(x) = 1, Kny(x) =
K 1{, (x) and (22) follows now from the sequence f; by a compactness argument. O

[ fulloo <

Corollary 2.8. Let x € V and f : V — Rwith f(x) = 0 such that
Kn(x) = K} (x).

(The existence of such a function is guaranteed by Proposition 2.7c.) Then the
values of f(z) forall z € Sf (x) satisfy equation (21), that is, they are completely
determined by the values of f(y) forall y € Sf) (x).

Proof. Let f be a function such Ky (x) = K ,{, (x), that is
1
Da(f)x) = N(AJ”(JC))2 + Ky ()T (f)(x). (23)
Let f be a function which agrees with f on all vertices w € V withdp(x, w) # 2,

and which is a modification of f for all z € S2P (x) to satisfy (21). Then the right
hand side of (23) remains unchanged when we replace f by f. The assumption

f # f leads to
~ 1 ~ ~
Do(f)(x) < Ta(f)(x) = N(Af(x))2 + Kn ()T (f)(x).

This is a contradiction to the definition of Ky (x). |
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Remark 2.9. Proposition 2.7 and Corollary 2.8 suggest the following generalization
of curvature sharpness: A vertex x € V could be called (f, N)-curvature sharp if

Kn(x) = K} (x) with K, (x) defined in (3).

For later purposes, we introduce the following reformulation of Proposition 2.7b
in terms of a I';-optimal extension operator ¢, for functions defined on BlG (x).

Corollary 2.10. Fixx € V. Let ¢, : C(BIG (x)) = C(V) be the extension operator
mapping functions on BlG (x) to unique functions on 'V, defined as follows. For any
g:Bf(x) > R

g(@) ifz € BY (x),
(x(9))(2) := § ~8() + ﬁy; PayPyz8() iz € STINST (M), (oa
0 otherwise.

Then we have, for any f : V. — R with the restriction fo = f|BIG(x)

Do () (x) = Ta(gx (f0)) (x). (25)
Moreover, we have equality in (25) if and only if f agrees with ¢ ( fy) on sz (x).

2.4. Curvature reformulation via the Schur complement and the matrix Q(x)

In this subsection, we revisit the core concept in [8], which is to reformulate the
Bakry-Emery curvature. With a subtle modification, we extend the reformulation
of the curvature (which was defined only for a non-degenerated weighted graph)
to be valid for a degenerated weighted graph.

Fix a vertex x € V of a weighted graph (G, P). The Laplacian A(-)(x) and the
quadratic forms I'(-, -)(x) and I'2(-, -)(x) can be represented by a column vector
A(x) and symmetric matrices I"(x) and I';(x) as follows:

Af(x) =AW f,
T(f, &)(x) = f T()g,
Ta2(f, &)(x) = £ Ta(x)g,

where f , g are representations of f and g as column vectors (with respect to an
enumeration of the vertices). This vector and matrices have non-zero entries only
in the the 2-ball B;(x). Therefore, we use the same notation for their restrictions to
B> (x). (Their explicit forms are given in [8, Appendix A]). Moreover, the notation
"oy (X)w;,w, is used for the submatrix with rows corresponding to (the vertices in)
W1 C V and columns corresponding to W>. If Wi = W5, we also write I'0) (x)w
for I' o) (x)w,w. The vertex sets chosen for W; are from the decomposition

Ba(x) = {x} U S1(x) U S2(x).

Note that we use in these considerations the combinatorial spheres S;(x), S2(x)
stemming from the distance function dg(x, -) and not from dp(x, -) (even though
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the same results would hold true under this other choice). The reason for this choice
is that it aligns well with the curvature flow equations which are derived later in
Sect. 6.1.

The definition of Bakry-Emery curvature (2) can be rephrased as the maximum
value of K such that I';(x) — %A(X)A(X)T — KT'(x) is positive semidefinite
(which we will denote by > 0). Furthermore, since Af, I'(f) and I'2(f) remains
unchanged under adding a constant to f, we may assume without loss of generality
that f(x) = 0. Equivalently, it means we are looking for the positive semidefi-
niteness of the matrix (I'>(x) — % AX)AX)T — KT'(x))s,us,, where the row and
column corresponding to the vertex x are removed.

Now we follow the arguments given in [8, Sect. 1]. Writing I'2(x)s,us, as the
block matrix

F2(x)s,us, = < F2(x)s FZ(x)Sl,Sz) ’

[2(x)s,.s0 Ta2(x)s,
we define a matrix Q(x) to be the Schur complement
Q(x) := Ta(x)s, — Ta(x)s5,.5,T2(0) g Ta () s, (26)

in the case that I'2(x)s, is positive definite (denoted by > 0).
A standard fact about Schur complements (see [8, Lemma 2.1]) states that

(Fz(x) _ %A(x)A(x)T — Kr(x))w2 =0 27)
if and only if
o) — %A(x)slA(X)El — KTI'(x)s, = 0. (28)
Note also that A(x)g, and I'(x)s, simply take the form
A@)s; = (Pxyis Pryar > Pay) | =1 Prs (29)
D05, = 3 diag(payy, - pey,) = 5 diag(py). (30)

where S1(x) = {y1, Y2, .-+ Ym}-

Fortunately, the equivalence “(27) < (28)”extends to the case when I'2(x)sg, is
only positive semidefinite; see Proposition 2.11 below. Recall that we have (see [8,
(A.8) and (A.9)])

1.,
Ma(x)s, = ;diag (p,?;l, ...,pg?n) =0 G1)
with S>(x) = {z1, ..., z»}. In the degenerate case, some of the diagonal entries pfg

may be zero, in which case [8, Lemma 2.1] cannot be directly applied. Instead, we
use [1, Theorem 1(i)] which implies equivalence of (27) and (28), where the inverse
Fz(x)gzl in the defining equation (26) of Q(x) is replaced by the pseudoinverse

I, ()c)g2 , under the additional assumption

D2 (0)5, T2 ()5 T2 ()55, = T2 (1), (32)
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Note that I (x)§, = diag(q1. ... ga) with
. 2
%, if prZ)J. >0,
qj =qz; = ™% (33)

0, if pi? = 0.

The assumption (32) is easily verified by the fact that pfczz) = Zer DxyPyz =0
implies (see [8, A.6])

1
Fz(x)yz = _szypyz =0

for all y € Si(x) and z € S2(x). The matrix Q(x) defined via the pseudoinverse
of I'2(x)s, has then the following explicit entries (see [8, (A.11) and (A.12)]) for
Y, YisYj € Si(x):

I, 3 D, 3
Q(x)yy = pry + prypyx - Tpxy + pry Pyz
z€5 (x)
1 1
+Z Z (3nypyy’ + ny/Py/y) - Z Z P)zcypiz q. (34)
y'eSi(x) Z2€82(x)
V'#Y
and
1 1 1 1
Q(x))fi)f_,- = szy,- Dxyj _pry,- Pyiy; — pryjpyjy,- 2 Z Pxyi PyizPxyjPyjz 4z
z€5 (x)

(35)
using the factors g, given by (33) in the last sums on the right hand side of (34)
and (35).
The above considerations in this more general case imply the following impor-
tant curvature reformulation result.

Proposition 2.11. The matrix I'z(x)s, is positive semidefinite and we have, for any
K eR,

(Fg(x) - %A(x)A(x)T - KF(x)) =0 (36)
S1US>

if and only if
1
0) = A5 A5, — KT ()5 > 0,

with
Ox) =Ta(x)s, — FZ(X)SI,SZF2(X)§2F2(X)SZ,51» (37

where T ()C)E2 is the pseudoinverse of I'2(x)s,.

In particular, Bakry-Emery curvature Ky (x) is the maximum of all K € R
satisfying

1
QW) = A5 Ay, — KT ()5 = 0.
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We will need later Proposition 2.15 below for proofs of equivalent character-
isations of curvature sharp vertices. It is based on the following fundamental fact
about the Schur complement, whose verification is a straightforward calculation.

Lemma 2.12. Let S1(x) = {y1, ..., Ym}, S2(x) = {21, ..., 2n}, and v € R™ and
w € R” be arbitrary vectors. Then we have
v Q(X)V>
r ¥ = , 38
2(x)SIUS2 <_F2(X)SZF2(-X)S2,S1V> ( 0 ( )
and

(vI.w") a@sus, (VVV> =V OV +F D25 F = v 0w (39)

with

Wi=w+ Fz(x);l“z(x)sz,sw-

Proof. The equation (38) follows from a straightforward matrix multiplication:

( (M)s, (F2)51,52>( LY )
T2)sysr (T2)s, ) \=(T2)g, (M2)s,.5,V
_(T2)sv = (Fz)s],52(F2)§2(F2)52,51V

([2)s55,57 = (T2, (T2, (M), V

~(9),

where we omit x for simplicity. From (38), we have

2 (x)s,us, (VVV> = (Q(g)v) + Ma(x)s,us, (%) , (40)

where W = w+1' (x)l'w2 I'2(x)s,,s, v. Left-multiplication of the equation (40) with
the row vector (v, w') yields

(vI.w") masus, (Q) =v 0y + (v wH@sus, (%)

-
=vi Qv+ [(Q(g)v) s (ngﬂ (%)

=v' Q(X)V+ W' Ta(x)s,W.

The inequality in (39) follows from I'2(x)s, = ldiag(p,(czz)l, e pf@) > 0. |
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Lemma 2.13. Let S1(x) = {y1,...,ym} and Sr(x) = {z1,...,2,}. Let [ :
BIG (x) = Rwith f(x) = 0, and consider its extension ¢f(f) 1V — R defined
as in (24). Let v € R™ and w € R" denote the vectors corresponding to q)XG( D)
restricted to SIG (x) and SZG (x), respectively, that is,

Vi= (O fOm) T
G G T
we= (@CUNED. - @C(NE)

Then we have

w = —T2(x){ [2(x)s,.5, V- (41)
Furthermore, for any function g : V.— R with g(x) = 0, we have
D2(¢7 (), ©)(x) = f5, Q(0)Es, 42)

Proof. Recalling the formulae of I'>(x)s, s, and [‘z(x)Tgz from (31) and (33), we
derive

4z ) Dxy1Pyizi -+ PxymPymzi foD
_FZ(X)32F2(X)SZ,S1VZ : : :

) : : :
9zn Pxy Pyiza -+ PxywPymza/ NS (Ym)
Its j-th entry corresponding to z; € Sg (x) is equal to

2 m
- Py fOn)ifz € ST (x) N SY(x),
(—T2()§ T2 ()s,.5, V) = @ ;pxy Pyiz; f Qi j €92 2

0 otherwise,
which is precisely (quG (f))(z;) as defined in (24). Thus (41) is proved.
Next, by combining (38) and (41), we derive

F2@f (). )(x) = 3 Ta(x)s,0s, ( Y )

—2(x) 5, T2 (x)s,.5, v
—F (Q<3>V) — 2l 0w s,
and thus prove (42). ]
The matrix Q(x) has the following interesting characterisation in terms of ['p:

Proposition 2.14. Let S1(x) = {y1, ..., Ym}- The matrix Q(x) is the unique sym-
metric matrix satisfying

v Q(x)v = min 2 (f),

for all v.= (vi,...,vy), where the minimum runs over all f : V — R with
f(x)=0and f(y;) =vjwithl < j <m.
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Proof. Ttis a direct consequence of Corollary 2.10 and (42) that Q has the desired
property. Moreover, symmetric bilinear forms are uniquely determined by their
diagonal, finishing the proof. O

Proposition 2.15. Let (G, P) be a Markovian weighted graph, x € V a vertex,

S1(x) = {y1, .-+, ym}, and S2(x) = {z1,...,2n}. Let f : V — R be a function
with f(x) =0and T'(f)(x) # 0. Then

(a)

Vil <F2<x) ~ LawawT - K,C(xmx)) f=0,
N S1US>

where fdenotes the vector (f(y1)y ..., fOm), f(z1), ..., f(zn))T.
®) If f(2) forz € SZG x)N Sf (x) are related to the values f(y) € SlG (x) as in
Proposition 2.7b, then

viogx)v=v' (%A(x)sl A()c)jg—1 + KIC(x)F(x)Sl) v,

where v denotes the vector (f(y1), ..., f(ym))T.

Proof. The statement (a) follows directly from the definition of K ]C (x). For (b),
denote the vector

wi=(f@1)s -, f@)),

that is, f T = (v",w'). Without loss of generality, assume f = 0 outsides BZP (x)
(as the statement (b) is not affected). Then f agrees with qbf (fo(x)) where fy :=
fl BO(x) In particular, the vector w agrees with

:
(@M ED. - @)

and Lemma 2.13 implies that w = —I"» (x)];2 I'2(x)s,,s,v. In view of (39), we have

v
v wHRa@)sus, (w

) =v' Q(x)v,

since W =w+1I' ()c)§2 I'2(x)s,,s,v = 0. Combining the above equation with the
statement (a), we can conclude that

v (Q(x) - %A(x)A(x)T - K,C(x)ﬂx)) v=0,

which finishes the proof. O
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Let us finish this subsection with some remarks about the relevance of the matrix
Q(x). In the case of a non-degenerate vertex x € V, the matrix Q(x) gives rise to
the family of so-called curvature matrices

Ay (x) = 2diag(vo) "' Q(x)diag(ve) ™! — %w(x)m(x)? (43)

where vo(x) = (\/Pxys - - /pxym)T and S1(x) = {y1, ..., ym}. As already men-
tioned in the Introduction, these curvature matrices Ay (x) are symmetric matrices
whose smallest eigenvalues agree with the Bakry-Emery curvatures of the vertex
X:

Kn(x) = Amin(An (X)),

and by Rayleigh quotient characterisation,

vo(x) T Ay (x)vo(x)

vo(x) Tvo(x)

where vo(x) = (\/Pxy;s - - /pxym)T.

We like to emphasize that when x is a degenerate vertex of G (that is, some
Dxy; vanishes), Ay (x) is undefined; however, Q(x) is always well defined. Since
curvature depends only on the weighting scheme P and not on the graph G, it
is possible to still define the matrices Ay (x) for degenerate vertices x of G by
changing to the subgraph (G p, P), in which all vertices are non-degenerate. In this
case, however, the size |S 1P (x)| of the matrices Ay (x) is smaller than the size of
the matrix Q(x) for the graph (G, P).

Ky (x) < = K9 (x),

2.5. Relations between upper curvature bounds

In this subsection, we first prove the agreement of the upper curvature bounds
K ,‘f,” ) (x)and K }(\), (x). This implies that, in the non-degenerate case, the definition
of curvature sharpness in the current paper agrees with the curvature sharpness
definition Ky (x) = KR, (x) introduced in [8]. Next, we prove the inequality of
the upper curvature bounds K ZGO (x")(x) <K ,[f,G (x")(x) for a subgraph (Gg, P) of
(G, P), and give the exact condition when these bounds agree. This fact will be
crucial for our study of curvature sharpness in the next section.

Proposition 2.16. (Agreement of upper curvature bounds - non-degenerate case).
Consider a non-degenerate Markovian weighted graph (G p, P). Then we have for
allx € Vand all N € (0, o0,

dp(x,-
K& (x) = K (x).
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Proof. Recall from the definitions of Kg,(x) and Ay (x) in the non-degenerate
setting (where the matrices, Q(x), Ay (x) and vector vo(x) belong to the graph
(G p, P) and have the size of m = |SfD x)D:

V(—)r <2diag(v0)71 Q(x)diag(vo)f1 — %V()VJ)V()

2 2D
KS () = T = D—xl;Q(x)lm - Nx.
(44)

We apply Proposition 2.15b with the function f = dp(x, -), and derive that

dp(x.?)
1 dp(x.- D K (x)D
1oL, =1] (NA()C)SIA(x)El + K9P )(x)F(x)Sl> Iy = W)‘ + fo

(45)

due to A(x)s, = px and I'(x)s, = 1 diag(p,). Combining (44) and (45) yields
K x) = KYP©) ). O

The following theorem provides the relation between these upper bounds with
respect to subgraphs.

Theorem 2.17. Let (G, P) be a Markovian weighted graph and Gy = (V, Eg) be
a mixed subgraph of G with Gp < Go < G. Then we have for any vertex x € V
and for any dimension N € (0, oo]:

dp(x,-) dgy(x,")
Ky <Ky

(x) < K77 o). (46)
. doy(x.) _ dg(x,.) . . .
Moreover, the equality K = Ky (x) holds if and only if the following
condition holds:
dg,(x,-) = dg(x,-) on B3 (x). (47)

Proof. Note that Bakry-Emery curvature is independent of the topology of the
graph and that the values I'(f)(x) and Af(x) are the same for all three functions
f=dp(x,),dg,(x, ) and dg (x, -). For the proof of (46), it suffices therefore to
show

[a(dp(x, ))(x) = IM2(dg, (x, ))(x) = Ta(dg (x, ) (x), (48)
and we only need to investigate the term
DD paypy(f@) = 2£ () (49)
y#FX 2

in (13) for the respective distance functions f. Note thatdp (x, z) = 1 automatically
implies also dg,(x,z) = 1 and dg(x, z) = 1, and the term (49) simplifies for all
three functions to

S drt D Pt Y pe(f@ =2, (50)

y:dp(x,y)=1 z:dp(x,z2)=1 z:dp(x,2)=2
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The inequality (48) follows then from an observation that 1 < dg(x,z) <
dg,(x, z) < 2 for all vertices z € S (x).

Moreover, Kj\l/G" ) K;{,G(x")(x) holds if and only if I'2(dg,(x, ) (x) =
I'>(dg (x, -))(x), which (according to (50)) holds if and only if

Yo peldey(x,2) =2 = ) pyld(x,2) —2)%

z:dp(x,2)=2 z:dp(x,2)=2

This occurs exactly when dg, (x, -) = dg(x, -) on B2P (x) (or otherwise, there would
exist some v € SZP (x) withdg (x, v) = 1 and dg, (v, z) = 2 and the above equality
would never hold). O

3. Analytic and geometric aspects of curvature sharp vertices

Let us start with some background information about the curvature sharpness
notion. Curvature sharpness of a vertex was originally introduced in the case of
unweighted non-normalized Laplacian in [11, Definition 1.4] via an upper curva-
ture bound based on the condition

det [(Fz(x) - %A(x)A(x)T - KN<x>r<x)) ] > 0.
{x}US,

It was also shown in [11, Corollary 5.10] that, in this setting, curvature sharpness
of a vertex x € V is equivalent to Sj-out regularity of x (see [11, Definition 1.5]).

Another definition of curvature sharpness was given, for non-degenerate
reversible weighted graphs, in [8, Theorem 1.5] via the Rayleigh quotient upper
bound (9). It was noticed in [8, Remark 4.1] that this definition generalises the ear-
lier one given in [11]. This second definition led to the characterisation thatx € V is
curvature sharp if and only if vo(x) is an eigenvector of A, (x) (see [8, Proposition
1.7(1)]). It was also shown in [8, Theorem 1.14] that curvature sharpness of x € V
follows from S;-in and S;-out regularity of x.

In the Introduction, we provided a third definition of curvature sharpness of a
vertex x € V employing the combinatorial distance function dg (x, -) in the original
curvature-dimension inequality. There, a vertex x is said to be curvature sharp if
we have, for some N € (0, 0], Ky(x) = K K,G (x")(x). This definition is inspired
by [24, Theorem 1.2], and it is still valid in the case of non-reversible degenerate
weighted graphs.

The main result in this section are the curvature sharpness equivalences listed
in Theorem 3.10.

3.1. Monotonicity properties of curvature sharpness

In this subsection we investigate the behaviour of curvature sharpness under change
of the dimension parameter N € (0, oo].
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Proposition 3.1. Let x € V and N’ < N. Then we have
2D, 2D,

N’ N

Kn(x) — < ) < Ky (x) < Ky(x). (51D
Moreover, if x is N-curvature sharp, then x is also N'-curvature sharp for all
dimensions N' < N and we have

~ N (52)

2D, 2D,
Ky (x) = Ky (x) — < —) .

Proof. The monotone non-decreasing property of N +— Ky (x) was already men-
tioned earlier and is a consequence of I'(f)(x) > 0 for all functions f. So we only
need to prove the left hand inequality of (51), which is equivalent to the statement
that

2D,
N — T + KN ()C)
is non-increasing on (0, oo]. Let us first prove this monotonicity. Since we have

X

+ Kn(x) inf (ZDerKg())
X) = 1n x) ),
N r@# \ N N

it suffices to show that

D,

N

is monotone non-increasing on (0, oo] for all g with I'(g)(x) # 0. We have

2D, T2(g)(x) ( (Ag(x»z) 1
K$(x)= —"""+4 (2D, - —=—"" ) —,
N TEVO=Tom T Fow ) N

and its monotonicity follows then from (Ag(x))2 < 2D,T'(g)(x) due to Cauchy-
Schwarz:

2
(Ag(x)* = (Z Pry(8(y) — g(x))> < (Z pxy) (Z Pry(8(y) — g(x))z)
y y y

= D, - 2I'(g)(x).

2
N —

+ K3 (x)

Assume now that x is N-curvature sharp. Then we have for N’ < N and
f = dG (x7 )
Do(Hx) L(AJC(X))2 _ Do(f)(x) 2Dy
C(Hx) N T(Hx) r(Hx) N’

Ta(H(x) 1 (Af(x))? <2Dx 2Dx> (sz sz)
= - = + - =Ky(x) — — .
F(f)x) N L) N N N N

) f
Ky() = Kb (o) =

Combining this with (51) implies that we have equality in (x), that is, x is N’-
curvature sharp and we have (52). O
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Remark 3.2. The second part of Proposition 3.1 does no longer hold for the general-
ization of curvature sharpness proposed in Remark 2.9: ( f, N)-curvature sharpness
x does not necessarily imply (f, N’)-curvature sharpness of x for N’ < N for gen-
eral functions f : V — R with I'(f)(x) # 0. This result can only be derived in
the special case of the distance function f = dg(x, -).

The above “monotonicity” property of curvature sharpness raises the question
whether there exist an absolute small dimension value Ny > 0 such that curvature
sharpness implies always Ny-curvature sharpness. The following theorem gives a
positive answer with an optimal threshold No = 2.

Theorem 3.3. Let (G, P) be a weighted graph and x € V be a curvature sharp
vertex. Then x is 2-curvature sharp.

We postpone the proof of this result since it overlaps with the proof of the later
Theorem 3.7, and we will present the combined proof of both Theorems there.
Moreover, we will see from this proof that Ny = 2 in Theorem 3.3 is the optimal
threshold (see Remark 3.8 after the combined proof).

3.2. Curvature sharpness of vertices in subgraphs and supergraphs

Recall that Bakry-Emery curvature Ky (x) at a vertex x € V of a weighted graph
(G, P) is fully determined by the weighting scheme P and is independent of the
graph G. In fact, we have

Kn(x) = Amin(An (X)),

where A y (x) isamatrix of size | S f (x)], deduced from the non-degenerate weighted
subgraph (G p, P).

Curvature sharpness of a vertex x € V (thatis, Ky (x) = K I‘f,c @) (x)) depends,
however, on both the weighting scheme P and the topology given by the mixed
graph G = (V, E). It is natural to ask whether curvature sharpness is preserved
under taking subgraphs or supergraphs of G. The next proposition states that this
is the case for all mixed subgraphs G of G, obtained by a removing some edges
corresponding t0 pyy =0, x # y.

Proposition 3.4. (Curvature sharpness of sub-/supergraphs). Let (G, P) be a
Markovian weighted graph. Let x € V and N € (0, oo]. Suppose that x in N-
curvature sharp in (G, P).

(a) Then x is also N-curvature sharp in (Go, P) for any subgraph G such that
Gp < Go < G. Moreover, dg,(x, ) =dg(x,-) on B2P(x).

(b) Then for any supergraph G’ > G, the vertex x is N -curvature sharp in (G', P)
if and only if dg(x, -) = dg'(x, -) on B (x).

Proof. Both statements are straightforward consequences of Theorem 2.17: Note
that we have

d . . / .
Kn(x) < K30 () < K990 () < K990 (),
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and suppose Ky (x) = K f\lf @) (x). Then the first two inequalities above must hold
with equality. The first equality means x is N-curvature sharp in (G, P), and the
second one implies dg, (x, -) = dg(x,-) on BZP (x) due to Theorem 2.17. Lastly,
x is N-curvature sharp in (G’, P) if and only if the last inequality above holds
with equality (since the first two are already equality), which occurs exactly when
dg(x, ) = dg/(x, ) on BY (x) due to Theorem 2.17. O

Example 3.5. Curvature sharpness of a vertex x € V is not necessarily preserved
if we change the topology of a weighted graph (G, P) to a weighted supergraph
(G’, P). For example, the simple random walk (without laziness) P on the square
G = K3 x K (without one-sided edges) is co-curvature sharp and we have
K (x) = 1 for all vertices. If we keep this weighting scheme P and add two
two-sided edges to obtain the complete graph K4, the original upper curvature
bound Kgo (x) = 1, given by (19), changes into

1 3p® s
Kgo(x):§+ Pxx _

2 4
since there are no longer vertices z € S>(x) in a complete graph. Since Ky (x) =

1 - % and Kj(\), x) = 45‘1 — % for all vertices, the vertices in K4 are no longer
N-curvature sharp for any dimension N.

3.3. Curvature sharpness equivalences

The main goal of this subsection is to show that curvature sharpness of a vertex

x € V with S1(x) = {y1, ..., ym} is equivalent to the identity
d(x,)
K (x)
01, = ———— 5 Px (53)

where Q(x) is our Schur complement of I'>(x) defined as in (26), and

Pr = (Pry, ...,pxym)T.

The relevance of this fact is that it implies immediately that the stationary
solutions of the normalized curvature flow given in Definition 1.4 (see also (65)

with Cy () = K ;l)%(;f ;g(x)) are precisely the curvature sharp weighting schemes
P e Mg.

Let us start with the following lemma which describes curvature sharpness at
a fixed dimension by employing the curvature characterization (Proposition 2.11)
and a crucial fact about the Schur complement (Proposition 2.15).

Lemma 3.6. Let x € V with S1(x) = {y1,y2, ..., Ym}, and let N € (0, o0]. We
define the following matrix

1 .
My(x) = Q) = AW AW, — Ky (s, (54)

Then
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T ; K" @D _ 4T
(@) 1, My (x)1,, = 0. In particular, =*—-=== =1, Q(x)1,,.
(b) The vertex x is N-curvature sharp if and only if My (x) is positive semidefinite.
(c) If x is N-curvature sharp, then the vector 1,, is in the kernel of My (x).

We would like to emphasize that the vector 1,, here represents the vector
(fO) fOn)... f(ym))T in the special case that f = dg(x, -).

Proof of Lemma 3.6. The first statement of (a) follows from Proposition 2.15(b)
with f = dg(x, -). By choosing N = oo and using I'(x) = % diag(py), we obtain
the second identity. The statement (b) follows from Proposition 2.11 and the fact that
Ky (x) < K97 (x). For (c), we conclude from 1] My (x)1,, = O and My (x) > 0
(due to x being N-curvature sharp) that My (x)1,, = 0. O

Now we are ready to prove the characterization of curvature sharpness in (53),
which is independent of the dimension parameter.

Theorem 3.7. Let (G, P) be a Markovian weighted graph. Let x € V with S1(x) =
{¥1, ..., Ym}. Then x is curvature sharp if and only if

(20 = K& @) ) 1n =0,

or equivalently,

1
o)1, = EK;’S‘")(x)px.

The proof of this theorem leads directly to the statement of Theorem 3.3 that cur-
vature sharpness of a vertex implies 2-curvature sharpness. Therefore, we combine
both proofs.

Proof of Theorems 3.7 and 3.3. Recalling K sz](x,) (x) = K49 () — % (from
(19)), the matrix My (x) in (54) can be rewritten as

1
My () = (Q() = K& @I s ) + 1 (20T s, — A5 A,

1
=: Moo(x) + NR(X)'
Using A(x)s, = p;r and 2I' (x) s, = diag(px) (see 29 and 30), we can derive that
R(x)1,, = 0.
To prove the forward implication, we assume that x is N-curvature sharp for

some N € (0, oo]. Lemma 3.6 implies that 1,, € ker My (x). Since 1,, € ker R(x),
we also have 1,, € ker My, (x), that is,

(20 = K& (0 ()5, ) 1 =0,

or equivalently,

1
Q) 1y = 51<i§“(x>px.
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To prove the reverse implication, we assume the identity (Q(x) — Kg‘é"")
(x)F(x)S])lm = 0. Together with R(x)1,, = 0, we have My(x)1,, = 0 for
all N € (0, oo], which means the entries in each row of My (x) sum up to zero. We
will show that, for small enough N € (0, oo], the off-diagonal entries of My (x)
are non-positive. From then, we can conclude that My (x) is diagonally dominant
with non-negative diagonal entries and hence it is positive semidefinite. Lemma 3.6
will then imply that x is N-curvature sharp for those small N. In order to compute
the off-diagonal entries of My (x), we recall those of Q(x) from (35) and observe
that for any y, y' € S1(x) with y # y’, we have

(A(x)slA(x);)yyl = PayDay and (T(0)s,),, =0.

Thus

1 1 1 1
(MN(X))yy’ = <§ - ﬁ) PxyPxy — prypyy’ - pry’py’y
1
_Z Z PxyPyzPxy Py'z9z-

z€8(x)

In particular when N < 2, every off-diagonal entry of the matrix My (x) is
non-positive as desired. Therefore, x must be N-curvature sharp for all N < 2.
Thus Theorem 3.3 is also proved. O

Remark 3.8. Theorem 3.3 states that if x is curvature sharp, then x is also 2-
curvature sharp. The following argument shows that N = 2 is the optimal threshold.
Consider x to be a curvature sharp vertex with the following two properties:

(i) All transition rates py,» between two different vertices y, yes lG (x) vanish,
(ii) For every vertex z € Sg (x) there is at most one y € S1(x) with pyypy, > 0.

It follows from the proof of Theorem 3.7 above that in this case, we have for My (x)
with any N > 2:

1 1
(Mn(x))yy = <‘ - _> Pxypey > 0,

2 N
so My (x) is diagonal dominant with non-positive diagonal entries. Thus My (x)
has at least one negative eigenvalue, which means x is no longer N-curvature sharp
for N > 2. Particular examples where all vertices have this property are regular
trees.

As we shall see in the following proposition, one can weaken the conditions in

the above Theorem 3.7 by replacing the term K géx") (x) with an unknown constant.
Moreover, there is another reformulation in terms of the I'>-operator.

Proposition 3.9. Curvature sharpness of x is equivalent to any of the following
statements:
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@)) (Q(x) — ZAF(x)S]) 1,, = 0 for some A € R.
(2) O(x)1,, = Apy for some A € R.
(3) There is & € R such that T>(d(x, -), f) = AAf at x forall f € C(V).

In fact, the value X in (a),(b),(c) need to be ) = %Kgéx")(x).
Proof. (1) < (2) is straightforward. Next, (2) is equivalent to
1,000 fs, = wp{ fs
for all f € C(V). By (42), the above equation can be translated directly as

FZ(dG(xv ')s f) = )\'Af

Thus we proved (3) < (2). Moreover, by assuming (3), we plug in f = d(x, )
and obtain

1 : :

S DK () = KL (0N @ (x, )(x) = 2Dy
This shows that A = %Dx K géx") (x), proving the equivalence of all assertions and
the curvature sharpness due to Theorem 3.7. O

We finish this subsection with a theorem providing a list of all curvature sharp-
ness equivalences derived before.

Theorem 3.10. (Curvature sharpness equivalences). Let (G, P) be a Markovian
weighted graph. The following statements are equivalent for x € V with S1(x) =

s ym}:

(1) x is curvature sharp, i.e., Kn(x) = K;f,(x") (x) for some N € (0, o].

(2) There is & € R such that T>(d(x, ), f) = AAf atx forall f € C(V)

3) O(x)1,, = Apy for some A € R

4 (Q(x) — ZAF(x)Sl) 1,, = 0 for some A € R.

(5) x is 2-curvature sharp.

(6) x is curvature sharp with respecttodp(x, -), anddp(x, -) = dg(x, -) on S2P (x).

In all cases, A can be chosen to be %Kgéx")(x), and N can be chosen to be 2.

Proof. We refer to Proposition 3.9 for the equivalences (1)-(4), Theorem 3.3 for
“(1) < (5)”, and Proposition 3.4 for “(1) < (6)”. O

3.4. Geometric curvature sharpness properties

Theorem 3.10 states that curvature sharpness of a vertex x is equivalent to the
dg(x,-

)
identity Q(x)1,, = K”T(x)px where m = |S1(x)|. This leads to the following

analytic characterisation of curvature sharpness.
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Theorem 3.11. Let (G, P) be a Markovian weighted graph. A vertex x € V is
curvature sharp if and only if the following identities for all y € S(x) are satisfied:

4 1
Py [4p3x+2 D0 by - Do D PuPyx - D. Do PayPyy oy

Yes|(x) ¥ yes o) Ty S ()
y#y
= 2. Pubyy (55)
Y eS| (x)
y'#y

In particular, curvature sharpness of a vertex x is determined by the transition
probabilities of the 1-ball By (x).

Remark 3.12. We like to emphasize that the final statement in Theorem 3.11 is a
very surprising geometric fact which follows from the explicit equations in the the-
orem. The definition of curvature sharpness involves the Bakry-Emery curvatures
K (x) which are not determined by information about B (x). Moreover, the more
restrictive property of co-curvature sharpness is also not determined by Bj (x). Both
concepts require information about the 2-ball B,(x). In contrast, the property of
curvature sharpness (for some dimension) can be determined once we know the
structure of Bj(x) in the Markovian setting.

The derivation of these explicit identities in Theorem 3.11 is exactly the same
as the derivation of the equations for the normalized curvature flow in Sect. 6.1, and
it is based on the expressions in (20) for K fjg (x:) (x) and in the following lemma
for (4Q(x)1,,);. For that reason we leave this calculation to the readers.

Lemma 3.13. Let P € Mg, x € V and S1(x) = {y1, ..., Ym}. Then we have for
ief{l,...,m}

A0y = pxy; | Dx — Dy, +4py;x +2Zpyiyj - pryjpyjyi7
J# J#

which is a homogeneous polynomial of degree 2 in the transition probabilities.

Proof. Lety = y;. We use the formulas (34) and (35) to compute S := 4Q(x)yy +
> ki 40(x) i We first compute the contribution of the terms involving z € S>(x)
in these formulas to S:

3pxy Z Pyz — Pxy Z nypfqu‘i‘Z Z Pxy;jPyjzPyz 4z

z€85(x) z€5 (x) Jj#i ze€8Sr(x)
4 m
= Z PxyPyz | 3 — o) pryjpyjz = —Pxy Z Dyz-
7€852(x) Pxz j=1 7€82(x)

PxyPyz #0
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This contribution can be rewritten as

—Dxy Z Pyz = Pxy | Pyx + Zpyyj =Dy . (56)
2€85,(x) A

Next we compute the contribution of all the other terms in these formulas to S:

sz), + ZZ PxyPxy; + 3I7xyl7_\’x - Dxpxy +@3- Z)ny Z Pyy; +0-2) Z Pxy;Pyjy

J# J# J#
= Pxy (3Pyx + Dy + Zpyy,-) - Z Pxy;Pyjy- (57)
J#i J#i
The lemma follows now by adding (56) and (57). |

In our next result, we show that volume homogeneity at a vertex x implies
the curvature sharpness at x. This result can be viewed as a generalization of [8,
Theorem 1.14] to degenerate weighted graphs.

Definition 3.14. (Volume homogeneity). A vertex x is volume homogeneous if and
only if Py = Dyx and p;‘ = ZzeSQ(x) Pyz do not depend on y € Si(x), i.e.,
pf = pf for all y, y’ € S;(x). (Since our weighting scheme is assumed to be
Markovian, this also means that p?, + pyy is independent of y € Sy(x), where
0._

Py = Lyesiony Py’

Theorem 3.15. (Volume homogeneity implies curvature sharpness). If (G, P) is a
Markovian weighted graph with a reversible weighting scheme P (that is, we have

Ty Pxy = Ty Pyx forall x, y € V with a row vector w with all entries positive such
that m P = m) and if x € V is volume homogeneous, then x is curvature sharp.

Proof. By the formula in Lemma 3.13, we have

4O = pay, | D = Dy +4p3x 42D Py | = D Puy oy
J# J#
= pey (1= Dy, +4p +2(1 = pyiy, — po — pT) + Py ) — p@
Dxy; Vi pyi Pyiyi pyi pyi Pyiyi pxyi
= Pxy, (2 +2p}, — 2p;) - pl).
Next, we have for any y € S1(x)

2
ﬂxP)(cy) = Zﬂxpxzpzy = Z”ypyzpzx
z z

=Ty | PyxPxx + Z Pyy' Py'x | = nyp;(pxx + PS + pyy)
y'esi(x)

= ﬂxpxy(pxx + Pg + pyy)-
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Using my # 0, we conclude that

GO )i = (24205 = 298 = (pax + 1Y, + D)) Pay = 4hpay

with A independent of y; due to the volume-homogeneity condition. Thus, x is
curvature sharpness in view of the characterization Q(x)1,, = Ap, (see Theo-
rem 3.10)). O

4. Examples of curvature sharp weighted graphs

While the last section was concerned with individual curvature sharp vertices we
investigate in this section weighted graphs for which all vertices are curvature
sharp. Henceforth, all our considerations are restricted to the case of unmixed
graphs G = (V, E) (that is, G does not have one-sided edges) and to Markovian
weighting schemes P without laziness, unless stated otherwise.

4.1. Curvature sharp weighting schemes for complete graphs

The determination of all curvature sharp Markovian weighting schemes for graphs
G = (V, E) admitting triangles is an extremely challenging task. For example, in
the case of the complete graph K, the curvature sharpness conditions (55) simplify
for every pair x # y of vertices to

zeV\{x} zeV zeV weV\{x} zeV

0 = pxy (—4[’)')( -2 Z pyz: T4 Z PxzPzx + Z Z sz]’zw) + Z PxzPzy
= Pxy (—2 - 217yx +3 Z PxzPzx + Z sz) + Z PxzPzy

zeV zeV zeV

= I’xy(_l - zpyx) + 3ny Z PxzPzx + Z PxzPzy-
zeV zeV

This is equivalent to

pxy(l + 2pyx) = 3ny Z DPxzPzx + Z PxzPzy = 3nypgc) + P;zy)- (58)

zeV zeV

It is easy to see that, on K}, the simple random walk p,, = ﬁ for all x # yis
always curvature sharp. We assume that this is the only non-degenerate curvature
sharp Markovian weighting scheme without laziness on K,,, but we are currently
only able to prove this for K3, as stated in Proposition 1.10 in the Introduction. Let
us now provide the proof of that proposition.

Proof of Proposition 1.10. A curvature sharp weighting scheme on K3 with ver-
tices {0, 1, 2} needs to satisfy simultaneously the following 6 polynomial equations:

po1 (1 +2p10) = 3po1(po1p1o + po2p20) + po2p2is
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po2(1 + 2p20) = 3po2(po1pio + po2p20) + poipi2,
p1o(1 +2po1) = 3pio(piopor + p12p21) + pP12p20,
p12(1 +2p21) = 3p1a(propor + p12p21) + propoz,
201 +2po2) = 3p20(p20p02 + P21P12) + P21 P10,
p21(1+2p12) = 3,21(p20p02 + p21P12) + P2oP01

together with the Markovian properties

pot + po2 =1,
pio+pi2=1,
p20 + p21 = 1.

The solution set S is a real affine algebraic variety, and we need to intersect this
algebraic variety with the cube

0 = {(po1, po2 P10, P12, P20, p21) € [0, 11°)

to find all curvature sharp weighting schemes. Maple provides us with the following

solution set:
4 111 1 4 114 1 4 1
A\3y333 33\ 333333

3
1 U 1 2x—1 x—1 2x-—1 X xR
"2 T T 213 1) :

It is easy to see that

sNQ= LI LI o L o) (2 L oor). (ool ]
- 2!2725272!2 ’ ’ 72521 ’ ) 272! ’ ’ ’ ’ ’ ’ ’ 7252 .
In conclusion K3 has precisely one non-degenerate curvature sharp weighting

scheme (the simple random walk) and three degenerate curvature sharp weight-
ing schemes. o

The arguments in this proof are restricted to K3, since Maple is no longer able
to solve the corresponding polynomial equations in the case n = 4. We have, how-
ever, for general n, the following degenerate curvature sharp Markovian weighting
schemes on K,,.

Let K, be the complete graph with vertices {0, 1, ..., n—1}andlet1 < m < n.
Then the induced subgraph of the vertices {0, 1, ..., m — 1} is also complete graph
which we denote by K,,, and we can choose the simple random walk on K, and
extend it to a curvature sharp weighting scheme on K, as follows: We set pj; =0
for any pair i, j € {m,...,n — 1} and pj; = % foralli € {0,...,m — 1} and
j € {m,...,n— 1}.Itis easily checked that (58) holds in this case for any choice
of x and y. For example, if x € K,\K,, and y € K, then we have p,, = %,
DPxzPzx = Oforall z, and py,p,y = m only for z € K,;;\{y}, and both sides
of (58) are equal to %
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4.2. Curvature sharp weighting schemes for arbitrary connected graphs

It is a natural question whether any finite connected simple graph G = (V, E)
admits a curvature sharp Markovian weighting scheme which is weakly connected.
By weakly connected we mean that there is a path between any two vertices in
the underlying undirected graph, which is obtained by ignoring the directions of
the edges. Theorem 1.11 from the Introduction provides a positive answer to this
question. The curvature sharp weighting scheme described there is based on the
distance structure of spheres around a clique Gy = (Ep, Vo) = K,, withn > 2.
In plain words, this weighting scheme is the simple random walk on K, and there
is, for any vertex x € V\Vj, a unique vertex xo € V (xo can coincide with x if
dg(x, Vo) = 1) adjacent to K, and a unique directed path from x to xo with strictly
decreasing distance to V{y and transition probabilities = 1 along all of its edges.
Moreover, the vertex xo has equal transition probabilities to all its neighbours in
K, and vanishing transition probabilities to all other neighbours.

Proof of Theorem 1.11. Letus first prove curvature sharpness for any vertex x € V
with d(x, K;,) > 2. There is precisely one edge {x, yo} € E for which p,, is non-
zero, and yg € V must satisfy d(yo, K,) = d(x, K;;) — 1. For this vertex yg we
have pyy, = 1 and py,, = 0. Note also that we have py;, = 0 for any neighbour
¥y € S1(x). Plugging this information into (55) yields

Pxyg _4Py0x -2 Z Pyoy + 4 Z PxyPyx + Z PxyPyy + Z PxyPyyo
YES](x) YES] (x) v,y €S (x) Y#Y0
Y#0

= (—4 “0—=2-044pxyyPyyx + Pxyg Z p.VO)’/) +0=0
y'eS|(x)

and, for y € S1(x)\{yo},

Pxy [ —4pyx —2 Z Pyy +4 Z Pxy' Py'x + Z Pxy' Py'y" +pry/1’y/.v

y'eSsi(x) V€S (x) y.y"es (x) Yy
Y'#y
=0+ Z Pxy' Py'y = PxyoPyoy = 0.

y'#y

This confirms curvature sharpness of all vertices in S, (K},) for all r > 2.
Let us next consider a vertex x € V with d(x, K,) = 1: For any neighbour
y ~ x which is not in K,,, we have

Py | =4pyx =2 D0 Py 4 D0 paybyet D PayPyyr | D0 Paypyy
y'€S (x) y'eSt(x) ¥,y €S (x) V' #y
Y'#y

VeS| (x)NKy -0
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Assuming, x has k neighbours in K;,, we obtain for y ~ x with y € K;:

Pxy [ —4pyx —2 Z Pyy +4 Z Pay Py'x + Z Py Pyy" +pry’py’y

y'eSi(x) y'eS(x) ¥,y €S (x) V'#y
y'#y

1 k—1 1 k-1 k—1 1
=—--4.-0-2-——+4-0+k-(—- =0.
k( n—l+ + (k n—l))+ k n—1

This shows curvature sharpness of all vertices in S (K},).
Finally, let us consider a vertex x € K,,: For any neighbour y ~ x which is not
in K,,, we have

Pxy | =4pyx —2 Z Pyy +4 Z Pxy Py'x t Z Pxy Pyyr | + Z Pxy'Py'y
y'eSsi(x) V'es ) v,y eS(x) y'#y

y'#y

=0+ Z Pxy! Py'y = 0.
y'eSi(x)NK, =

For any neighbour y € S1(x) N K, we have

Py | 4Py =2 D0 Py 4 D byt DL PayPyyr |+ D0 Paypyy
y'eS1(x) ¥/ €81 (x) ¥y €Sy (x) Y'#y
¥'#y
_ 1 (_4. 1 _z.n—2+4' n—1 +(n—l)(n—2)) n—2 _
n—1 n—1 n—1 (n—1)2 (n—1)2 (n—1)2

This shows curvature sharpness of all vertices in K.

Weakly connectedness of this curvature sharp weighting scheme follows
straightforwardly from the fact that there is a directed path from any vertex
x € V\K,, to K, of length d(x, K,). O

The weighting scheme in Theorem 1.11 has some transition rates which are not
in {0, 1}, forexample, the non-zero transition rates for vertices of Sy (K,,) which have
more than one neighbour in K, and, if n > 3, all transition rates between vertices of
K, . Itis aninteresting question whether all graphs have weakly connected curvature
sharp weighting schemes with only {0, 1}-transition rates. It turns out that this is
true for every graph G = (V, E) which has at least one edge ¢ = {v, w} which is
not contained in a triangle. In this case, the following weighting scheme is weakly
connected and curvature sharp: Let T = (V, E’) be a spanning tree of G with
e € E’ and dy(x, v) = dg(x, v) for all vertices x € V. It is easy to see that such
a spanning tree exists. Then we define py, = puwy = 1 and, for all x # v, w,
pxy = lif and only if x and y are adjacent in T and if dr (x, v) = dr(y,v) + L.
On the other hand, there exist unmixed graphs which do not admit curvature sharp
Markovian weighting schemes without laziness all of whose transition rates are in
{0, 1}. The smallest counterexample is the complete graph K3. This follows from
Proposition 1.10, since each weighting scheme there has a directed edge (x, y) with

1
Pxy = 7-
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4.3. Curvature sharp weighting schemes for triangle-free graphs

It is straightforward to see that the curvature sharpness condition (55) at a vertex
x € V for Markovian weighted graphs (G, P) without laziness reduces to the
following much simpler condition in the case that x is not contained in any triangle:

m

0= Pxy; Z Pxyj Pyjx — Pyix (59)
j=1

for all y; € S1(x). Before we give the proof of Theorem 1.13 from the Introduction
characterising all non-degenerate curvature sharp Markovian weighting scheme for
triangle-free graphs, we first prove the following useful lemma.

Lemma 4.1. Let (G, P) be a non-degenerate curvature sharp Markovian weighted
graph without laziness and x € V be a vertex not contained in any triangle. Then
all transition probabilities py. agree for all neighbours y € S1(x) of x.

Proof. Non-degeneracy guarantees that we have pyy, > 0 for all y; ~ x, and it
follows from (59) that we have

m
Pyix = Z PxyjPyjx-
Jj=1

Since the right hand side is independent of i, we have py,. = py; for any pair
Yi, yj € S1(x). m

The observation in Lemma 4.1 is crucial for the proof of Theorem 1.13:

Proof of Theorem 1.13. Let P be a non-degenerate curvature sharp Markovian
weighting scheme without laziness. Let x € V. Since py, is independent of
y € S1(x), by Lemma 4.1, we can define ¢, = p,, for any choice of y € S1(x).
On the other hand, the Markovian property needs to be satisfied, that is

Y ey =) puy=1 forallxeV. (60)

y~x y~x
This property can be rewritten with the help of the adjacency matrix as
Age =1y 61

with M = |S1(x)|. Conversely, any vector ¢ satisfying (61) gives rise to such a
weighting scheme by defining pyy = ¢, forall y € 51(x).

The inhomogeneous equation (61) may not have any solution in (0, 1]*. How-
ever, if it has at least one solution ¢g € (0, 1], then this solution is unique if Ag
is invertible since then ¢y = Agll m- If Ag is not invertible, then ¢g cannot be
the only solution in (0, 1], since all linear equations in (61) involving variables
¢y with (cp)x = 1 (with non-zero coefficients) must be trivial, that is, any other
solution ¢ € (0, 11™ of (61) is forced to have also ¢, = 1, and for all other variables
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cx we have (cp)x € (0, 1), and these parameters can be perturbed along the kernel
of Ag. Moreover, these other variables must exist unless G = K>, in which case
Ag is invertible.

Finally, convexity of the solution set follows directly from convexity of the
solution set of Age = 1j7 in RM and the convexity of (0, 11M. O

Theorem 1.13 is very useful to find all non-degenerate curvature sharp weight-
ing schemes for various triangle free combinatorial graphs. In the particular case
of a bipartite graph with vertex partition V = V; U Vi, the curvature sharpness
conditions (60) can be separated into two independent systems of inhomogeneous
linear equations, one such system for each vertex set V;. Let us now continue with
the proof of Corollary 1.14.

Proof of Corollary 1.14. Since G is bipartite, the spectrum of Ag is symmetric
and, in the case of an odd number of vertices, 0 must be an eigenvalue of Ag. Then
Ag is not invertible and G cannot have a unique non-degenerate curvature sharp
weighting scheme. O

It follows also easily from Theorem 1.13 that there are bipartite graphs which do
not admit non-degenerate curvature sharp weighting schemes. A simple example
isG = (V,E)ywithV ={0,1,2,3} and £ = {{0, 2}, {1, 2}, {1, 3}}. It follows
from the Markovian property that ppo = c» = 1l and p;2 + pi1z3 =c2 +c¢c3 = 1.
This implies ¢3 = 0, in contradiction to the non-degeneracy condition. Moreover,
the statement in Corollary 1.14 is not an “if and only if”, as the following example
shows:

Example 4.2. (Complete bipartite graph K> 2). In the case of this graph we have
many non-degenerate curvature sharp weigthing schemes. If we enumerate the
vertices in such a way that 0, 1 are on the left hand side of this graph and 2, 3 are
on the right hand side, and if we denote the variable corresponding to j by c;, then
the only conditions we obtain are cop + ¢; = 1 and ¢z + ¢3 = 1, which leads to
many solutions.

Another simple example having many non-degenerate curvature sharp weight-
ing schemes is the star graph.

Example 4.3. (Star graph). Let G = (V, E) be a star graph with centre x € V, that
isV ={x,y1,..., ym} withx ~ y; for all i and there are no edges between any two
vertices y; and y;. Then any choice Zywx Pxy = 1 gives rise to a non-degenerate
curvature sharp weighting scheme P by setting py,» = 1 for all i.

While Proposition 1.12 is not restricted to the case of triangle free graphs, we
think that here is the right place to present its proof. Recall that this proposition
states that any connected graph with a leaf must be a star graph if it admits a
non-degenerate curvature sharp weighting scheme.

Proof of Proposition 1.12. Let y € V be a leaf of G and P a non-degenerate
curvature sharp weighting scheme. Let x € V be the unique neighbour of y. Then
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we must have py, = 1 and, by Lemma 4.1, we must also have p,, = 1 for all
neighbours z € V of x. These neighbours must again be leaves of G since, in the
case of d, > 2, we would have p.,, = 0 for any other neighbour w € S1(z)\{x},
by the Markovian property. This would contradict the non-degeneracy condition.
0

Note that the set of all star graphs includes the complete graph K> and the path
of length 2.
Let us finally provide the proof of Corollary 1.15.

Proof of Corollary 1.15. The k-dimensional hypercube is the k-fold Cartesian
product of K», that is, QF = (K»)* and is triangle-free. Moreover, it is easy to
verify that the hypercube is regular and S;-out regular and, therefore, the sim-
ple random walk (without laziness) is a non-degenerate curvature sharp weighting
scheme. Let us investigate its uniqueness.

The spectrum of the adjacency matrix of K is given by o = {—1, 1}. The
spectrum of QO consists then all sums Z]/‘: 1aj witha; € o. Consequently, 0 is in

the spectrum of QF if and only if k is even. In this case the adjacency matrix is not
invertible and the non-degenerate curvature sharp weighting scheme is not unique.
If k is odd, O is not in the spectrum of Qk, its adjacency matrix is invertible and
the simple random walk is the unique non-degenerate curvature sharp weighting
scheme. O

5. Semicontinuity of curvature as function of the weighting scheme

The curvature flow in Definition 1.4 provides a matrix-valued function P(¢) with
P(0) = Py, which depends continously on the time parameter ¢. Therefore, it is
natural to ask whether the Bakry-Emery curvatures of the vertices depend also
continuously on the weighting schemes P (). We will see that this is only true
if we consider convergence in a specific subspace M p preserving vanishing and
non-vanishing transition rates. In general, we have only upper semicontinuity and
the curvature can jump upwards if certain transition probabilities converge to zero.
For example, this is relevant in the case that we have a convergent curvature flow
P> =lim,_, P(t) with P(0) = Py, since P*° is often no longer in M p,.

Let us first introduce the subspace M p C M. As before,let G = (V, E) bea
mixed combinatorial graph and P € M be an associated weighting scheme. The
subspace M p C Mg is the set of all stochastic matrices with the same pattern of
non-zero transition probabilities as P:

Mp :={P' e Mg : py, >0 < pyy >0Vx,yeV}

Therefore, we have for any P’ € M p that the mixed subgraphs of G corresponding
to P and P’ are equal: Gpr = Gp.

Theorem 5.1. (Curvature semicontinuity). Let Py € Mg be a sequence converging
to P € Mg. Then we have for any vertex x € V:

limsup Kp, n(x) < Kp n(x). (62)

k— 00
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If P, € Mp forall k and P € Mp, the sequence K p, n(x) converges and we
have

lim Kp,v(x) = Kpy (). (63)
k— 00

Proof. Letlimy_,», Pr = P and x € V. By Proposition 2.7, there exists a function
f:V — Rwith f(x) =0and I'(f)(x) # 0 such that

f P 1 2
Kp y(x) = (Fz (Hx) — N(Apf(x)) ) = Kp n(x).

1
TP )

We use the notation I'” and Ff to express the dependence on the weighting scheme
P. Since Py — P, we have ['** (f)(x) # O for large enough k and

1
Kpon(@) < K} y@) = <Ff"(f)(X) - N(Apkf(x)f)

1
TP(f)(x)

— K}y = Kpn().

This proves (62).

Now we assume Py — P € Mp and, additionally, Py € M p. This implies
that there exists a positive constant C > 0 such that, for all y € Slp fxy=3S8 fD (x),
the entries pfﬁy of Py satisfy pfﬁy > (2. By Proposition 2.7, there exist functions

fi 1 V.= Rowith fi(x) = 0, 2D (fi)(x) = 1, Kp v (x) = K (x) and

2
I ficlloo = =<

min{,/pk, : dp (x,y) = 1}

Al

By a compactness argument, there exists a convergent subsequence f; — f with
f@) =0,TP(N)(x) =2, [ fllo < & and

- fi . i f
lkn_l)ggf KP’;’N(x) = llin;o KPk;,N(x) = Kp y(x).
Together with (a), this implies that we have

Kpn@) < Kp y(0) = liminf K7} (x) = liminf Kp,_x(x)

< limsup Kp, n(x) < Kp n(X).
k— 00

This shows liminfy_, oo K p, v (x) = limsup,_, ., Kp, n(x) = Kp n(x),complet-
ing the proof of (63). O

Let us illustrate this curvature dependence on the weighting schemes in two
small examples (with no one-sided edges and without laziness). We use the curva-
ture matrices Ao (x) for the explicit curvature computations.
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Example 5.2.Let G = (V,E) = K, x K, be the square, that is V =
{vo, v1, v2, v3}, with horizontal edges {vg, v1}, {v3, v2} and vertical edges {vg, v3},
{v1, v2} and, for p € [0, 1],

0 p 0 1—p

I 0 I-p O
P, = 0 1—p 0 » e Mg.

1—-p 0 )4 0

By symmetry, the curvatures Koo(v;) at all vertices of (G, P,) agree. (G, Pp)
is non-degenerate for p € (0, 1). Using [8, (A.11)-(A.13)], the curvature matrix
A pp,oo(vo) assumes in this case the form

AP[),OOOO(UO) = (257 2(1 0_ p)) :

The curvature function is discontinous at p = 0 and p = 1 and is given by

2min{p, 1 — p} if p € (0, 1),
K”w‘”(”O):{z i ifZ:(()l.)

The upper curvature bound K ?’p, oo (v0) is given by
Kp, ooW0) = 2(1 =2p(1 = p)),

and (G, P,) is oo-curvature sharp for p = 0, %, 1. The situation is illustrated in
Fig. 1.

Example 5.3. Let G = (V,E) be the path of length 3 with vertices V =
{vo, v1, v2, v3}, that is v; and vy are adjacent for j € {0, 1, 2}. For p € [0, 1],
let P, denote the weighting scheme

0 1 0 0
P _ 1—p 0 p 0
p— 0 p 0 1—p

0 0 0 1

In the case p € (0, 1), the weighted graph (G, P,) is non-degenerate and the
curvature matrix at vy is given by

A (vy) = 3p—1  Vp(l—p)
Proct®0=\/pa=p)  2-p

and

1 12p2 —20p 49
Kpp.0o(W1) = Amin(Ap,00(v1)) = 5+ p = ) .

As p — 0, the transition rates along the edge {v1, vy} shrink to zero and we have

lim Kp, soon) = =1,
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Curvature and upper curvature bound

29 »
1.54
1- S
0.5+
0 T T T T Y
0 02 0.4 0.6 0.8 1
P

Fig. 1. Curvature K pp,oo(vo) (red) and upper curvature bound K ?, oo (V0) (green) of the
P

square G = K7 x K» with transition probabilities p along horizontal edges and 1 — p along

vertical edges. vq is co-curvature sharp for p = 0, %, 1

As p — 1, the transition rates along the edge {vg, v1} shrink to zero and we have
lim Kp, oo(v1) = 1.
p—1 ,

On the other hand, for p = 0,1 we have Kp, o0(vi) = Kp|,00(v1) = 2. This
means that the curvature, as a function of p, is discontinuous at p =0 and p = 1.
Moreover, we have

pd-p)

K, oo(v) =2 = ———

The vertex vy is oco-curvature sharp for p = 0, 1. The situation is illustrated in
Fig.2.

6. Fundamental properties of the curvature flow

This final section is devoted to the curvature flow. We derive the flow equations
given in Definition 1.4 from the motivating flow Eqgs. (11), (12) and (6) given in
the special case of non-degenerate weighted graphs and prove some fundamental
properties of this flow.
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Curvature and upper curvature bound
2 o

0.6 0.8 1

Fig. 2. Curvature K pp,oo(v 1) (red) and upper curvature bound K ?,p 0o (V1) (green) of the

path of length 3 with vertices {vg, v, v2, v3} and transition probabilities p along the inner
edge {vy, va}. vy is co-curvature sharp for p =0, 1

6.1. Derivation of the curvature flow equations

Recall from (11), (12) and (6) in the Introduction that the curvature flow equations
have, in the case of non-degenerate vertices x € V, the general form

Vo(x, 1) = —Ap(p),00(X)V0(x, 1) + Cx(D)Vo(x, 1), pl () =0.  (64)

The choices Cy (1) = 0and C, (1) = 2% lead to our originally considered curvature
flows for dimensions oo and N, respectively, and the choice Cy () = K ?J (0).00 (x) =
K i’zgf ;g(x) (by Proposition 2.16) leads to a curvature flow preserving the Marko-
vian property which is the focus of this paper.

Left multiplication of the first part of the flow equation (64) by 2diag(vo(x, t))
yields

2diag(vo(x, 1)y (x, 1) = —4Qx ()1, + 2Cx (1) diag(vo(x, 1)Vo(x, 1),

where Q,(t) = Q(x) is the (slightly modified) Schur complement of I'>(x) as
defined in (37) (and we recall that Q (x) and I'2(x) are defined via P(¢) and hence
time-dependent). Note that we have

diag(vo(x, t))vo(x, 1) = (nyl (1), Pxy, @,---, Pxym (t))T =:px(?)
and

2diag(vo(x, D)Vo(x, 1) = (ply, (1), Py (1), -+, Py, ()T = P (0).
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Therefore, the system of differential equations (64) for all vertices x € V can be
rewritten as

p.(1) = =40, ()1, 4+ 2C(D)p: (1), p..(1) =0, (65)

where Q, (7)1, is a homogeneous polynomial of degree 2 in the transition proba-
bilities of the 1-ball of Bj(x) by Lemma 3.13.

An essential advantage of the curvature flow equations (65) compared to (64)
is the fact that the matrices Q,(¢) are also well defined and of size |S1(x)| for
degenerate vertices x € V. Moreover, (65) provides formulas for the derivatives of
the transition probabilities directly and not for the derivatives of their square roots.
Using the explicit formulas for the components of 40, (t)1,, in Lemma 3.13, the
individual equations of (65) for all x € V with S;(x) = {y1,..., yn} and all
i €{l,..., m} are then given by

Pl (1) = Py, (1) [ 2C2(0) = Py, () + prx(t) = 4pyc() =2 pyy, (1)
J#i
+ ) Pay (P (0. (66)
J#

In our normalized curvature flow (6), we choose C () to be the upper curvature
bound K96 &) (x), which is expressed in (20) in the transition probabilities in the

P(t),00
1-ball B, (x):
X,- 1 XX
Cx(1) = Kﬁ%ﬁ,&f(ﬂ =200 (4 Z Pxy (O pyx (1) + Z Px)’(f)l’}')”(t)) - F z(t)'
yeS] (x) ¥,y €81 (x)
(67)

In this special case, the equations (66) take the explicit form p. Vi (t) = Fyy, (1) with
Fiyy, (1)

4 m
= Pay O | =4Pya () =23 Py O+ 5= > a0y ()
J#i j=1

1
Js

+ D Py, (O Py (0. (68)
J#L

Remark 6.1. We note from (68) that when an edge with endpoints x, y satisfies
Pxy(to) = 0 for some time o and the edge is not contained in a triangle (more
precisely, if there is no directed path x — y’ — ), then we have py, () = 0 for
all t > 1.
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6.2. Preservance of Markovian property and curvature sharpness of flow limits

In this subsection we provide the proofs of Theorem 1.6 and Proposition 1.7. Let us
start with the proof that the curvature flow preserves the Markovian property and
is well defined on the time interval [0, 00).

Proof of Theorem 1.6. Note that a solution of the curvature flow is unique and well-
defined for some interval [0, 7] with T > 0, by Picard-Lindel6f Theorem. We show
below that the transition rates py, are Markovian and are therefore bounded within
any such interval. This implies that the solution of the flow is well defined and
unique on the whole interval [0, co) by standard extension arguments for ordinary
differential equations.

First, we show that D, (t) = Z}# Pxy(t) = 17 Px (1) stays constant under the
flow:

D.(t) = —41] 0, (1)1, +2C,(t) D (1) =0

with Cy (1) = ;i)cl()xoc))( y=2 1,0 Et)l’" due to Lemma 3.6a. Next, we will show
that pyy(f) > O forall x # y and t > 0. Suppose not. Let T > 0 such that

Puv(T) = —86 < 0 for some u # v and some § < 1. Then let

—11|V |t

to:=inf{t > 0:¢ Dxy(t) < —e forsome x # y} € (0, T']

with

6 = 6—11|V|2T8.
Let x # y be chosen such that the infimum is attained. We first notice that
Py (to) = pxy(to) = =8 > —1 for all x" # y’. Moreover py,(t)) < 0. We
estimate at t = 1

0=2
=3

(M ) = e VPG G0) = 1Y Py ).
giving
Pley(t0) < 11V[? pay (t0).
Recall that
Pyy (10) = =40y (10) 1,5 (¥) + 2Cx (10)Pxy (f0)-

By Lemma 3.13, we have (dropping henceforth the argument 7 for simplicity),

(40,1,); = Pxy; | Pyivi — Pxx + 4Py,-x + zzp}’i}’j - pryjpyjy,-’
J#i J#i
where we choose y; = y. We can estimate p,/,/(fg) < |V for all x" % y’ because
D, (to) = D (0) < 1 and as p,,(f9) > —1 for all x’ # z. This implies that we
have for all x" # y’

=1 = pxy = pry =1V
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with p,y < 0.Since pyy;. py,y; € [ Pry. |V ], we conclude that

Pxy;j Py;yi > _|pxy||v| = ny|V|-

Moreover, we have

Pyivi = Pxx +4Pyix +2 ) pyy; 20— 1—4=2|V| = =7|V|.
J#i
Bringing everything together, we obtain
GO L)i < pay(=TIV]) = pry | VIZ < =8|V |* pyy.
As C, > —1, we obtain
Pley(10) = 101V > pyy (10).

This is a contradiction to p;y (to) < 11|V |2ny (o) as pxy(tp) < 0. This finishes the
proof that all transitions rates remain non-negative. Together with the Markovian
preservance, this implies that all transition rates are bounded above by 1.
Moreover, if we start with a non-degenerate weighting scheme, i.e., pxy(0) > 0
for all (x, y) € E, we can show similarly that p)’cy (t) > cpyy(t) for some constant
¢ and hence pyy (1) > e pyy(0) stays positive for all + > 0, showing that non-
degenerate weighting schemes stay non-degenerate during the flow. This finishes
the proof. O

Finally, we will show that limits of the curvature flow are curvature sharp.

We first show that limit points of autonomous ordinary differential equations
with locally Lipschitz right hand side are fixed points. We believe that this is standard
but for the readers’ convenience we provide a proof.

Lemma 6.2. Let F : R" — R”" be locally Lipschitz. Suppose (us)ic[0,00) € R"
satisfies

8;”[ = FOM;

and
lim u; = v
—>0o0

Then we have
Fov=0.

Proof. Let v; be a solution to v9 = v and d;v; = F ov; on t € [0, T] for some
T > 0. This exists due to Picard-Lindel6f’s Theorem. Let &€ > 0. We aim to show
vy = v, that is, v; is constant in time (since 7 > 0 can be chosen as small as we
like). We observe that for any norm | - || on R",

lvr —vll < llvr — usqrll + v — ustrl

forall s > 0.
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As the solution is continuous in the initial value by the local Lipschitz condition,
there exists § > 0 such that ||[vz — wr| < & whenever |lvg — wp|| < & and w;
is a solution to d;w; = F o w;. As ug converges to v, we can choose s such that
lus — vl < § and ||us+7 — v|| < €. Then,

lvr —vll < llvr —usqrll + lv —usyrl < &+ €.

As T > 0 and ¢ > 0 can be chosen arbitrarily small, this shows v; is constant in
time ¢ implying F' o v = 0. This finishes the proof. O

With this lemma, we can now prove that limits of our curvature flow are curva-
ture sharp.

Proof of Proposition 1.7. As the right hand side of the curvature flow is locally
Lipschitz, we can apply Lemma 6.2. Let p° = lim;_, o, p,(?) forall x € V.
Then,

—4Q, 1, +2K%EIp> —

This is equivalent to curvature sharpness of (G, P°°) by Theorem 3.10. Thus, the
proof is finished. O

Acknowledgements Shiping Liu is supported by the National Key R and D Program of China
2020YFA0713100 and the National Natural Science Foundation of China (No. 12031017).
We like to thank the London Mathematical Society for their support of Ben Snodgrass via
the Undergraduate Research Bursary URB-2021-02, during which the curvature flow was
implemented and which lead to many of the research results presented in this paper. David
Cushing is supported by the Leverhulme Trust Research Project Grant number RPG-2021-
080. Supanat Kamtue is supported by Shuimu Scholar Program of Tsinghua University No.
2022660219. Finally, we like to thank the referee for useful comments and suggestions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Data availability The research did not involve any data from any repository.

References

[1] Albert, A.: Conditions for positive and nonnegative definiteness in terms of pseudoin-
verses. STAM J. Appl. Math. 17, 434-440 (1969)

[2] Bauer, F., Chung, F., Lin, Y., Liu, Y.: Curvature aspects of graphs. Proc. Am. Math.
Soc. 145(5), 2033-2042 (2017)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

11

Page 52 of 53 D. Cushing et al.

(3]
(4]
(5]
(6]
(7]

(8]

(9]
(10]
(11]
[12]
[13]
[14]

[15]

[16]
(17]
(18]
[19]
(20]
(21]
(22]
(23]
(24]
[25]

[26]

Bakry, D., Emery, M.: Hypercontractivité de semi-groupes de diffusion. C. R. Acad.
Sci. Paris Sér. I Math. 299(15), 775-778 (1984)

Bai, S., Lin, Y., Lu, L., Wang, Z., Yau, S.-T.: Ollivier Ricci-flow on weighted graphs.
Am. J. Math. 146(6), 1723-1747 (2024)

Cushing, D., Kamtue, S., Kangaslampi, R., Liu, S., Peyerimhoff, N.: Curvatures, graph
products and Ricci flatness. J. Graph Theory 96(4), 522-553 (2021)

Cushing, D., Kangaslampi, R., Lipidinen, V., Liu, S., Stagg, G.W.: The graph curvature
calculator and the curvatures of cubic graphs. Exp. Math. 31(2), 583-595 (2022)
Cushing, D., Kamtue, S., Liu, S., Miinch, F., Peyerimhoff, N., Snodgrass, B.: Bakry-
Emery curvature sharpness and curvature flow in finite weighted graphs: implementa-
tion. Axioms 12(6), 577 (2023)

Cushing, D., Kamtue, S., Liu, S., Peyerimhoff, N.: Bakry-Emery curvature on graphs
as an eigenvalue problem. Calc. Var. Partial Differ. Equ. 61(2), 33 (2022)

Cushing, D., Kamtue, S., Peyerimhoff, N., May, L.W.: Quartic graphs which are Bakry-
Emery curvature sharp. Discrete Math. 343(3), 111767 (2020)

Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63(1), 97—
129 (2003)

Cushing, D., Liu, S., Peyerimhoff, N.: Bakry-Emery curvature functions on graphs.
Canad. J. Math. 72(1), 89-143 (2020)

Chung, F,, Lin, Y., Yau, S.-T.: Harnack inequalities for graphs with non-negative Ricci
curvature. J. Math. Anal. Appl. 415(1), 25-32 (2014)

Devriendt, K., Lambiotte, R.: Discrete curvature on graphs from the effective resistance.
J. Phys.: Complex. 3(2), 025008 (2022)

Erbar, M., Kopfer, E.: Super Ricci flows for weighted graphs. J. Funct. Anal. 279(6),
108607 (2020)

Elworthy, K.D.: Manifolds and graphs with mostly positive curvatures. In: Stochastic
Analysis and Applications (Lisbon, 1989), vol. 26, pp. 96-110. Birkhduser Boston,
Boston, MA (1991)

Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy.
Arch. Ration. Mech. Anal. 206(3), 997-1038 (2012)

Fathi, Zohreh, Lakzian, S.: Bakry-Emery Ricci curvature bounds for doubly warped
products of weighted spaces. J. Geom. Anal. 32(3), 75 (2022)

Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature.
Discrete Comput. Geom. 29(3), 323-374 (2003)

Fathi, M., Shu, Y.: Curvature and transport inequalities for Markov chains in discrete
spaces. Bernoulli 24(1), 672-698 (2018)

Hua, B., Lin, Y.: Graphs with large girth and nonnegative curvature dimension condition.
Commun. Anal. Geom. 27(3), 619-638 (2019)

Hua, B., Lin, Y., Wang, T.: A version of Bakry—Emery Ricci flow on a finite graph.
arXiv preprint arXiv:2402.07475 (2024)

Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature-dimension
inequalities on graphs. Discrete Comput. Geom. 51(2), 300-322 (2014)

Jost, J., Miinch, F.: Characterizations of Forman curvature. arXiv preprint
arXiv:2110.04554 (2021)

Klartag, B., Kozma, G., Ralli, P., Tetali, P.: Discrete curvature and abelian groups.
Canad. J. Math. 68(3), 655-674 (2016)

Kempton, M., Miinch, F., Yau, S.-T.: A homology vanishing theorem for graphs with
positive curvature. Commun. Anal. Geom. 29(6), 1449-1473 (2021)

Liu, S.: Miinch, F., Peyerimhoff, N.: Bakry—Emery curvature and diameter bounds on
graphs. Calc. Var. Partial Differ. Equ. 57(2), 9 (2018)


http://arxiv.org/abs/2402.07475
http://arxiv.org/abs/2110.04554

Bakry-Emery curvature sharpness and curvature flow. .. Page 53 of 53 11

(27]
(28]
[29]
(30]
(31]
(32]
(33]
[34]
(35]
(36]
(37]

(38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

Liu, S., Miinch, F., Peyerimhoff, N.: Rigidity properties of the hypercube via Bakry-
Emery curvature. Math. Ann. 388(2), 1225-1259 (2024)

Liu, S., Miinch, F., Peyerimhoff, N., Rose, C.: Distance bounds for graphs with some
negative Bakry-Emery curvature. Anal. Geom. Metr. Spaces 7(1), 1-14 (2019)

Liu, S., Peyerimhoff, N.: Eigenvalue ratios of non-negatively curved graphs. Combin.
Probab. Comput. 27(5), 829-850 (2018)

Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs.
Math. Res. Lett. 17(2), 343-356 (2010)

Ma, L.: Bochner formula and Bernstein type estimates on locally finite graphs. arXiv
preprint arXiv:1304.0290 (2013)

Man, S.: Logarithmic Harnack inequalities for general graphs with positive Ricci cur-
vature. Differ. Geom. Appl. 38, 33—40 (2015)

Miinch, E., Rose, C.: Spectrally positive Bakry-Emery Ricci curvature on graphs. J.
Math. Pures Appl. 9(143), 334-344 (2020)

Miinch, F.: Li-Yau inequality under CD(0,n) on graphs. arXiv preprint
arXiv:1909.10242 (2019)

Miinch, F.: Perpetual cutoff method and discrete Ricci curvature bounds with excep-
tions. Bull. Lond. Math. Soc. 56(5), 1613-1623 (2024)

Ni, C.-C., Lin, Y.-Y., Luo, F., Gao, J.: Community detection on networks with Ricci
flow. Sci. Rep. 9(1), 1-12 (2019)

Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3),
810-864 (2009)

Ollivier, Y.: A survey of Ricci curvature for metric spaces and Markov chains. In:
Probabilistic Approach to Geometry, vol. 57, pp. 343-382. Mathematical Society of
Japan, Tokyo (2010)

Pouryahya, M., Elkin, R., Sandhu, R., Tannenbaum, S., Georgiou, T., Tannenbaum,
A.: Bakry-Emery Ricci curvature on weighted graphs with applications to biological
networks. In: Int. Symp. on Math. Theory of Net. and Sys, Vol 22, pp. 52 (2016)
Robertson, S.J.: Harnack inequality for magnetic graphs. arXiv preprint
arXiv:1910.04019 (2019)

Salez, J.: Sparse expanders have negative curvature. Geom. Funct. Anal. 32(6), 1486—
1513 (2022)

Salez, J.: Cutoff for non-negatively curved Markov chains. J. Eur. Math. Soc. (JEMS)
26(11), 4375-4392 (2024)

Schmuckenschlidger, M.: Curvature of nonlocal Markov generators. Convex Geomet.
Anal. (Berkeley, CA, 1996) 34, 189-197 (1998)

Siconolfi, V.: Ricci curvature, graphs and eigenvalues. Linear Algebra Appl. 620, 242—
267 (2021)

Shi, Y., Yu, C.: Comparisons of Dirichlet, Neumann and Laplacian eigenvalues on
graphs and applications. arXiv preprint arXiv:2011.04160 (2020)

Topping, J., Di Giovanni, F.,, Chamberlain, B.P.,, Dong, X., Michael M.B. Under-
standing over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522 (2021)

Weber, M., Saucan, E., Jost, J.: Characterizing complex networks with Forman-Ricci
curvature and associated geometric flows. J. Complex Netw. 5(4), 527-550 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


http://arxiv.org/abs/1304.0290
http://arxiv.org/abs/1909.10242
http://arxiv.org/abs/1910.04019
http://arxiv.org/abs/2011.04160
http://arxiv.org/abs/2111.14522

	Bakry-Émery curvature sharpness and curvature flow in finite weighted graphs: theory
	Abstract.
	1 Introduction
	1.1 Bakry-Émery curvature, curvature sharpness and curvature flow
	1.2 Structure of the paper and results
	1.3 Motivation for our curvature flow
	1.4 Other curvature flows on discrete spaces

	2 Bakry-Émery curvature and Schur complement
	2.1 Graph theoretical notions
	2.2 Lower and upper curvature bounds
	2.3 Γ2-minimizing functions
	2.4 Curvature reformulation via the Schur complement and the matrix Q(x)
	2.5 Relations between upper curvature bounds

	3 Analytic and geometric aspects of curvature sharp vertices
	3.1 Monotonicity properties of curvature sharpness
	3.2 Curvature sharpness of vertices in subgraphs and supergraphs
	3.3 Curvature sharpness equivalences
	3.4 Geometric curvature sharpness properties

	4 Examples of curvature sharp weighted graphs
	4.1 Curvature sharp weighting schemes for complete graphs
	4.2 Curvature sharp weighting schemes for arbitrary connected graphs
	4.3 Curvature sharp weighting schemes for triangle-free graphs

	5 Semicontinuity of curvature as function of the weighting scheme
	6 Fundamental properties of the curvature flow
	6.1 Derivation of the curvature flow equations
	6.2 Preservance of Markovian property and curvature sharpness of flow limits

	Acknowledgements
	References


