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Abstract

This study provides a new perspective on understanding the intricacies of water-

mediated connectivity in ecosystems, bridging landscape ecology and geomorphology

through network science. We highlight dryland and river-floodplain ecosystems as

distinct examples of contrasting water-controlled systems. We (1) discuss central

considerations in developing structural connectivity and functional connectivity net-

works of water-mediated connectivity; (2) quantify the emergent patterns in these

networks; and (3) evaluate the capacity of network science tools for investigating

connectivity characteristics. With a focus on strength (weights) and direction, con-

nectivity is quantified using seven parameters at both network and node levels. We

find that link density, betweenness centrality and page rank centrality are highly sen-

sitive to directionality; global efficiency and degree centrality are particularly sensi-

tive to weights; and relative node efficiency remains unaffected by weights and

directions. Our study underscores how network science approaches can transform

how we quantify and understand water-mediated connectivity, especially in consid-

eration of the role(s) of weights and directionality. This interdisciplinary perspective,

linking ecology, hydrology and geomorphology, has implications for both theoretical

insights and practical applications in environmental management and conservation

efforts.
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1 | INTRODUCTION

Ecosystems are inherently connected systems, with intricate webs of

interactions that are significantly driven by hydrological processes

across scales—from the flow of water shaping individual habitats to

large-scale watershed dynamics (Abed-Elmdoust et al., 2017; Czuba &

Foufoula-Georgiou, 2015; Fausch et al., 2002; Laio et al., 2001; Larsen

et al., 2012; Torgersen et al., 2022; Turnbull, Wainwright,
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Brazier, 2010). Connectivity defined as the degree of linkage between

the various components of a system is critical in shaping the structure

and function of water-controlled ecosystems (Allan & Castillo, 2007;

Bracken & Croke, 2007; Corenblit et al., 2011; Turnbull et al., 2008;

Urban & Keitt, 2001). Therefore, by quantifying connectivity patterns,

we can better understand the controls on the characteristics of these

ecosystems (Maestre et al., 2016; Taylor et al., 1999; Turnbull

et al., 2008; Wiens, 2002), which is ultimately important for their man-

agement and conservation.

While conventional ecological and geomorphological methods

capture valuable aspects of water-controlled ecosystems, they can

face limitations in quantification of the connectivity and capturing hid-

den patterns of their dynamism and spatial intricacies (Jacoby &

Freeman, 2016; Martensen et al., 2017; Phillips et al., 2015). Tradi-

tional approaches, such as field surveys and remote sensing, can pro-

vide detailed snapshots of ecosystem components and processes, but

they may struggle to fully capture the dynamic nature and multi-scale

connectivity patterns that drive ecosystem behaviour (Turnbull

et al., 2018).

To address these limitations, there is a growing recognition of

the need for more integrative, multi-scale approaches that can better

capture the complexity and dynamism of water-controlled ecosys-

tems (Turnbull et al., 2018). Over the last two decades, network the-

ory has been used to explore and quantify connectivity in complex

systems, where a network is graph-based representation of individual

elements (e.g., habitats, local populations/communities or geomorphic

units) as nodes and their interactions or potential resource flows as

links (Aleta & Moreno, 2019; Barabási, 2012; Barabási et al., 2002;

Tiwari et al., 2020; Turnbull et al., 2018). Tejedor et al. (2015) pre-

sented a graph-theoretic approach for studying connectivity and

steady-state transport on deltaic surfaces, enabling the computation

of flux distributions and the construction of vulnerability maps.

Abed-Elmdoust et al. (2017) investigated the eigenvalue spectra of

river network adjacency matrices, revealing distinct patterns related

to the branching topology. These studies highlight the potential of

network-based methods to capture the complex, multi-scale nature

of connectivity in water-controlled ecosystems. The key idea behind

network theory is that it is possible to obtain valuable information

about system-level behaviour and pinpoint critical locations for con-

servation or intervention by studying system's underlying network

topology (Barabási & Crandall, 2003). Once constructed, network

connectivity can be quantified using mathematical graph metrics.

However, the quantification and interpretation of network metrics

depend on whether links are weighted/unweighted or directed/

undirected (Barrat et al., 2004), where weighted networks account

for connectivity strength while directed networks capture asymme-

try. Network-based approaches can support two distinct modes of

connectivity analysis: structural connectivity (SC) and functional con-

nectivity (FC). SC focuses on the physical arrangements of landscape

elements (Metzger & Decamps, 1997; Wainwright et al., 2011),

whereas FC focusses on the connectivity arising from dynamical pro-

cesses, such as flow of water, resources, organisms or energy

(Bracken & Croke, 2007; Czuba & Foufoula-Georgiou, 2015;

Schumaker, 1996; Tischendorf & Fahrig, 2000). Larsen et al. (2012)

emphasized the importance of considering directionality when quan-

tifying connectivity, as it provides critical information for predicting

transport processes and understanding landscape responses to direc-

tional forces.

The conceptualization of water-mediated connectivity and its

subsequent network-based representation can include both the eco-

logical and geomorphic components of an ecosystem (Figure 1a). In a

landscape-ecology context (referred to as an ecological perspective

hereafter), connectivity is the extent to which the landscape impedes

or facilitates the dispersal of organisms and gene-flow modulation

(Figure 1b) (Minor & Urban, 2008; Turner et al., 2015). From a geo-

morphic perspective, connectivity can be linked to the flow of water

and sediments between the landscape unit (Figure 1c) (Bracken

et al., 2015; Wohl et al., 2019).

The representation of ecosystems as networks—to enable quan-

tification of connectivity—is dependent on ecosystem characteristics

(such as weather, system boundaries and flow pathways) and the

disciplinary perspective from which connectivity is approached

(i.e., whether the focus is on biotic or abiotic components of a sys-

tem or on the interplay between the two) (see Table 1 for a brief

overview of applications of network theory in dryland and floodplain

ecosystems). The aim of this perspective article is to investigate the

network-based representation of water-mediated connectivity based

on the combined disciplinary perspectives of ecology and

geomorphology using two contrasting endmembers of water-

controlled ecosystems: drylands and river-floodplains (overview of

these water-controlled ecosystems is presented in Table 1). Specifi-

cally, we address three key questions: (i) how to develop SC and FC

networks of water-mediated connectivity; (ii) how to quantify the

emergent patterns of connectivity in different network topologies;

and (iii) what is the scope of existing network science tools for quanti-

fying water-mediated connectivity characteristics?

The article is structured as follows: an overview of networks, net-

work properties and connectivity metrics, in the context of ecology

and geomorphology; an exploration of network structure and proper-

ties on resulting connectivity metrics; a critical evaluation of how best

to represent dryland and river-floodplain ecosystems as networks;

and, finally, a discussion pertaining to the usefulness of network met-

rics in potentially enhancing our understanding of system

connectivity.

2 | NETWORK-BASED CONNECTIVITY
FRAMEWORK

The network-based representation of water-mediated connectivity is

primarily determined by the type of connectivity (structural and func-

tional), system characteristics (such as weather, species traits, system

boundary and flow pathways), disciplinary perspective(s)

(e.g., ecology, hydrology and geomorphology), the specific research

question and data availability (spatial and temporal resolution)

(Figure 1 and Table 1).
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2.1 | Network component

2.1.1 | Nodes

The first key step when building connectivity networks is to define

nodes, i.e., fundamental landscape units of interest (Turnbull

et al., 2018). In ecology, common approaches for delineating nodes

include the following:

i. Habitat patches based on vegetation, resources and suitability

for target species (Er}os et al., 2012; Kupfer et al., 2015; Turner

et al., 2015). Considerations include foraging, breeding and

movement requirements of focus organism at appropriate spatial

scales.

ii. Channel confluences/bifurcations or channel segments with uni-

form conditions in dendritic ecosystems like rivers, which form

natural boundaries (Baldan et al., 2022; Czuba & Foufoula-

Georgiou, 2015).

In geomorphology, nodes typically represent the following:

i. Fundamental landscape units like sediment sources/sinks and

erosion/deposition zones shaping connectivity (Heckmann

et al., 2015; Phillips et al., 2015; Turnbull & Wainwright, 2019;

Wohl et al., 2019).

ii. Roughness elements affecting water and sediment flows such as

vegetation induced microtopography (Abrahams et al., 1995;

Wainwright et al., 2011).

iii. Landforms and boundaries where flows converge/diverge (Sarker

et al., 2019).

The scale of features represented as nodes needs to align with

research goals and available data (Calabrese & Fagan, 2004; Turnbull

et al., 2018). Across different geographical scales, considerations vary.

For example, at the hillslope scale, considerations include the availabil-

ity of high-resolution topographic data/aerial imagery to delineate

features such as vegetation patches or roughness elements at 1–10 m

scales (Abrahams & Parsons, 1996; Turnbull & Wainwright, 2019). In

rivers/floodplains, nodes often represent 100 m to 1 km segment

scales based on confluences or channel cut-off boundaries (Funk

et al., 2023; Sonke et al., 2022). For catchments or sub-catchments,

nodes often represent hydrological response units at scales of 1–

100+ km2 (Phillips et al., 2015).

2.1.2 | Links

Links represent pathways and routes for flows and movements

between nodes (landscape units) in networks. Links that form connec-

tions in the network can have directionality and weights, which allow

F IGURE 1 (a) Conceptualization of water mediated connectivity in an ecosystem and evaluation of connectivity and subsequent network-
based representation of an ecosystem from a (b) geomorphic and (c) ecological perspective
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TABLE 1 Example of application of connectivity and network theory in various ecosystems from ecologic and geomorphic systems.

Ecosystem System characteristics Discipline Network

Dryland ecosystem Drylands are defined as areas with precipitation

that is less than two thirds of potential

evapotranspiration (water-limited ecosystems),

with patchy vegetation cover with limited

resource/nutrient distribution due to low water

availability (Calvo-Cases et al., 2021; Safriel

et al., 2005).

Biotic: Patchy vegetation configuration and

dynamics affecting hydrological fluxes (Calvo-

Cases et al., 2021). Patches of vegetation also act

as ‘resource traps’ (Calvo-Cases et al., 2021).
Abiotic: water and wind (direction and velocity) as

the primary medium of connectivity (e.g.,

precipitation, runoff and recharge), morphological

traits and resources (e.g., sediments and nutrients,

and topography), temperature (Mueller

et al., 2014).

Spatial variability: Drylands exhibit high spatial

heterogeneity driven by the interactions between

sparse vegetation patterns, geomorphic processes

and variable soil properties over multiple scales

(Maestre et al., 2016; Wainwright &

Parsons, 2002). At fine scales, the patchy

configuration of vegetation influences infiltration

rates, runoff generation and sediment capture,

creating sources and sinks of hydrologic

connectivity (Parsons et al., 1996; Turnbull,

Wainwright, Brazier, 2010). Vegetation patches

accumulate resources transferred from bare

interpatch areas, acting as ‘islands of fertility’ (Ravi
et al., 2010; Wainwright et al., 2002).

At broader scales, landscape features like dunes,

desert pavements, gravelly surfaces and drainage

networks impose structural controls on hydrologic

flow paths and aeolian transport corridors (Okin

et al., 2009). This spatial patterning interacts with

microtopography and soil crusting to create a

highly discontinuous mosaic of connected and

disconnected areas (Jeltsch et al., 2014)

Temporal variability: Water inputs to drylands are

extremely variable and punctuated in time, ranging

from high-intensity convective thunderstorms to

prolonged multi-year droughts (Porporato

et al., 2002, Post & Knapp, 2020). Rainfall patterns

exhibit high variability at event, seasonal, annual

and decadal scales, resulting in corresponding

pulses of runoff generation, sediment transport

and nutrient redistribution across the landscape

(Thompson et al., 2014, Wilcox et al., 2022).

Ecology Node: landscape units that can be represented as

centroids of a grid-cell or patches characterized by

vegetation cover (Calvo-Cases et al., 2021).

Links: movement corridors defined as least-cost

path (i.e., identified by their vegetation cover)

(Khosravi et al., 2018; Wang & Liu, 2020), source-

sink runoff dynamics, where sink is vegetated

areas (Calvo-Cases et al., 2021).

Example: Calvo-Cases et al. (2021) assessed the

effects of vegetation configuration and erosion on

runoff and hillslope connectivity processes

(source-sink dynamics). In this study, the different

landscapes were abstracted as grid-cells, where the

runoff paths between source and sink areas

(vegetation patches) were calculated using flow-

routing techniques (e.g., D8). Calvo-Cases et al.

concluded that soil erosion processes affect the

configuration and composition of vegetation.

Geomorphology Node: Landscape patches (with variable vegetation

cover).

Links: Flow of water and sediment movement

along the nodes through a resistance layer (such as

surface roughness, vegetation sinks).

Example: Turnbull and Wainwright (2019) have

studied patterns of connected flow pathways of

sediment and water along the grass and shrub

plots in the drylands of the southwest USA. They

identified key locations with land degradation

feedback by using the length of connected

pathways and SC-FC relationships.

Floodplain

ecosystems

Floodplains are low relief and low gradient

landscapes that go from the outer banks until the

limits of the river valley and can have a variety of

spatial scales (Opperman et al., 2017). They include

lotic (river channel) and lentic (standing waters)

conditions (Lewin & Ashworth, 2014). Floodplain

wetlands can be frequently flooded when river

flows are greater than bankfull (Xu et al., 2021).

Biotic: aquatic, semi-aquatic, and terrestrial micro-,

meso- and macro-fauna and flora (e.g., fishes,

benthic macroinvertebrates, amphibians and

Ecology Connectivity: degree to which the landscape

facilitates or impedes the movement of

biodiversity among resource patches (Taylor

et al., 1993).

Node: habitat patch (Dou et al., 2020), individual

waterbodies and confluences/bifurcations (Funk

et al., 2023).

Link: movement corridors defined by surface water

connections between patches, movement of

individuals and proxies of dispersal (Er}os &

Lowe, 2019; Neufeld et al., 2018; Rinaldo

et al., 2018).
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for a more detailed quantification of the systems' connectivity (Barrat

et al., 2004; Sivakumar, 2014; Sonke et al., 2022). Weight describes

the strength of the connection between nodes, such as the amount of

water/sediment transport or species dispersal between two points,

while directionality refers to the nature of the link, whether it is undi-

rected or directed (Figure 1). The representation of links depends on

whether SC (i.e., underlying network topology) or FC is being

represented.

For SC networks, links in ecology can represent physical corri-

dors that could facilitate species movements or habitat connectivity

(Larsen et al., 2017; Taylor et al., 1993; Tischendorf & Fahrig, 2000),

such as habitat corridors, channel networks or floodplain mosaics. In

geomorphology, SC links indicate topological pathways for potential

flows of water or sediment based on terrain structure and surface

properties (Bracken et al., 2015; Turnbull & Wainwright, 2019;

Wainwright et al., 2011), for example, drainage channels, gullies and

rills formed by runoff. While factors including link length, width or

stream order could be used as weights in certain contexts, compre-

hensively quantifying the strength of SC connections can be chal-

lenging due to the multitude of factors that may influence the

importance of a given link. For example, in a dryland ecosystem, the

strength of an SC link between two landscape patches may depend

on a complex interplay of topography, surface roughness, vegetation

characteristics and soil properties (Wainwright & Parsons, 2002).

Capturing this heterogeneity in a single weight value is not always

straightforward, as the relative importance of these factors may vary

across the landscape and over time. SC links typically focus on the

presence/absence of physical connections (Heckmann et al., 2015;

Phillips et al., 2015).

For FC networks, links in ecology can represent confirmed routes

used for migration, dispersal or gene flow of organisms, determined

from tracking or genetic data (Baldan et al., 2020; Crooks &

Sanjayan, 2006). In geomorphology, FC links quantify actual water/

sediment fluxes and transfers measured between landscape units,

often directed by elevation gradients (Czuba et al., 2019; Wohl

et al., 2019). In contrast to SC links, weights for FC links can often be

more directly quantified based on the magnitude of the material flux

(e.g., water, sediment or organisms) between nodes, as these fluxes

are the primary driver of FC (Barrat et al., 2004; Costa et al., 2019).

FC links are commonly weighted based on flow magnitudes, move-

ment costs, dispersal flux or probabilities of dispersal events derived

from empirical measurements.

Both SC and FC links are important. SC provides the structural

template, upon which dynamical processes yield FC (Turnbull

et al., 2018). Careful and appropriate selection of links and incorpora-

tion of relevant weights/directionality is crucial for capturing connec-

tivity across multiple scales and processes.

2.1.3 | Adjacency matrix

Mathematically, a network can be represented as an adjacency matrix,

which is a matrix with rows and columns assigned to nodes. The pres-

ence or absence of a link between two nodes is represented by a

numerical value (weight) in the matrix. The adjacency matrix is typi-

cally populated based on the connectivity from the source node to

every other possible receptor node in the system. For undirected net-

works, the adjacency matrix is symmetrical, meaning the connectivity

TABLE 1 (Continued)

Ecosystem System characteristics Discipline Network

diatoms) adapted to different hydrodynamic

conditions (Tonkin et al., 2018).

Abiotic: alluvium or sediments, precipitation,

discharge, nutrient concentrations, flow velocity

and depths of the water table (Neufeld

et al., 2018).

Spatial variability: spatial patterns in floodplain

morphology (e.g., channel migration and cutoff)

change based on erosion and deposition processes,

as well as vegetation patterns (Czuba et al., 2019;

Gurnell, 2014). Inundation patterns in floodplains

also depend on the magnitude, frequency and

timing of flood events and on the relationship

between river flows and floodplain flows

(Opperman et al., 2017).

Temporal variability: floodplains are highly

dynamic systems. Floodplain inundation varies

depending on the temporal scale: e.g., during an

individual flood event, during cyclical events

(seasonal, annual and interannual) or during long-

term climatic changes (Opperman et al., 2017).

Deposition and erosion processes that shape

floodplain morphology also operate at multiple

temporal scales (Florsheim et al., 2011).

Example: Funk et al. (2023) used a dynamic

network approach to quantify and assess the

importance of node-level connectivity for

floodplain functions and restoration potential.

Geomorphology Connectivity: water flow and sediment linkages

and pathways between channels and floodplain

surfaces (Opperman et al., 2017).

Node: landscape units or patches representing a

river stretch or located every river confluences

(Er}os et al., 2012) or bar areas emerge riffles.

Link: physical connections (e.g., via surface water),

stream junctions or confluences (Er}os et al., 2012)

Example: Zhang et al. (2022) assessed the variation

in water-mediated connectivity by merging

disciplinary methods with network theory. Later,

they discussed the effects of a dam construction

on the hydrological connectivity of a floodplain

system.
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between two nodes is the same regardless of their positions as source

or receptor nodes. However, for directed networks, the adjacency

matrix is asymmetrical, with links represented from source nodes to

receptor nodes. Overall, adjacency matrices provide a compact encod-

ing of network connectivity and weights in a computable array struc-

ture that enables mathematical analysis and modelling (Tejedor

et al., 2015).

2.2 | Network types

Networks can be categorized based on two key link properties—

weights and directionality. This characterization yields four main net-

work representations for quantifying water-mediated connectivity:

unweighted and undirected (UNW + UND), weighted and undirected

(WGT + UND), unweighted and directed (UNW + DIR) and weighted

and directed (WGT + DIR) networks. Selecting an appropriate network

representation is crucial for capturing the relevant ecological and geo-

morphological processes influencing water-mediated connectivity.

In early applications of networks to quantify habitat-connectivity

patterns, unweighted and undirected (UNW + UND) networks were

applied to quantify the emergent patterns associated to a set of habi-

tats occupied by a population or community (e.g., Keitt et al., 1997). In

this context, connectivity is assessed based on counting for the pres-

ence/absence of connected movement corridors or dispersal of indi-

viduals of particular species, ignoring characteristics of the landscape

that can exert a cost for movement or amount of dispersal flow (Er}os

et al., 2011; Rayfield et al., 2011). However, UNW + UND networks

cannot capture the connectivity of abiotic fluxes observed over a hill-

slope because these fluxes mostly move from a high to a low elevated

node and are thus best represented by directed networks. The WGT

+ UND networks can also be used to quantify connectivity, with link

weights representing strength of connectivity (Borrett &

Scharler, 2019; Corley & Sha, 1982). There is mounting evidence that

weighted networks are useful in quantifying the emergent behaviour

of a system arising from strength of connectivity, which is lacking in

unweighted networks because unweighted links only indicate the

presence or absence of connections (Costa et al., 2019; di Summa

et al., 2011; Tejedor et al., 2015; Wang et al., 2008). For instance, the

asymmetrical movements of some fish species (from upstream to

downstream of a river) can be represented as WGT + UND networks,

weighted based on real dispersal flows (recorded animal movements),

a measure of movement cost (e.g., Euclidean or watercourse dis-

tances). Furthermore, UNW + DIR networks are useful to investigate

the direction-dependent connectivity in an ecosystem, such as move-

ment of water and sediment along an elevation gradient. For example,

Sarker et al. (2019) identified the location of critical nodes in the

structure of river network using an unweighted and directed network.

Unweighted networks are especially useful in the case of SC networks

because it is difficult to quantify weights associated with SC linkages,

where strength of connectivity might depend on multiple characteris-

tics (such as slope, vegetation cover and surface roughness), as

opposed to an FC network where weights are directly proportional to

the magnitude of flux. It is important to note that in some applica-

tions, having an unweighted network can broaden the application of

available network tools (Heckmann et al., 2015; Turnbull &

Wainwright, 2019). The WGT + DIR networks are also useful to study

direction-dependent connectivity in an ecosystem; for example, fluxes

of water and sediment along landscape patches (or in a river) can be

represented as a weighted and directed network (Marshall

et al., 2016). Weighted and directed networks are especially useful for

quantifying emergent behaviour in systems where strength of connec-

tivity is important and quantifiable (e.g., an FC network), because

ignoring link weights may result in the loss of potentially important

network information.

In summary, the choice of network representation—ranging from

simple UNW + UND to comprehensive WGT + DIR networks—

depends on the research questions, study system, available data on

directional biases and constraints, link weights and the underlying

connectivity processes of interest (Barrat et al., 2004).

2.3 | Quantifying network properties

We explore a selection of graph-theoretical metrics previously used in

various disciplines to quantify the characteristics of connectivity at

both network and node levels (see Table 2 for a graph theoretical

description of the proposed network metrics). Here, we explore the

following network-level metrics: (i) link density (LD), which quantifies

the proportion of observed links to the maximum possible links, and

(ii) global efficiency (GE), which quantifies the average ease of move-

ment across the network (inverse of shortest path lengths). At the net-

work level, metrics like LD and GE are constrained by nodes and links.

Network-level metrics do not focus exclusively on the node level but

rather summarize the role of nodes and links in the context of the

entire network. Compared to other disciplinary metrics (e.g., drainage

density and DEBAS index [stream power DEficit on BASin slopes]), LD

and GE are graph-theoretical alternatives that provide insights on the

complexity and network level connectivity of ecological and geomor-

phic systems (Marchi & Dalla, 2005; Phillips et al., 2015).

Undoubtedly, one of the most applied network metrics is centrali-

ties (node-level metrics), which are used to rank nodes according to

their importance and have practical applications for helping to priori-

tize management and conservation actions. The node-level metrics

explored here are (i) degree centrality, which counts the number of

connections per node; (ii) betweenness centrality (BC), which quan-

tifies the importance of a node as a bridge between other nodes;

(iii) page rank (PR) centrality, which is a probability-based measure of

a node's importance based on the connectivity of its neighbours;

(iv) length of connected pathways (LOCP), which is the total number

of nodes linked upstream from a given node; and (v) node efficiency,

which quantifies the ease of movement to/from a specific node

(inverse of average path length to other nodes).

These metrics assign importance to each node according to their

link patterns (degree centrality), their position in the network and

characteristics of their connected pathways (BC, total LOCP and
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TABLE 2 Interdisciplinary metrics to measure emergent patterns in dynamic ecosystems

Metric Definition Interpretation

Link density

(network)

The link density (LD) is the number of connected links relative to

the total number of possible links.

LD¼ x
y ,

where x is total number of connected links and y is the total

number of possible links.

LD represents the number of direct connections between

neighbouring nodes (Canard et al., 2012). A network with a high

LD has a high degree of connectivity between neighbouring

nodes.

Global

efficiency

(network)

Global efficiency (GE) is defined as the average of the inverse

shortest path length between all nodes in the network.

GE¼Pn

i¼1

Pn

j¼1
i≠ j

1
lij
,

where lij is the length of shortest path between node pair i and j

(for weighted networks, lij is dependent on the link weights, with

shortest pathways associated with path with higher weights)

and n is the total number of nodes.

GE can be thought of as a measure of global integration or

network connectivity (Latora & Marchiori, 2001) and is typically

interpreted as a network's capacity to withstand change and to

quantify its resilience (Zhang & Ng, 2021). A network topology

that is closely connected will have a high GE and will be better

able to withstand changes in local connectivity (Crucitti

et al., 2003).

Degree

(node)

Degree (D) quantifies the number of neighbouring nodes directly

connected to a given node (Minor & Urban, 2008). For directed

networks, this can be further separated into in-degree Din and

out-degree Dout. Furthermore, all-degree (Dall) is the sum of Din

and Dout,

Di ¼
Pln

j¼1
wj ,

where ln is the number of links connected (in/out) to a node i

and wj is the weight of link j (for unweighted network, wj is equal

to one for all links).

Dall represents the total number of incoming and outgoing

pathways associated with a node. A node with high Dall has high

number of connected links. For weighted network, Dall can be

linked to the net strength of connectivity associated with a

given node (Phillips et al., 2015).

Betweenness

centrality

(node)

Betweenness centrality (BC) is the total number of the shortest

paths between any pair of nodes that passes through a given

node (Wang et al., 2008),

BCi ¼
P

u,v ≠ i
lxy ið Þ,

where lxy is the total number of shortest weighted paths from

node u to node v that pass-through node i.

The BC can be used to quantify whether a node acts as a bridge

(ability to connect two nodes) during connectivity processes. A

node with high BC value has a high number of connected

pathways passing through it (Sarker et al., 2019, Zetterberg

et al., 2010).

Page rank

centrality

(node)

Invented by Google founders Larry Page and Sergei Brin, page

rank (PR) centrality was designed for ranking web content, using

hyperlinks between pages as a measure of importance.

PRi ¼ 1�dð Þþd� P

y ≠ i

PRy

Dy,in
,

where d is damping factor between 0 and 1, here d = 0.85

(based on Page & Brin, 1998), and Dy,in is the outdegree

centrality of node y (for weighted network, Dy,in is weighted).

Note that the page ranks form a probability distribution over all

the nodes in the network, so the sum of all nodes' Page Ranks

will be one.

PR centrality is a measure of a node's importance. A node is

important if it is linked to other important nodes and links

sparse nodes or if it has a high degree.

Total length

of connected

pathways

(node)

In a network, the total length of connected path (LOCP) is the

length of a node sequence in which each node is connected by a

link to the next. In weighted network, the path length

corresponds to the sum of weights of links in the path

(Boccaletti et al., 2006). For directed networks, this can be

further separated into incoming LOCPin and outgoing LOCPout,

LOCPi ¼
Pn

y¼1
wiy þ

Pn

y¼1
wyi,

where wiy is the weights of links with node i as source node

(outgoing pathways from node i) and wyi is the weights of links

with node i as sink node (incoming pathways to node i).

The total LOCP represents a node's influence on connectivity

pathways across a network. A node with a long incoming path

length (LOCP) has a high impact on how local resources are

distributed among other nodes in a network (Okin et al., 2009).

Relative node

efficiency

(node)

Relative Node efficiency (RNE) of node x is the of ratio global

efficiency of the network without and with node x (Zhang &

Ng, 2021),

RNEi ¼ GEG�GEH
GEG

�100,

where GEG is the global efficiency of the network with node i

and GEH is the global efficiency of the network after node i is

removed.

RNE is used to test a system's ability to function even after

critical nodes have been attacked, disabled or degraded (Komali

et al., 2008). A node with a high RNE value implies that its

removal (from the network) will have a significant impact on

network connectivity. Positive RNE values indicate that node

removal reduces global efficiency (a measure of network

connectivity), whereas negative RNE indicates that node

removal increases GE.
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relative node efficiency [RNE]), while they can also account for neigh-

bourhood configurations (PR). We focus on these metrics, as we identi-

fied them as being potentially useful in quantifying connectivity within

both ecological and geomorphic systems. Besides network- and node-

level metrics, we do not expand on any community-detection applica-

tions (e.g., clustering and modularity) in our ecological perspectives

because they are not observed in the geomorphic perspective of water-

mediated connectivity, in which water flows from upslope to down-

slope. Furthermore, sensitivity of the proposed metrics to link weights

and directionality is explored in section 3.

3 | TOY EXAMPLE OF THE APPLICATION
AND UTILITY OF NETWORK METRICS

3.1 | Model networks

We use a toy example (Figure 2), a simplified and illustrative demon-

stration, to highlight appropriate metrics for accounting for link direc-

tionality and weights when quantifying water-mediated connectivity.

We focus on three contrasting landscape components associated with

water-mediated connectivity and their underlying network topologies:

a hillslope, a river and a floodplain, and demonstrate the utility of the

network metrics explored. We investigate the relation between

network type and network properties for three network classes: hill-

slope (HS), river network (RN) and floodplain (FP), each with four sim-

ple networks consisting of 12 nodes and 11 links, namely, UNW

+ UND, WGT + UND, UNW + DIR and WGT + DIR (Figure 2). For

the hillslope network, the links represents flow in four possible direc-

tions around each node (D-4 flow algorithm, Figure 2a1–a4). The river

network follows a dendritic structure, which is loop-less and resem-

bles a hierarchical branching order (e.g., Strahler order) (Figure 2b1–

b4). For the floodplain network, the sequences of nodes A–D, as well

as I, K, J and L, resemble configurations of side-arm systems com-

monly found in floodplains (Figure 2c1–c4). The main river channel is

represented by nodes E–H. Node E in the sequence of nodes A–D

represents the inflow area from the main river channel to the flood-

plain, while node G represents the outflow area.

3.2 | Results

Analysis of network metrics for the different network topologies pre-

sented in the toy example shows that across all network types, LD is

sensitive to directionality but not weights. For all three network clas-

ses, LD decreases from 0.167 for UNW + UND to 0.083 for UNW

+ DIR. GE is sensitive to both directionality and weights across all

network types. GE decreases in a directed network and increases

F IGURE 2 A toy example of three network classes, i.e., hillslope (a1 to a4), river network (b1 to b4) and floodplain (c1 to c4) each with four
sub-types associated with water-mediated connectivity in ecosystems, i.e., unweighted and undirected network (UNW + UND) with symmetric
adjacency matrix (representing undirected links) with binary elements 0 and 1 indicating the presence (1) and absence (0) of links, weighted and
undirected network (WGT + DIR) with symmetric adjacency matrix with elements representing link weights (proportional to the strength of
connectivity), unweighted and directed network (UNW + DIR) with asymmetric adjacency matrix (representing directed links) with binary
elements 0 and 1 indicating the presence (1) and absence (0) of links and weighted and directed network (WGT + DIR) with asymmetric
adjacency matrix (representing directed links) and elements representing link weights. (d1 to d5) Five node-level metrics (degree centrality,
betweenness centrality, page rank centrality, total length of connected pathways and relative node efficiency) for the proposed network types.
Note: LD stands for link density, and GE stands for global efficiency.

8 of 22 TIWARI ET AL.

 19360592, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eco.2690 by T

est, W
iley O

nline L
ibrary on [27/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



when the network is weighted, indicating that in these examples,

undirected networks are better connected than directed networks

and the presence of stronger links (weights) results in a more con-

nected network. Furthermore, different node-level characteristics are

also sensitive to changes in link directionality and weights (as shown

in Figure 2d1–d5: further interpretation of these node-level metrics is

presented in the Table 2). Degree centrality (Dall) is not sensitive to

direction but can be subdivided into indegree and outdegree for

directed networks based on number of incoming and outgoing path-

ways to/from a node (Figure 2d1). The BC and PR centrality are highly

sensitive to direction and vary slightly with link weights for all three

network topologies (Figure 2d2,d3), in the case of BC a node's bridg-

ing capacity is primarily determined by link direction, and in the latter,

PR is a probability-based measure that does not consider the absolute

value of link weights. The BC and PR centrality measures differ for all

nodes in the network, highlighting the importance of network topol-

ogy on local measures of connectivity. The BC corresponds to bridg-

ing capacity, so nodes in the network's centre will have high BC,

whereas high PR corresponds to a node that is well connected to

other well-connected nodes. Total LOCP varies with both link direc-

tion and weight (Figure 2d4). RNE is calculated relative to changes in

GE and is less sensitive to link direction and weights compared to

absolute node efficiency (Figure 2d5).

The node-level metrics are also dependent on the network

topology. For example, in the river network example, downstream

central nodes (nodes G, J and I) tended to have higher node-level

metrics, while in floodplain example, nodes within looping structures

(nodes D, F and G) showed high node-level metrics (Figure 2). Over-

all, BC and LOCP are highly sensitive to changes in network topol-

ogy, with high values observed for river networks and low value for

river-floodplain networks. Furthermore, Dall, PR and RNE are less

sensitive to changes in network topology. In summary, it is impor-

tant to consider link characteristics such as direction, weights and

spatial scales when using network-based approaches to evaluate

water-mediated connectivity.

4 | REPRESENTING DRYLAND AND RIVER-
FLOODPLAIN ECOSYSTEMS AS NETWORK
AND THE USEFULNESS OF
NETWORK METRICS TO QUANTIFY
CONNECTIVITY

Here, we evaluate how different water-controlled ecosystems can be

usefully represented as networks, as well as how different network

metrics can be interpreted in two end-member scenarios of

water-mediated connectivity. The first scenario pertains to a dryland

ecosystem from a geomorphic perspective, where water-mediated

connectivity is largely controlled by the interaction between patchy

vegetation and surface microtopography (Table 1). The second sce-

nario focuses on a river-floodplain ecosystem where dispersal traits of

the organism and the seasonality of flow largely control connectivity

from an ecological standpoint (Table 1).

4.1 | Quantification of connectivity in dryland
ecosystems: a geomorphic perspective

Drylands are ‘water-controlled ecosystems with infrequent, discrete,

and largely unpredictable water inputs’ (Noy-Meir, 1973, p. 26). Given

the role of water as the main limiting resource for biological activity in

drylands, the connectivity of water-driven transport of sediment and

nutrients between and within vegetation patches is widely acknowl-

edged as a key driver of dryland structure and function (Charley &

West, 1975; Garcia-Moya & McKell, 1970; Ravi et al., 2010;

Schlesinger et al., 1990; Stewart et al., 2014; Turnbull et al., 2008; Ye

et al., 2016). Abiotic drivers such as discrete rainfall events and tem-

perature variation influence a wide range of ecological processes in

drylands, including microbial activity, nutrient cycling and species

interactions (Maestre et al., 2016). Other abiotic factors, for example,

topography, spatiotemporal patterns of soil erosion and soil character-

istics (such as moisture and texture), significantly modulate the effects

of climate on the structure and functioning of these ecosystems

(Wainwright, 2009). Biotic factors, such as vegetation cover, species

diversity and spatial distribution of plants and microbial communities,

also influence the functioning of dryland ecosystems (Mueller

et al., 2014; Steven et al., 2021; Turnbull et al., 2008). Their climatic

characteristics, and the fact that their scarce resources limit biological

activity for most of the year, make the processes driving the function-

ing of drylands rather unique compared with other ecosystems.

Dryland ecosystems have important interactions and feedbacks

across fine to coarse scales (Mueller et al., 2014; Wainwright, 2009),

where interactions and feedback between climate, soil, vegetation

and topography develop distinct patterns of redistribution of water,

soil, nutrients and vegetation (Schlesinger et al., 1990; Turnbull

et al., 2008; Turnbull, Wainwright, Brazier, 2010). Due to these inter-

actions and feedbacks, dryland ecosystems exhibit several complex

system characteristics, including emergent behaviour (Mueller

et al., 2014), state dynamics (Bagchi et al., 2012; Turnbull et al., 2008,

2012), self-organization (Dong & Fisher, 2019), resilience (Yuan

et al., 2019) and adaptation (Okin et al., 2009; Stewart et al., 2014;

Turnbull & Wainwright, 2019) (details presented in Table S1).

4.1.1 | SC-FC networks of dryland ecosystems

In developing a network-based representation of geomorphic connec-

tivity in drylands, nodes can be defined based on the vegetation cover,

surface roughness and elevation characteristics of landscape patches

(Caviedes-Voullième et al., 2021; Turnbull & Wainwright, 2019). For

example, Turnbull and Wainwright (2019) used a patch-based

approach to define nodes in the context of geomorphic connectivity

in a dryland ecosystem. The spatiotemporal definition of a fundamen-

tal unit depends on the timescale under consideration and associated

feedback. For instance, to understand the effect of vegetation (cover

type) on the connectivity of water and sediment at hillslope scales,

nodes should represent the landscape patches with size no larger than

the vegetation patch (i.e., the scale of the ‘island of fertility’;
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Charley & West, 1975; Schlesinger et al., 1990; Schlesinger &

Pilmanis, 1998).

Once the fundamental unit has been defined, the SC between

two landscape patches can be determined by their elevation profile as

well as the presence of sinks in the connectivity pathway between

them (e.g., a vegetation patch not associated with a topographic high,

acting as a sink that essentially forms a barrier within the water-flow

network and thus disconnect flows). The FC between two nodes can

be evaluated based on the connected fluxes of water, sediment and

nutrients.

Dryland ecosystem networks can be constructed using data

derived from empirical field measurements, numerical model output

and remote sensing. Empirical field measurements provide direct

observations of the ecosystem, but it can be challenging to collect

dynamic flux data such as surface-water flow and sediment transport

data at appropriate spatial and temporal scales (Mueller et al., 2014).

Numerical models, on the other hand, provide spatial estimates of

fluxes that can be used to build networks for more robust quantifica-

tion of connectivity at appropriate spatial and temporal scales

(Mueller et al., 2014; Stewart et al., 2014; Wainwright et al., 2008a,

2008b, 2008c). Once the data sources have been organized into fun-

damental units and fluxes, the network consisting of nodes and links

can be constructed (Phillips et al., 2015), from which the network and

associated adjacency matrix can be examined using a variety of met-

rics as outlined in Section 2.

4.1.2 | Network-based analysis of emergent
patterns in drylands

Network-level metrics are critical for understanding how local connec-

tivity patterns between vegetation patches scales up to influence

landscape-level characteristics in drylands. In dryland SC networks,

high LD indicates more physical connections between patches that

could facilitate water/sediment flow (Okin et al., 2009). For FC net-

works, LD shows the extent of active transport pathways present

under given conditions. Comparing LD across rainfall scenarios or

between areas with different vegetation cover can reveal regimes

where landscape connectivity is promoted or limited (Turnbull &

Wainwright, 2019), although it does not take into account the

strength of connectivity (i.e., link weights). GE is a useful metric as it

allows quantification of the net capacity of a system to withstand any

change (Zhang & Ng, 2021) and is thus potentially useful as a way to

quantify the resilience of an ecosystem to different perturbations

(e.g., climatic or anthropic). For example, a water-mediated connectiv-

ity network with a high GE value will be more resilient to changes in

individual node characteristics (such as changes in local vegetation

cover) that the one with a low GE value.

In the context of node-level metrics, degree represents the total

number of incoming and outgoing flow pathways and can be weighted

based on the associated discharge. Patches with high degree act as

sources (predominantly outgoing links) or sinks (predominantly incom-

ing links) in the water/sediment flux networks. Such hotspots of

external inputs/outputs exert disproportionate influence on dryland

functioning. Time series of degree changes can track shifts in source/

sink patch importance. BC can be used to quantify whether a node

acts as a bridge during transportation processes across connected

flow pathways (Bodin & Saura, 2010), whereby a node with high BC

value has a high number of water and sediment-transport pathways

passing through it. Disruptions to these critical patches could dis-

connect different components of the landscape. Instead of highlight-

ing individual bridging nodes, PR highlights the importance of densely

interconnected patch clusters that are hubs of water/sediment

transport in the landscape. Shifts in these regions over time could

indicate reorganization of dryland hydrological regimes. Incoming

LOCP (same as LOCOP by Okin et al., 2009) can be used to demon-

strate the role of vegetation cover in propagating different types of

structural and FC. High LOCP in FC network denotes a node that

receives water and sediment fluxes from a high number of nodes.

RNE can be linked to the effect of node removal on the overall con-

nectivity of the system (Veremyev et al., 2015). RNE quantifies how

crucial each patch is for maintaining the overall connectivity of the

dryland network. Patches with high efficiency potentially regulate

large-scale sediment/nutrient redistribution processes when their

local connections change state. Monitoring efficiency reveals the

most sensitive loci of dryland functioning. By comparing these net-

work metrics across different scenarios (e.g., varying rainfall or vege-

tation cover) or monitoring their changes over time, we can gain

valuable insights into the emergent patterns and dynamics of dry-

land ecosystems.

4.2 | Quantification of connectivity in river-
floodplain ecosystems: an ecological perspective

River-floodplains are dynamic, disturbance-driven ecosystems gov-

erned by the lateral exchange of water, sediment, nutrients and organ-

isms between the main river channel and its adjacent floodplain water

bodies (Amoros & Bornette, 2002; Opperman et al., 2017; Tockner &

Stanford, 2002; Ward et al., 2002). The frequency, magnitude, dura-

tion and spatial extent of overbank flooding events are principal

drivers that shape floodplain habitats and biotic communities (Allan

et al., 2021; Fausch et al., 2002; Marrin, 2020; Poole, 2002;

Strahler, 1957). During high flows, floodplains become a mosaic of

hydrologically connected aquatic and terrestrial habitats that facilitate

dispersal, gene flow and the homogenization of communities

(Amoros & Bornette, 2002; Thomaz et al., 2007) Conversely, as flood-

waters recede, the landscape transitions to a more fragmented regime

where discontinuous aquatic habitats form semi-isolated patches

occupied by communities assembled by environmental filtering pro-

cesses (Larsen et al., 2019). This water mediated exchange from the

river across the floodplain (floodplain inflows or wetting) and return-

ing back to the river further downstream (floodplain outflows or drain-

ing) are key controls of the spatial distribution of species (emergent

biodiversity patterns) and ecosystem functioning (Larsen et al., 2019;

Marle et al., 2022; Xu et al., 2021).
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A floodplain's dynamic spatiotemporal heterogeneity in hydrologi-

cal connectivity creates a shifting mosaic of suitable and unsuitable

habitats for different species based on their physiological tolerances

(fitness) and dispersal abilities (Auerbach & Poff, 2011; Chaparro

et al., 2019; Fernandes et al., 2014; Funk et al., 2023). For example,

more mobile taxa can take advantage of brief hydrological connec-

tions to colonize new areas, while less mobile species may be con-

strained by dispersal limitation. As a result of the continuous variation

in local environmental conditions and habitat connectivity, both intri-

cately linked to the fluctuating river discharge regime, floodplain eco-

systems support high levels of biodiversity (Chaparro et al., 2018;

Tonkin et al., 2016). However, understanding the role of mechanisms

influencing species distribution proves particularly challenging within

these dynamic systems (Chaparro et al., 2018).

4.2.1 | SC-FC networks of river-floodplain
ecosystem

From a landscape ecology perspective, nodes in floodplain networks

represent discrete habitat patches, river reaches/confluences deter-

mined by the spatial hierarchy of the analysis and the resolution at

which organisms perceive their environment (Er}os et al., 2012; Sonke

et al., 2022).

SC links in floodplain ecosystems depict the physical pathways

facilitating potential movements of water, sediment, nutrients and

organisms between floodplain habitats. The architecture of the SC

network emerges from the interplay between river geomorphology,

floodplain topography and hydroperiod (Czuba et al., 2019; Lewin &

Ashworth, 2014; Xu et al., 2021). River planform exerts a strong con-

trol on floodplain morphology, creating more reticulate SC patterns,

compared to the more dendritic templates, with meandering and anas-

tomosing channels that may or may not have the presence of loops

(loops/cycles referring to paths of any length that start and end at the

same node; Phillips et al., 2015, Tejedor et al., 2015) and disconnected

components (Barthélemy, 2011; Connor-Streich et al., 2018; Hiatt

et al., 2022; Lewin & Ashworth, 2014; Limaye, 2017; Xu et al., 2021).

Floodplain microtopography further subdivides the landscape into a

complex mosaic of aquatic/terrestrial patches, oxbow lakes, backwa-

ters and other morphological features that become interconnected

during floods (Lewin & Ashworth, 2014; Ward et al., 2002) or via

through-bank inundation (Xu et al., 2021). Meanwhile, levees and

banks act as barriers to the lateral exchange of water between chan-

nel and floodplain as long as water levels do not exceed their height

(Opperman et al., 2017). Nevertheless, conduits that cross levees or

banks, such as through-bank channels, may enable hydrological con-

nections to the interior of the floodplain across various sub-bank flow

conditions (Xu et al., 2021). The feedbacks between geomorphologic

fluxes and SC are crucial, as floodplain ecosystems cycle between

inundation and recession in response to flood pulses and hydroper-

iods (Junk et al., 1989; Ward et al., 2002). During high water stages,

extensive areas become hydrologically linked, creating temporary

aquatic corridors and homogenizing conditions (Thomaz et al., 2007).

Low water periods leave only the main channel and subset of deepest

wetlands connected, fragmenting habitats (Xu et al., 2021).

Besides low/high water periods, fluvial processes like channel

migration, cut-offs and avulsions also progressively reconfigure the

SC template over annual-decadal timescales by altering watercourse

patterns (Czuba et al., 2019). Researchers can choose to model SC as

a static baseline template relevant to central tendency conditions or

incorporate time-varying links to capture dynamics over specified time

periods (i.e., Funk et al., 2023). Representing the full hydroperiod may

require generating an ensemble of temporally explicit SC realizations

to characterize the shifting patterns of connectivity over characteristic

flood cycles. The appropriate approach depends on the spatiotempo-

ral scale, research questions and degree of process detail required.

SC networks can be represented as lattice-based models at

coarse scales or vectorized morphologies derived from remote sensing

(Funk et al., 2023; Zhang et al., 2022). High resolution topographic

data from LiDAR enables mapping of microtopographic SC features at

submeter scales (Torgersen et al., 2022). Link directionality is used to

capture flow asymmetries, with weights quantifying landscape proper-

ties influencing movement ‘costs’ like distance, velocity, depth and

roughness (Baldan et al., 2020; Czuba et al., 2019; Neufeld

et al., 2018; Sonke et al., 2022). Flow directionality is usually esti-

mated from DEMs using flow routing algorithms. However, unlike

landscapes with steep terrains (as for river networks), flow asymme-

tries in floodplains do not necessarily follow the steepest descent

(Coulthard et al., 2013; Lewin & Ashworth, 2014; Limaye, 2017). There-

fore, approaches that focus on finding low pathways through the river-

bed, which can descend and ascend locally to connect deeper channels

through shallower parts, are more appropriate (Limaye, 2017; Sonke

et al., 2022).

FC networks quantify realized movement of organisms and gene

flow along the SC template, where undirected and directed links are

representative for different dispersal probabilities of active or passive

dispersal traits (Figure 3b4) (Neufeld et al., 2018; Song et al., 2008). At

a catchment scale, dispersal processes in headwater streams are

expected to be more limited than in downstream regions (Schmera

et al., 2018). Likewise, central positions in floodplain networks are

expected to be more influenced by mass effect (spatial mechanisms in

which the high dispersal flow results in variations in local population

size) (Schmera et al., 2018). During high water stages, extensive areas

become hydrologically linked, creating temporary dispersal corridors

and reducing dispersal limitation (Thomaz et al., 2007). Low water

periods reduce aquatic habitats to the main channel and deeper flood-

plain waterbodies. Across scales species' traits (e.g., body size, dis-

persal abilities and dispersal mode) is a further important driver of

metacommunity structure and the spatial distribution of species

(Padial et al., 2014).

The dispersal of organisms can be empirically recorded, yet mea-

suring movements empirically presents challenges for certain groups,

such as aquatic invertebrates and algae. To address this challenge,

dispersal-related FC networks may utilize movement data derived

from mesocosm experiments or estimated through various numerical

models, such as individual-based models, metapopulations,
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metacommunity dynamics models, spatial capture-recapture models

and stochastic patch-occupancy models (Auerbach & Poff, 2011;

DeAngelis & Grimm, 2014; Dominguez Almela et al., 2020; Duarte &

Mali, 2019; Rinaldo et al., 2018; Saura & Pascual-Hortal, 2007).

Figure 3b4 illustrates the versatility of probabilistic habitat reachabil-

ity models, which are applicable to both single and multiple species.

Probabilistic models, like the Conefor network-based model devel-

oped by Saura and Pascual-Hortal (2007), define FC through dispersal

probabilities along weighted SC links based physical distances or other

cost measures. Similarly, network-based metapopulation and meta-

community approaches assess habitat connectivity by assuming

functional connections within species' dispersal ranges, with dispersal

probabilities decreasing as they near maximum dispersal distances

(Chaput-Bardy et al., 2017; Thompson & Gonzalez, 2017; Tonkin

et al., 2014).

4.2.2 | Network-based analysis of emergent
patterns in a river-floodplain

Network and node-level metrics are useful for quantifying the ability

of an ecosystem to facilitate species dispersal (Baggio et al., 2011).

F IGURE 3 Characteristics of SC-FC network abstractions of a dryland ecosystem from a geomorphic perspective (Turnbull &
Wainwright, 2019) (a) and river-floodplain ecosystem from an ecological perspective (Reckendorfer et al., 2006; Tonkin et al., 2014) (b). (a1) An
example of hillslope-scale representation of a dryland ecosystem with patchy vegetation cover, elevation driven pathways and water-mediated
connectivity in a longitudinal, lateral and vertical dimension. (a2) Influence of vegetation type on the length of pathways of water and sediments.
(a3) Conceptualization of the structural connectivity (SC) network, based on elevation-based flow pathways and the presence of vegetation sinks,
with link weights attributed to the sink capacity of a landscape patch. (a4) Conceptualization of a functional connectivity network based on the
directed transfer of water and sediment between landscape patches, with link weights attributed to the rates of water and sediment transport.
Moving on to river-floodplain ecosystems, (b1) exemplifies the spatial structure of a river reach and its floodplain, composed by the main river
channel, as well as different side-arm systems and floodplain wetlands, with water-mediated connectivity in its lateral, longitudinal and vertical
dimensions. (b2) Differences in the aquatic habitat structure during high and low water periods (determined by flood pulses).
(b3) Conceptualization of SC, with nodes representing individual reaches or waterbodies (habitat patches) and links as river at each confluence.
Links are directed following the flow direction and can be unweighted or weighted based on a measure of movement cost. (b4) Functional

connectivity representing dispersal processes along the structural template. FC links are weighted based on the magnitude of the dispersal flow
and can be undirected or directed depending on the species dispersal traits: active dispersal better represented by undirected links and passive
drift by directed links.
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Following the views of landscape ecology and metacommunity theory,

we present disciplinary interpretations of the network- and node-level

metrics introduced in Section 2. The network-level metric, LD, pro-

vides an overview of dispersal processes in FC networks by describing

the total number of dispersing individuals or propagules with respect

to the total amount of individuals who could potentially disperse.

Thompson and Gonzalez (2017) used LD to describe the structure and

evolution of dispersal networks in the context of environmental

change. GE measures the effectiveness of species dispersal at a net-

work level (Baggio et al., 2011). GE evaluates the spatial redundancy

of pathways from a landscape permeability perspective—networks

with high efficiency can maintain crucial ecological flows even if local-

ized disturbances disrupt specific routes.

Node-level metrics can be applied to rank floodplain areas based

on their role in maintaining and facilitating dispersal (Bodin &

Saura, 2010; Saura & Pascual-Hortal, 2007; Urban et al., 2009). The

node rankings of the proposed metrics when applied to FC networks

can be used to quantify how individuals disperse throughout the river

network. In weighted FC networks, Din describes the emigration

potential of a node and the Dout the immigration potential. The

weighted Din and Dout can be used as indicators of a node's source

and sink strength (Rayfield et al., 2011). BC can be used to describe

the importance of a site as a stepping stone for movement

(e.g., connectivity providers for dispersal) (Chaput-Bardy et al., 2017).

PR surfaces highly connected local neighbourhoods that can act as

ecological reservoirs or sources for spatial spreading dynamics

(de Domenico et al., 2015). RNE identifies irreplaceable locations

maintaining overall ecological connectivity at the landscape scale. If

these bottleneck areas are lost, the entire system may undergo a rapid

transition towards isolation (Osei-Asamoah & Lownes, 2014), which

has potential applications in assessing the effects of man-made distur-

bances on the resilience of dispersal networks. Finally, ranking nodes

by the total length connected path length helps differentiate areas

strongly influenced by large-scale dispersal from areas where local

factors primarily control community assembly.

Collectively, these metrics move beyond traditional patch/

corridor concepts to formally model how patterns of ecological move-

ments in riverine landscapes are governed by the multi-scale topologi-

cal roles of habitat patches embedded within the wider architecture

of hydrological connectivity. Furthermore, understanding of the emer-

gent patterns of connectivity at a node-level can explore ecological

theories such as

a. network position hypothesis: where the effects of local and regional

drivers on community structure vary depending on the position of

area of focus within the river network (Brown & Swan, 2010;

Schmera et al., 2018);

b. mass effect: mechanisms in which the high dispersal flow of individ-

uals homogenizes the community structure (Leibold et al., 2004;

Suzuki & Economo, 2021);

c. species sorting: mechanisms in which adequate dispersal rates allow

species to track environmentally suitable habitats (Leibold

et al., 2004; Suzuki & Economo, 2021); and

d. dispersal limitation: where low dispersal rates might prevent species

to track suitable habitats, since occupied habitats are too far away

or not accessible because of the presence of disconnectivity

(Altermatt, 2013; Economo & Keitt, 2010; Leibold et al., 2004).

5 | CURRENT CHALLENGES AND FUTURE
DIRECTIONS

5.1 | The value of network-based approach in
quantifying water-mediated connectivity

Networks provide a valuable framework for investigating the com-

plexity of water-mediated connectivity in ecosystems, and we have

shown how they can be usefully applied within two end-member sys-

tems, drylands and floodplains, to improve our understanding of con-

nectivity. A weighted network formalism can address not only

presence or absence of connectivity between system components but

also emergent behaviour associated with the strength of connectivity.

While the presence of a path between nodes indicates a connected

network, the strength of those connections (as represented by link

weights) can provide additional insights into the degree and dynamic

nature of connectivity. For instance, in a river network, the presence

of a channel between two locations suggests a connected system.

However, the volume of water flow (which could be represented as a

link weight) can vary significantly between different channels, affect-

ing the strength of connectivity and the potential for material trans-

port (Phillips et al., 2015; Wohl et al., 2019). Similarly, in ecological

networks, the frequency or probability of species movement between

habitat patches (link weights) can indicate the strength of FC, even if

SC (presence of a physical path) exists. Link weights play a crucial role

in quantifying the strength and dynamics of connectivity, while

acknowledging that the presence of a path is the fundamental require-

ment for a connected network.

We have demonstrated that the network-based representation of

drylands and floodplains should be informed by system characteristics

and our understanding of the structure and function of these systems

(naturally informed by our disciplinary perspectives) that guide how

we conceptualize these systems as networks.

5.2 | Challenges in defining nodes and link
characteristics

As discussed, when conceptualizing ecosystem as networks, the first

challenge is defining an appropriate fundamental unit of connectivity,

i.e., the node. While there is a growing body of literature on how to

define a node in a system (see review in Turnbull et al., 2018), the

challenge remains in considering the most appropriate scale of

the fundamental unit and how this relates to different types of con-

nectivity (SC and FC). The choice of the fundamental unit is typically

based on the available input data, assuming that they accurately cap-

ture the essential connectivity features of the system.
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The next area of interest is the link characteristics. Whether a

directed link representation is preferable to an undirected one within a

network representation is dependent on the specific material or organ-

ism in question. Given that link weights can be quantified, using weights

is generally preferable because it allows for the quantification of emer-

gent patterns associated with connectivity strength. For example, an

unweighted network configuration of dispersal processes will treat low

and high rates of species dispersal equally simply because of the pres-

ence of a connection, whereas incorporating dispersal rates (weights)

will allow for more accurate quantification of emergent patterns

(Neufeld et al., 2018). However, quantification of strength of connectiv-

ity in the SC network in a meaningful way is particularly challenging

because of the presence of multiple factors that potentially impact the

importance of links, such as surface roughness, the role of vegetation

patches and slope for geomorphic SC in dryland ecosystems and water

depth, flow velocity for hydrological SC in river-floodplain ecosystem.

In ecological networks, incorporating node characteristics such as

patch area and local habitat characteristics into the quantification of

emergent patterns can be critical and is an important direction

of research (Baldan et al., 2020; Bodin & Saura, 2010; Engelhard

et al., 2017; Neufeld et al., 2018; Saura & Pascual-Hortal, 2007). Local

habitat conditions are critical because they can limit the establishment

of a species and its subsequent persistence (Brown et al., 2011;

Suzuki & Economo, 2021). Collecting the necessary data for questions

best answered using weighted networks can be time-consuming

because the data must account for dynamic strength of connectivity,

which necessitates different observational and/or modelling methods

at relevant spatial and temporal scales.

In the case of dryland ecosystems, empirical data scarcity

limits the development of network-based representations of

water-mediated connectivity in these systems. The development

of dynamical FC networks requires improved spatial and temporal

data on geomorphic processes within these systems. However,

obtaining such high-resolution information remains a difficult task, not

least because of the episodic nature and short duration of flow events.

Within freshwater systems, while there is a growing body of research

using network-based approaches, there is also scarcity of empirical

data on the movement of organisms, and, often, static network models

are applied to describe dynamic processes such as dispersal.

5.3 | Limitations of traditional measures and the
advantages of network metrics

Network metrics, such as those discussed in our study (e.g., BC,

PR, LD and GE), provide a more comprehensive and flexible frame-

work for analysing connectivity patterns in complex water-

controlled ecosystems compared to traditional measures like drainage

density and Horton-Strahler ratios. These metrics can capture the

multi-directional, weighted and dynamic aspects of connectivity,

which traditional measures may not fully represent. For example,

drainage density (Saco et al., 2020) provides information about the

total length of channels per unit area but does not consider the

direction of flow or the strength of connections between different

parts of the network. Similarly, Horton-Strahler ratios (Horton, 1945)

describe the hierarchical structure of river networks but do not

account for the temporal variability in flow conditions or the role of

non-channelized pathways in the landscape.

In contrast, network metrics can incorporate these additional

dimensions of connectivity, enabling researchers to explore questions

related to the resilience, efficiency and vulnerability of water-

controlled ecosystems. BC measures the number of shortest paths

that pass through a node, indicating its importance as a bridging ele-

ment in the network, while PR assigns a probability value to each

node based on the likelihood of a random walker visiting that node,

considering the importance of its neighbouring nodes. Although BC

and PR are calculated differently, they both provide insights into the

relative importance of nodes in the network. PR values are probabili-

ties assigned to each node, and the sum of all PR values in a network

equals 1. These probabilities can be interpreted in ecological and geo-

morphological contexts, such as identifying critical habitat patches or

key locations for sediment transport.

Furthermore, LD and drainage density are two essential measures

used to analyse the characteristics and behaviour of river networks.

While drainage density focuses on the total length of streams per unit

area, providing insights into the efficiency of water removal and the

basin's response to rainfall events, LD emphasizes the number of

stream segments per unit area, reflecting the complexity and dis-

section of the drainage network. Both measures are influenced by var-

ious factors such as climate, geology, topography and land use within

the drainage basin. Generally, a higher drainage density corresponds

with a higher LD, as a well-dissected drainage network often exhibits

a greater number of stream segments per unit area. By considering

both drainage density and LD, researchers can gain a more compre-

hensive understanding of the river network's structure, function and

response to hydrologic events, as well as its role in sediment transport

and overall basin morphology. However, we have not considered

drainage density in our analysis because it does not have much signifi-

cance over hillslope-scale processes.

The value of the proposed network metrics lies in their ability to

help researchers and managers:

i. Identify critical nodes and pathways for the flow of water, sedi-

ment and organisms in the landscape.

ii. Assess the resilience and vulnerability of ecosystems to distur-

bances or changes in connectivity patterns.

iii. Compare the efficiency of different network configurations in

facilitating ecological and geomorphological processes.

iv. Develop targeted conservation and restoration strategies based

on the connectivity properties of the system.

Recent studies have successfully applied network metrics to

address important questions in water-controlled ecosystems, show-

casing their potential to generate new insights and inform manage-

ment decisions (Baldan et al., 2020; Turnbull & Wainwright, 2019;

Zhang et al., 2022).
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5.4 | Future directions: Multilayer-weighted
networks, time-delayed connectivity and higher order
interactions

Multilayer networks are a type of network representation that con-

sists of multiple layers, each representing a different type of interac-

tion or subsystem (Bianconi, 2018). Nodes can be connected within a

single layer (intra-layer edges) or across different layers (inter-layer

edges). This framework allows for the integration of multiple dimen-

sions of connectivity, such as different types of ecological interactions

(e.g., trophic, mutualistic and competitive) or different modes of trans-

port (e.g., surface water, groundwater and sediment). In the context of

water-controlled ecosystems, multilayer networks can be used to cap-

ture the complex interplay between ecological and geomorphological

processes. For example, a multilayer network could represent the con-

nectivity of habitat patches for different species (ecological layer) and

the connectivity of sediment transport pathways (geomorphological

layer), with inter-layer edges representing the feedback between

these two subsystems. Multilayer networks can aid in the quantifica-

tion of connectivity caused by changes in environmental conditions in

floodplain ecosystems, such as transitions from dry to wet or from

lentic to lotic conditions. Specific examples of how multilayer net-

works can be implemented in water-limited systems include modelling

the coupled dynamics of vegetation growth and sediment transport in

drylands, where the ecological layer represents plant dispersal or veg-

etation biomass, and the geomorphological layer represents erosion

and deposition processes (Stewart et al., 2014) and analysing the

effects of hydrological connectivity on the metacommunity structure

of benthic macroinvertebrates in floodplain ecosystems, where differ-

ent layers represent different dispersal-related traits such as flying

and non-flying groups (Recinos Brizuela et al., 2024).

Approaches that integrate knowledge and expertise from multiple

disciplines and systems are increasingly recognized as crucial for

understanding the characteristics of connectivity of water-mediated

ecosystems (Heckmann et al., 2015; Larsen et al., 2012; Pilosof

et al., 2017; Turnbull et al., 2018; Voutsa et al., 2021). For example,

ecogeomorphology has emerged as an important approach to under-

stand the bidirectional feedbacks between an ecosystem's biotic and

abiotic components (Allen et al., 2014; Butler & Hupp, 2013; Mueller

et al., 2014; Turnbull et al., 2008). Furthermore, the concept of meta-

ecosystems highlights the importance of considering the integration

of spatial flows of energy, materials and organisms across ecosystem

boundaries (Cid et al., 2022; Fausch et al., 2002; Padgham &

Webb, 2010). This integration of biotic and abiotic components is

especially relevant in interdisciplinary studies that aim to understand

the connectivity between geomorphology and ecology (Viles, 2020).

However, analysing connectivity in meta-ecosystems can be difficult

due to the emergence of new properties and patterns that result from

the interactions of different ecosystem components (Wolf

et al., 2022). A network-based representation of a meta-ecosystem,

for example, must account for the complexity of ecosystem compo-

nents, as well as how the structure and function of each individual

ecosystem contribute to the overall connectivity of the meta-

ecosystem (Jacquet et al., 2022; Kheirkhah Ghehi et al., 2020). Addi-

tionally, the scale at which the analysis is conducted can significantly

influence the patterns of connectivity that emerge in the network

(Levin, 1992). Therefore, while the concept of meta-ecosystems pro-

vides a framework for understanding connectivity across different

ecosystem components, its application to network-based representa-

tions necessitates careful consideration of emergence and scale-

dependency.

Building on the weighted-directed networks explored in this

paper, there are opportunities to understand better the feedbacks

between ecological and geomorphic processes by developing the

application of multilayer-weighted networks (Bianconi, 2018) and

time-delayed connectivity responses (Voutsa et al., 2021) in water-

controlled ecosystems. In a multilayer network, nodes are arranged

into layers, and edges can connect nodes within the same layer (intra-

layer edges) or between different layers (interlayer edges) (Pilosof

et al., 2017). A weighted-directed network formalism can address con-

nectivity not only within a single layer but also between intra-layers

(multilayer network), and therefore, this approach has great potential

to improve understanding of multidimensional connectivity of an eco-

system (e.g., Pilosof et al., 2017). In addition, while time-delayed con-

nectivity (i.e., how one node at time = t is connected to another node

at time = t + dt) in an ecosystem has yet to be investigated, concepts

related to synchronized and sequential connectivity networks can aid

in quantifying connectivity propagation in time (see Voutsa

et al., 2021, for an overview of sequential and synchronized connec-

tivity in different complex networks).

Water-controlled ecosystems are expected to exhibit higher-

order interactions (Bianconi, 2021), such as non-linear feedback loops

(Thompson et al., 2017; Turnbull et al., 2008) and emergent properties

(Marrin, 2020; Turnbull et al., 2018), that cannot be fully captured by

traditional pairwise connectivity networks. In ecology, higher order

interactions can arise between multiple species in a food web

(Guichard, 2017). For example, the presence or absence of a top pred-

ator can have cascading effects on the abundance and dispersal of

other species in the community (Killengreen et al., 2012; Thomaz

et al., 2007). In geomorphology, higher order interactions can occur

between different components of a landscape, such as soil, water and

vegetation (Wainwright et al., 2011). For example, vegetation can

influence erosion rates and sediment transport, which in turn

can influence the formation and evolution of landforms (Diehl

et al., 2018; Okin et al., 2009). Researchers have developed new

approaches to quantify higher order interactions in complex systems,

such as network motifs, hypergraphs and graphlets, which capture

patterns of connectivity between multiple nodes (Yin et al., 2018). As

network science advances and data availability improves, ecologists

and geomorphologists should embrace these new techniques to

improve the quantification of connectivity patterns in water-

controlled environments.

Overall, network science provides a diverse set of tools for study-

ing connectivity, but due to the unique characteristics of ecosystems,

only a subset of these tools is applicable. It is critical to continue

developing adequate network tools and to appropriately apply
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existing tools to better quantify the emergent behaviour and charac-

teristics of ecosystems.

6 | CONCLUSION

This study highlights the importance of network-based approaches in

quantifying the patterns of connectivity in water-controlled ecosys-

tems. We can better understand the emergent patterns of connectiv-

ity by carefully conceptualizing water-controlled ecosystems as

networks and taking disciplinary perspectives and system characteris-

tics into account. Our evaluation of network properties and their

influence on network metrics has conclusively demonstrated that our

resulting understanding of connectivity using these metrics is sensi-

tive to how we conceptualize these systems as networks in the first

place. In addition, our evaluation of network metrics in different

water-controlled ecosystems has established that directionality and

weighting play a crucial role in accurately quantifying connectivity

patterns. We found that LD, BC and PR centrality are highly sensitive

to directionality; GE and degree centrality are particularly sensitive to

weights, while RNE remains unaffected by weights and directions.

The study highlights the scope for network and node-level measures

to shift how we quantify, and thus understand, water-mediated con-

nectivity, especially in consideration of the role(s) of weights and

directionality. Furthermore, network-based representations of system

connectivity can aid in the identification of critical nodes in terms of

structure and function, which can inform management and conserva-

tion efforts at specific locations. We further emphasize the impor-

tance of interdisciplinary research and collaborations in expanding our

understanding of connectivity in water-controlled ecosystems.
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