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Abstract
We study semi-infinite particle systems on the one-dimensional integer lattice, where
each particle performs a continuous-time nearest-neighbour random walk, with jump
rates intrinsic to each particle, subject to an exclusion interaction which suppresses
jumps that would lead to more than one particle occupying any site. Under appropriate
hypotheses on the jump rates (uniformly bounded rates is sufficient) and started from
an initial condition that is a finite perturbation of the close-packed configuration, we
give conditions under which the particles evolve as a single, semi-infinite “stable
cloud”. More precisely, we show that inter-particle separations converge to a product-
geometric stationary distribution, and that the location of every particle obeys a strong
law of large numbers with the same characteristic speed.
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1 Introduction andmain results

1.1 Definition of themodel

The exclusion process is a prototypical interacting-particle system, representing the
dynamics of a lattice gas with hard-core interaction, originating with [30, 35], and
a subject of ongoing interest in probability theory and non-equilibrium statistical
physics. The most well-studied versions of the model have homogeneous particles
(see Sect. 1.3 for some comments on the literature). Our interest here is in non-
homogeneous systems. In the present paper, a sequel to the paper [31] of the authors
and V.A.Malyshev, which examined finite systems, we consider semi-infinite systems.
That is, we have particles enumerated left-to-right by N := {1, 2, 3, . . .}, living on
the one-dimensional integer latticeZ, performing continuous-time, nearest-neighbour
random walks with exclusion interaction, in which each particle possesses arbitrary
finite positive jumps rates. We describe the model more precisely.

The configuration space of the system is X, given by

X := {(x1, x2, . . .) ∈ Z
N : x1 < x2 < · · · }. (1.1)

The dynamics are described by a time-homogeneous, continuous-timeMarkov process
on X, specified by finite, non-negative rate parameters a1, b1, a2, b2, . . .. The kth
particle (enumerated from the left) attempts to make a nearest-neighbour jump to the
left at rate ak . If, when the corresponding exponential clock rings, the site to the left
is unoccupied, the jump is executed and the particle moves, but if the destination is
occupied by another particle, the attempted jump is suppressed and the particle does
not move (this is the exclusion rule). Similarly, the kth particle attempts to jump to
the right at rate bk , subject to the exclusion rule. The exclusion constraint ensures
that there can be at most one particle at any site of Z at any given time, and that the
order of particles is preserved; in particular, the left-most particle is always the particle
labelled 1. See Fig. 1 for a picture.

In the present paper, our main (but not only) interest will be in starting the system
from configurations that are approximately close-packed. Define

XF :=
{
x ∈ X : xk+1 − xk = 1 for all but finitely many k ∈ N

}
; (1.2)

Fig. 1 Schematic of the model showing the leftmost 6 particles, illustrating some of the main notation.
Filled circles represent particles, empty circles represent unoccupied lattice sites, and directed arcs represent
admissible transitions, with exponential rates indicated
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we will refer to XF as the set of finite configurations, because there are only finitely
many empty sites (holes) between particles.

Under some conditions on the rates ak, bk that we will describe shortly, we will
study dynamics of the particle system started from XF, and in particular focus on
the situation where the particles evolve as a single, semi-infinite “stable cloud”, by
which we mean that inter-particle separations are tight. In this case, we show that
every particle obeys a strong law of large numbers with the same characteristic speed
(negative or zero). These main results are presented in Sect. 1.2. First we address the
question of conditions on the rates and initial configuration under which the dynamics
described above give a well-defined Markov process.

We will often assume positivity of all the rates:

(A0) Suppose that 0 < ak < ∞ and 0 < bk < ∞ for all k ∈ N.

The set XF ⊂ X defined at (1.2) is countable (whereas X is uncountable). The
Heaviside configuration is xH := (0, 1, 2, 3, . . .) ∈ XF, in which particles occupy
Z+ := {0, 1, 2, . . .}; the other elements of XF are finite perturbations of xH and their
translates. The following rate condition (which ensures “non-explosion”) will provide
an existence result in this case.

(A1) Suppose that
∑

k∈Z+(1/ak) = ∞.

Let X(t) = (X1(t), X2(t), . . .) ∈ X be the configuration of the Markov process at
time t ∈ R+ := [0,∞), started from a fixed initial configuration X(0) ∈ X.

Proposition 1.1 (Existenceoffinitely-supportedprocess) Suppose that (A1) holds, and
that X(0) ∈ XF. Then there exists a unique continuous-timeMarkov chain (X(t))t∈R+
on the countable state space XF (defined for all time t ∈ R+) whose transition rates
are as described above.

For initial conditions beyond XF, we will assume the following:

(A2) Suppose that supk∈N ak < ∞ and supk∈N bk < ∞.

Note that (A2) implies (A1), but (A1) also permits ak → ∞ (for example ak = O(k)).
We will show (Proposition 1.6 below) that, assuming (A2), one can construct X(t)

started from arbitrary X(0) ∈ X, and,moreover, initial distributions that have a relative
invariance property, meaning that the distribution of the collection of inter-particle
separations is stationary, while the whole system possesses a characteristic speed. The
stationary distribution for the inter-particle separations can be viewed as an invariant
measure (of which there may be many) of an infinite Jackson network corresponding
to the particle system. The Jackson network is helpful for both the construction of
the process and its analysis. The Jackson connection, explained in detail in Sect. 2, is
via the process of inter-particle separations; we introduce relevant notation next. For
x = (x1, x2, . . .) ∈ X, define Dk : X → Z+, by

Dk(x) := xk+1 − xk − 1, for k ∈ N. (1.3)

Set D := Z
N+, and define D : X → D by (D(x))k = Dk(x). An example is D(xH) =

0 ∈ D. We define the process η := (η(t))t∈R+ on D by η(t) := D(X(t)), t ∈ R+. In
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other words,

ηk(t) := Xk+1(t) − Xk(t) − 1, for k ∈ N, (1.4)

denotes the number of holes between particles k and k+1 at time t ∈ R+. An equivalent
description of the system is captured by the process ξ := (ξ(t))t∈R+ , where

ξ(t) := (X1(t), η1(t), η2(t), . . .) ∈ Z × Z
N+. (1.5)

It turns out that, under appropriate conditions, η = (η(t))t∈R+ ∈ D, with coordinates
given by (1.4), is also a continuous-time Markov process, which can be represented
via an infinite Jackson network of queues of M/M/1 type, or, alternatively, as a zero
range process (we explain this is Sect. 2).

Before describing our main results, let us indicate some well-known examples.
Suppose that X(0) ∈ XF, so that existence is a consequence of Proposition 1.1. Since
XF is countable, we can in this case understand the process X(t) started from an initial
state in XF as a continuous-time Markov chain on a countable state space; under (A0)
the Markov chain is irreducible on a subset of XF, and so the standard notions of
transience, recurrence, positive recurrence, and so on, apply. Since configurations in
XF are ultimately close-packed to the right, one has a uniform upper bound on X1(t)
(depending only on X1(0)). Hence transience is equivalent to limt→∞ X1(t) = −∞,
a.s., and recurrence to X1(t) = X1(0) for an a.s.-unbounded set of times t , for example.

Example 1.2 (Homogeneous simple exclusion) Consider homogeneous rates ak ≡ a ∈
(0,∞), bk ≡ b ∈ (0,∞) for all k ∈ N. If a = b this is the symmetric simple exclusion
process (SSEP) and if a �= b it is the asymmetric simple exclusion process (ASEP).
A classical result is that the Markov chain X(t) on XF (with initial configuration
X(0) ∈ XF) is positive recurrent if a < b, while if a > b it is transient. As an example
of our general results (see Example 1.17 below), we will see that for a < b, η(t)
converges to a product-geometric stationary distribution,while limt→∞ t−1Xk(t) = 0,
a.s., for every k ∈ N. In the case a = b, a result of Arratia, Theorem 2 of [4, p. 386],
says that

lim
t→∞

X1(t)√
t log t

= 1, a.s. (1.6)

Arratia’s result implies transience; an alternative approach to transience, which also
treats some mixture models, can be found in Belitsky et al. [12]. 	

In the next section we present our main results. We will return to various aspects
of Example 1.2, and its generalizations, for illustration.

1.2 Stability, strong law, and examples

In this sectionwe present ourmain results, the necessary notation, and some examples;
proofs come later in the paper (see Sect. 1.4 for an outline). A central place in our
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analysis is occupied by the following linear system whose coefficients are the rate
parameters (ai , bi )i∈N:

(bi + ai+1)ρi = aiρi−1 + bi+1ρi+1, for i ∈ N; ρ0 = 1. (1.7)

Wecall the system (1.7) (always imposing the initial conditionρ0 = 1) the stable traffic
equation, by analogy with the finite Jackson network setting (see [31]), although in
the infinite case the picture is richer.

Lemma 1.3 (Solutions to the stable traffic equation) Suppose that (A0) holds. The set
of solutions ρ = (ρk)k∈Z+ to (1.7) is the one-parameter family

ρ = α + vβ (1.8)

for v ∈ R, where α = (αk)k∈Z+ and β = (βk)k∈Z+ are defined by

α0 := 1, and αk := a1 · · · ak
b1 · · · bk for k ∈ N; (1.9)

β0 := 0, and βk := 1

bk
+ ak

bkbk−1
+ · · · + ak · · · a2

bk · · · b1 for k ∈ N. (1.10)

Moreover, for every solution ρ = α + vβ, v ∈ R,

v = bk+1ρk+1 − ak+1ρk, for every k ∈ Z+. (1.11)

In the finite case [31], there is another boundary condition, so there is always a
unique solution to the corresponding traffic equation; the key result is that the collection
of inter-particle separations (which correspond to a Jackson queueing network, as
described in Sect. 2) is stable if and only if that unique solution satisfies ρk < 1 for all
k ≥ 1.

Our main interest is in the case where the particles in our semi-infinite system
constitute a single “stable cloud”, and thismotivates considering the following subclass
of solutions to the infinite stable traffic Eq. (1.7).

Definition 1.4 (Admissible solutions) We say ρ = (ρk)k∈Z+ is an admissible solution
(to the stable traffic equation) if ρ satisfies (1.7), ρ0 = 1, and ρk ∈ (0, 1) for all k ∈ N.
Let

V := {v ∈ R : α + vβ is an admissible solution to (1.7)}. (1.12)

The focus of the present paper is when V is non-empty, and when a particular
member of V governs the asymptotic dynamics of the particle system, exhibiting the
behaviour of a single “stable cloud”. A complication here (absent in the case of finite
systems [31]) is that there may be multiple members of V , and which one is relevant
for the dynamics can depend on the initial configuration, particularly once we permit
initial configurations beyond XF.
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Remark 1.5 (Multiple clouds) Amore general situation thanwe consider in the present
paper is when the system can be decomposed into a single, semi-infinite stable cloud,
plus a finite number of finite stable clouds (to the left, necessarily). Such systems are
described by solutions ρ to (1.7) for which ρk ≥ 1 for at least one k ∈ N. We anticipate
that a combination of the approach here and in [31] (where finite systems are studied)
can in this case be used to characterize the cloud decomposition in terms of ρ and to
show that each (finite or infinite) cloud will satisfy a strong law of large numbers with
its own intrinsic speed, ordered left-to-right. The situation with an infinite number of
finite clouds is also possible.

WriteGeom0 (q) for the (shifted) geometric distribution onZ+ with success param-
eter q ∈ (0, 1], i.e., ζ ∼ Geom0 (q)means thatP(ζ = n) = (1−q)nq for n ∈ Z+. For
an admissible solution ρ to (1.7), let νρ be the product measure

⊗
k∈N Geom0 (1 − ρk)

on D = Z
N+, i.e.,

νρ(m) =
∏
k∈A

(1 − ρk)ρ
mk
k , for all finite A ⊂ N and all m = (mk)k∈A ∈ Z

A+. (1.13)

The following statement (based on results of [19]) shows that the v ∈ V index
invariant measures for the η(t) component of the process ξ(t) (i.e., the system seen
from the leftmost particle), with v corresponding to the speed of every particle in the
particle cloud when the system runs under stationary law η(t) ∼ νρ . Since νρ may
be supported on configurations with infinite total number of holes, existence of the
process started from νρ is, in general, not covered by Proposition 1.1, and the following
statement provides existence under the bounded-rates condition (A2).

Proposition 1.6 (Existence and invariant measures) Suppose that (A0) and (A2) hold.
Then there exists aMarkov process (ξ(t))t∈R+ onX (defined for all time)with arbitrary
initial state ξ(0) ∈ X, possessing right-continuous sample paths, and dynamics as
described in Sect.1.1 above.

Moreover, suppose that v ∈ V with ρ = α + vβ the corresponding admissible
solution of (1.7). Then if η(0) ∼ νρ , for νρ given by (1.13), and ξ(0) = (X1(0), η(0))
for fixed X1(0) ∈ Z, it holds that η(t) ∼ νρ for all t ∈ R+ (invariance), and

lim
t→∞

X1(t)

t
= v, a.s. (1.14)

When #V > 1, Proposition 1.6 shows that there are multiple invariant measures
associated with the particle system dynamics. The next result identifies a minimal
member of V of particular importance for our purposes. Recall αk, βk defined at (1.9)
and (1.10).

Proposition 1.7 Suppose that (A0) holds. Then there always exists the limit

v0 := − lim
k→∞

αk

βk
= −

( 1

a1
+ b1

a1a2
+ b1b2

a1a2a3
+ · · ·

)−1 ∈ (−a1, 0]. (1.15)
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If V �= 0, then inf V = v0 ∈ V . Moreover, it holds that v0 ∈ V if and only if, for all
k ∈ N,

v0 <
b1 · · · bk − a1 · · · ak

b2 · · · bk + a1b3 · · · bk + · · · + a1 · · · ak−1
, (1.16)

where each of the k terms in the denominator is a product of k − 1 factors.

In view of Proposition 1.7, the following terminology is appropriate.

Definition 1.8 (Minimal solution) If V �= ∅, then for v0 = inf V we say that ρ =
α + v0β is the minimal admission solution to (1.7) (or just “minimal solution”, for
short).

It turns out for initial configurations inXF, theminimal admissible solution (assum-
ing V �= ∅) will take special significance. Intuitively, solutions with v > 0 are not
accessible from a closely-packed configuration, as there is no space to the right for
particles to escape, so only solutions with v ≤ 0 remain. Either v0 = 0, where only the
zero-speed solution is accessible, or else v0 < 0, but in that case, under condition (A1),
there can be at most one admissible solution (see Proposition 3.1(iii) below) which
must also be the one corresponding to v0. A manifestation of the special role of v0 is
the following strong law for speeds.

Theorem 1.9 (Strong law of large numbers) Suppose that (A0) and (A1) hold, V �= ∅,
X(0) ∈ XF, and either (i) v0 = 0, or (ii) β := lim supk→∞ βk = ∞. Then, for every
k ∈ N,

lim
t→∞

Xk(t)

t
= v0, a.s. (1.17)

Proposition 1.7 shows that to check whether V �= ∅, it suffices to check v0 ∈ V .
Example 1.10 (Stable with zero speed) Suppose that (A0) holds, and that v0 = 0. Then,
by Proposition 1.7,

0 = v0 ∈ V if and only if b1 · · · bk > a1 · · · ak for every k ∈ N. (1.18)

The interpretation of (1.18) is, roughly speaking, that the particles, collectively, all
want to travel to the right, which they cannot do; hence the system is stable with zero
speed. 	
Remark 1.11 (Dual random walk) We will obtain another probabilistic interpretation
of v0 in terms of a dual random walk Q. This random walk is most conveniently
described as a random walk of a customer in a version of queueing system associated
to the process η(t), and we defer a description until Sect. 2 below, where we introduce
the Jackson network representation. Then, assuming (A0), comparing (1.15) and (2.11)
below shows that |v0|/a1 is an escape probability of the random walk Q, and, in
particular, it holds that

v0 = 0 if and only if Q is recurrent, (1.19)
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where Q is the customer walk from Definition 2.4 below.

We will see below (Lemma 4.1) that if
∑

k∈Z+ ρk < ∞, then the measure νρ

given by (1.13) is supported on configurations η ∈ D with
∑

k∈N ηk < ∞. Also,
we will see (Proposition 3.1(v) and Lemma 4.2) that condition (A1) ensures that if
there is an admissible solution ρ with

∑
k∈Z+ ρk < ∞, then in fact v0 = 0 ∈ V

and
∑

k∈Z+ αk < ∞, and να is the unique invariant measure supported on DF. The
following result gives convergence.

Theorem 1.12 (Convergence to stationarity: finite configurations) Suppose that (A0)
and (A1) hold, that V �= ∅, ∑

k∈Z+ αk < ∞, and X(0) ∈ XF. Then, for all
m1,m2, . . . ∈ Z+,

lim
t→∞ P

[ ⋂
k∈N

{ηk(t) = mk}
]

=
∏
k∈N

(1 − αk)α
mk
k . (1.20)

The following corollary says, under the same hypotheses, that the position X1 of
the leftmost particle is ergodic.

Corollary 1.13 Suppose that (A0) and (A1) hold, that V �= ∅, ∑
k∈Z+ αk < ∞, and

X(0) ∈ XF. Then, there is a probability measure πα on Z such that, for every finite
A ⊂ Z,

lim
t→∞

1

t

∫ t

0
1{X1(s) ∈ A}ds = πα(A), a.s. (1.21)

More generally, we may have the minimal solution having
∑

k∈Z+ ρk = ∞, so
the Markov chain result, Theorem 1.12, does not apply. The following result permits
X(0) ∈ XF (i.e., we start with a fixed finite configuration), or else η(0) is chosen
in accordance to some measure ν which is dominated by νρ defined in (1.13) (the
definition of stochastic domination is given in Sect. 4.2 below). Then we have local
convergence, in the following sense.

Theorem 1.14 (Convergence to stationarity: general configurations) Suppose that (A0)
and (A2) hold, and that V �= ∅. Denote by ρ = α+v0β the minimal solution. Suppose
that either X(0) ∈ XF, or X1(0) ∈ Z and η(0) is chosen in accordance to some
measure ν which is dominated by νρ . Then, for every finite A ⊂ N and all mk ∈ Z+
(k ∈ A),

lim
t→∞ P

[ ⋂
k∈A

{ηk(t) = mk}
]

=
∏
k∈A

(1 − ρk)ρ
mk
k .

Remark 1.15 In Theorem 1.14, wemay have # V > 1. Under (A2), either
∑

k∈Z+ αk <

∞ and then V = {0} is the only solution (Proposition 3.1(vi)), so that we are back in
the setting of Theorem 1.12, or else

∑
k∈Z+ αk = ∞, every other admissible ρ must

have
∑

k∈Z+ ρk = ∞ (see Lemma 4.2), and non-uniqueness can occur only when
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v0 = 0 (Proposition 3.1(iv)) so non-minimal solutions have positive associated speed.
The intuition of Theorem 1.14 is that, started from a finite configuration, it is only the
minimal solution that is accessible.

In the case when
∑

k∈Z+ αk = ∞, the following consequence of Theorem 1.14
contrasts with Corollary 1.13.

Corollary 1.16 Suppose that (A0) and (A2) hold, that V �= ∅, ∑
k∈Z+ αk = ∞, and

X(0) ∈ XF. Then X1(t) → −∞ in probability as t → ∞.

We return to Example 1.2.

Example 1.17 (Homogeneous simple exclusion) As in Example 1.2, assume ak ≡ a ∈
(0,∞) and bk ≡ b ∈ (0,∞). Then, by (1.9) and (1.10), αk = (a/b)k and, if a �= b,
βk = (1 − (a/b)k)/(b − a), with βk = k/a if a = b. Let X(0) ∈ XF.

• If a < b, then v0 = 0, and solutions ρk = αk + vβk are admissible for v ∈
V = [0, b − a). The minimal solution has

∑
k∈Z+ αk < ∞, while the non-

minimal solutions have limk→∞ ρk = v
b−a ∈ (0, 1). Condition (A2) is satisfied,

and Theorem 1.9 says that limt→∞ t−1Xk(t) = 0, a.s., for every k ∈ N, while
Theorem 1.12 yields convergence to a product-geometric stationary distribution
for the particle separations.

• If a ≥ b, then one can check that v0 = b − a but the admissibility condition fails
(since αk + v0βk ≡ 1), so that V = ∅.

	
Another class of instructive examples is obtained by perturbing the critical homo-

geneous case fromExample 1.2 bymodifying the rates only of the leftmost particle. As
in the finite case [31], we call the leftmost particle the “dog”, and all the rest “sheep”.

Example 1.18 (Dog and sheep; lattice Atlas model) Suppose that

0 < a1 = a < b1 = b < ∞, and, for all k ≥ 2, ak ≡ bk ≡ c ∈ (0,∞). (1.22)

Let X(0) ∈ XF. Assuming (1.22), we have αk = a/b ∈ (0, 1), βk = k−1
c + 1

b , and
v0 = 0, V = {0}, and the unique admissible solution is ρ = α. Condition (A2) is
satisfied, and Theorem 1.9 says that limt→∞ t−1Xk(t) = 0, a.s., for every k ∈ N. In
this case

∑
k∈Z+ αk = ∞, so Theorem 1.12 does not apply, but Theorem 1.14 yields

local convergence of the particle separations to the invariant measure να given by⊗
k∈NGeom0

( b−a
b

)
. This is a lattice relative of the continuum Atlas model [10, 23];

we refer to [31] for a discussion of some links between lattice and continuum models
(in the finite setting). 	

We close this section with one further result about the behaviour of the leftmost
particle (the “dog”) from Example 1.18; we saw already that limt→∞ t−1X1(t) = 0,
a.s., i.e., the dog’s speed is always zero. On the other hand, Corollary 1.16 says
that X1(t) → −∞ in probability. The following, stronger, result shows that the dog
particle is transient to the left with approximately diffusive rate of escape; cf. Arratia’s
result (1.6) in the case a = b.

123



M. Menshikov et al.

Theorem 1.19 Suppose that (1.22) holds with 0 < a < b = c = 1, and that X(0) ∈
XF. Then, for some C ∈ (0,∞) and any δ > 0 it holds that, a.s., for all t ∈ R+
sufficiently large,

Ct
1
2 ≤ −X1(t) ≤ t

1
2+δ. (1.23)

Remark 1.20 Theorem 1.19 could be extended to a larger class of situations, such as
several (but finitely many) “dogs” with more general rates, provided that the system
nevertheless has V �= ∅; essentially the same proof would work, as indicated in
Remark 5.3 below.

We plan, in future work, to examine finer asymptotics of the leftmost particle, and
consider in greater generality questions of recurrence and transience, for example.

1.3 Discussion and related literature

In the earlier paper [31], Malyshev and the present authors studied finite particle
systems, and used classical results of Goodman & Massey on partial stability for
Jackson networks [21] to obtain a decomposition of the system (determined by the
rate parameters) into maximal stable subsystems (“clouds”). Each stable cloud has
its own product-geometric limit distribution for the inter-particle separations, and its
own asymptotic speed. We refer to [31] for further results, and also a discussion of the
relation to adjacent continuum (diffusion) models [10, 23].

The process η(t) of inter-particle separations in the exclusion process is a partic-
ular case of the zero-range process. Since the 1990s, there has been a great deal of
study of zero-range and exclusion processes with disordered environments, including
heterogeneous but deterministic, or randomly chosen, rates; in the exclusion process,
rates attached to particles (as in our case) correspond to rates attached to sites in
the zero-range process. From the earliest work, it was recognized that there may be
a rich landscape of invariant measures (including product-geometric measures), and
influence of invariant measures on dynamics, either locally or globally, is mediated
through densities of initial configurations. We refer to [3, 5–8, 11, 13, 16, 17, 20, 24,
29] and references therein for extensive results on phenomena concerning convergence
to equilibrium and hydrodynamic limits.

For infinite, heterogeneous exclusion systems, the majority of the literature
addresses doubly-infinite systems (i.e., particles enumerated by Z, rather than Z+).
For settings in that context parallel to ours, we mention in particular work of Ben-
jamini et al. [13] and a more recent programme of Bahadoran et al. [5–8]. These works
display many interesting phenomena, some similar to those presented here, including
a family of invariant measures parametrized by density and possessing an associated
speed. These papers (and others cited therein) consider, in some cases, a more general
random walk kernel than our nearest-neighbour walk, but their “site-wise disorder”
is a (random or nonrandom) environment less general than ours: for example, in [5],
in our notation, it is assumed that ak+1 = pα(k) and bk = qα(k), where p + q = 1
and p > q, so that the underlying skeleton random walk is homogeneous, and the
inhomogeneous rates are such that c < α(k) ≤ 1 for all k and some 0 < c < 1.
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Results in [5, 13] give sufficient “density” conditions on the initial configuration to
guarantee convergence to an invariant measure governed by the “slow” vertices. Sub-
sequent results concern higher dimensions [6] and hydrodynamic limits [6, 7]. We
emphasize that the main distinction between our results and most of this body of work
is that our interest is in semi-infinite systems, particularly the behaviour of the left-
most particle and its neighbourhood, i.e., we examine extremal behaviour, rather than
bulk behaviour. Since the leftmost particle has no influence from particles to its left,
behaviour can be quite different than in the doubly-infinite setting.

We wish to draw particular attention to [13], which does include results on semi-
infinite systems (although their main interest is in systems indexed by Z, as described
above). However, in the setting which comes closest to ours, in [13] it is assumed
that all particles have a uniformly negative intrinsic drift, and it is shown, roughly
speaking, that the system is transient to the left at the speed of the slowest particles.

1.4 Outline of the paper

The rest of the paper builds to the proofs of the results presented in Sect. 1.2. In Sect. 2
we introduce the Jackson network associated with the particle system, which provides
access to some useful terminology and intuition. Here we give the proofs of our
results on existence and invariant measures (Propositions 1.1 and 1.6), and introduce
a dual random walk, the customer random walk, and its properties. Section3 turns to
a discussion of the admissible solutions to (1.7) and the structure of the set V from
Definition 1.4. Here we give proofs of Lemma 1.3 and Proposition 1.7. Section4
examines the role of the invariant measures νρ defined at (1.13), and the significance
of cases in which νρ is supported on finite or on infinite configurations. The concept
of second-class customers furnishes some useful stochastic domination results, and
then we present comparison results with finite particle systems. These tools enable us
to present, in Sect. 4, proofs of the convergence results Theorems 1.12 and 1.14, and
their corollaries for the behaviour of the left-most particle, Corollaries 1.13 and 1.16.
Finally, Sect. 5 presents the proof of the strong law, Theorem 1.9, and the asymptotics
for the dog and sheep example, Theorem 1.19.

2 Infinite Jackson network and auxiliary randomwalk

2.1 Jackson network representation

Jackson networks of finitely many queues have been extensively studied (see e.g. [14,
Chs. 2 & 7] or [34, Ch. 1]); infinitely many queues have also received some attention
[13, 19, 26, 27]. For us, the Jackson network serves as a framework in which to
construct and describe (an enriched version of) the process η, as we describe in this
section; the link between exclusion processes and Jackson networks is well known,
going back at least to [28] (see [31] for further literature).

In Sect. 2.2 we use this approach to provide the construction of the process η, and
hence ξ , and give the proof of the existence and invariance results, Propositions 1.1
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and 1.6. Then in Sect. 2.3 we use the Jackson representation to describe the customer
random walk, which serves as a useful tool in our analysis.

First, in somegenerality, consider a countably infinite systemof queues, enumerated
by N. The parameters of the system are arrival rates λ = (λi )i∈N, service rates μ =
(μi )i∈N and P = (Pi j )i, j∈N, a sub-stochastic routing matrix. Exogenous customers
entering the system arrive at queue i ∈ N via an independent Poisson process of
rate λi ∈ R+. Queue i ∈ N serves customers at exponential rate μi ∈ R+ (i.e., in
Kendall’s notation, we have an M/M/1 queue at each server). Once a customer at
queue i is served, it is routed to a queue j with probability Pi j , while with probability
δi := 1 − ∑

j∈N Pi j the customer departs from the system.
Provided

∑
i∈N λi > 0 and

∑
i∈N δi > 0, customers both enter and leave the

system, and it is called an open Jackson network. We assume that every queue can be
filled, meaning that, for every i ∈ N, there is a j ∈ N and k ∈ Z+ for which λ j > 0
and (Pk) j i > 0, and that every queue can be drained, meaning that, for every i ∈ N,
there is a j ∈ N and k ∈ Z+ for which δ j > 0 and (Pk)i j > 0.

We now explain the Jackson network connection to the particle system model as
described in Sect. 1.1; we use the notation introduced there. Recall from (1.4) that
ηk(t) = Xk+1(t) − Xk(t) − 1, the number of holes between consecutive particles at
time t ∈ R+. Define

μi := bi + ai+1, for i ∈ N, (2.1)

and

λ1 := a1, and λi := 0 for i ≥ 2. (2.2)

Also define the matrix P := (Pi, j )i, j∈N by

Pi,i−1 := bi
μi

= bi
bi + ai+1

, for i ≥ 2;

Pi,i+1 := ai+1

μi
= ai+1

bi + ai+1
, for i ≥ 1;

(2.3)

and Pi, j := 0 for all i, j with |i − j | �= 1.
The process η = (ηi )i∈N can, under appropriate conditions on the rates and

initial states, be realised as the queue-length process for a corresponding Jackson
network, namely, the Jackson network with parameters λ,μ and P given as functions
of (ai , bi )i∈N through formulas (2.1), (2.2) and (2.3).

Putting aside questions of existence for the moment, which will be addressed in
Sect. 2.2, let us explain the correspondence between the queueing process and the
particle system, as this will allow us to use two parallel lenses to study our processes.
In the queueing network, the customers waiting at queue k are equal in number to
the unoccupied sites between particles k and k + 1 in the particle system. Exogenous
customers enter the queueing network only when the leftmost particle jumps to the
left (rate a1). Customers at queue k are served if either particle k jumps right (rate
bk) or if particle k + 1 jumps left (rate ak+1). If particle k jumps right, the customer
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is routed to queue k − 1 (if k ≥ 2, at rate bk = μk Pk,k−1) or leaves the system (if
k = 1). If particle k + 1 jumps left, the customer is routed to queue k + 1 (at rate
ak+1 = μk Pk,k+1). Customers leave the system only when the leftmost particle jumps
to the right (rate μ1δ1 = b1).

It is sometimes useful to distinguish customers as they enter and leave the network.
At time 0, we suppose that each queue is occupied by at most finitely many customers,
i.e., η(0) ∈ D; thesewe call endogenous customers (there are atmost countablymany),
andwe enumerate them in some arbitrary order. Customers that enter the systemduring
time (0,∞) a.s. do so at distinct times and with only finitely many arrivals in every
compact time interval; these we call exogenous customers, and we enumerate them in
order of increasing arrival time.

Before addressing existence of the process η, we describe, first informally but in
a way that can be made rigorous once existence is in hand, how one can construct ξ

given the queueing process. We would like to preserve the intuitive picture that X1
moves to the left only when exogenous customers enter the system, and X1 moves
to the right only when customers exit the system due to service at queue 1. Take the
construction of the Jackson network as given, and introduce the following associated
counting processes.

• Let E→1(t) be the number of exogenous customers that enter the system during
(0, t].

• Let E←1(t) be the number of customers that depart the system during (0, t].
The superscript 1 indicates that entry and exit is possible only via queue 1. Then we
declare

X1(t) − X1(0) := E←1(t) − E→1(t) = −M(t), for all t ∈ R+, (2.4)

whereM(t) := E→1(t)−E←1(t) is the net change in total occupancy of the queueing
system during time [0, t]. If T (t) := ∑

k∈N ηk(t) ∈ Z+ ∪{∞} counts the total number
of customers in the system, then since customers enter at bounded rate, T (0) < ∞
implies that T (t) < ∞ for all t ∈ R+, and so M(t) = T (t) − T (0) whenever
T (0) < ∞. Consequently,

X1(t) − X1(0) = −
∑
k∈N

(
ηk(t) − ηk(0)

)
, whenever

∑
k∈N

ηk(0) < ∞. (2.5)

Our aim, therefore, is to use either (2.4) or (2.5) to define X1 from η, and hence
to give the full process ξ . There are some obstacles to this scheme (and hence to
existence), most significantly the possibility of explosion of customers through the
network, meaning that customers are routed successively through increasing queues
so fast that they “escape to infinity” in finite time. In the particle system, one has a
choice how to accommodate this; for example, there could be a corresponding flux of
particles “from infinity” entering the system (see also Remark 2.2 below). Under our
rate hypotheses (A1) or (A2), this explosion is excluded, as we explain in Sect. 2.2.
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Remark 2.1 The correspondence between the Jackson network and the particle system
is through the lengths of the queues in the queueing network, i.e., we can imagine cus-
tomers are indistinguishable. One can enrich the queueing process by distinguishing
customers, and/or retaining information about the time elapsed since their arrival at
the present queue, and enforcing any priority service regime, such as FIFO (first-in,
first-out). For definiteness, we can think of the service regime as being FIFO, but this
is not important for our results.

2.2 Existence of theMarkov process

Consider the configurations for η ∈ D with finitely many holes (or, equivalently,
finitely many occupied queues)

DF :=
{
η ∈ D :

∑
k∈N

ηk < ∞
}
. (2.6)

In terms of the particle configuration x ∈ X and the function D defined at (1.3),
D(x) ∈ DF if and only if x ∈ XF as defined at (1.2). Note that DF is countable.

Proof of Proposition 1.1 Take η(0) ∈ DF and X(0) = (X1(0), η(0)) for arbitrary
X1(0) ∈ Z. The process X(t) = (X(t))t∈R+ can be realized as a Markov chain
on the augmented countable state space XF := XF ∪ {∂} where the state ∂ accommo-
dates potential explosion. We claim that condition (A1) ensures that, a.s., explosion
does not occur. To see this, set X

(1)
F := Z × {xH}, and for k ≥ 2 write

X
(k)
F := {x ∈ X : Dk−1(x) > 0 but Dj (x) = 0 for all j ≥ k},

those states for which all particles from particle k onwards are tightly packed, or,
equivalently, queue k − 1 is the rightmost occupied queue. Then XF = ∪k∈NX

(k)
F is a

partition of XF in which the transition rates of X restricted to ∪m
k=1X

(k)
F are bounded,

for every m ∈ Z+, by, say,
∑m

k=1 |ak + bk | < ∞.
At this point it is convenient, and no loss of generality, to assume η(0) = 0 so

X(0) ∈ X
(1)
F . If σk := inf{t ∈ R+ : X(t) ∈ X

(k)
F }, and σ∞ := limk→∞ σk ∈ [0,∞]

(the limit exists by monotonicity) sufficient for non-explosion is thus to prove that
P(σ∞ = ∞) = 1. This we can achieve by comparison with a pure birth process
(see e.g. [1, pp. 19–20]). Indeed, the increments σk+1 − σk dominate a sequence of
independent exponential ak random variables, since whenever queue k−1 is occupied,
queue k receives a customer at rate ak . Hence, by monotone convergence, E σ∞ =∑

k∈N E(σk+1 − σk) ≥ ∑
k∈N 1/ak , and (A1) ensures this sum diverges, and thus

P(σ∞ = ∞) = 1. ��
We next give a proof of Proposition 1.6. Recall the definition of the product-

geometric measure νρ on D = Z
N+ from (1.13).

Proof of Proposition 1.6 For construction of the process and verification of invariance
of the measures νρ for admissible ρ, we draw heavily on [19]; a related approach
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can be found in Appendix B of [6], and see also [2, 13, 18] for further remarks and
references.

First, we indicate how the existence for the inhomogeneous semi-infinite exclusion
process with bounded rates follows from a standard Harris graphical construction
[22]. We can formally define the queue process η on D := {∞} × D by introducing
a “sink queue” labelled by 0 which always holds an infinite number of customers, to
accommodate customers going in and out of the system (in our case, the reservoir of
holes to the left of the leftmost particle). In coordinates, that is η0 := ∞ and ηk = ηk
for k ∈ N. The generator of the process η := (∞, η) ∈ D is then L acting on local
functions f : D → R+ via

L f (η) =
∑
k∈N

1{ηk �= 0}
(
ak+1

(
f (ηk,k+1) − f (η)

) + bk
(
f (ηk,k−1) − f (η)

))

+ a1
(
f (η0,1) − f (η)

)
, (2.7)

where ηx,y := (η
x,y
z )z∈Z+ is the modification of η with a customer removed from

queue x and added to queue y, i.e.,

η
x,y
z :=

⎧⎪⎨
⎪⎩

ηz, z /∈ {x, y},
ηx − 1, z = x,

ηy + 1, z = y,

with the convention ∞ ± 1 := ∞.
The graphical construction is erected on an array of independent marked Poisson

processes associated with each queue, so the Poisson process labelled by k ∈ Z+
has left-pointing arrows arriving at rate bk (apart from queue 0, which has none) and
right-pointing arrows at rate ak+1. For the case of uniformly bounded rates, fix some
time t ∈ R+, and try to construct the process up to time t . Since rates are uniformly
bounded, there is a positive probability at least e−ct , c > 0, uniformly in k ∈ Z+,
that the Poisson process labelled k has no arrivals in time [0, t]. Hence, a.s., there are
infinitely many k ∈ Z+ for which the corresponding Poisson process has no arrivals,
and hence the construction of the process can be reduced to construction on (countably
many) finite pieces. This completes the construction of η (by forgetting the constant
first coordinate of η) and the proof of invariance of νρ for each admissible ρ. Then
we can define X1 through (2.4), and this gives the construction of the particle system
process ξ .

Suppose that v ∈ V withρ = α+vβ the corresponding admissible solution of (1.7).
For verification of invariance of νρ defined at (1.13), we essentially follow [19]; for
this we construct (a candidate for) the reverse process η̃ = (η̃(t))t∈R+ with respect to
the measure νρ . It is again a process with the state space D with the queue 0 acting
as an infinite reservoir (i.e., always with infinite customers); for k ∈ N, customers are
routed from queue k to queue k − 1 at rate akρk−1/ρk and from queue k to queue
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k + 1 at rate bk+1ρk+1/ρk . Let us denote its generator, formally defined analogously
to (2.7), by L̃:

L̃ f (η̃) =
∑

k∈N
1{η̃k �= 0}

(
bk+1ρk+1

ρk

(
f (η̃k,k+1) − f (η̃)

) + akρk−1

ρk

(
f (η̃k,k−1) − f (η̃)

))

+ b1ρ1
(
f (η̃0,1) − f (η̃)

)
.

To ensure the existence of the reverse process, we need to verify that the above tran-
sition rates are bounded (this is, essentially, condition (9) of Theorem 1 of [19]). To
do this, first suppose that lim infk→∞ ρk > 0. Since 0 < ρk < 1 for all k ∈ N, this
means that ρk ∈ [c, 1] for some c > 0 and all k ∈ N, and then (A2) implies the rates in
the specification of L̃ are uniformly bounded. On the other hand, observe that (1.11)
implies that

ρk+1

ρk
= ak+1

bk+1
+ v

ρkbk+1
. (2.8)

If we assume that lim infk→∞ ρk = 0, then it follows from Proposition 3.1(vi) below,
and (A2), that we must have v = v0 = 0, and so (2.8) shows that the process η̂ is the
same as the original process η, and then boundedness of rates is direct from (A2).

The next step is to verify that η and η̃ are indeed reverse of one another with respect
to νρ . This amounts to checking that

∫
f Lg dνρ =

∫
gL̃ f dνρ (2.9)

for all local functions f , g. We do not include the calculation here since it was done
in Proposition 1 of [19] in a more general case. Now, it only remains to note that (2.9)
implies that νρ is invariant both for η (since inserting f ≡ 1 to (2.9) yields

∫ Lg dνρ =
0) and η̃ (now, use (2.9) with g ≡ 1).

Finally, we verify the asymptotic speed result stated at (1.14). Recall the repre-
sentation (2.4). By time-reversal, it holds that, under the invariant measure νρ , the
exit process of η equals in distribution to the entrance process of η̃. In other words,
E←1(t) is a homogeneous Poisson process of rate b1ρ1. On the other hand, E→1(t) is
a homogeneous Poisson process of rate a1. By the strong law for the Poisson process,
limt→∞ t−1E←1(t) = b1ρ1 and limt→∞ t−1E→1(t) = a1, a.s., and hence, by (2.4),
we obtain, a.s., limt→∞ t−1X1(t) = b1ρ1 −a1 = v, by (1.11). This establishes (1.14)
and ends the proof. ��
Remark 2.2 In the present paper, we do not consider cases that fall outside those
covered by one or other of the existence results, Propositions 1.1 and 1.6. For example,
starting fromXF, if one has

∑
k∈N a−1

k < ∞ it seems natural to declare that customers
exit the system “to infinity” at a constant rate, and then one has some choice about
whether to correct the “speed” of the leftmost particle X1. As an example, consider
1 = b1 > a1 = a and ak = bk for k ≥ 2 with h := ∑

k∈N a−1
k < ∞. Then we see that

αk = a and βk = a−1
1 + · · · + a−1

k , meaning that v0 = −a/h and ρ = α − (a/h)β
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is admissible. A direct calculation implies that any finite cloud of leftmost particles
in isolation would, however, go to the right. Exploring such (somewhat pathological)
cases is beyond the scope of this paper.

2.3 Customer randomwalk

Apart from providing access to a wealth of theory and intuition from queueing net-
works, the Jackson representation enables us to define naturally a useful auxiliary
random walk whose properties shed light on the particle system. From now on, when
we use the terminology “customer”, it is to be understood in the context of the queueing
system described in Sect. 2.1. At this point it is convenient to distinguish one customer
from another (cf. Remark 2.1). Since η(0) ∈ D consists of (at most) countably many
customers, and finitely many new customers enter the system by time t ∈ R+, there
are countably many customers involved over time R+. We enumerate endogenous
customers arbitrarily and then subsequent (i.e., exogenous) customers are enumerated
sequentially according to their time of entry into the system (if customers depart the
system, they do not return).

Write qi (t) ∈ N for the queue occupied by customer i ∈ N at time t ∈ R+; we
set qi (t) = 0 if, by time t , the i th customer either did not yet enter to the system, or
already departed (that is, all exogenous customers start at state 0, and all customers
leaving the system are absorbed at 0). When the customers queue at a server, they
may be served according to some priority policies that we do not specify at this point
(see Remark 2.1). Thus we do not determine the holding-time distributions of the
process qi , but its jump chain performs a random walk.

Formally, denote by σi (0) the time when the i th customer enters into the system
(in particular, σi (0) = 0 for any endogenous customers), and let σi (n) be the holding
time of the i th customer before it makes its nth jump.

Denote by Qi the jump chain (or skeleton random walk) corresponding to qi :

Qi (n) = qi (σi (0) + · · · + σi (n)), for n ∈ Z+,

i.e., the process Qi is the discrete-time random walk on N obtained from observing
the sequence of queues visited by customer i .

Consider now a modified queueing system, in which eachM/M/1 queue is replaced
by an M/M/∞ queue. That is (cf. Sect. 2.1), the exogenous arrival rates λ are given
by (2.2), service rates μ are given by (2.1), and routing matrix P is given by (2.3),
but now all customers waiting at queue k are served at the exponential rate μk . In
other words, customers encounter service as if they were alone at the queue, and so
progress independently through the system. We denote by η̂ = (η̂k)k∈N this M/M/∞
system, and by q̂i (t) the queue occupied by customer i ∈ N at time t ∈ R+. Then
q̂i has the same (in law) jump chain Qi as does qi . Moreover, if σ̂i (n) denotes the
holding time of the i th customer before it makes its nth jump in the M/M/∞ system,
we have that the random variables (σ̂i (n); i, n ∈ N) are conditionally independent
given (Qi (n); i, n ∈ N) and such that σ̂i (n) has exponential distribution with rate
μQi (n).
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Then, it is straightforward to see that we have the following.

Proposition 2.3 (i) The processes (Qi )i∈N are independent random walks on Z+,
each with transition matrix P defined in (2.3) with absorption on first hitting of 0.

(ii) The holding times in the M/M/1 system and in the M/M/∞ system are such that
(σi (n); i, n ∈ N) stochastically dominate (σ̂i (n); i, n ∈ N).

Proposition 2.3(i) says that all the Qi perform random walks on Z+ with the same
law. It is thus convenient to introduce the following terminology for a generic such
walk.

Definition 2.4 (Customer random walk) Denote by Q = (Q(n))n∈Z+ a discrete-time
Markov chain onZ+ with transition matrix P defined in (2.3). We call Q the customer
random walk associated to the queueing network.

Assuming (A0), the Markov chain Q is an irreducible nearest-neighbour random
walk. The following fact is classical (see e.g. [15, §I.12] or [32, §2.2]). We define the
first return time to the origin by

τ := inf{n ∈ N : Q(n) = 0}; (2.10)

here the usual convention that inf ∅ := +∞ is in force.

Lemma 2.5 Suppose that (A0) holds. Then the random walk Q is transient if and only
if

∑
k∈N(ak+1αk)

−1 < ∞ and positive recurrent if and only if
∑

k∈N ak+1αk < ∞.
Moreover,

p0 := P(τ = ∞ | Q(0) = 1) =
(
1 + b1

a2
+ b1b2

a2a3
+ · · ·

)−1

∈ [0, 1). (2.11)

In particular, as indicated in Remark 1.11, comparing (1.15) and (2.11) shows that
|v0| = a1 p0, so that v0 = 0 whenever p0 = 0 (Q recurrent) and v0 < 0 whenever
p0 > 0 (Q transient).

3 Admissible solutions of the stable traffic equation

The goal of this section is a closer examination of the set V and the associated solu-
tions ρ of the stable traffic equation (1.7), as defined at Definition 1.4. The v ∈ V and
associated ρ = α + vβ govern invariant measures νρ and speeds of dynamics for the
particle system, as presented in Sect. 1.2, so understanding their properties is of key
importance. We will almost always assume the positivity condition (A0), and we will
frequently impose the non-explosion condition (A1). In a few places we will impose
the uniform boundedness condition (A2). The main focus of this section is to present
and prove Proposition 3.1 below (from which Proposition 1.7 is readily deduced),
together with a collection of illustrative examples. First we give a proof of the basic
Lemma 1.3.
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Proof of Lemma 1.3 First, consider (1.7) without the constraint on ρ0. The solutions ρ

to (1.7) forma linear subspaceofRZ+ , and this subspace is two-dimensional becauseρ0
and ρ1 uniquely determine the rest. We claim that α = (αk)k∈Z+ and β = (βk)k∈Z+
as defined at (1.9) and (1.10) constitute a basis for the solution space. The vectors
α, β ∈ R

Z+ are linearly independent (because one is strictly positive and the other is
not). Moreover, it is straightforward to check that both α and β solve the system (1.7):
this is familiar from the usual solution to the difference equations associated with the
general gambler’s ruin problem [25, pp. 106–108]. Then, since ρ0 = 1, any solution
of (1.7) with the given boundary condition must have the form ρ = α + vβ for some
v ∈ R, which is precisely (1.8).

Observe from the definitions of αk and βk at (1.9) and (1.10) that

αk+1 = ak+1

bk+1
αk and βk+1 = ak+1

bk+1
βk + 1

bk+1
, for all k ∈ Z+. (3.1)

We obtain from (1.7) and (3.1) that v = (ρk − αk)/βk = (ρk+1 − αk+1)/βk+1. After
some algebra, this yields

ρk+1 = ak+1

bk+1
ρk + v

bk+1
, for every k ∈ Z+, (3.2)

from which (1.11) follows. ��
As already observed in Sect. 1.2, there may be no admissible solution to (1.7)

(i.e., V = ∅), or there may be many (i.e., non-uniqueness). For the former case, see
Remark 1.5. In the latter case, as explained in Sect. 1.2, a distinguished role is played by
the minimal solution, associated to speed v0 given at (1.15), defined at Definition 1.8.
We next look in more detail at the set V and the role of v0.

If v ∈ V , with a corresponding admissible solution ρ = α + vβ, we obtain
from (1.11) that, since ρk ∈ [0, 1] for all k ∈ Z+, − infk∈Z+ ak ≤ v ≤ infk∈Z+ bk ,
and so

V ⊆
[
− inf

k∈Z+
ak, inf

k∈Z+
bk

]
. (3.3)

Moreover, the fact that αk, βk ≥ 0 readily yields the following two closure properties
of V:

if v, v′ ∈ V with v < v′, then [v, v′] ⊆ V; (3.4)

if v ∈ V with v > 0, then [0, v] ⊆ V. (3.5)

The following result describes the permissible structures of the set V , identifies explic-
itly the least member v0, defined through (1.15), of (non-empty) V , and gives some
sufficient conditions for V to contain at most one element (necessarily, v0) and for
v0 < 0 or v0 = 0.
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Proposition 3.1 Suppose that (A0) holds. Then there always exists the limit v0 defined
via (1.15). Define

α := lim sup
k→∞

αk ∈ [0,∞], and β := lim sup
k→∞

βk ∈ [0,∞]. (3.6)

Then the following hold; apply conventions 1/∞ := 0 and 1/0 := ∞.

(i) Either V = ∅ (empty); V = {v0} (a singleton); or else there exists v1 with
0 < v1 − v0 ≤ 1/β for which V = [v0, v1] or V = [v0, v1) (an interval).

(ii) The following implications are valid:

α = ∞ �⇒ β = ∞ �⇒ # V ≤ 1. (3.7)

(iii) The following equivalences are valid:

v0 < 0 ⇐⇒
∑
k∈Z+

(ak+1αk)
−1 < ∞ ⇐⇒

∑
k∈N

(bkαk)
−1 < ∞.

(iv) If (A1) holds, then either # V ≤ 1, or else v0 = 0.
(v) If (A1) holds and there exists an admissible ρ with

∑
k∈Z+ ρk < ∞, then v0 =

0 ∈ V and
∑

k∈Z+ αk < ∞.
(vi) If (A2) holds and there exists an admissible ρ with lim infk→∞ ρk = 0, then

v0 = 0 and V = {0}.
Note that Proposition 3.1(iii) combined with Lemma 2.5 verifies the characteriza-

tion of v0 in terms of the customer walk Q given at (1.19) in Remark 1.11.
Before the proof of Proposition 3.1, we give some examples. In the first three, the

ai , bi are bounded so that (A2) holds. We show examples with V = ∅ (Example 3.3),
with V = {v0} for v0 = 0 (Example 3.2) and for v0 < 0 (Example 3.4), and with V an
intervalwith left endpoint v0 (with v0 = 0 inExample 3.3, and v0 < 0 inExample 3.5);
Proposition 3.1(i) shows that there are essentially no other possibilities for the form
of V when (A2) is satisfied.

Example 3.2 (Dog and sheep) Recall the “dog and sheep” example described in Exam-
ple 1.18, where (1.22) is satisfied. Then αk = a/b ∈ (0, 1), βk = k−1

c + 1
b , and the

customer walk Q is null recurrent, by Lemma 2.5.Moreover, α < ∞, β = ∞, v0 = 0,
V = {0}, and the unique admissible solution is ρ = α. 	
Example 3.3 (Homogeneous simple exclusion) Recall Examples 1.2 and 1.17, where
ak ≡ a ∈ (0,∞) and bk ≡ b ∈ (0,∞). Then αk = (a/b)k and, if a �= b, βk =
(1 − (a/b)k)/(b − a), with βk = k/a if a = b.

• If a < b (so α, β < ∞), then the customer walk Q is positive recurrent, and
v0 = 0. Solutions ρk = αk + vβk are admissible for v ∈ V = [0, b − a). The
minimal solution has

∑
k∈Z+ αk < ∞, while the non-minimal solutions have

limk→∞ ρk = v
b−a ∈ (0, 1).
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• If a ≥ b, then Q is either null recurrent or transient, and one can check that
v0 = b − a but the admissibility condition fails (since αk + v0βk ≡ 1), so that
V = ∅.

	
Example 3.4 (One sheep, many dogs) Suppose that a1 = b1 = 1, and ak ≡ a, bk ≡ b

for k ≥ 2, with a > b. Then αk = (a/b)k−1, βk = 1−(a/b)k−1

b−a + (a/b)k−1, from which

it follows that v0 = −( a−b
1+a−b ) and α = β = ∞, so #V ≤ 1. The customer walk Q is

transient. Then ρk = αk + v0βk = 1
1+a−b ∈ (0, 1) for all k ∈ N, so this indeed is the

unique admissible solution. Clearly
∑

k∈Z+ ρk = ∞. The corresponding measure νρ

puts no mass on DF, so for convergence we are in the setting of Theorem 1.14 (and
not Theorem 1.12). Theorems 1.9 and 1.14 show convergence in the neighbourhood
of the leftmost particle, and a strong law with the negative speed v0. 	

Here is a (somewhat pathological) example in which there are can be infinitely
many v ∈ V , of either (or both) signs; necessarily α < ∞, β < ∞, and (A1) is
violated.

Example 3.5 Suppose that ak = ak! and bk = (k + 1)!, k ∈ N, where a ∈ (0,∞).
Then ak/bk = a/(k + 1) and αk = ak/(k + 1)! = ak/bk , and so (e.g. by (3.9) below)
βk/αk = ∑k

j=1 a
− j .

• If a = 1, then βk/αk = k, then v0 = 0 and ρk = αk + vβk = (1 + kv)/(k + 1)!
is admissible if and only if 0 ≤ v < 1, since k/(k + 1)! ≤ 1/2 for k ∈ N.
Thus V = [0, 1) and for every v ∈ V the corresponding ρ = α + vβ satisfies∑

k∈Z+ ρk < ∞. Note that there is no contradiction with Proposition 3.1(vi),
since (A2) fails. The customer walk Q is null recurrent, since bk = ak+1 for all
k ∈ N.

• If a ∈ (0, 1), then βk/αk = a−k−1
1−a , so v0 = 0 and ρk = αk + vβk = 1

(k+1)! (a
k +

v( 1−ak
1−a )) is admissible if and only if 0 ≤ v < 2 − a, i.e., V = [0, 2 − a). Since

ak+1/bk = a < 1, the customer walk Q is positive recurrent.

• If a > 1, then βk/αk = 1−a−k

a−1 , so v0 = 1− a < 0, and solution ρk = αk + vβk =
1

(k+1)! (a
k + v( a

k−1
a−1 )) is admissible if and only if 1 − a ≤ v < 2 − a. Thus

V = [1−a, 2−a). The customer walk Q is now transient. If a ∈ (1, 2), this gives
an example where V contains both positive and negative values.

We do not address here construction of a process with these parameters; one would
need to accommodate explosion of customers as described in Sect. 2.1 andRemark 2.2.

	
Proof of Proposition 3.1 It follows from (3.1) that

βk+1

αk+1
= βk

αk
+ 1

ak+1αk
= βk

αk
+ b1 · · · bk

a1 · · · ak+1
, for all k ∈ Z+. (3.8)

Then, from (A0) and (3.8), we see that βk/αk is strictly increasing, and αk/βk is
strictly decreasing (and non-negative). Thus v0 := − limk→∞ αk/βk exists, and, by
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monotonicity, for all k ∈ N, it holds that 0 ≤ |v0| < αk/βk ≤ α1/β1 = a1. Hence
v0 ∈ (−a1, 0], as claimed, and, moreover, αk + v0βk > 0 for all k ∈ Z+.

A consequence of (3.8) and the fact that β0/α0 = 0 is that

βk

αk
=

k−1∑
�=0

[
β�+1

α�+1
− β�

α�

]
=

k−1∑
�=0

1

a�+1α�

=
k−1∑
�=0

1

b�+1α�+1
. (3.9)

Hence the following quantities in [0,+∞] exist (as monotone limits) and are equal:

lim
k→∞

βk

αk
=

∑
k∈Z+

1

ak+1αk
=

∑
k∈Z+

1

bk+1αk+1
.

By (1.15), v0 = 0 if and only if the preceding display is infinite. This proves (iii).
Suppose that v ∈ V with v > v0. Then αk + v0βk < αk + vβk < 1 for all k ∈ Z+,

since v ∈ V , and so

if v ∈ V with v > v0, then v0 ∈ V. (3.10)

Define v� := inf V , which, by (3.5) satisfies v� ≤ 0 when V �= ∅. Suppose that V �= ∅;
we will show that v� = v0. Let ρ = α+vβ, v ∈ V , be any admissible solution to (1.7);
then αk + vβk > 0 for all k ∈ Z+, i.e., αk/βk > −v for all k ∈ Z+. In particular,
−v0 = lim infk→∞(αk/βk) ≥ −v for every v ∈ V , and hence v0 ≤ v�. Moreover,
by definition of v�, there exists v > v� ≥ v0 with v ∈ V , and hence from (3.10) we
conclude that v0 ∈ V . Thus v� ≤ v0, and so in fact v0 = v�. We have thus established
that

if and only if V �= ∅, it holds that v0 = inf V and v0 ∈ V. (3.11)

Suppose that v0 ∈ V , and v > v0. Then v ∈ V if and only if v < (1 − αk)/βk . Let

v2 := inf
k∈N

1 − αk

βk
≤ lim inf

k→∞
1

βk
− lim

k→∞
αk

βk
= v0 + (

1/β
)
,

where β is given at (3.6). If β = ∞, then v2 = v0 and so V ⊆ {v0}. Moreover, since
a1βk > αk for all k ∈ Z+, it is immediate that β is infinite whenever α is infinite. This
verifies the sequence of implications in (ii). In addition, by (3.4) and (3.11), either
V = ∅, V = {v0}, or V is an interval closed at least at the left endpoint (v0) and with
right endpoint v1 with v0 < v1 ≤ v0 + (1/β); this proves part (i).

We next prove part (iv). To do so, note that there exists k0 ∈ N such that αk ≤ 2α
for all k ≥ k0, and so

∑
k∈Z+(ak+1αk)

−1 ≥ (2α)−1 ∑
k≥k0 a

−1
k+1 whenever α < ∞.

From part (iii) (proved earlier) we then observe that

if (A1) holds, then either v0 = 0 or α = ∞. (3.12)

Combining (3.12) with part (ii), we obtain part (iv).
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Next, suppose there exists an admissible solution ρ = α + vβ for which∑
k∈Z+ ρk < ∞. If ρ is admissible, it follows from (1.11) and the fact that ρk > 0 for

all k, that

− ak+1ρk < v < bkρk, for every k ∈ Z+. (3.13)

Since v0 ∈ V and v0 ≤ 0, we have from (3.13) that ak+1ρk > |v0|. If v0 < 0, this
means that

∑
k∈Z+ ρk < ∞ implies

∑
k∈Z+(1/ak) < ∞, which contradicts (A1).

Thus v0 = 0. Hence for v ∈ V , we have v ≥ 0 and 0 < αk = ρk −vβk ≤ ρk , meaning
that

∑
k∈Z+ ρk < ∞ implies that

∑
k∈Z+ αk < ∞ as well. This establishes part (v).

Finally, suppose that (A2) holds and there exists an admissible solution ρ = α + vβ

for which lim infk→∞ ρk = 0. Then it follows from (3.13) that v = 0 for every v ∈ V .
��

Finally, we give the proof of Proposition 1.7.

Proof of Proposition 1.7 Existence of v0 given by (1.15) is established in Proposi-
tion 3.1, as is the fact that whenever V �= ∅, it holds that inf V = v0 ∈ V . Moreover,
from (3.8) and (A0) we have that αk/βk is strictly decreasing, so that 0 < αk + v0βk

for all k ∈ Z+ holds automatically. Thus v0 ∈ V if and only if αk + v0βk < 1 for all
k, i.e., v0 < (1 − αk)/βk for all k, which, by (1.9) and (1.10), is equivalent to (1.16).

��

4 Invariant measures, domination, and convergence

4.1 Invariant measures and finitely-supported convergence

Recall the definition of the product-geometric measure νρ onD = Z
N+ from (1.13), and

that, by Proposition 1.6, the νρ , for admissible ρ, serve as stationary measures. The
main subject of this section is to demonstrate that, under appropriate conditions, there
is convergence to the νρ associated with the minimal admissible ρ; we give proofs of
Theorems 1.12 (in this section) and 1.14 (in Sect. 4.4 below).

Recall the definition of DF from (2.6). For an admissible ρ, we say that the
corresponding measure νρ defined by (1.13) is supported on finite configurations
if νρ(DF) = 1. The next lemma gives a simple dichotomy based on the following
condition:

∑
k∈Z+

ρk < ∞. (4.1)

Write Eνρ for expectation corresponding to the probability measure νρ .

Lemma 4.1 Suppose that ρ is admissible. If (4.1) holds, then Eνρ

∑
k∈N ηk < ∞, and

hence νρ(DF) = 1; otherwise it holds that νρ(DF) = 0.
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Proof The distribution Geom0 (q) has mean 1−q
q (recall it lives on Z+), so the

component Geom0 (1 − ρk) of νρ given by (1.13) has mean ρk
1−ρk

. Thus

Eνρ

∑
k∈N

ηk =
∑
k∈N

ρk

1 − ρk
. (4.2)

Note that (4.1) implies limk→∞ ρk = 0. If ρ is admissible, so that ρk ∈ (0, 1) for all
k ∈ N, then

∑
k∈N

ρk
1−ρk

< ∞ if and only if (4.1) holds, and so (4.2) yields the first
half of the statement in the lemma. Moreover, νρ{η ∈ D : ηk ≥ 1} = ρk , and, under
νρ , the ηk are independent; the Borel–Cantelli lemma then verifies the second half of
the statement. ��

Define

VF :=
{
v ∈ V :

∑
k∈Z+

(αk + vβk) < ∞
}
. (4.3)

In view of Lemma 4.1, the ρ = α + vβ with v ∈ VF are the admissible solu-
tions corresponding to finitely supported measures. The following observations are
straightforward.

Lemma 4.2 Suppose that (A0) holds. Exactly one of the following holds.

(i)
∑

k∈Z+ αk < ∞ and
∑

k∈Z+ βk < ∞, and VF = V .
(ii)

∑
k∈Z+ αk < ∞ and

∑
k∈Z+ βk = ∞, and VF = V ∩ {0}.

(iii)
∑

k∈Z+ αk = ∑
k∈Z+ βk = ∞, and either VF = ∅, or VF = {v} for some v0 ≤

v < 0.

Moreover, if (A1) also holds, then
∑

k∈Z+ αk < ∞ implies #VF ≤ 1, while∑
k∈Z+ αk = ∞ implies VF = ∅.

Proof First note that, since βk ≥ αk/a1, if
∑

k∈Z+ αk = ∞ then
∑

k∈Z+ βk = ∞ as
well. Recalling that 0 ≥ v0 = inf V , it is elementary to establish (i)–(iii).

Suppose, additionally, that (A1) holds. Then Proposition 3.1(v) shows that in
case (iii), it must be the case that VF = ∅. On the other hand, if ∑

k∈Z+ αk < ∞ then
να is an invariant measure for the irreducible, countable Markov chain η on DF, and
hence η is positive recurrent and the invariant measure is unique, by e.g. Theorem 3.5.3
of [33, p. 118]. ��

If (A2) holds, then Proposition 3.1(vi) says that VF = V = {0} whenever VF is
non-empty. We can now complete the proofs of Theorem 1.12 and Corollary 1.13.

Proof of Theorem 1.12 Suppose that (A0) and (A1) hold, that
∑

k∈Z+ αk < ∞, and
X(0) ∈ XF. By Proposition 1.1, the process η is an irreducible Markov chain on the
countable state spaceDF, and, byLemma4.2, the (minimal) admissible solutionρ = α

corresponds to a unique invariant probability measure να for η. Hence η is positive
recurrent and irreducible, and convergence follows from the convergence theorem for
continuous-time, countable state-space Markov chains (e.g. Theorem 3.6.2 of [33,
p. 122]). ��
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Proof of Corollary 1.13 Under the hypotheses of Corollary 1.13, we have that X(t) ∈
XF for all t ∈ R+, and so, by (2.5), we have that X1(t) − X1(0) = −∑

k∈N(ηk(t) −
ηk(0)). Since η is a positive-recurrent Markov chain and the unique invariant measure
νρ is such that νρ(DF) = 1, the ergodic theorem for countable Markov chains in
continuous time (e.g. Theorem 3.8.1 of [33, p. 126]) completes the proof. ��

4.2 Stochastic domination and second-class customers

We now turn towards the situation where the minimal admissible solution ρ has∑
k∈Z+ ρk = ∞, so that, although the process may start from η(0) ∈ DF, Lemma 4.1

shows that the candidate measure νρ for convergence is supported on D \ DF, and so
Theorem 1.12 (based on convergence of countable Markov chains) is not applicable.
Herewe need some additional arguments, involving some stochasticmonotonicity, and
the concept of second-class customers, whichwill be used in the proof of Theorem1.14
and elsewhere.

Write P(D) for the set of probability measures on D. Recall the definition of νρ ∈
P(D) from (1.13). Let

PV (D) := {νρ : ρ = α + vβ, v ∈ V},

the set of product-geometric stationary measures on D corresponding to V . In this
section we assume hypothesis (A2); recall that under this condition, we have (see
Proposition 1.6) constructed the process η to start from an arbitrary initial state η(0) ∈
D. For two probability measures ν, ν′ on D, we write ν � ν′ (equivalently, ν′ � ν) to
mean that ν is stochastically dominated by ν′, i.e., νk[r ,∞) ≤ ν′

k[r ,∞) for all k ∈ N

and all r ∈ Z+.

Proposition 4.3 (Stochastic monotonicity) Suppose that (A2) holds. Let ν1, ν2 ∈
P(D), and suppose that ν1 � ν2. Then the law of the process η started from η(0) ∼ ν1
is stochastically dominated by the law of the process η started from η(0) ∼ ν2.

The preceding proposition togetherwith Proposition 1.6 (invariantmeasures) yields
the following immediate corollary.

Corollary 4.4 Suppose that (A2) holds, that νρ ∈ PV (D), and that η(0) ∼ ν ∈ P(D).

• If ν � νρ , then the law of the process η started from η(0) ∼ ν is stochastically
dominated by the law of the (stationary) process η started from η(0) ∼ νρ .

• If ν � νρ , then the law of the process η started from η(0) ∼ ν stochastically
dominates the law of the (stationary) process η started from η(0) ∼ νρ .

The proof of Proposition 4.3 uses a coupling construction, generally referred to as
the basic coupling, which was observed early on in the theory of interacting particle
systems; in the zero-range context, the idea can be found already in [2, §2].

The version of the coupling construction we use here is most naturally framed in
the queueing framework, through the concept of second-class customers. We divide
the customers into two classes, the first and the second; when queueing, the first-
class customers always have priority over the second-class ones (i.e., no second-class
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customer can be served as long as there are first-class customers in the queue). The
(exogeneous) customers that enter the system at positive times are always first-class.

Proof of Proposition 4.3 Suppose that ν1 � ν2. Then we construct on a suitable proba-
bility space a random element (η(0), η′(0)) ∈ D×D such that η(0) ∼ ν1, η′(0) ∼ ν2,
and η(0) ≤ η′(0) pointwise, i.e., ηk(0) ≤ η′

k(0) for all k ∈ N. Declare all of the
(endogenous) customers in η(0) first class, and all of those in η′(0) − η(0) second
class. Let η be the process that tracks first-class customers only, and η′ the process that
tracks both classes of customers. The dynamics of first-class customers is oblivious
to the second-class customers, and the η system only has first-class customers, so η

is an honest copy of the process started from η(0). On the other hand, ignoring cus-
tomer classes, η′ is an honest copy of the process started from η′(0). By construction,
η(t) ≤ η′(t) for all t ∈ R+. ��

4.3 Comparison with finite systems

We use a truncation idea to couple the semi-infinite particle system ξ with large finite
systems of the kind studied in [31]. First, for convenience, we collect the results from
[31] that we need here. The finite system of N + 1 particles (hence N queues) has
parameters a1, b1, . . . , aN+1, bN+1, having the same meaning as in Sect. 1.1, so that
particle k (1 ≤ k ≤ N+1) performs a nearest neighbour randomwalk, rateak to the left
and bk to the right, subject to the exclusion rule. The Jackson network correspondence
is similar to the described in Sect. 2.1 (see [31, §3]), but now customers may also
enter or depart the system from queue N (at rates bN+1 and aN+1, respectively). We
denote by XN ,k(t) the location of particle k at time t , and by ηN ,k(t) := XN ,k+1(t) −
XN ,k(t) − 1 the occupancy of queue k.

Recall the definitions of αk and βk from (1.9) and (1.10). The following result
summarizes the relevant results from [31], giving finite-N analogues of the strong law
(Theorem 1.9) and convergence result (Theorem 1.12).

Proposition 4.5 (Finite stable systems; Corollary 2.6 in [31]) Let N ∈ N and suppose
that ak ∈ (0,∞), bk ∈ R+ for 1 ≤ k ≤ N+1. For 1 ≤ k ≤ N, set ρN ,k := αk+vNβk ,
and

vN := 1 − αN+1

βN+1
= b1 · · · bN+1 − a1 · · · aN+1

b1 · · · bN + b1 · · · bN−1aN+1 + · · · + a2 · · · aN+1
. (4.4)

Then if ρN ,k < 1 for all 1 ≤ k ≤ N, for every 1 ≤ k ≤ N + 1, we have

lim
t→∞

XN ,k(t)

t
= vN , a.s.,

and ηN (t) converges in distribution as t → ∞ to
⊗

1≤k≤N Geom0
(
1 − ρN ,k

)
.

Since αk/βk is strictly decreasing (see (3.8)), vN defined by (4.4) satisfies vN >
1

βN+1
− αk

βk
for 1 ≤ k ≤ N , and hence ρN ,k > βk/βN+1 for all 1 ≤ k ≤ N ; in

particular, ρN ,k > 0 always. The following example, from [31], is the finite-particle
analogue of Example 1.18.
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Example 4.6 (1 dog and N sheep) Assume that a1 = a ∈ (0, 1), and b1 = a2 = b2 =
· · · = bN+1 = 1.We know from Example 2.15 of [31] that ρk = a+(1−a) k

N+1 < 1,

for k = 1, . . . , N , and the speed of the cloud is vN = 1−a
N+1 . 	

Here is our comparison result.

Proposition 4.7 Suppose that (A1) holds.

(i) Consider the finite particle system ξ N ,0(t) with parameters a1, b1,
. . . , aN , bN , aN+1 but with bN+1 set to 0. There exists a coupling of ξ N ,0(t)
and ξ with ξ N ,0(0) = ξ(0) ∈ Z × DF such that, for all k ∈ {1, 2, . . . , N } and all
t ∈ R+,

η
N ,0
k (t) ≤ ηk(t), and XN ,0

k (t) ≤ Xk(t).

(ii) Consider the finite particle system ξ N ,1(t) with parameters
a1, b1, . . . , aN+1, bN+1. There exists a coupling of ξ N ,1(t) and ξ with ξ N ,1(0) =
ξ(0) ∈ Z × DF such that, for all k ∈ {1, 2, . . . , N } and all t ∈ R+,

η
N ,1
k (t) ≥ ηk(t), and XN ,1

k (t) ≥ Xk(t).

Proof In both cases, we will start the construction by building the underlying Jack-
son networks. Recall that in the construction of the semi-infinite Jackson system, as
described in Sect. 2.1, we considered the counting processes E→1(t) and E←1(t),
the number of customers that enter and depart, respectively, the system during (0, t].
Recall from (2.4) that X1(t) = X1(0) + E←1(t) − E→1(t), for all t ∈ R+.

Fix N ∈ N. Let ηN ,0 denote the finite system of N queues with parameters
a1, b1, . . . , aN , bN , aN+1 ∈ (0,∞) exactly as in the semi-infinite system η, but with
bN+1 set to 0; that is, queue N + 1 never routes customers to queue N . Then ηN ,0

evolves as an autonomousfinite open Jacksonnetwork,with customer entry via queue 1
and exit via queues 1 and N . The natural coupling of ηN ,0 and η demonstrates that
ηN ,0 � η, since customers in ηN ,0 that depart queue N never return, while those in η

may at some point come back.We use the same process of exogenous customer arrivals
as in the semi-infinite system, E→1(t), the number of distinct exogenous customers
that enter via queue 1 during (0, t]. Also introduce notation:
• E←1

N ,0(t), the number of customers that depart the system via queue 1 before
reaching queue N + 1 during (0, t].

• EN→
N ,0 (t), the number of distinct customers that, during (0, t], complete at least

one service at queue N and are routed to queue N + 1.

The coupling is such that E←1
N ,0(t) ≤ E←1(t), since customers that leave the (finite)

system via queue N are lost before they can exit via queue 1. In the particle system,
particle N + 1 never jumps to the right, and holes can exit the system on the right but
never return. Since the leftmost particle only moves on flux through the left boundary
of the system,

XN ,0
1 (t) = X1(0) + E←1

N ,0(t) − E→1(t) ≤ X1(t), for all t ∈ R+,
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The gives a coupling of ξ(t) with the finite particle system ξ N ,0(t) with parameters
a1, b1, . . . , aN , bN , aN+1 ∈ (0,∞) but with bN+1 set to 0, and verifies part (i).

Let ηN ,1 denote the finite system of N queues with parameters
a1, b1, . . . , aN+1, bN+1 ∈ (0,∞). Then ηN ,1 evolves as an autonomous finite open
Jackson network, with customer entry and exit via queues 1 and N . The natural cou-
pling of ηN ,1 and η demonstrates that ηN ,1 � η, since in ηN ,1 exogenous customers
enter queue N at rate bN+1, while in η this entry stream is thinned. The “extra”
customers that arrive in ηN ,1 via queue N we view as second-class customers in the
infinite system, and then ignoring all second-class customers recovers η. Furthermore,
introduce notation:

• E←1
N ,1(t), the number of customers that depart via queue 1 before reaching queue

N +1 during (0, t], plus the number of second-class customers that enter from the
right and depart from the left during (0, t].

Now the coupling is such that E←1
N ,1(t) ≥ E←1(t), and hence

XN ,1
1 (t) = X1(0) + E←1

N ,1(t) − E→1(t) ≥ X1(t), for all t ∈ R+,

The gives a coupling of ξ(t) with the finite particle system ξ N ,1(t) with parameters
a1, b1, . . . , aN , bN , aN+1, bN+1 ∈ (0,∞), and verifies part (ii). ��

4.4 Proof of local convergence

Proof of Theorem 1.14 We use the truncation constructions described in Proposi-
tion 4.7. Take A ⊂ N finite, and choose N > sup A. Proposition 4.7(i) gives existence
of the finite system ηN ,0 for which ηN ,0 � η. We will apply Proposition 4.5 to ηN ,0;
to do so, write ρN ,k = αk +vN ,0βk , where vN ,0 is given by the formula for vN at (4.4)
but with bN+1 set to zero, i.e., vN ,0 = −αN+1/βN+1. Then, by (1.15) and the fact
that αk/βk is strictly decreasing (see (3.8)) it follows that

vN ,0 ≤ lim
N→∞ vN ,0 = v0, and ρN ,k ≤ lim

N→∞ ρN ,k = αk + v0βk = ρk, (4.5)

where ρ is the minimal admissible solution. Note that, since ρ is admissible, we get
from (4.5) that ρN ,k < 1 for all N and all 1 ≤ k ≤ N . Thus Proposition 4.5 is
applicable; it yields

lim
t→∞ P

( ⋂
k∈A

{
η
N ,0
k (t) ≥ mk

}) =
∏
k∈A

ρ
mk
N ,k, for m = (mk)k∈A ∈ Z

A+. (4.6)

Then, from (4.6), the fact that ηN ,0 � η, and taking N → ∞ and using (4.5), we
obtain

lim inf
t→∞ P

( ⋂
k∈A

{
ηk(t) ≥ mk

}) ≥ lim
N→∞

∏
k∈A

ρ
mk
N ,k =

∏
k∈A

ρ
mk
k . (4.7)

123



Semi-infinite particle systems with exclusion interaction…

On the other hand, started from η(0) = 0 ∈ DF, Corollary 4.4 implies that η(t) � νρ

for all t , so that, in particular,

P

( ⋂
k∈A

{
ηk(t) ≥ mk

}) ≤
∏
k∈A

ρ
mk
k . (4.8)

In the following, we use the notation Pζ for the process started from a fixed con-
figuration η(0) = ζ ∈ D and Pν for the process started from η(0) ∼ ν for some
measure ν ∈ P(D). First, the combination of (4.7) and (4.8) establishes that

lim
t→∞ P0

( ⋂
k∈A

{
ηk(t) ≥ mk

}) =
∏
k∈A

ρ
mk
k . (4.9)

If ν � νρ , we can write, using Proposition 4.3,

P0

( ⋂
k∈A

{
ηk(t) ≥ mk

}) ≤ Pν

( ⋂
k∈A

{
ηk(t) ≥ mk

})

≤ Pνρ

( ⋂
k∈A

{
ηk(t) ≥ mk

}) =
∏
k∈A

ρ
mk
k ,

which, together with (4.9), implies the claim for the process starting from ν.
Now, let η∗ = η(0) ∈ DF be a fixed finite initial configuration, and let ζ be a

random (initial) configuration chosen according to νρ . Abbreviate u := ∏
k∈A ρ

mk
k

and p := Pνρ (ζ ≥ η∗) > 0, where the inequality ζ ≥ η∗ means ζk ≥ η∗
k for every

k ∈ N. Fix an arbitrary ε ∈ (0, u). By (4.9), there exists t0 ∈ R+ large enough so that

P0

( ⋂
k∈A

{
ηk(t) ≥ mk

}) ≥ u − ε, for all t ≥ t0.

Then, we can write

u = Eνρ Pζ

( ⋂
k∈A

{
ηk(t) ≥ mk

})

= Eνρ

((
1{ζ ≥ η∗} + 1{ζ � η∗})Pζ

( ⋂
k∈A

{
ηk(t) ≥ mk

}))

≥ p · Pη∗
( ⋂

k∈A

{
ηk(t) ≥ mk

}) + (1 − p)(u − ε),

by two further applications of Proposition 4.3, once comparing ζ with η∗ and once ζ

with 0. It follows that

Pη∗
( ⋂

k∈A

{
ηk(t) ≥ mk

}) ≤ u − (1 − p)(u − ε)

p
= u + 1 − p

p
ε. (4.10)
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Moreover, another application of Proposition 4.3, comparing η∗ with 0, shows that

Pη∗
( ⋂

k∈A

{
ηk(t) ≥ mk

}) ≥ u − ε. (4.11)

Combining (4.10) and (4.11), since ε was arbitrary, concludes the proof of Theo-
rem 1.14. ��
Proof of Corollary 1.16 Recall from (2.5) that X1(0)− X1(t) = ∑

k∈N(ηk(t)−ηk(0)),
where

∑
k∈N ηk(0) < ∞ since X(0) ∈ XF. Under the hypothesis

∑
k∈N αk = ∞,

Lemma 4.1 shows that να(DF) = 0. Then for every M ∈ R+ (large) and every ε > 0
(small), one can find a finite set AM,ε ⊂ N such that

νρ

{
η ∈ D :

∑
k∈AM,ε

ηk > M

}
> 1 − ε

2
.

Then, Theorem 1.14 implies that, for all large enough t ,

P

[ ∑
k∈Z+

ηk(t) > M

]
≥ P

[ ∑
k∈AM,ε

ηk(t) > M

]
> 1 − ε,

which shows the claim. ��

5 Asymptotics of the leftmost particle

5.1 Strong law of large numbers

In the section we consider the asymptotics of X1(t), the location of the leftmost
particle. We start with a result that contains the strong law given in Theorem 1.9
above. Recall the customer random walk Q from Definition 2.4. The main result is
that, when V �= ∅ and X(0) ∈ XF, the limit limt→∞ t−1X1(t) exists and is equal to
v0, the speed associated with the minimal admissible solution. Recall that v0 ≤ 0; if
v0 < 0 we say the dynamics is ballistic.

Theorem 5.1 Suppose that (A0) and (A1) hold, that V �= ∅, and X(0) ∈ XF.

(i) If v0 = 0, then, for every k ∈ N,

lim
t→∞

Xk(t)

t
= 0, a.s. (5.1)

(ii) If v0 < 0 and β = ∞, then, for every k ∈ N,

lim
t→∞

Xk(t)

t
= v0, a.s. (5.2)
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(iii) Suppose that Q is positive recurrent, and that infk∈N ak > 0. Then X1 is ergodic,
meaning that (1.21) holds.

Remark 5.2 The assumptions that V �= ∅ and X(0) ∈ XF cannot be removed, since
they ensure the coherence of the cloud of particles and that it is the speed of the
minimal admissible solution that governs the asymptotics. Indeed, it is easy to find
examples where V = ∅ and the leftmost particle separates from the bulk of the cloud,
when it will travel at its intrinsic speed a1 − b1, regardless of the value of v0.

As explained before the statement of Theorem 1.9, under assumption (A1), there is
only one accessible admissible solution started from X(0) ∈ XF. If X(0) ∈ X \ XF,
however, there may be many admissible solutions (with v > 0) that are in principle
accessible; cf. Proposition 1.6. Our conjecture is that, under mild conditions, if Q is
transient or null recurrent, one still observes the speed v0 for the leftmost particle,
while if Q is positive recurrent, which speed v is “selected” by the dynamics will
depend on the density of the initial configuration (see Sect. 1.3 for relevant literature).
Since we are primarily interested in initial conditions in XF, we do not examine these
cases in the present paper.

Proof of Theorem 5.1 We again use the truncation constructions described in Propo-
sition 4.7. Consider the finite particle system ξ N ,0(t) with parameters a1, b1,
. . . , aN , bN , aN+1 but with bN+1 set to 0. Proposition 4.7(i) furnishes a coupling
of ξ N ,0(t) and ξ such that, for all k ∈ {1, 2, . . . , N } and all t ∈ R+, XN ,0

k (t) ≤ Xk(t).
As in the proof of Theorem1.14, an application of Proposition 4.5 to the system ξ N ,0(t)
shows that limt→∞ t−1XN ,0

k (t) = vN ,0, a.s., for every k,wherevN ,0 = −αN+1/βN+1.
Then, since limN→∞ vN ,0 = v0,

lim inf
t→∞

Xk(t)

t
≥ lim

N→∞ vN ,0 = v0, a.s.

If v0 = 0, then this completes the proof of part (i), since for X(0) ∈ XF we have
lim supt→∞ t−1Xk(t) ≤ 0, a.s.

Suppose, on the other hand, that v0 < 0. Consider the finite particle system ξ N ,1(t)
with parameters a1, b1, . . . , aN+1, bN+1. Proposition 4.7(ii) furnishes a coupling of
ξ N ,1(t) and ξ such that, for all k ∈ {1, 2, . . . , N } and all t ∈ R+, XN ,1

k (t) ≥ Xk(t).
Another application of Proposition 4.5 shows that

lim
t→∞

XN ,1
k (t)

t
= 1 − αN+1

βN+1
= 1

βN+1
+ vN ,0, a.s.

Under the assumption that β = ∞, we can take N → ∞ (along a suitable
subsequence) to conclude that

lim sup
t→∞

Xk(t)

t
≤ v0,

which completes the proof of part (ii).
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Finally, for part (iii), recall from Lemma 2.5 that Q is positive recurrent if and
only if

∑
k∈N ak+1αk < ∞. Consequently, under the condition infk∈N ak > 0, if Q is

positive recurrent then
∑

k∈N αk < ∞. If V �= ∅, then v0 ∈ V , but v0 = 0 by (1.19);
hence 0 ∈ V , meaning that α is admissible. We may thus apply Corollary 1.13 to
obtain the result. ��

5.2 Dog and sheep example

The aim of this section is to prove Theorem 1.19 on the asymptotics of the “dog”
particle in the “dog and sheep” process described in Example 1.18. Recall that there
is a dog (a particle with intrinsic drift to the right) and, placed to its right, countably
many sheep (particles with zero intrinsic drift), in such a way that the total number of
unoccupied sites to the right of the dog is finite, i.e., X(0) ∈ XF. For Theorem 1.19,
it is convenient to assume that the dog jumps to the left with rate a < 1 and attempts
to jump to the right with rate 1, and that the sheep attempt to jump either direction at
rate 1, i.e., b = c = 1 in the notation at (1.22); this restriction should not be essential.

Proof of Theorem 1.19 For the sake of clarity, we give the proof for initial con-
figurations X(0) = (X1(0), 0), X1(0) ∈ Z, that are translates of the Heaviside
configuration xH, so that η(0) is the all-zero initial configuration; the general case
is completely analogous.

Let us prove the first inequality in (1.23). If we start from the all-zero initial
configuration, it follows from (2.4) that

− X1(t) = η1(t) + η2(t) + · · · , (5.3)

that is, in the terms of Jackson networks, the (negative) displacement of the dog
equals the total number of customers in the system. Now, recall the customer random
walk introduced in Sect. 2.3: with the assumption (1.22) and b = c = 1, the transition
probabilities given at (2.3) are Pi,i−1 = Pi,i+1 = 1/2 for every i ∈ N, so the customer
random walk Q is simple symmetric random walk on Z+ with absorption at 0. Hence,
by Proposition 2.3, each customer performs a simple random walk (until leaving the
system, i.e., when absorbed at 0), time-changed by the waiting times at each queue,
and the corresponding skeleton walks are independent.

With high probability, by time t at least order t customers will enter the system and
make it to the second queue. More specifically, denote that number by Nt ; then, for
small enough u > 0, a Poisson large-deviation estimate gives us P(Nt ≥ ut) ≥ 1 −
e−ct for some positive c. Then (recall Proposition 2.3(ii)), consider the corresponding
independent random walks with rate-2 exponential holding times, and notice that if
by some time t1 that randomwalk did not reach the first queue, then that customer also
did not do that (this is because for actual customers the waiting times dominate rate-2
exponential random variables). Now, a standard argument shows that, for each such
walk, the probability that it does not reach the first queue (starting from the second one)
by time t +1 is at least v√

t
for small enough v (indeed, it reaches

√
t before reaching 1

with probability of order 1√
t
, and, starting at

√
t , with a constant probability it does
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not reach 1 in time t + 1). Then (given that Nt ≥ ut) an application of the Chernoff
bound for the binomial distribution shows that, by time t + 1 with probability at least
1 − e−c′√t , there will be at least uv

2

√
t such walks which never reached 1. Therefore,

at all moments in the time interval [t, t +1]with probability at least 1−e−ct −e−c′√t ,
there will be at least uv

2

√
t customers in the system. By (5.3) and Borel–Cantelli, this

implies the first inequality in (1.23).
Toprove the second inequality in (1.23), one can reasonusing a conditional coupling

such as in [9, §4.2], as follows. Proposition 4.3 implies that the configuration η(t) is
stochastically dominated by the stationary configuration,which is described by an i.i.d.
sequence of geometric random variables with expectation 1−a

a (see Example 1.18). It
is then straightforward to obtain for any fixed γ > 1−a

a that, for any t (note that the
number of extra customers that can come to {1, . . . , k} during the time interval [t, t+1]
is dominated by a Poisson random variable with a constant rate),

P
(
η1(s) + · · · + ηk(s) ≤ γ k for all s ∈ [t, t + 1]) ≥ 1 − e−ck, (5.4)

with some c = c(a, γ ) > 0.
Now, fix some γ > 1−a

a ; Borel–Cantelli and (5.4) then implies that, a.s., there is a
(random) t0 ∈ R+ such that, for all t ≥ t0,

η1(t) + · · · + η�t (1+δ)/2�(t) ≤ γ t (1+δ)/2 < t
1
2+δ.

But then, if (recall (5.3)) −X1(t) ≥ t
1
2+δ for some t ≥ t0, we would necessarily

have that there exists k > t (1+δ)/2 such that ηk(t) > 0. This would mean that, in the
corresponding Jackson network there is a customer who “went too far” (recall that we
assumed that initially there were no customers at all). However, it is straightforward
to obtain from Proposition 2.3(ii) together with a large deviation bound for simple
symmetric random walk that, with probability at least 1 − te−ctδ no customer that

entered before time t could go further than t
1
2+ δ

2 by time t . Again by Borel–Cantelli,

we obtain that, for all large enough t , ηk(t) = 0 for all k ≥ t
1
2+ δ

2 . By the above
observation, this concludes the proof. ��
Remark 5.3 The same proof would work for the case when there are several dogs.
Indeed, in that case the customer random walk Q is not simple symmetric random
walk, but a perturbation obtained by modifying the transition probabilities in a finite
neighbourhood of 0, and this has no impact on the estimates needed above.
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