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Abstract
Characterising code quality is a challenge that was addressed by a
previous ITiCSE Working Group (Börstler et al., 2017). As emerged
from that study, educators, developers, and students have differ-
ent perceptions of the aspects involved. The perception of code
quality by CS1 students develops from the feedback they receive
when submitting practical work. As a consequence of increasingly
large classes and the widespread use of autograders, student code
is predominantly assessed based on functional correctness, empha-
sising a machine-oriented perspective with scarce or no feedback
given about human-oriented aspects of code quality. Such limited
perception of code quality may negatively impact how students un-
derstand, create, and interact with code artefacts. Although Börstler
et al. concluded that “code quality should be discussed more thor-
oughly in educational programs”, the lack of materials and time
constraints have slowed down progress in that regard.

The goal of this Working Group is to support CS1 instructors
whowant to introduce a broader perspective on code quality in their
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classroom, by providing a curated list of examples and activities
suitable for novices. In order to achieve this goal, we have extracted
from the CS education literature a range of examples and activities,
which have then been analysed and organised in terms of code
quality dimensions. We have also mapped the topics covered in
those materials to existing taxonomies relevant to code quality in
CS1. Based on this work, we provide: (1) a catalogue of examples
that illustrates the range of quality defects that could be addressed
at CS1 level; and (2) a sample set of activities devised to introduce
code quality to CS1 students. These materials have the potential to
help educators address the subject in more depth.
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1 Introduction
Education research regarding novice programmers has documented
the difficulties that students experience when writing functional
code and the misconceptions that cause incorrect code [4, 76, 150].
However, as pointed out by Gaber and Kirsh, “[a]lthough students
are aware of many of their bugs and missing features, they are
not sufficiently aware of the quality of their code” [52, p. 79]. Fur-
thermore, the code quality of examples reported in textbooks has
been criticised [23, 48]1, as well as several quality defects, have
been found in pre-defined templates of a widespread educational
platform [16].

In addition to correctness, robustness and efficiency, good code is
easy to read, test and maintain. While correctness and performance
can be established objectively, grading the overall quality of small
programs is subjective [78]. Each individual may perceive code
quality differently; for example, unlike experienced programmers,
novices often find verbose code to be more readable [159]. Addi-
tionally, different groups will weight the quality criteria differently
[21, 24] so that even when their perceptions of each criteria match,
their overall quality assessment might differ.

Keuning et al. have recently conducted a systematic mapping
study on code quality in education at all levels. They observe “much
of the program quality research appeared in the last decade” [85, p.
10]. The authors conclude that “a possible direction for future work
is to conduct a more in-depth literature study of” more specific
topics, and “encourage researchers to perform studies on the topics
that have received little attention so far, such as integrating code
quality into the computing curricula, developing and evaluating
course materials” [85, p. 10]. An analysis of 2020 CS1 course syllabi
found that only 41 of 141 CS1 mentioned the term code quality [87].
Similarly, Börstler et al. observed that “students [...] get less in-
formation regarding code quality from their education than from
other students or the Internet. [...] Giving students more exposure
to issues regarding code quality as part of their education [...] could
solve some of these issues” [24, p. 82].

In short, we should aspire to teach undergraduate students how
to write code that, in addition to being correct and possibly efficient,
exhibits good quality. For the purpose of this study, code quality
is restricted to static properties “that can be determined by just
looking at the source code, i.e., without any form of testing, or
checking against specification” [139, p. 99].

This work offers a comprehensive reference for the instructor,
aiming to introduce an early, yet multifaceted perspective on code
quality to novice programmers. More specifically, we provide:
(i) A “catalogue” of examples that illustrate the range of quality

issues affecting the typical code developed by CS1 students;
(ii) A sample set of instructional activities that is viable for CS1.

To achieve the above objectives, we have analysed examples and ac-
tivities from the literature that have the potential to help educators.

1“The object-oriented quality of many examples is not as high as one would expect to
find in an introductory programming text” [23, p. 3:18]. “We found that a surprising
number of resources contains at least some design smell” [48, p. 507].

Moreover, we have organised the identified materials according
to code quality dimensions and mapped the topics to existing tax-
onomies relevant to code quality in CS1. For a better appreciation
of the approach to code quality taken in this study, the general
perspective of the working group is outlined in subsection 2.2 and
in subsection 2.4.

The paper is organised as follows. Section 2 outlines the back-
ground and our perspective on code quality in the CS1 context.
In section 3, we summarise the method to review the relevant
literature, to extract, select and categorise significant examples
and activities, and to establish insightful connections with related
taxonomies of code quality topics. The results are presented in
sections 4–6 and discussed from different perspectives in section 7,
where we also derive some instructional implications. Finally, we
conclude by summarising the major contributions of this study and
envisaging future developments.

To complete the work, a large sample of the catalogue of exam-
ples and short descriptions of selected activities on code quality are
made available as appendices via an online resource [70].

2 Background
To discuss the scope of our work, this section will briefly introduce
code quality as characterised by key contributions from the edu-
cational field. Note subsection 3.2 presents the method applied for
the deeper and more focused literature review on the topic.

We consider code quality in the context of CS1,2 taking into
account both the type of code addressed at this level and the signif-
icant demands imposed upon novice programmers.

2.1 Programs “For People to Read”
In the mid-80s, Harold Abelson, Gerald Sussman and Julie Suss-
man, in the preface of the first edition of their book “Structure and
Interpretation of Computer Programs”, described their educational
approach in which programs are presented as a means of expression
for humans [1, p. xxii]:

First, we want to establish the idea that a computer language
is not just a way of getting a computer to perform operations
but rather that it is a novel formal medium for expressing
ideas about methodology. Thus, programs must be written
for people to read and only incidentally for computers to
execute

An educational focus on the quality of programs and how program-
mers and learners perceive code quality can be traced back to earlier
work in education research, with a similar focus on code readability.
Joni and Soloway [75, p. 95] states:

We shall argue that using efficiency as a guiding principle
in critiquing working code is inappropriate for novice pro-
grammers. Instead, we develop an approach to critiquing
working but poorly constructed novice programs based on
the principle of program readability. That is, we base our
critique of working code on its ability to communicate to
program readers.

2In this work, we use the term CS1 to mean an introductory course on programming
taught in computing programs.
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As development teams have become larger and code bases more
complex, the importance of code comprehension has similarly
grown. Fowler and Beck [50] expresses this succinctly:

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

Readability and comprehensibility are crucial for code to be
reusable and maintainable. If we cannot clearly understand what
the code is meant to do, we cannot reuse it properly. We regularly
face changing programs after they have been written because they
need to be fixed or extended. Code that is easy for humans to
understand is easier to modify and more likely to be correctly
modified. In short, first and foremost, code quality is linked to how
easy it is for a programmer to read and comprehend that piece of
code. In the following subsection, we will summarise noteworthy
attempts to characterise code quality more accurately.

2.2 Characterising Code Quality
High-quality code should be correct, efficient, clear and easy to
maintain. While correctness and efficiency can be measured objec-
tively, code clarity is subjective and difficult to assess. In particular,
the structural characteristics of code quality are tightly connected
with the quality of design, which inspired Waguespack’s [151] re-
flections from an interesting philosophical perspective. His line of
analysis led to a high-level categorisation presented in [152, 153],
spanning far beyond the technical stance, and according to his
view [152]:

We will never be able to absolutely define design quality be-
cause of the relativistic nature of satisfaction in the observer
experience. But, our students must still face design choices.
So, as [Information Systems] educators we must provide a
framework for them to develop and refine their individual
perceptions and understanding of systems quality.

The terms “readability” and “comprehensibility”, highlighted in
Section 2.1, emerge explicitly from the analysis of Börstler et al.’s
working group [24], who investigated how code quality is perceived
amongst students, educators, and professional developers. In that
study, they collected 34 interviews and used grounded theory to ex-
tract the quality categories in Table 1. Ranked by coded frequency,
the top three were Readability, Structure and Comprehensibility. In
particular, Readability was ranked first by students and developers
and second by educators, who deemed Structure as the most impor-
tant quality factor. However, we should also note that Readability
and Structure are not independent criteria, as well-structured code
is usually more readable.

On the other hand, readability is clearly affected by the expertise
of the code reader. For example, in an early study comparing stu-
dents’ preferences relative to different looping strategies, Soloway
et al. [137] found evidence that more compact constructs are cogni-
tively more demanding than longer, more explicit constructs. Wiese
et al. [160] pointed out that novice programmers may not under-
stand the importance of concise structures that maymake it difficult
for them to read the code; in similar cases, students are unlikely to
adopt a cleaner style. Similarly to Soloway, Wiese and colleagues
reported in another paper [159] that students found novices’ pro-
grams to be more readable than their experts’ counterparts (they did

Table 1: Categories of code quality, as per Börstler et al. [24]

Category Terms used to describe code quality

Readability readable, no useless code, brevity/conciseness, format-
ting/layout, style, indentation, naming convention

Structure well structured, modular, cohesion, low coupling, no
duplication, decomposition

Testability testable, test coverage, automated tests
Dynamic behaviour robust, good performance, secure
Comprehensibility understandable, clear purpose
Correctness runnable/free of bugs, language choice, functionally cor-

rect (meeting business requirements)
Documentation documented, commented
Maintainability maintainable, adaptable, reusable, used by others, inter-

operable, portable
Miscellaneous license, suitable data structure, metrics/measurements

agree, however, that the experts’ code had better style). From a dif-
ferent perspective, Stoecklin et al. [141] suggested readability could
be improved by using method names that meaningfully describe
their purposes and by writing compelling comments, emphasising
the role of good documentation rather than the code structure.

In a recently published paper, Kirk et al. [88] focus on defining
“code style principles” at a higher abstraction level than previous
guidelines. The authors aim to build “a basis for presenting to stu-
dents the key concepts for understanding and changing code” [88,
p. 134]. This perspective will be discussed further in later sections.

2.2.1 Human-centred perspective on code quality. As pointed out
in Section 2.1, programs are written for two audiences — a machine
must execute them, but they also need to be read and understood by
other programmers. As emerged from the discussion of key quality
criteria within the working group, we can distinguish the following
orientations toward code quality:

(i) Machine-facing – Regarding features that are related to pro-
gram execution, e.g., correctness, robustness, security, efficien-
cy/performance, compliance with varied user requirements;

(ii) Human-facing – Regarding features related to how humans
interact with code, when reading, writing, and updating an
artefact, e.g., readability and comprehensibility, which are
facilitated by layout, formatting, naming and documentation;

(iii) Both human- and machine-facing – Regarding features that
have an impact on both the human and the machine sides, e.g.,
code structure, testability, maintainability.

From our perspective, the key quality attributes pertain to human-
facing orientations (ii) and (iii). In particular, by referring to Börstler
et al.’s taxonomy [24], readability is facilitated by clear layouts, con-
sistent formatting and naming conventions, whereas comprehensi-
bility goes deeper into understanding the purpose of code. However,
as a major goal of reading code is comprehending it, the terms are
sometimes interchangeable in the literature. Thus, for simplicity,
in what follows, we will use the single term readability to capture
both superficial and in-depth (for comprehension/understanding)
reading.
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2.3 Improving the Quality of Code
A renewed interest in code quality was sparked in the mid-1990s by
the work of Fowler and Beck, aimed at devising specific techniques
to identify and improve poor or undesirable program patterns. To
pursue this goal, they introduced the terms refactoring and code
smell (the latter due to K. Beck), which are currently broadly ac-
cepted. Refactoring, in particular, was popularised by Fowler and
Beck’s book as

“the process of changing a software system in such a
way that it does not alter the external behaviour of
the code yet improves its internal structure”
[50, p. xvi].

According to this definition, refactoring transforms correct code
to improve human-related features such as readability — or some-
times code efficiency. Since then, several studies have elaborated
on the smells listed in Fowler and Beck’s book. Among these, for
example, are the work by Mäntylä et al. [102] and, more recently,
Tandon et al. [143].

However, once again, it may be worth noting how subjective
perceptions may also vary depending on the appropriateness of
refactoring interventions. For instance, a study by Mäntylä [101]
reported a low degree of agreement among raters as to the decision
to refactor code exhibiting three simple smells from Fowler and
Beck’s list.

In the educational context, a preliminary step to motivate stu-
dents to improve their code is providing quality feedback. This
has led researchers and instructors to consider various supporting
tools targeted to learners, some of which are custom-made. Their
intended scope may be different: to address single code quality fea-
tures, e.g., [19, 77, 84]; to provide insights while the code is being
developed, e.g., [149]; to cover multiple quality criteria simultane-
ously, e.g., [17]; to exploit simple quality metrics such as lines of
code and cyclomatic complexity, e.g., [9].

A recent comprehensive review of automatic tools to provide
feedback on code correctness, maintainability, readability, and doc-
umentation can be found in Messer et al. [106]. However, as a result
of an investigation on students’ programs exhibiting code smells,
Wiese et al. [159] reported that novices found it challenging to
improve their code even when feedback was provided.

2.4 Narrowing the Scope of Code Quality for
CS1

A 2023 investigation [68] asking CS1 students to rank a set of solu-
tions from best to worst, based on their spontaneous perception,
indicated students mainly consider two criteria when assessing
the quality of correct code: readability and efficiency. When com-
menting on either or both such criteria, they referred to the choices
of code structure (although their efficiency assessment was often
inaccurate). Due to their lack of exposure to a full software develop-
ment cycle, which occurs later in their curricula, students are not
generally aware of a broad range of key quality categories identified
in Table 1. To introduce code quality at the CS1 level, we focus on
a subset of quality characteristics for the following reasons:

• Exposure — students deal with small programs, usually a
procedural program or a single class with a small number of
methods.

• Relevance — not all nine categories from Table 1 are relevant
to novice programmers; for example, their code is rarely read
by peers, integrated into larger projects, revisited, extended
or changed later.

• Time constraints — CS1 courses are typically content-heavy.
Hence, instructors may be limited in the time they can dedi-
cate to this topic.

The rest of this section reflects previous work at the CS1 level
and the working group’s discussions on scope.

2.4.1 Adjusting code quality criteria to CS1 context. In an influen-
tial study, Stegeman et al. [139, 140] sought instructors’ views to
develop a rubric to assess code quality at introductory level. From
the analysis of teachers’ interviews, they extracted four main crite-
ria: Documentation (names and comments), Presentation (layout
and formatting), Algorithms (flow and expressions) and Structure
(decomposition and modularization). Note that finer-grained char-
acterisations of some quality aspects covered by Börstler et al.’s
taxonomy [24] appear in Stegeman et al.’s rubric: layout and for-
matting are subcategories within readability; names, headers and
(inline) comments pertain to documentation; and flow, expressions,
decomposition, modularization and (mostly) idiom are connected
with structural code features. The latter five structural categories
were also used by Keuning et al. [82] to classify quality issues.

In an attempt to provide helpful feedback, Birillo et al. [17] have
recently categorised novice programmer’s quality issues into five
categories: (1) code style: violations of commonly accepted style
guidelines; (2) code complexity: poor design and/or overly compli-
cated solutions; (3) error-proneness: hints to potential sources of
bugs, even though not revealed by testing; (4) best-practice: disre-
gard of widely accepted recommendations; and (5) minor issues:
usually related to incorrect spelling that may hinder code readabil-
ity. Notably, only one category (code complexity) covers algorithmic
and structural aspects.

A refactoring perspective has recently received some attention
at the introductory level. Two doctoral theses completed in 2020
explored novice code smells: Keuning [81] presented a tool to teach
refactoring; Ureel II [148] analysed correct and incorrect code with
poor structure to identify some novice patterns amenable to refac-
toring. Additionally, a 2023 master thesis by Leyva [91] presents
a refactoring tutor that supports nine code smells split into two
difficulty levels for novices.

Although all the issues listed above impact readability, when
introducing code quality at CS1 level we should prioritise activities
that focus on code structural issues because “[f]ixing them requires
a certain level of experience and knowledge” [17, p. 311].

2.4.2 What code quality for CS1 means in this paper. We focus on
quality feedback for functionally correct code, as most CS1 stu-
dents can make multiple submissions in their coding assignments
— receiving feedback on failed tests — until their programs appear
functionally correct.

We acknowledge that CS1 courses are diverse, including different
cohorts, delivery, varied choice of programming language, etc. A
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primary aim of this work is to support such diversity, by assuming
course conditions that are relevant to as many contexts as possible.
More specifically, when discussing code quality in this paper we
make the following assumptions:

CS1 content — We focus on core programming concepts: vari-
able, selection, iteration, functions/methods. We consider
decomposition and modularity in code design, but we sep-
arate object-oriented principles for those instructors who
cover them in some depth.

Programming language — We refer to the languages most
frequently taught at CS1 level — Python, Java, and C/C++.
We, therefore, restrict our scope to examples and activities on
issues that are common to these widespread programming
languages.

Problem Context — Knowledge of the problem context and
algorithmic approach is important when coding a solution
from scratch and when reading code to extend or reuse it.
However, in typical CS1 programming exercises, problem-
solving may be minimal and rather tends to concentrate
on implementing a given design or reusing and combining
simple code plans. We then focus on CS1 programs resulting
from decomposing and coding simple problems such as the
rainfall problem [136].

Finally, although quality is often seen as a property of the product
(the code final version), understanding why quality evaluation is
important requires basic understanding of (a) the process of problem
decomposition, design and implementation, and (b) how the product
(the code in itself) will be used. To become aware of the value of code
quality, students should be exposed to some extent to (a) and (b).

2.4.3 How to teach code quality. When addressing the human-
oriented aspects of code quality in a learning context, it is important
to consider that what is perceived as good quality depends on the
subject’s experience. We also need to distinguish between:

– code quality as meant for the benefit of an individual learner:
good quality code is code that the learner can understand more
easily;

– code quality as meant for cooperating in a community: working
in a community (also a learning community) implies the need
to share coding ‘rules’, including coding conventions, to make
communication between members smoother.

In CS1 we should emphasise the individual learner and explain
the benefits of adopting a clean coding style by linking the taught
principles to small concrete examples and by showing students
simple steps to improve their code.

From this perspective, code quality instruction will involve two
main types of activities:

(1) providing rules and guidelines relative to the process leading
to enhanced code quality;

(2) explaining the rationale behind rules and guidelines in con-
nection with the quality aspects addressed.

Reflecting on the code quality at the CS1 level should make students
aware of the importance of code as perceived by programmers.

3 Methodology
The aim of this research is to investigate how code quality can be
addressed in the CS1 classroom (introductory programming) with
a focus on examples and activities that help students become aware
of and improve the quality of their code.

3.1 Research Questions
Our research questions are:
RQ 1: Which code examples related to code quality have been used

in the literature on code quality in CS1 education?
RQ 1.1: Which topics related to code quality are covered

by these examples?

RQ 2: Which teaching activities related to code quality have been
used in the literature on code quality in CS1 education?
RQ 2.1: Which topics related to code quality are covered

by these activities?
We used the insights from a literature review (carried out according
to the guidelines outlined in the next subsection) to answer the
research questions above.

3.2 Literature Review
The main purpose of the literature review is to catalogue examples
and activities to support the teaching and learning of code quality
at the introductory level.

3.2.1 Search strategy. Keuning et al. recently published a system-
atic mapping study on code quality in education [85]. Since our
work has more focused objectives, we used Keuning et al.’s 195
primary references as a starting point for selecting relevant contri-
butions. Then, we used the search terms from [85] to identify any
recent papers (from Jan 2023 onwards) not captured in Keuning
et al.’s study. This process identified 29 newer papers. In addition,
limited backward snowballing resulted in a set of 24 older papers.
More specifically, the backward snowballing process explored the
references found in recent papers that satisfied the inclusion criteria
described in the following subsection.

3.2.2 Inclusion and exclusion criteria. As explained above, we used
the papers listed in Keuning et al.’s study, and integrated several
newer and older papers. Since Keuning et al.’s review already tar-
geted code quality in education, we focused on papers dealing with
examples and activities relevant to CS1. There is, however, some
disagreement about where the boundaries between CS0 and CS1
or between CS1 and CS2 can be located. For this reason, to be as
inclusive as possible, we initially also considered papers target-
ing CS0 and CS2. The inclusion or exclusion criteria can then be
summarised as described in Table 2.

3.2.3 Data extraction. A high-level description was gathered for
each of the 248 papers returned from the search strategy outlined
above. Each paper was reviewed by one of the members of the
working group. This served to track the activity of the working
group aswell as to carry out the first step in the process of extracting
examples and activities. Table 3 details the information that was
gathered about each of the papers. Particular attention was paid
to identifying papers that contain examples of code defects and
activities addressing code defects used in teaching and assessment.
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Table 2: Inclusion (IC) and exclusion criteria (EC) for papers

ID Description

IC1: The paper discusses an intervention at CS0–CS2 level
addressing code quality.

IC2: The paper provides detailed characterisations or classifications
of code quality aspects or issues that are relevant for CS0–CS2.

IC3: The paper provides examples of code quality aspects or issues
at CS0–CS2 level.

IC4: The paper discusses noteworthy insights on code quality at
CS0–CS2 level.

IC5: The paper provides guidelines or rules to comply with related
to code quality at at CS0–CS2 level.

EC1: The paper focuses on large software projects outside the scope
of CS0–CS2.

EC2: The paper focuses on industry metrics or tools with no
adaptation to be used by novices at CS0–CS2 level.

EC3:
The paper discusses practices that do not translate well into
practices relevant for current CS0–CS2 courses (e.g., using
COBOL or the “GO TO” statement).

EC4: The paper focuses on dynamic properties of code (e.g., program
correctness or performance).

EC5: The paper focuses on idiosyncratic features of programming
languages or environments, not typical of CS0–CS2.

EC6: The paper does not deal with teaching and learning of code
quality or grading in terms of quality of code artefacts.

EC7: The paper does not go beyond opinion-based recommendations
(e.g., about using a refactoring tool).

The reviewers also included comments on the content of a paper
and its applicability to the research undertaken, then listed the
inclusion and exclusion criteria (from Table 2) that applied to it.

Each “included” paper was subsequently reviewed by a second
member of the working group to check and possibly integrate
the associated information (e.g., by indicating additional inclusion
criteria). Similarly, a second reviewer was involved in some cases
where the former reviewer was doubtful about excluding a paper.

3.3 Extracting and Cataloguing Examples
Now we outline the process followed to identify and catalogue
examples that could be used to address code quality at the CS1
level.

3.3.1 Extracting examples from the literature. Every paper that sat-
isfied the inclusion criterion IC3 was reviewed once again by a
different member of the team to extract the reported examples. In
some cases, the examples were drawn from supplementary ma-
terials linked to the paper. The examples were collected into a
spreadsheet containing the fields detailed in Table 4. During the
extraction process, efforts were made to be consistent with the
phrasing or language used by the original authors when recording
the description. When the examples of code quality issues did not
have a matching example representing the resolved defect, these
were added by the reviewer based on insights from the paper.

Most of the reviewed papers contained a single example of a
code defect, and only in a small number of cases we retrieved more

Table 3: Description of data extractionfields for papers. (Main
sheet — one row per paper)

Field Description

ID Identifier of the paper source (Kxx from Keuning
et al.’s list, Nxx for recent papers after that review
andOxx for older papers found by ancestry search).

Bib data Bibliographic data.
Reviewed by Name of reviewer responsible for data extraction.
Quality topics Brief description of the quality topic(s) covered.
Code examples List of examples provided in the paper, or “None”

if there aren’t any. All the examples are collected
in a separate sheet (see Table 4).

Level Indicator for the course level, e.g., CS1.
Teaching Brief description of the teaching activities or strate-

gies from the paper, or “None” if there aren’t any.
Assessing Brief description of any code quality assessment

described in the paper, or “N/A” if there aren’t any.
Comments Free text for the reviewer to comment or describe

further topics.
Inclusion/Exclusion
Criteria

A list of the inclusion and exclusion criteria that
apply to the paper.

Table 4: Description of data extraction fields for examples
(Example sheet — one row per example)

Field Description

EID Identifier for the example.
From ID of the primary study that is the source for the

example.
Code A copy of the example code.
Issue The issue(s) that is/are addressed by the example.
Other comments Free text for the reviewer to comment or describe

further topics.
Code Fix Example A version of the code that removes the quality

issue(s).

Table 5: Exclusion Criteria for extracted examples.

ID Description #n

EEC1 Related to correctness (out of scope) 12

EEC2 Related to efficiency/performance or user-friendliness
(out of scope) 2

EEC3 CS0 (or earlier) defect which is not expected to persist
into CS1 3

EEC4 Too high level (too large or difficult) for CS1 12
EEC5 Limited to a specific language 38
EEC6 Doubtful defect from the WG’s perspective 35

than five examples from the same study. However, two of the newer
papers identified in the literature review were of particular inter-
est in that they contained categorisations of several code defects:
Silva et al. [133] list 45 “misconceptions in correct code,” most of
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which were descriptive enough to allow the generation of exam-
ples; Řechtáčková et al. [123] discuss a repertory of 80 code defects,
presented in their paper available online, the majority of which
include examples of both the defect and fixed code. These two com-
prehensive collections were included in the spreadsheet as separate
sheets for ease of reference.

A final set of 282 examples was created based on the sources
drawn from the literature, as described above, and by including
46 additional examples that are part of a repository of laboratory
assignments administered by a member of the team.3 Then, the
exclusion criteria detailed in Table 5 were used to identify examples
to be included or excluded from the final catalogue. This process
was initially carried out by one member of the working group,
but subsequently reviewed by others. Where any disagreement
emerged, the specific example was discussed until consensus was
reached, with either the example being included or the specific
exclusion criteria being applied was agreed upon.

As a result, 102 examples were excluded based on the criteria in
Table 5. We deemed 38 examples as too language-specific (EEC5),
20 of which come from Řechtáčková et al.’s catalogue [123] as it
focused on aspects of Python that did not generalize to other com-
mon CS1 languages. In a further 35 examples, the working group
members considered the defects either too marginal or, in some
cases, arguably not even defects (EEC6). For instance, incrementing
without using the shorthand notation was considered a very mi-
nor, even debatable defect, while “using non-English identifiers” is
not a defect unless working in an international environment with
specified linguistic requirements for variable names.

3.3.2 Cataloguing Examples. After identifying the candidate pa-
pers, we were left with a list of 180 examples from a variety of
sources, sometimes with close similarities or slight variations be-
tween the multiple sources. Hence, we consolidated the final set by
combining examples from different sources that can be considered
to represent the same quality defect under a single description.
While doing so, the wider working group discussed the appropri-
ateness of each combination. This step resulted in 63 quality defects
(see section 5).

The categorisation of examples started with an inductive coding
process based on a smaller sample that was then refined through
discussion within the working group. The classification framework
agreed upon after much discussion was partly inspired by the ear-
lier taxonomy by Řechtáčková et al. [123], where each defect is
characterised in terms of the source of the related code quality con-
cern and an abstract qualifier of the type of concern. We refined
Řechtáčková et al.’s sources as follows:

• Instead of just variables, we use a generalized category called
Data to include variables (and constants), their typing, scope,
and usage as parameters or return values for methods;

• Instead of treating conditions as a separate source, we com-
bine them with Expressions since conditions of control state-
ments are typically expressions.

3For ease of reference, we labelled the examples from [133] with an uppercase letter
(A–H) plus a number, as in the source; those from [123] are prefixed by R; for all the
others we used an Ex prefix followed by a progressive number. This is also the labelling
reported in the catalogue of examples in [70] – Appendix A.

• Instead of loops and functions, we include Control/Block as a
generalised category. (The choice and definition of functions
also pertain to the Organization category listed next.)

• Instead ofmodules, we useOrganization to refer to the macro-
level design of a program, including its functional decompo-
sition.

• We did not consider compound data structures as a separate
category since our focus is basic CS1 topics.

As a result, we arrived at the following list of sources: Expressions,
Data, Control/Block, Organization, Documentation and Typographic.

To characterise the types of quality concerns, we agreed upon
six issue qualifiers: Unclear, Duplication, Unnecessary, Missing,
Inconsistent, and Unsuitable. They correspond to defect types in
Řechtáčková et al.’s categorisation as follows:

• unused is (part of) Unnecessary, unsuited construct is Un-
suitable, duplicate code is Duplication.

• poor name, poor formatting are Unclear.
• poor documentation could be Missing or Unclear.
• poor design could be Unclear, Duplication or Inconsistent.
• simplifiable could be Unsuitable, Duplication or one of the
other qualifiers in the taxonomy we propose.

3.3.3 Rates of agreement when processing the examples. The coding
process relative to the examples was carried out in three stages. Four
team members participated in the first stage, during which a large
set of 237 examples (over 282) were coded. Each reviewer focused
on a subset of examples. At the end of this stage, each example was
assigned either a source-issue categorisation as described above, if
it was deemed worthy of inclusion in the catalogue, or an exclusion
criterion according to Table 5.

Then, in the second stage, all the examples were independently
coded via a deductive process by a reviewer who was not involved
in the former stage, and the rates of agreement between reviewers
were evaluated as follows:

• Inclusion vs. exclusion – Relative to the 237 examples inde-
pendently processed, the inter-rater agreement as to the
decision to include or exclude a given example was 84%;

• Exclusion criteria – Relative to the 68 examples excluded by
both independent reviewers, the rate of agreement regarding
the specific reasons for exclusion was 84%

• Classification in terms of ‘source’ – Relative to the 132 exam-
ples included by both the reviewers with a precisely identi-
fied source, the inter-rater agreement was 80%.

• Classification in terms of ‘issue’ – Relative to the 130 examples
included by both the independent reviewers with a precisely
assigned issue qualifier, the inter-rater agreement was 72%.

(The small discrepancy between the counts in the last two points
is because, in a couple of cases, an ‘issue’ was not assigned in the
first stage.)

The reasons for disagreement could be ascribed to different inter-
pretations of the terms labelling the categories in several cases. For
instance, there were initially some ambiguities about the coverage
of the termData for typing, variable scoping, parameter passing, etc.
This led to a more accurate definition of each term used to identify
a source or an issue qualifier, clarifying the aspects it is meant to
represent or not to represent. An additional cause of disagreement
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Table 6: Description of data extraction fields for activities.
(Activity sheet — one row per activity)

Field Description

From ID of the primary study that is the source for the
activity (there might be several sources).

Approach Teaching approach used, e.g., direct instruction, facil-
itated activity, or independent activity.

Graded? Whether the activity is graded: Yes/No.
Type of tool Type of tool that supports the activity, if applicable,

e.g., static analysis tool
Activity Type Type of activity, e.g., improving code, applying tool.

was that sometimes multiple categories may apply; for example,
the borderline between Unclear and Unsuitable is blurred (an option
may be unsuitable precisely because it makes things less clear!).
These cases were resolved by assigning priorities, e.g., of Unclear
over Unsuitable.

Finally, in the last stage, another independent reviewer coded
all the examples, and a final agreement was reached after several
iterations and discussions among reviewers.

3.4 Extracting and Cataloguing Activities
Drawing from the literature review outline in subsection 3.2, our ap-
proach to collect useful code quality activities at CS1 level involved
two phases as described next.

3.4.1 Phase 1 – Extracting instructional activities from the litera-
ture. Two members of our research team identified the papers that
included pedagogical activities used by instructors in their course.
The members determined that a paper presented a meaningful
activity if at least one of the following held:

• the paper discussed an activity that was used for instruction
rather than evaluation;

• the paper discussed an activity that informed an instructor
about what to teach in lecture.

The information gathered for each activity of interest was organised
according to the fields listed in Table 6.

3.4.2 Phase 2 – Cataloguing instructional activities. We then pro-
ceeded to classify the pedagogical activities. We inductively decided
upon several dimensions through which to categorise them. Each
paper was in charge of a single researcher. Our rationale for select-
ing the dimensions was to include the important characteristics of
an activity that may impact whether an instructor uses said activity
in their own course. We describe the dimensions below.

• Intended level: The student cohort for that activity:
– Pre-CS1: Includes CS0 and K-12 students;
– CS1: CS1 as generally understood to cover introductory
programming topics regardless of the programming lan-
guage (e.g., Java or Python) and approach (e.g., imperative,
objects-first, functional, etc.). CS1 typically assumes no
prior knowledge of programming.

– Post-CS1: Refers to courses in the computer science curricu-
lum that have CS1 as the immediate or a prior prerequisite.
Examples of such courses include CS2, Data Structures

and Software Engineering, or even graduate courses. An
activity that can be used in both CS1 and post-CS1 courses
is categorised as a CS1 activity.

• Taxonomy Tags: If the paper targeted aspects that are
consistent with the quality principles of Kirk et al.’s tax-
onomy [88] (refer to subsection 4.2), then the activity was
labelled with the corresponding acronyms; otherwise it was
labelled as Unspecified.

• Approach: The instruction approach used in the activity:
– Direct instruction: active involvement of the instructor,
e.g., in a lecture, and mostly passive involvement of the
student.

– Facilitated activity: active involvement of both the instruc-
tor and the student, e.g., hands-on closed lab activity.

– Independent activity: no or minimal involvement of the in-
structor, and active involvement of the student, e.g., after-
class assignments, use of asynchronous tools.

• Graded: Whether the code quality activity is graded for
course credit with specific assessment of code quality. Notably,
if an activity was graded for course credit but none of the
points were apportioned for code quality, then it was not
considered as a graded activity from our present perspective.

• Activity Type:We identified the following general teaching
activities in the papers:
– Use of Tool (No Support): when the activity uses a tool, and
the student sees an unfiltered report on the quality issues
found.

– Use of Tool (Hints):when the tool provides hints to improve
the code rather than a list of quality defects.

– Peer Review: activities where students evaluate code writ-
ten by other students in the course.

– Theory: activities that involve covering conceptual/the-
oretical (this wording is from [31, 41]) aspects of code
quality.

– Illustrative Examples: activities where there is some ex-
plicit description of using code quality examples to inform
students.

– Improving Code Quality: activities where there is an ex-
plicit iterative process of code improvement.

By the end of our classification, we listed 28 activities, drawn
from papers that discuss instructional interventions at the CS1 level.
The results are presented in subsection 4.4.

3.5 Categorising Code Quality Aspects
To identify an appropriate taxonomy use as the basis for categoris-
ing code quality issues, we examined papers identified during the
literature review process with IC2 and IC5. These papers included
classifications of code quality aspects or provided guidelines re-
lated to code quality at the CS0-CS2 level. Six authors analysed the
taxonomies and compared different approaches in the related work.

Most of the identified papers focused on subsets of code quality
issues for a specific study. For example, Adler et al. [2] provided a
list of code flow transformations that could be automatically ap-
plied to Scratch programs to simplify control flow (e.g., If-Else to
Disjunction), and Brewer [26] outlined documentation practices
for students. Many other papers identified as IC2 were similarly
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focused on categorising results from a study rather than character-
ising style issues in general, including function naming [29], code
refactoring [67], and student perceptions of style [68].

Several other categorizations, including Breuker et al. [25], Groen-
eveld et al. [56], Edwards et al. [45], Iddon et al. [62], and Keuning
et al. [82] addressed issues that may be automatically detected us-
ing tools such as PMD or CheckStyle. While useful for automation,
these taxonomies are incomplete because they lack categories for
code quality issues that cannot be automatically detected. At the
other end of the scale, several papers present very high-level cat-
egories that focus on program design [152], code smells for OOP
systems [12, 47, 143], or industry practices [102] but fail to charac-
terize the kinds of issues present in code authored by students in
typical CS1 courses.

After reviewing taxonomies designed to capture issues in student
code, Kirk et al.’s framework [88] was selected to allow a synthesis
of the various terms present in different taxonomies in a teaching-
focused context. Their categorisation is informed by the widely
cited rubrics developed by Stegeman et al. [139] and takes account
of previous code-style studies.

After reviewing the papers identified in the literature review as
IC2 and IC5, we discovered very few papers focused on a code qual-
ity taxonomy rather than presenting a classification as a by-product
of work focused elsewhere. To ensure that Kirk et al.’s taxonomy
provided sufficient coverage of quality issues, each group member
selected an alternative taxonomy identified during the literature
search and mapped each of the categories present in the paper to
Kirk et al.’s principles. After completing the mapping process, the
six authors discussed each categorisation decision until an agree-
ment was reached. During this process, some items were shifted
from one category to another to reflect the perceivedmeaning of the
corresponding concept more accurately. The mapping of different
code style taxonomies to Kirk et al.’s is described in subsection 4.2.

In what follows, we will refer to Kirk et al.’s categories as “quality
principles” and to their framework as “taxonomy of quality princi-
ples” — or simply “taxonomy” if the interpretation of the term is
clear from the context.

4 Summary of Results
This section outlines the results from the literature review and
provides an overview of the examples and activities extracted from
it. Sections 5 and 6 present the catalogue of examples in more detail,
and the representative activities.

4.1 Literature Review
After applying the inclusion and exclusion criteria from Table 2,
130 papers were selected for further processing. The outcome of the
selection process is summarised in Table 7. The papers belonging
to the inclusion categories tagged IC2 and IC5, used to inform the
classification terms and the taxonomy of quality principles, are the
subject of subsection 4.2. From the papers listed in the IC1 and IC3
rows of Table 7 we identified examples and activities, which will
be introduced in the subsections 4.3 and 4.4, respectively. We first
briefly review the papers providing other heterogeneous insights
(inclusion criterion IC4).

4.1.1 Noteworthy general insights from the literature. The 15 papers
referenced in the IC4 row of Table 7 present interesting insights
on code quality at the undergraduate level. Of those 15, five were
considered exclusively for fulfilling IC4 [39, 86, 117, 132, 160], hence,
we briefly focus on them below. Common to all five contributions
is that they are large-scale studies or replications of existing studies
(or both), providing particularly trustworthy evidence.

De Ruvo et al. [39] developed a tool to investigate code style
issues in code written by CS1 students. They found that half the
students submitted code exhibiting such issues, e.g., using return
statements in conditionals. They found many similar issues remain
in the code submitted by students in their fourth year, indicating a
need for the teaching of code style.

Perretta et al. [117] investigated the usage of static analysis
tools to support the grading of code style in a large CS2-course.
Using such tools can substantially reduce the workload of human
graders and free up some of their time for giving feedback on code
quality that common tools cannot provide. The study concludes
with recommendations for using static analysis tools with human
graders to assess code style.

Senger et al. [132] conducted a large-scale replication study on
issues identified by the tool FindBugs and the relationship of those
issues to (a) the correctness of programs and (b) the struggle of stu-
dents on programming assignments. Using data from CS1–CS3, the
results showed that some issues reported by FindBugs are inversely
correlated with program correctness, but confirmed that they corre-
late with struggling on larger assignments. Like Perretta et al. [117]
and De Ruvo et al. [39], their work confirms that existing or custom-
designed tools can be very helpful in identifying some code style
issues. Such tools can help human graders objectively, consistently,
and reliably identify certain code-quality-related issues.

Wiese et al. [160] replicated a study on code style. A better style
is supposed to make code easier to read and understand. Teaching
expert-style control flow helps CS majors to understand expert-
style code as easily as novice-style code. The replication, however,
cannot corroborate these results for other students. These results
emphasize that we need to consider the background of our students.
Students’ perceptions of style and quality might differ between CS
majors and other student groups. This likely also affects the type
of support we need to offer different student groups.

Finally, Kirk et al. [86] examined to what extent the learning
outcomes of CS1-courses worldwide (mainly USA and UK) consider
code quality. They “found that only about 30% mention any code
quality-related topic” and recommend “adopting agreed achieve-
ment standards for code quality.” These results are symptomatic of a
problematic situation. If we lack learning outcomes related to code
quality, there is no formal need to teach code quality. Furthermore,
even when educators perceive the topic as important, they may
have difficulties justifying the resources needed for teaching and
assessing code quality.

4.2 Taxonomy of Quality Principles
As previously discussed in subsection 3.5, Kirk et al.’s framework
[88] was selected as a taxonomy that provided broad coverage
of code style topics, along with reasoning about why particular
decisions on code style are made in early programming courses. It
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Table 7: Summary of the papers selected from the literature review by inclusion criteria.

Code Description References Count

IC1 Papers that discuss an intervention or evaluation at
CS1/CS2 level related to code quality.

[3] [6] [8] [9] [10] [11] [13] [17] [19] [20] [28] [29] [30] [31] [32] [34] [36]
[37] [40] [41] [42] [43] [49] [52] [55] [57] [58] [60] [61] [62] [63] [64] [67]
[71] [73] [74] [77] [78] [79] [83] [84] [91] [92] [93] [94] [95] [96] [98] [100]
[103] [104] [105] [111] [114] [116] [120] [122] [124] [126] [131] [134] [138]
[141] [142] [145] [154] [155] [159] [161] [162] [163] [164] [165]

73

IC2
Papers that provide detailed descriptions or
classifications of code quality issues/areas (or a key
area such as code structure or documentation).

[2] [3] [17] [24] [25] [26] [29] [32] [45] [46] [47] [56] [60] [61] [62] [67]
[68] [82] [88] [89] [94] [96] [97] [102] [103] [104] [107] [108] [112] [113]
[123] [135] [139] [140] [143] [144] [152] [156] [158]

39

IC3 Papers that provide examples (simple programs
matching CS1 content) of some issue:

[5] [9] [22] [23] [28] [30] [32] [35] [38] [40] [47] [49] [51] [52] [53] [54]
[55] [57] [59] [63] [64] [65] [66] [67] [71] [74] [75] [78] [82] [83] [84] [91]
[93] [95] [97] [98] [99] [107] [111] [113] [114] [118] [119] [121] [123] [125]
[133] [146] [147] [149] [154] [156] [158] [159]

54

IC4 Papers that provide interesting insights on code quality
at undergraduate level. [13] [22] [26] [39] [46] [64] [86] [94] [96] [117] [132] [145] [158] [159] [160] 15

IC5 Papers that report on (context-dependent) quality rules
to comply with. [9] [12] [27] [38] [67] [71] [97] [109] [110] [119] [131] 11

Table 8: Overview of Kirk et al.’s [88] quality principles in relation to other representative taxonomies from the literature.

Quality aspect Description [24] [17] [139, 140] [113]

Explanatory Language (EL) The intent and meaning of code is explicit. ✓ ✓ ✓ ✓

Clear Layout (CL) Different elements are easy to distinguish, and the relationships between
them are apparent. ✓ ✓ ✓ ✓

Simple Constructs (SC) Coding constructs are implemented in a way that minimises complexity for
the intended reader. ✓ ✓ ✓ ✓

Consistent Design (CD) Elements that are similar in nature are presented and used in a similar way. ✓ ✗ ✓ ✓

Non-redundant Content (NC) All elements that are introduced are meaningfully used. ✓ ✗ ✓ ✗

Appropriate Implementation (AI) Implementation choices are suited to the problem to be solved. ✓ ✗ ✓ ✓

Avoid Duplication* (AD) Code duplication is avoided. ✗ ✗ ✓ ✗

Modular Structure (MS) Related code is grouped together, and dependencies between groups
minimised. ✓ ✓ ✓ ✓

*Originally named “Avoid repetition” in [88].

focuses on CS1, using principles established to “support educators
teaching about understanding and changing code, particularly at the
beginner level” [88, p. 142]. The principles, listed in Table 8, allow
a teacher to refer to specific examples relevant to their teaching
context while linking to broader principles that describe why a
given approach might be relevant to a quality measure we care
about. Therefore, this work proposes an approach closely aligned
with the working group’s goal and could be used to frame the
examples and activities used in teaching code style.

In the process of mapping various taxonomies, as shown in
Table 8, we explored several other works that were adjacent to
code quality taxonomies, including code smells [143], code review
defects [102], pedagogic code reviews [61], design qualities in re-
lational data modelling [152], and the seminal work by Kernighan
and Plauger [80]. We have included in the table a selection of tax-
onomies directly related to code quality, reporting the connections
with the quality aspects identified in [88].

In the following, we describe for each principle the key guidelines
derived from a few influential works. A finer-grain mapping of

quality indicators from related aspects in the adjacent literature is
summarised in Table 9.

Explanatory Language. All the concerns brought up in Kirk et al.’s
guidelines can also be found at least in one of the reviewed tax-
onomies. Both Kernighan and Plauger [80] and Oman and Cook
[113] discuss this category in depth, providing the following advice:

• Use variable names that mean something [80];
• Choose variable names that won’t be confused [80];
• Do not use cryptic or confusing variable names [113];
• Choose identifier names that make the code read well [113].

Clear Layout. Stegeman et al. [140] and Börstler et al. [24] explic-
itly use categories that align closely with formatting and layout.
Although formatting and layout have been improved with modern
IDE support, the advice aligned with this principle is still relevant
today. For example, Kernighan and Plauger [80] recommends:

• Make your program read from top to bottom;
• Indent to show the logical structure of a program;
• Format a program to help the reader understand it.
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Table 9: Quality principles connections to the literature.

Quality indicators for Explanatory Language
Key Description

EL1 Descriptive naming [113, 139, 140]
EL2 Reasonable comments [24, 113, 139, 140]

EL3 Documentation [24], header comments [140], global
and intermodule commenting [113]

EL4 Correct spelling [17]
EL5 No unnamed constants [139, 140]

Quality indicators for Clear Layout
Key Description

CL1 Indentation [24]
CL2 Layout [24]
CL3 Length of code line [17]

CL4 Positioning of elements within files is optimised for
readability [140]

CL5 Formatting consistently highlights the intended
structure [140]

CL6 Formatting makes similar parts of code clearly
identifiable [140]

CL7 No more than one task should be performed per line
[139]

Quality indicators for Simple Constructs
Key Description

SC1 Simple, concise expressions [24, 139, 140]
SC2 Simple control flow [17, 113, 140]

Quality indicators for Consistent Design
Key Description

CD1 Naming conventions [24, 68, 113, 139, 140]
CD2 Naming vocabulary [139, 140]

CD3 Variables should not be reused for different
purposes [139]

CD4 Style [24, 68]

Quality indicators for Non-redundant Content
Key Description

NC1 Code is not executed [24, 80]
NC2 Over commenting [139]
NC3 No nonfunctional commented code [24]
NC4 Informative and appropriate comments [139, 140]

Quality indicators for Appropriate Implementation
Key Description

AI1 Don’t use conditional branches as a substitute for a
logical expression

AI2 Use if-else when only one of two actions is to be
performed

AI3 Well-structured
AI4 Use generic data structures where possible
AI5 Use appropriate data types.

AI6 Appropriate control structures and libraries should be
chosen

AI7 Appropriate data types should be used
AI8 Use of structured constructs
AI9 Reuse appropriate library functionality [140]

Quality indicators for Avoid Duplication
Key Description

AD1 No repeated expressions [139, 140]
AD2 Routines used to eliminate duplication [139]

Quality indicators for Modular Structure
Key Description

MS1 Modules have clearly defined
responsibilities [139, 140]

MS2 [Limit] number of line/statements in the function [17]
MS3 [Limit] the number of methods in a class [17]
MS4 Routines perform a limited set of tasks [139, 140]
MS5 Module decomposition [24, 68, 113]
MS6 Well structuredness [68]

MS7 Limited use of global variables and data
structures [113]

Similarly, Oman and Cook [113] are explicit in guidance about
formatting and layout:

• Do not put more than one control statement per line;
• Use parentheses to improve clarity and readability;
• Use blank lines to improve readability;
• Use spacing to improve readability.

Simple Constructs. Several of Kernighan and Plauger’s recommen-
dations [80] aim at simplifying as much as possible the program
structure, both at a planning level:

• Use library functions;
• Choose a data representation that makes the program simple;

as well as at a fine-grained level:

• Avoid unnecessary branches;
• Don’t use conditional branches as a substitute for a logical
expression;

• Make sure special cases are truly special.

Consistent Design. Consistency allows users to interpret code more
easily because they can rely on the properties of the code to have a
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consistent meaning. Kernighan and Plauger remark that “unless we
are consistent, you will not be able to count on what our formatting
is trying to tell you about the programs. Good formatting is a part
of good programming” [80, p. 148]. Similarly, Stegeman et al.’s code
quality rubric suggests checking code features such as [140]:

• All names in the program use a consistent vocabulary;
• Indentation, line breaks, spacing and brackets consistently
highlight the intended structure;

• Positioning of elements is consistent between files and in
line with platform conventions.

Non-redundant Content. Related topics were mentioned in two
of the taxonomies mapped into Table 8. While some of the cat-
egories identified from taxonomies focused on code that, when
removed from the program, did not impact its functionality, nei-
ther Kernighan and Plauger [80] nor Oman and Cook [113] offer
advice on non-redundant executable code. Conversely, both studies
address non-redundancy of comments; for example:

• Don’t just echo the code with comments — make every com-
ment count [80];

• Avoid obvious comments, make every comment count [113].

Appropriate Implementation. The importance of this general princi-
ple is well summed up by Wiese et al.: “Instructors want students
to write code that is not just functional, but also uses code struc-
tures that promote readability [...]. However, teaching students to
generate code using an appropriate control structure for a task is
extremely difficult and time-consuming. Research has found that
90% of introductory students used inappropriate structures for a
programming task, and structure problems persist into students’
4th year of a BS degree” [158, p. 321]. The choice of appropriate data
types and control structures are included, for instance, in Stegeman
et al.’s rubric [140].

Avoid Duplication. Code that is repeated takes more effort to read,
and it takes more effort to change because modifications need to
occur consistently in multiple places. The core driver for writing
user-defined functions in CS1 is the notion that duplicate code
should be reduced by refactoring. Two of the reviewed taxonomies
include some quality indicators related to this principle. Stegeman
et al. [140] consider not repeating expressions an indicator for
code quality and state that routines should be used to eliminate
duplication. This is also consistent with advice from Kernighan
and Plauger [80] to “Replace repetitive expressions by calls to a
common function.”

Modular Structure. All the reviewed taxonomies include some qual-
ity indicators referencing modularity or structure. However, many
suggestions relate to higher-level OOP concepts such as cohesion
and coupling (see, e.g., [135]) that are not typically covered in intro-
ductory programming courses and are therefore considered out of
scope for this work. The key advice at this level is for each method
to have clearly defined responsibilities [139, 140]. This could be
likened to the advice by Kernighan and Plauger: “Each module
should do one thing well” [80]. Long methods may be caused by
novice programmers ignoring such advice; thus, there are generic

recommendations to limit the size of functions/methods [17]. Ad-
ditionally, modularity is used to avoid duplication, as discussed
above.

Finally, we should note that guidelines on documentation and
typographic defects are often more straightforward to give in text
form instead of repetitive code examples. In contrast, describing
the use of constructs or appropriate implementation is facilitated
with concrete and simple examples. In subsection 7.2, the categories
introduced in Table 8 will be discussed with the examples examined
in this study. This will also provide a clearer characterisation of the
role of each principle.

4.3 Analysis of examples
The final characterisation of code quality issues arising in small
programs, identified from the literature, covers 15 types of defects in
theData category, four pertaining to Expressions, 22 toControl/Block,
11 to Organization, five to Documentation, and seven to Typographic.
A detailed account of this classification, illustrated by representative
code examples, is presented in section 5. The full set of retrieved
materials is available at [70] (Appendix A). Note, however, that
the resources are not meant to be a comprehensive inventory, as
novices’ code may be overcomplicated in countless ways [71].

Most examples (140 out of 180) are short code snippets having a
single defect. Code choices at the block or statement level account
for nearly half of those examples. This is to be expected as novices
are still learning in their practice how to select the appropriate
construct and how to combine constructs in the simplest way. Addi-
tionally, this number reflects the wide range of such combinations
when writing a few lines of code in contrast with the range of Doc-
umentation or Typographic defects which can be easily explained
or captured in a short description.

4.4 Analysis of Activities
Our review started from the 73 papers tagged IC1 in Table 7, which
discuss interventions on code quality, mostly at the CS1 or CS2
level.

4.4.1 What were the intended levels? Table 10 summarises the pa-
pers by their dominant intended levels: CS1, Post-CS1, or Other/Non-
specific (refer also to section 3, point 3.4.2). We can see from the
table that 54% of the considered references pertain to CS1, 27% to
subsequent undergraduate courses, whereas 19% account for the
remaining cases.

However, after a deeper analysis of each paper, several of them
were considered scarcely relevant or inappropriate to provide in-
sight into activities in typical CS1 contexts. We discarded the con-
tributions pursuing more advanced objectives (Post-CS1), as well

Table 10: Counts of papers tagged IC1 by intended level.

Intended Level Count Percent

CS1 39 54%
Post-CS1 20 27%
Other/Non-specific 14 19%

Total 73 100%

350



Introducing CodeQuality at CS1 Level ITiCSE-WGR 2024, July 8–10, 2024, Milan, Italy

Table 11: Teaching activities extracted from the literature with the intended CS1 level

Reference Taxonomy Tags Approach Activity Type Graded

[134, 141] EL, SC, MS Direct Instruction Theory, Illustrative Examples ✓

[31, 41] Unspecified Direct Instruction Theory, Illustrative Examples ✓

[103, 104] EL, CL Direct Instruction Illustrative Examples
[159] CL, SC Direct Instruction Illustrative Examples
[67] SC Facilitated Activity Illustrative Examples, Improving Code Quality
[58] CL, SC, CD Facilitated Activity Use of Tool (No Support), Peer Review ✓

[28] MS Facilitated Activity Improving Code Quality ✓

[49] AD, MS Facilitated Activity Illustrative Examples
[155] Unspecified Facilitated Activity Use of Tool (No Support), Peer Review
[142] SC, AI, AD, MS Facilitated Activity Illustrative Examples
[61] EL, CL, MS Facilitated Activity Peer Review
[145] AD, MS Independent Activity Use of Tool (Hints)
[17] Unspecified Independent Activity Use of Tool (No Support)
[79] MS Independent Activity Illustrative Examples
[32] Unspecified Independent Activity Use of Tool (Hints)
[98] Unspecified Independent Activity Use of Tool (No Support)
[114] Unspecified Independent Activity Use of Tool (Hints)
[74] SC Independent Activity Use of Tool (Hints)
[77] EL, CL Independent Activity Use of Tool (Hints)
[9] Unspecified Independent Activity Use of Tool (Hints)
[10] MS Independent Activity Use of Tool (Hints)
[93] CL, NC, AI Independent Activity Use of Tool (No Support)
[3] EL, CL, SC, AI, MS Independent Activity Use of Tool (No Support) ✓

[111] EL Independent Activity Use of Tool (No Support)
[124] EL Independent Activity Use of Tool (Hints)
[20] Unspecified Independent Activity Use of Tool (Hints)
[92] Unspecified Independent Activity Use of Tool (No Support)
[57] EL, SC, MS Independent Activity Use of Tool (No Support)

as those presenting tools intended to support teachers directly, or
not in connection with some instructional intervention (Other/Non-
specific). Moreover, we dropped eight “CS1” papers: five that discuss
a setup mainly functional to research objectives and the others
about the quality of testing, the role of code-quality guidelines and
recommendations, and a support tool for assessment. Thus, we
are left with the 31 papers referenced in connection with the 28
activities listed in Table 11, which are the focus of the rest of this
section.

4.4.2 How the activities were conducted? Most of the activities
require some degree of autonomous work from students, as demon-
strated by the dominance of Independent Activities (61%) and Facili-
tated Activities (25%) shown in Table 11. Moreover, almost all the
Independent Activities involve the use of tools (16 out of 17).

Specific Direct Instruction approaches were found in only four
activities (14%). All of these activities use code examples for illus-
trative purposes, out of which only two explicitly include lecturing
on the theoretical aspects of code style [31, 134]. Three activities
explicitly indicated that they would further employ facilitated ac-
tivities involving hands-on practice for students. Out of these, one

activity [134, 141] does not provide the corrected version of the
illustrative examples during instruction, but instead requires the
student to improve the code style based on in-class work of assess-
ing the code quality of the illustrative example.

Table 12 shows the breakdown of activity types that we observed.
A total of 18 activities (64%) provided students with a tool (such
as a static code analyzer or other hint generation system) to use
during programming. Far fewer activities involved providing ex-
amples, directly lecturing students, or requiring peer code reviews.
This sample illustrates the variety of activities that instructors may
use to target code quality at the CS1 level. However, the papers
predominantly focus on usefulness, with few of them presenting an
evaluation of effectiveness. In addition, the evaluation is performed
in a single context, raising questions about its applicability and the
robustness of the findings in other contexts. Lastly, the evaluation
methods are not standardised and universally applied across pa-
pers. These shortcomings make comparing or choosing activities
challenging for potential instructors interested in teaching code
quality.
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Table 12: Count of activity types (percentages do not sum to
100 because one activity can be tagged with multiple types).

Activity Type Count Percent

Use of Tool (Hints) 9 32%
Use of Tool (No Support) 9 32%
Illustrative Examples 8 29%
Peer Review 3 11%
Improving Code Quality 2 7%
Theory 2 7%

4.4.3 Were the activities graded for code quality (and how)? The
vast majority of studies (82%) did not report on grading activities in
terms of code quality. As shown in Table 11, only five (18%) of the
listed activities were reported in their study as being graded. Two
studies required student submissions to pass an automatic quality
check before running further tests [3, 58], which we considered as
grading components related to code quality since a minimum code
quality standard was a prerequisite to earning credit. One study,
which presented a lightweight course on code quality, discussed
an exam in which students need to refactor existing code [31].
Another study evaluated students’ tests after requiring them to
follow test-driven development [28]. Finally, the last study discussed
an approach to assess cohesion in a CS1 students’ programme, but
did not include a description of using the approach to grade [134].

4.4.4 Tool Usage. Most of the teaching activities applicable to CS1
involve the use of a tool. In most cases, students are expected to use
a static analyser to identify code quality issues in their programs.
These activities generally involve a small amount of instruction,
usually to define desirable code quality properties and how to apply
the tool, and students would use the tool while carrying out their
coding projects. In general, the tools are used to improve the quality
of student projects, but the students are not directly assessed as
part of the teaching activity. There is an even split in the teaching
activities that use static analysis tools concerning what kind of
feedback is provided to the student. Nine activities use tools that
give students a list of quality defects in their code, and nine activities
use tools that primarily give students hints on how to improve their
code. Two papers, [58, 155], combine the use of a static analysis
tool with peer review.

Finally, it is worth observing that two CS1-level activities di-
verged from the pattern of using tools to identify and fix code
quality issues in student programs. McMaster et al. [103] present
the UglyCode tool, which the instructor uses to generate specific
examples of poor quality code. Carlson [28] report work in which
students are taught test-driven development and code refactoring
through an iterative process, where they first embed print state-
ments to test their program, then refactor their code as they modify
the testing to fit the JUnit framework.

5 Catalogue of Examples
This section presents the types of quality defects introduced in 3.3.2.
The main categories addressing intrinsic structural aspects of pro-
grams — namely: Data, Expressions, Control/Block and Organization
— are characterised through representative single-smell examples

in the tables 13–21. We have included one variation of each defect,
except for those that are self-explanatory.
Tables 13 through 21 are organised as follows:
(i) The caption reports the source and qualifier (see 3.3.2).
(ii) For each type of defect the bibliographic sources of the ex-

amples are listed on the right of the description; if more than
one appropriate example can be found in the same source, the
overall number of items is shown between round brackets.

(iii) On the left side of each example, the specific bibliographic
reference (from the list mentioned above) is reported once
again.

For the Documentation and Typographic categories, and for de-
fects concerning more advanced programming topics, we have
provided only a general description in Table 22 and Table 23, re-
spectively. A more comprehensive set of defects is available online
at [70] under Appendix A.

5.1 Refactoring at Novice Level
Since most of the examples involve changes in the code structure
(i.e., refactoring), we describe the implications of interventions
appropriate for an introductory programming context.

As pointed out by Fowler and Beck [50], a code smell is a surface
indication of a deeper problem. They made two subtle points about
a code smell:

(1) you need to spot it: “a smell is by definition something that’s
quick to spot . . . a long method is a good example of this —
just looking at the code and my nose twitches if I see more
than a dozen lines of Java.”

(2) you have to decide if a smell actually needs cleaning: “smells
don’t always indicate a problem. Some long methods are just
fine. You have to look deeper to see if there is an underlying
problem there.”

Making a decision as to whether or not to refactor is an additional
challenge for novices. Therefore, we have favoured code smells
that always need fixing: all but four of the code smells addressed
in the catalogue can always be refactored by applying a simple-to-
describe transformation. In the following tables, the four smells
that may or may not be refactored have been marked with a star
(*). By including this small set in the CS1 catalogue, CS1 instructors
have the opportunity to explain that some other patterns, such as
CS2 smells, require programmers to make a judgement on whether
they will improve readability and simplicity when cleaned.

5.2 Quality Defects – Data
We have identified a total of 15 data-related defects in the literature.
Twelve of them are described with examples in the tables 13–15.
The remaining three defects involve OOP concepts and will be
discussed later.

The first four defects relate to different redundant uses of vari-
ables. Students commonly declare a variable that is either never
used in later statements (DT1), or is only used once and could be
removed (DT4*). The second case (DT4*) may not be considered a
defect if a temporary variable adds clarity to the code. A method
may also include unused data: it may be an unused parameter (DT2),
or a return value that is not needed by the caller (DT3). Note that
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Table 13: Quality defect descriptions for Data – Part 1: Unnecessary

DT1. Unused or dispensable variable [40], [133], [123]

[40]
int main(){

int a;
a = 5;
// other code
return 0;

}

int main(){
// other code
return 0;

}

DT2. Unused or dispensable parameter [123], [90] (2)

[90]
int inputHour( int hour ) {

do {
cout << "Enter the hour (1-12)" << endl;
cin >> hour;

} while( !(hour >= 1 && hour <= 12) );

return hour;
}

int inputHour() {
int hour;
do {

cout << "Enter the hour (1-12)" << endl;
cin >> hour;

} while( !(hour >= 1 && hour <= 12) );

return hour;
}

DT3. Unused return value [90] (2)

[90]
int swap( int & first, int & second ) {

int temp;
temp = first;
first = second;
second = temp;
return temp;

}

void swap( int & first, int & second ) {
int temp;
temp = first;
first = second;
second = temp;

}

DT4*. Variable value used only once [71]

[71]
long newRow(int N, vector<long> comb){

long res = 0;
if (N <= 0){

res = accumulate(comb.begin(),comb.end(),0l);
return res;

}
vector<long> copy = comb;
for (int i = 0; i < comb.size(); i++){

if (comb.at(i) != 0){
comb.at(i) = copy.at(i-5) + copy.at(i+5) +

copy.at(i+1) + copy.at(i-1);
}

}
res = newRow(N-1,comb);
return res;

}

long newRow(int N, vector<long> comb){

if (N <= 0){
return accumulate(comb.begin(),comb.end(),0l);

}
vector<long> copy = comb;
for (int i = 0; i < comb.size(); i++){
if (comb.at(i) != 0){

comb.at(i) = copy.at(i-5) + copy.at(i+5) +
copy.at(i+1) + copy.at(i-1);

}
}
return newRow(N-1,comb);

}
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Table 14: Quality defect descriptions for Data – Part 2: Duplication (DT5–6), Unclear (DT7–9)

DT5. Two variables with same role / same values [75] (2), [71]

[71]
values = []
between = m-1

for i in range(m,n+1):
between += 1
if between%6 != 0:

if between%3 == 0:
values += [between]

elif between%2 == 0:
values += [between]

print(values)

values = []

for i in range(m,n+1):
if i % 6 != 0:

if i % 3 == 0:
values += [i]

elif i % 2 == 0:
values += [i]

print(values)

DT6*. Excessive use of variables or data structures to store intermediate values [133] (2), [90]

[133]
condAux = cond1 and cond2
condRes = condAux and cond3

condRes = cond1 and cond2 and cond3

DT7. Use of integers 1/0 with Boolean role [133]

[133]
if var1 > 0:

cond1 = 1
else:

cond1 = 0
if var2 > 0:

cond2 = 1
else:

cond2 = 0
if cond1 + cond2 == 2:

func()

cond1 = var1 > 0

cond2 = var2 > 0

if cond1 and cond2:
func()

DT8. Global Variable when only local scope needed [98], [149], [123]

[98]
global_list = []
def main():

global_list.append("abc")
print(global_list)
return None

main()

def main():
local_list = []
local_list.append("abc")
print(local_list)
return None

main()

DT9. Pass-by-reference parameter instead of pass-by-value [75], [90] (2)

[90]
void printTime( int &hour, int &min, int &sec ) {

cout << hour << "":"" << min << "":"" << sec;
}

void printTime( int hour, int min, int sec ) {
cout << hour << "":"" << min << "":"" << sec;

}
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Table 15: Quality defect descriptions for Data – Part 3: Inconsistent (DT10–11), Unsuitable (DT12)

DT10. Inconsistent typing of variables [90]
[90]

// Variable declarations
float checkAmount;
long double tipPercent;
double tip;

// Variable declarations
float checkAmount;
float tipPercent;
float tip;

DT11. Mixed use of parameter-passing and return value [90]
[90]

int inputTime( string occasion,
int &hour, int &min, int sec ) {

hour = inputHour( occasion );
min = inputMinute( occasion );
sec = inputSecond( occasion );
return sec;

}

void inputTime( string occasion,
int &hour, int &min, int &sec ) {

hour = inputHour( occasion );
min = inputMinute( occasion );
sec = inputSecond( occasion );

}

DT12. Pass by reference instead of return value [90]
[90]

void convertToCelsius( double fahrenheit,
double & celsius ) {

celsius = (fahrenheit - 32) * 5.0 / 9.0;
}

double convertToCelsius( double fahrenheit ) {
return (fahrenheit - 32) * 5.0 / 9.0;

}

Table 16: Quality Defect descriptions for Expressions

Unnecessary
EX1. Redundant Boolean comparison [67], [97], [121], [133], [123]

[121]
if ((x > 10) == true)

return length;
if (x > 10)

return length;

EX2. Redundant arithmetic operations or typecasts [133], [123]

[133]
var1 = str(input())
var2 = int(6 + 4)

var1 = input()
var2 = 6 + 4

Duplication
EX3. Repeated expression whose value is already known [123]

[123]
if len(lst1) == 0:

print(lst2[len(lst1)])
if len(lst1) == 0:

print(lst2[0])

Unclear
EX4. Simplifiable expression based on Boolean logic and relational operators [123]

[123]
not a <= b a > b
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parameters could be viewed as pertaining to the Data category (as
we have done in this catalogue) or as part of modular coding, which
would fit into Organization.

Variables may be duplicated, playing the same role but with
different names. Table 14 shows one such example (DT5), where
the variable between holds always the same value as the loop control
variable. Incidentally, defects of this type highlight the need for
feedback on variable roles. Other examples of duplication involve
the use of unnecessary variables to store intermediate results (DT6),
or using integers instead of Booleans (DT7).

Unclear usage of variables may relate to their scope. For example,
a variable is declared with global scope but is only used locally
(DT8), or a parameter is passed by reference although only its value
is needed (DT9). Students also make inconsistent or unsuitable
choices for (variable) data types, return commands, or parameter-
passing as shown in Table 15 (DT10, DT11 and DT12).

5.3 Quality Defects – Expressions
We found four defects in the literature at the expression level. They
are illustrated by the examples in Table 16. The most cited and
frequently found is the unnecessary check of a Boolean expression
(EX1). A typecast to the current type is also a redundant operation
(EX2). Moreover, we often find duplicated expressions (see also
CB11), although when an expression has been evaluated there is
typically no need to re-evaluate it (EX3).

Finally, there are multiple ways to write the same logical ex-
pression, but we should prefer the simplest one (EX4). We note
that Wellesley College provided a great public online resource that
explains Boolean logic simplification for novices [33]. Students
may not write complex expressions from scratch, but they may be
guided to assemble them when applying particular pattern-based
refactoring rules, such as those presented later (see, e.g., CB8).

5.4 Quality Defects – Control/Block
As students learn to use and combine basic programming constructs,
it is not surprising that this turns out to be the main source of code
smells at the introductory level. Indeed, a range of verbose patterns,
either unnecessary or duplicated, has been recurrently documented
in the literature. Tables 17 to 19 provide a list of such patterns,
starting with unnecessary statements, then covering duplication,
and finally other unclear or unsuitable code structures.

Redundant statements. The explicit comparison of Boolean values,
as in EX1, also translates into a verbose check in order to return
True/False (CB1), when it would be simpler to just return the value
of the Boolean expression directly. Checking conditions when it
is not necessary, in connection with cascaded if statements (CB2),
is another example of redundancy. Similarly, the value of some
conditions in a complex Boolean expression may be already known
for a given execution flow, hence such conditions can be removed
(CB3). Depending on the program structure, similar patterns can
sometimes be easy to spot, but other times it may be a challenge
for a novice to detect a redundant or ineffective (CB4) statement.
For example, it is easy to see that any statement immediately after
a return is not reachable (CB7), or that an empty or ineffective
conditional branch (CB5) can be removed. As an additional instance

of redundancy, nested if statements can be combined if they both
have the same (possibly empty) else block (CB8).

Duplication. Duplication is quite common in students’ code, rang-
ing from replicated computations that could be saved (CB9*) to
mergeable subsequent conditionals with either the same body (CB10)
or the same condition (CB11). A very frequent case is to have the
same calculation performed in all the alternative branches of a con-
ditional or switch construct (CB12). By factoring that statement out
of the construct (before or after, according to data dependencies) it
is clear it always executes, regardless of the condition’s outcome.

Inappropriate choice of flow-control constructs. Common defects
affecting novice code can be attributed to inappropriate choices of a
control construct, such as nesting instead of cascading conditionals
(CB21), or using a while instead of a for loop (CB20), or vice versa.
Modifying the control variable inside the body of a for loop (CB15)
may be an indication that using a while or do-while would be more
appropriate.

Poor treatment of iteration boundary cases. More subtle defects
in connection with loops depend on the way the boundary cases
are dealt with and require a thoughtful restructuring of the code,
possibly moving parts inside or outside the loop body. A while
condition tested again in the middle of its block (CB13) or some
special treatment of a boundary case within the loop (CB16) may
be clues of related smells. Including a statement within a loop that
is only executed in the last iteration (CB17) and infinite loops with
breaks (CB22) are other possible examples of this type of defect.

Other defects at the flow control level. Finally, the list of defects in
the Control/Block category covers multiple for loops with the same
iteration range that could be merged into a single loop (CB14*; ex-
ample not shown in Table 18), as well as two less frequent patterns:
A single-iterationwhile loop used instead of an if conditional (CB18)
and the use of recursion when an iteration would be a simpler so-
lution (CB19).

5.5 Quality Defects — Organization
Organization is critical to code quality, with most code smells ad-
dressed by professional developers being at this level. However,
since CS1 students write small programs, we found only eight de-
fects related to this category, listed in Tables 20 and 21.

Students may write a function that is never used (OR1), or add
specific code to deal with boundary cases that are already captured
in a loop’s general case (OR2). Sometimes, they disregard code pat-
terns for which the computation could be extracted into a method
(OR3), or they may define multiple functions that perform almost
identical tasks (OR4). In the last two cases, students fail to gener-
alise for better code reuse, whereas in other cases, the functions
may be casually spread over the code (OR5).

Similarly, the order of parameters in the method signatures may
be inconsistent (OR7) — a simple code smell that is easy to spot and
fix — or the Single Responsibility Principle may be ignored when
decomposing the code into multiple methods (OR6; there are many
varied examples, but only two are shown). We note that a long
method is often an indicator of poor decomposition (OR8*).
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Table 17: Quality defect descriptions for Control/Block – Part 1: Unnecessary

CB1. Redundant if statement that could be replaced with return [52], [67] (2), [123]
[52]

if (num % 7 == 3)
return true;

else
return false;

return num % 7 == 3;

CB2. Redundant (or consecutive) if condition that could be replaced with else [67] (2), [91] [133], [123]
[123]

if x < y:
print(1)

elif x >= y:
print(2)

if x < y:
print(1)

else:
print(2)

CB3. Redundant check of a condition (part of a composite condition) [65], [133]

CB4. Statement with no effect (or made ineffective by a subsequent statement) [75], [83], [133] (2), [123]
[133]

var = ''
var = int(input())

var = int(input())

CB5. Ineffective conditional branch [123]
[123]

if c:
pass

else:
# body

if not c:
# body

CB6. Useless loop - only a single iteration needed [149], [133], [123]
[149]

public double abs(double d) {
double result = d;
for (int i = 0; i < 10; i++) {

if (d < 0) {
result = -d;

}
}
return result;

}

public double abs(double d) {
if (d < 0) {

return -d;
}
return d;

}

CB7. Unreachable code [133], [123]
[123]

return x
print(x)

return x

CB8. Nested if statements that can be collapsed into one using AND [67], [91], [123]
[123]

if c1:
if c2:

# body

if c1 and c2:
# body
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Table 18: Quality defect descriptions for Control/Block – Part 2: Duplication

CB9*. Saving repeated computation into temporary value [67], [123]

[67]
if (value > 10) {

p = p + ((c + 10) * TAX_RATE) / 100;
} else {

p = p - ((c + 10) * TAX_RATE) / 100;
}

double adj = ((c + 10) * TAX_RATE) / 100;
if (value > 10) {

p = p + adj;
} else {

p = p - adj;
}

CB10. Consecutive if statements with same body could be combined (OR) [67], [133], [123]

[67]
if (value < 2) {

return 0;
}
if (value > 15) {

return 0;
}

if ((value < 2) || (value > 15)) {
return 0;

}

CB11. Consecutive if statements with same condition that can be merged [133], [90]

[133]
if num1 == num2 * 2:

print(num1, "multiple of", num2)
if num1 == num2 * 2:

print(num1, "even")

if num1 == num2 * 2:
print(num1, "multiple of", num2)
print(num1, "even")

CB12. Same code within all conditional branches can be “factorised” [52], [67], [69], [75] (2), [91], [123], [90]

[123]
if cond:

print("foo")
i += 1

else:
print("bar")
i += 1

if cond:
print("foo")

else:
print("bar")

i += 1

CB13. While condition tested again in the middle of its block [133], [90]

[133]
varCond = # setting initial value
while varCond != 0:

varCond = (...) # getting new value
if varCond == 0:

break
# code performing some function

varCond = (...)
while varCond != 0:

# code performing some function
varCond = (...) # getting new value

CB14*. Multiple distinct loops that operate over the same data [133]
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Table 19: Quality defect descriptions for Control/Block – Part 3: Unclear (CB15–17), Unsuitable (CB18–22)

CB15. Modifying for control variable inside loop [133], [123]
[133]

for iter in range(numMaxIter):
iter = ( ... )

for iter in range(numMaxIter):
other_var = ( ... )

CB16. Special treatment of boundary case(s) inside for loop body [66], [133]
[66]

System.out.print("{");
for(int i = 0; i < testArray.length; i++){

if (i == testArray.length - 1) {
System.out.print(testArray[i] + "]");

} else {
System.out.print(testArray[i] + ", ");

}
}

System.out.print("{");
for(int i = 0; i < testArray.length-1; i++){

System.out.print(testArray[i] + ", ");

}
System.out.print(testArray[i] + "]");

CB17. Statement inside loop only needed in last iteration [133], [90]
[133]

for iter in lst:
var1 += 1
var2 += iter
var3 = var2 / var1

for iter in lst:
var1 += 1
var2 += iter

var3 = var2 / var1

CB18. Single-iteration while loop used instead of if [75], [133]
[133]

while num1 + num2 < 9:
print(num1 + num2, "has more than 1 digit.")
break

if num1 + num2 < 9:
print(num1 + num2, "has more than 1 digit.")

CB19. Use of recursion instead of a simple iteration [90]

CB20. Inappropriate choice of a loop construct (e.g., while instead of for) [114], [133], [123] (2), [90]
[90]

// Print all the even numbers less than limit
number = 0;
while( number < limit ) {

cout << number << endl;
number = number + 2;

}

// Print all the even numbers less than limit
for( n = 0; n < limit; n = n + 2 ) {

cout << n << endl;
}

CB21. if nested inside else branch when elif/else-if is possible [123]

CB22. Infinite loops with breaks [90] (2)
[90]

do {
cout << "Enter an even number" << endl;
cin >> number;

if ( number % 2 == 0 )
break;

} while( true );

do {
cout << "Enter an even number" << endl;
cin >> number;

} while( number % 2 != 0 );
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Table 20: Quality defect descriptions for Organization – Part 1: Unnecessary (OR1–2), Duplication (OR3–4), Unclear (OR5)

OR1. Unused function (or similar unit) [123]
[123]

def f():
print(4)

print(4)

print(4)

OR2. Special case is already captured in general case [159], [123]
[123]

if len(lst) == 0:
return 0

sum = 0
for i in range(len(lst)):

# body
return sum

sum = 0
for i in range(len(lst)):

# body
return sum

OR3. A code block that appears multiple times [123]
[123]

if c:
f(1)
g(1)
f(1)

else:
f(2)
g(2)
f(2)

def fun(n):
f(n)
g(n)
f(n)

if c:
fun(1)

else:
fun(2)

OR4. User-defined functions doing essentially the same work [49], [90]
[90]

void printLatitude( string city,
int deg, int min, int sec ) {

cout << "The latitude of " << city << " is "
<< deg << ":" << min << ":" << sec << endl;

}

void printLongitude( string city,
int deg, int min, int sec ) {

cout << "The longitude of " << city << " is "
<< deg << ":" << min << ":" << sec << endl;

}

void printL( string city, string latLongItude,
int deg, int min, int sec ) {

cout << "The " << latLongItude << " of "
<< city << " is "
<< deg << ":" << min << ":" << sec << endl;

}

OR5. Arbitrary organisation of declarations [133], [90]
[133]

var1 = input ()
def func1():

(...)
var2 = input ()

var3 = func1(var1, var2)
def func2():

(...)
var4= func2(var3, var1)
var5 = input()

def func1():
(...)

def func2():
(...)

var1 = input ()
var2 = input ()
var3 = func1(var1, var2)
var4= func2(var3, var1)
var5 = input()
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Table 21: Quality defect descriptions for Organization – Part 2: Unclear (OR6), Inconsistent (OR7), Unsuitable (OR8)

OR6. Lack of decomposition [22], [28], [91], [90]

[90]
string inputStatus() {

// Input the number of credits taken
int credits;
do {

cout << "Enter the number of credits taken"
<< endl;

cin >> credits;
} while( !(credits >= 1 && credits <= 150) );

string status;
if( credits <= 28 )

status = "freshman";
else if( credits <= 56 )

status = "sophomore";
else if( credits <= 84 )

status = "junior";
else

status = "senior";
return status;

}

int inputCredits() {
int credits;
do{

cout << "Enter the number of credits taken"
<< endl;

cin >> credits;
} while( !(credits >= 1 && credits <= 150) );
return credits;

}

string inputStatus( int credits ) {
string status;
if( credits <= 28 )

status = "freshman";
else if( credits <= 56 )

status = "sophomore";
else if( credits <= 84 )

status = "junior";
else

status = "senior";
return status;

}

[91]
def euclidean_distance(coord1, coord2):

'''
coord1: (x1, y1), coord2: (x2, y2)
'''
return (abs(coord1[0] - coord2[0]) * abs(coord1[

0] - coord2[0]) + abs(coord1[1] - coord2[1])
* abs(coord1[1] - coord2[1])) ** (1 / 2)

↩→

↩→

def euclidean_distance(coord1, coord2):
'''
coord1: (x1, y1), coord2: (x2, y2)
'''
x_dist = abs(coord1[0] - coord2[0])
y_dist = abs(coord1[1] - coord2[1])
return (x_dist*x_dist + y_dist*y_dist) ** (1/2)

OR7. Inconsistent order of (the same) parameters in different methods [90]

[90]
void printDate( int day, int month, int year ) {

cout << month << "-" << day << "-" << year
<< endl;

}

void inputDate( int &day, int &year, int &month ) {
year = inputYear();
month = inputMonth();
day = inputDay( year, month );

}

void printDate( int year, int month, int day ) {
cout << month << "-" << day << "-" << year

<< endl;
}

void inputDate( int &year, int &month, int &day ) {
year = inputYear();
month = inputMonth();
day = inputDay( year, month );

}

OR8*. Long function/method/script [59], [123] (2)

[123]
def f():

... # > 20 statements

Decompose further if possible
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Table 22: List of quality defect descriptions for Documentation and Typographic issues.
D
oc
um

en
ta
tio

n Unnecessary DC1. Useless or ineffective comment [123]

Unclear
DC2. Variables and functions with meaningless or misleading names [75], [91], [133], [123] (2)
DC3. Using magic numbers in expressions (including ASCII codes) [91] ,[133], [123]

Missing
DC4. Missing header comment [133], [123]
DC5. Missing blank lines [63]

Ty
po

gr
ap
hi
c Unclear

TP1. Too many items on a single line / line of code too long [133], [123] (2)
TP2. Messy layout and formatting [63]
TP3. Long inline comment [133]

Missing TP4. No indentation, no blank lines separating blocks [133]
Inconsistent TP5. Inconsistent indentation, spacing and naming (syntactic) conventions [113], [30], [91], [123] (3)
Unsuitable TP6. Unsuitably composed identifiers (do not adhere to established conventions) [123]

Table 23: Examples descriptions by (source, issue qualifier) – for less pervasive CS1-related topics.

Data
Unclear DT13. Method/function parameter list can be made more compact [123], [90]

Unnecessary D14. Instance variable instead of method local variable (OOP) [90]
Unsuitable D15. Public instead of private instance variable (OOP) [121]

Organization
Unclear

OR9. Excessive use of overloading (different function/method signatures) [52]
OR10. Distribution of functionality among “casual” classes (OOP issue) [95]

Unnecessary OR11. Re-implementing library code [69]

5.6 Quality Defects – Documentation and
Typographic

Although documentation, layout and formatting are important for
readability, only a limited number of examples from the litera-
ture help to illustrate the related quality defects. We identified
five generic documentation defects and seven typographic defects
which are listed in Table 22. Most such cases are able to be de-
tected automatically, and the solution is straightforward but context-
dependent (e.g., missing documentation can be included, but there
is no generalisable pattern that can be used to model the solution).
It is rarely the case that a program has only one documentation or
typographic defect, so we have grouped multiple minor issues into
common descriptors, e.g., TP4 or TP

5.7 CS1 Advanced Examples
As mentioned previously, some examples address knowledge that
is not consistently covered in all CS1 courses but may be useful
for some CS1 designs. Table 23 shows the six patterns that fall
into that broad category. Four of them are related to OOP issues,
one to the use of compact data structures (DT13), and the last
pattern, re-implementing library code (OR11), is often due to a lack
of familiarity with the standard libraries.

5.8 Refactoring Code with Multiple Defects
The examples described in Tables 13 to 21 contain only one main
defect, so that students can learn how to edit or refactor each issue
individually. However, it is not uncommon for student code to
contain multiple defects as indicated by 21 examples in our dataset.
(The rest of the filtered examples, though appropriate for the CS1

if var1 is False and var2 is False:   // step 1 – EX1

    func1()

if var1 is False and var2 is True:

    func1()

if var1 is True and var2 is False:

    func1()                           // step 2 – CB10

if var1 is True and var2 is True:

    func2()

if (not var1 and not var2) or         // step 3 – EX4

   (not var1 and var2) or (var1 and not var2):

    func1()

if var1 and var2:                     // step 4 – CB2

    func2()

if var1 and var2 is False:

    func2()

else:

    func1()

Figure 1: An heterogeneous example E1 from [133] and the
steps to clean the code

level, required a more substantial reworking of the code structure,
that cannot be achieved by applying specific refactoring rules.) In
the cases of multiple defects it is advisable to identify and refactor
one issue at a time.Wewill describe this process with three different
examples, shown in Figure 1 and Figure 2.
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int sumValues(int[] values, boolean positivesOnly) {

    int sum = 0;

    for (int i = 0; i < values.length; i++) {

        if (positivesOnly == true) {  // step 1 – EX1

            if (values[i] >= 0) {     // step 2 – CB8

                sum += values[i];

            }

        } else {   // step 2* –  replace  else  with   if

            sum += values[i];

        }

    }

    return sum;

}

int sumValues(int[] values, boolean positivesOnly) {

    int sum = 0;

    for (int i = 0; i < values.length; i++) {

        if ((positivesOnly) && (values[i] >= 0)) {

            sum += values[i];

        }

        if (!positivesOnly) {

            sum += values[i];         // step 3 – CB10

        }

    }

    return sum;

}

int sumValues(int[] values, boolean positivesOnly) {

    int sum = 0;

    for (int i = 0; i < values.length; i++) {

        if (!positivesOnly || values[i] >= 0) {

            sum += values[i];

        }

    }

    return sum;

}

(a) Refactoring example Ex4 from [84]

#define H 1                           // DT1

#define T (""bad"")                   // DT1

int badglobal;                        // DT1, TP5

int add_values (int first_value, int second_value) {

    first_value = second_value + first_value;

    return first_value;

}  // add values                      // DC1

int main() {

    int value = add_values(1, 2);

    if (value == 1) {

       return 1447;                   // CB7

    }

    value++;                          // DT6

    return value;

}

int add_values (int first_value, int second_value) {

    first_value = second_value + first_value;

    return first_value;

}

int main() {

    return add_values(1, 2) + 1;

}

(b) Refactoring example Ex121 from [57]

Figure 2: Refactoring two additional heterogeneous examples

Code pattern E1 from Silva et al.’s catalogue [133] is described
as having one issue: “Checking all possible combinations unneces-
sarily”. However, as shown in Figure 1 we can identify two related

issues: the unnecessary evaluation of each Boolean variable (EX1)
and the fact three of the listed conditions have the same body. These
can be combined (CB10) to obtain a complex Boolean expression
that can be simplified. After the condition is reduced to “not var1 or
not var2”, we can see the two if conditions are complementary and
hence we can reduce them to an if/else. Although we may be able to
go directly from the first version to the last, it is likely many novice
programmers will require the intermediate steps and, in some cases,
they may not detect all quality defects, producing only a partial
refactoring.

The second example, from [84], is shown in Figure 2(a), and
has been used in multiple refactoring studies. After removing the
Boolean comparison (EX1), we need to make minor adjustments
to the code in order to compensate for the empty else statement of
the nested if. This requires an intermediate step to separate the else
(reversing a CB2 transformation) so that we can first combine the
nested ifs and then merge the resulting sequenced if statements
with “OR rule” (CB10).

The third example from [57] has multiple defects pointing to
a range of sources as labelled in Figure 2(b) The typographic and
redundant variable definitions (DT1) can be fixed in any order as
they are independent. Note that the if condition is always false,
hence the first return is unreachable code (CB7). Once we remove
that statement, we could also remove the local variable that stores
the result from add and use the value of the expression directly
(DT6). One problem with this example, however, is that it is scarcely
interesting since the code itself is doing very little.

The examples above illustrate that the order in which we can deal
withmultiple defects depends upon the potential code dependencies.
During the transformation process, it is also possible that new code
smells are created, which must be fixed in turn, as can be seen
in Figure 1.

We should note that poorly structured code with a large number
of interconnected defects could be quite hard to disentangle. In
such cases, when we are unable to fix one issue at a time, it may be
easier to rewrite the block from scratch instead.

6 Sample Activities
In this section, we describe a selection of the most representative
types of activities identified in our literature review (Table 11) in
more detail. For each activity, we focus on questions of interest
by the authors in their roles as educators, such as: how well is
the protocol of the activity described? What is the extent of the
materials provided? What is the setup cost? Is the activity targeted
to specific topics? Does it scale well?

Proposal: Activity Cards. A recurring theme that emerged during
the working group discussions is the difficulty in identifying an
activity that a teacher may adopt for their own context, based on the
literature in which an example is introduced. We understand this
to be a constraint of efforts to publish works in a scientific format;
sacrifices are made in terms of where the focus is, as there simply
is not enough space for a deep account of how to run the activity,
what tools were used, and what arrangements were required.

Our contribution is to present a collection of Activity Cards that
are easy to understand, whilst conveying enough salient informa-
tion for the teacher to help support their instruction. We have
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prepared nine activity cards as exemplars — a selection from the
28 activities discovered in the literature. Five of them are included
in this section for reference; the others can be found in [70] under
appendix B.

At a more general level, in subsection 7.4 we will discuss a couple
of recommendations concerning the introduction of code quality-
related activities in typical CS1 contexts.

6.1 Direct Instruction Activity
McMaster et al. [103, 104] proposed a tool for generating examples
with limited documentation and poor typographic style to be used in
lecture (see also the “UglyCode” card). The setup cost hinges on the
availability of the tool, which the authors mention can be obtained
upon request via email. Despite the lack of a formal evaluation of
its effectiveness, this activity is relatively scalable. Although the
idea can be expanded to different languages and features, the tool
was implemented in C++.

UglyCode [103, 104]

Description: The instructor can create examples for students that
add extra blank lines or remove them, add random indentation
lengths or remove indentation, adds garbage comments, change
variable names, increase line lengths. Instructor can pair this with
tools that improve code quality to demonstrate that good style
leads to easier to understand and maintain code.

Quality Focus: Descriptive variable naming (EL), reasonable
comments (EL) indentation and layout (CL), line length (CL).

Materials or Tools: A tool called UglyCode that will take Java
or C++ code and add code smells to it.

Grading or Assessment: None

Supported Language(s): Java or C++

6.2 Facilitated Activities
In a recent paper, Tan and Poskitt [142] describe an activity (“Fix
Your Own Code Smells” card) that tries to emulate the real-world
scenario of a refactoring task by requiring students to complete a
programming exercise designed in such a way that ensures they
will produce a code smell. Then, they are guided to refactor their
own code and appreciate the improvements attained in terms of
code cleanliness.

Fix Your Own Code Smells [142]

Description: This activity applies a mistake-based approach to
learning about code quality. First, students are provided a pro-
gramming exercise with instructions that result in a code smell
being introduced. Then after completing the exercise, students
learn about the relevant code smell(s) that were introduced, then
asked to identify the smells in their own code and then modify
their code to fix the smells.

Quality Focus: LongMethod, Long Parameter List (SC); Duplicate
Code (AD), Data Clumps Large Class, Primitive Obsession (SC).

Materials or Tools: A full set of exercises provided here.

Grading or Assessment: None

Supported Language(s): Python

Similarly, Izu et al. [67] present a facilitated activity in which
students are provided with a lightweight resource of refactoring
examples to use during a lab session. The resource consists of
four rules that can be applied to simplify conditional constructs
(“Refactoring Conditional Statements” card).

Refactoring Conditional Statements [67]

Description: Students are given a resource about four code qual-
ity "rules" related to conditional statements and tested on their
ability to apply those rules and write shorter/simpler code. The au-
thors also found a persistent effect of their intervention two weeks
later, with students who received the handout with code quality
rules writing shorter code than students who did not receive the
handout.

Quality Focus: Simplifying IF/ELSE statements (SC), Removing
duplicate (AD) or redundant statements/logic in IF/ELSE state-
ments (NC).

Materials or Tools: This resource includes all the materials given
to students: https://iticse22-refactor.github.io/resource/.

Grading or Assessment: The grading for this activity was only
focused on functional correctness. Since the activity required
refactoring correct, but low quality, code, the students could get a
full grade by not making any modifications.

Supported Language(s): C

6.3 Independent Activities
A large proportion of activities that promote code quality identified
in Table 11 are tool-based independent activities that were (partially)
motivated by addressing the issue of scale. As a result, tool use
becomes the activity, which is problematic in terms of ensuring
students are engaging in (and learning from) the activity. However,
given the resource challenges in larger courses, these efforts are
worthy of attention to give a sense of what could be included as a
mostly passive code quality activity that scales well.
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The goal of Choudhury et al.’s work [32] is to provide a scalable
solution to generating formative code style feedback for students
working on an assignment. The tool presented, AutoStyle (see re-
lated card), is unfortunately not available in any way that would
make it immediately usable to instructors — a common issue with
novel tools within computer science education and more fully ex-
plored in a previous working group [18].

Nevertheless, the approach is worthy of detailing here. The two
most interesting aspects of this work are that: (1) it reduces the
effort of instructor-guided feedback from being proportional to
all students to clusters of similar submissions; (2) it complements
instructor-guided feedback with automatically generated feedback.

Previous student submissions or instructor-generated solutions
can be used to seed the process. From this dataset, clusters are
identified based on their abstract syntax tree edit distance. Then
these clusters are manually tagged by instructors as being good,
average or weak, as well as labelled with a guidance note on how
to improve the code style. To complement this, near-but-better
solutions can be stripped back to a code skeleton in order to help
a weaker student move forward in a progressive manner (rather
than leap to the best solution immediately). Syntax hints are also
generated, e.g., reporting which built-in functions or structures
could be used.

AutoStyle [32]

Description: A novel feature of this approach is that previous
student submissions are used to identify poor code quality. These
clusters are labelled good, average or weak. This has the effect of
reducing the scale, as the scaling factor is no longer the number of
student submissions, but the number of clusters discovered. This
reduces the effort in generating feedback and exemplars.

Quality Focus: Assignments, branches, and conditional state-
ments are counted to form an ABC score. The main aim is to
simplify code (SC).

Materials or Tools: The tool, Autostyle, while not immediately
available as open source, has multiple components for instruc-
tor use (labeling clusters of similar code style) and student use
(receiving hints and exemplars towards better code style).

Grading or Assessment: The tool compares submissions to sim-
ilar clusters that have been pre-labeled by the course responsible.
Hints and exemplars linked to that cluster can be used by students
to improve their own code quality.

Supported Language(s): Python, Java, Ruby

The greatest strength of this work is to partially automate work
to allow human guidance to be used at a large scale with less effort.
Although Choudhury et al. [32] only presents an experimental eval-
uation, the results appear very positive. According to the authors
it works for Java, Python and Ruby. Unfortunately, the tool itself
does not appear to be accessible to other teachers and the size of
exercises was reported to be small (a few lines to tens of lines of
code).

As an additional example of independent activity, Bobadilla et al.
[20] aims to nudge students towards code quality over time (“SOBO:
Nudging Codestyle” card). The bot proposed in their work, SOBO,
is available on GitHub as open-source software but will require
configuration for use in other courses. The main strength and weak-
ness in terms of being used in different courses is that it operates
on a GitHub organisation where students keep their code submis-
sions; thus, although it does not require the use of a special tool, it
requires for GitHub to be part of the course infrastructure.

In contrast to tools that auto-grade code quality on submission,
SOBO works on student commits — aimed at providing ongoing
formative feedback as work progresses. The limitation on small
code examples is removed as SOBO works at a repository level and
can process all files that seem relevant by file extension. Finally, to
avoid the case where instructor-provided code may trigger warn-
ings, SOBO uses git-blame to only consider code that the students
themselves have contributed.

SOBO operates by monitoring student repositories for commits
and then analyses the most recent commit for code quality viola-
tions (a small subset of Sonar’s violations) that are relevant to the
course level. However, students may simply push their entire work
as a single commit, so other activities, such as helping students
plan commits, might be required to encourage students to break
their work up into smaller chunks [14].

SOBO: Nudging Codestyle [20]

Description: The tool (SOBO) is a bot that works within a GitHub
organisation. As student make code commits, it analyses their
submissions using Sonar. Once a violation is found to be recurring
an issue is posted with corrective feedback. The message gives
a rich description of the violation, along with an example of the
violation in another context and its resolution. The tool also has a
user interface that allows students to control its activity.

Quality Focus: Using a very small subset of Sonar rules (n=5)
that focus on assignment (EL), appropriate implementation (AI)
and layout (CL).

Materials or Tools: It is open source, but requires the ability
to host as a persistent service and run a class within a GitHub
organization.

Grading or Assessment: None

Supported Language(s): Java

Depending upon which violation is most prevalent in the student
code, an issue is posted explaining the violation, providing an exam-
ple and its correction, as well as further reading material. Posting
as an issue is both positive in that it uses an authentic pathway for
feedback on code rather than an external tool or system, but also
negative as it depends upon the student checking their issues.

One final aspect is that SOBO provides the students with agency
and some entertainment. It has a few basic commands that allow
students to interact with the bot, such as disabling and enabling, as
well as a few Easter eggs for the more curious students to discover.
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7 Discussion
7.1 Research Questions
We start the discussion section by summarising the answers to the
research questions formulated in subsection 3.1.

RQ 1: Which code examples related to code quality have been used in
the literature on code quality in CS1 education? As expected, the bulk
of the examples from the literature use the programming languages
currently most widespread in education, namely: Python, Java and
C/C++, with a few earlier programs written in Pascal. Translating
the examples into other Algol-like languages is relatively straight-
forward. Notable exceptions are some papers adopting block-based
environments, usually Scratch, or even spreadsheet formulas, to
introduce specific forms of code smells and refactoring rules. How-
ever, such work was not considered appropriate for a standard CS1
delivery and was therefore out of scope.

As observed in subsection 4.3, most of the retrieved code exam-
ples devised explicitly for an introductory context include only a
single defect. Approximately 20% of the examples have only one or
two lines of code, around 30% three to five lines, another 30% six to
ten lines, and the remaining 20% more than ten. It seems likely that
such examples were designed to focus on isolated quality issues to
reduce the cognitive load imposed by more complex problems.

RQ 1.1: Which topics related to code quality are covered by these
examples? A detailed account of the quality topics addressed by the
collected examples is summarised in Tables 13 through 23.

A first observation is that roughly half of the “single-defect”
examples are about the control flow, predominantly using basic
conditional and loop constructs or the connected expressions. Com-
bining these examples with those that introduce issues of data
flow, we cover more than two-thirds of the set — corresponding to
the Algorithms area in Stegeman et al.’s rubric [139]. Higher-level
planning aspects involving problem decomposition and program
modular structure — the Structure area in [139] — are addressed
by about 14% of the “single-defect” examples. The remaining 16%
concern layout, formatting and documentation issues. The small set
of examples exhibiting multiple quality defects in the same program
do not introduce additional topics.

Based on the characterisation of types of quality issues intro-
duced in subsection 3.3, the Missing qualifier category is covered
only by defects affecting the documentation and other minor typo-
graphical features (usually only described inwords). This should not
be surprising since missing elements connected with data, parts of
the expressions or the control flow usually means that the program
is functionally incorrect.

Examples of missing components in control constructs that could
be considered quality defects are, for instance, the lack of a default
case in a switch statement (Ex50), or an empty catch block to deal
with thrown exceptions (Ex26). In the former case, however, either
the listed switch cases cover all the possible values of the control
expression, in which case the default is redundant, or the execution
could give rise to runtime errors. Similarly, in the latter case, when
the exceptions are not properly caught, the code execution will
break off abruptly. Even if using such components is suggested as
a temporary solution during debugging, this makes only sense for
potentially incorrect code.

We can further observe that most issues involving expressions
are due to redundancies (Unnecessary category), with only two
more examples that present instances of avoidable duplication and
scarce clarity.Duplication andUnnecessary together amount tomore
than 70% of the examples in the Control/Block class, whereas the
Inconsistent category is not represented. This may be a consequence
of the small size of most examples.

At a finer-grained level, the types of defects addressed in more
(at least three) different sources are:

• Data: Global variables used with local scope and useless or
unnecessary variables;

• Expression: Unnecessary evaluations of conditions;
• Control/Block: Subsequent conditionals with the same (sin-
gle) branch, duplicated code that can be “factored” between
conditional branches (this case being very frequent), unnec-
essary if statements that can be collapsed into a Boolean
expression (e.g., to return), subsequent if statements that
can be condensed in a single construct using an else clause,
nested conditionals that can be condensed using Boolean
operators, ineffective statements, inappropriate loop choice;

• Organisation: Issues due to lack of decomposition;
• Documentation: Meaningless or misleading choice of names
and direct use of literals instead of symbolic constants;

• Typographic: Messy layout and formatting.
Section 7.2 elaborates on the characterisation of the covered

topics from the perspective of Kirk et al.’s [88] more abstract tax-
onomy.

RQ 2: Which teaching activities related to code quality have been used
in the literature on code quality in CS1 education? As discussed in
subsection 4.4, we identified 28 instructional activities appropriate
for the CS1 level. Four of them are meant to be mainly conducted
by the instructor, seven imply some significant interaction between
teacher and students, and all the others are proposed as essentially
independent tasks for the learner. This indicates that most of the ac-
tivities reported in the literature rely upon the student both making
use of a tool and being able to interpret any feedback they receive.

Additionally, we did not observe significant connections between
the activities and the catalogued examples, except in a few cases
where the paper makes explicit reference to a specific defect and its
improvement (e.g., [20, 32, 67]). Thismay be because comprehensive
lists of examples intended for an introductory level were unavailable
until very recently. Our work aims to make further progress in this
respect.

RQ 2.1: Which topics related to code quality are covered by these
activities? To characterise the topics addressed by the activities
identified in this study, summarised in Table 11, we refer to Kirk
et al.’s quality principles [88]. Nine of them cover a broad range of
code quality issues, but are loosely related to Kirk et al.’s taxonomy,
in that they make use of static analysis tools that implement a
variety of checks (e.g., [17]) or draw from textbooks and other
resources available in the specific context (e.g., [31]).

The other activities target specific quality principles, sometimes
multiple different principles. The counts are shown in Table 24. The
four most commonly covered categories were: Explanatory Lan-
guage (EL), Clear Layout (CL), Simple Constructs (SC), and Modular
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Table 24: Counts of quality principles covered by the identi-
fied CS1 activities.

Code Taxonomy Item Count

EL Explanatory language 8
CL Clear layout 7
SC Simple Constructs 8
CD Consistent Design 1
NC Non-redundant Content 1
AI Appropriate Implementation 3
AD Avoid Duplication 3
MS Modular Structure 10

Unspecified 9

Structure (MS). For instance, Hundhausen et al. [61] report on a
facilitated peer review activity that was scaffolded by providing
students with a checklist of specific questions spanning three of
Kirk et al.’s categories (EL, CL and MS). In Keen and Mammen [79],
students completed a term-long project in which program decompo-
sition into modular structure (MS) is emphasized in the milestones.
In Nascimento et al. [111], the authors piloted a custom-built tool,
IQCheck, that makes use of natural language processing to evaluate
the quality of identifier names (EL) of student code, taking into
account the text of the problem specification.

7.2 Teaching Quality Principles
Kirk et al. [88] focus on a set of principles that are intended to
inform the teaching of code style — specifically helping teachers
and students to better articulate the implications of code quality
decisions (i.e., why some approaches are recommended over others).
We will briefly review each principle and link it to the curated set of
defects listed in section 5. Moreover, in Table 9 we summarise the
relationships between Kirk et al.’s categories and typical quality
indicators identified in the literature. For a detailed discussion of
the rationale underlying each principle, the reader is referred to
Kirk et al. [88].

7.2.1 Explanatory Language (EL). This principle specifies that ‘The
intent and meaning of code is explicit’. This includes the appropriate
use of comments to explain code as needed, but also the use of de-
scriptive identifiers for symbolic constants, variables, functions and
methods. Code that is well constructed and usesmeaningful variable
and function names is sometimes described as “self-documenting”
because the intent and meaning of the code are evident, reducing
the need for comments. Examples from Table 22 include:

• Identifiers should be meaningful and describe the purpose
of the data or function they refer to (DC2).

• Header comments that are necessary to explain the purpose
of the code should be included where appropriate (DC4).

• ‘Magic’ numbers should be replaced with symbolic constants
to make the meaning of the numbers explicit (DC3).

7.2.2 Clear Layout (CL). This principle specifies that ‘Different ele-
ments are easy to distinguish, and the relationships between them are
apparent’. The focus of this principle is the layout and formatting

of the content. Although modern IDE support has improved format-
ting and layout, the principle remains relevant. The use of layout
implies a deliberate choice by the programmer to imply relation-
ships within code. In the absence of an expressive layout, the reader
can potentially be misled about the relationships between code
elements, making the code more difficult to understand. Examples
from Table 22 include:

• Long lines of code, or comments, that are difficult to read
(TP1, TP3).

• Failure to include blank lines between blocks that would
separate the blocks of code more obviously, or too many
blank lines that disrupt the reading flow (TP4, TP5).

• Using spaces between some operators and not others. Poor,
or inconsistent use of spaces can unintentionally imply that
elements are related when they are not (TP5).

7.2.3 Simple Constructs (SC). This principle specifies that ‘Coding
constructs are implemented in a way that minimises complexity for the
intended reader’. The principle of Simple Constructs most obviously
applies to control flow but can also be applied to expressions that
should be simplified where possible. Adhering to this principle is
especially important when students are still learning to read and
understand code. Examples from the tables in section 5 include:

• A complex expression should be simplified using Boolean
and relational operators (EX4).

• if statements should have the simplest structure that aligns
with the desired control flow (CB2).

• Nested if statements that can be simplified using a Boolean
operator instead (CB8).

• Using a nested if inside an else branch when an elif/else-if is
possible (CB21).

7.2.4 Consistent Design (CD). This principle captures the bene-
fits of code conventions by specifying ‘Elements that are similar
in nature are presented and used in a similar way’. Consistency is
important because code requires less mental effort to understand
when it adheres to standard patterns. This consistency is important
within the code, but also within a broader community, which may
have adopted conventions that standardise layout or other compo-
nents of code use according to a set of (largely arbitrary) rules.
Examples of standardisation or consistent design from the tables in
section 5 include:

• Code that does not adhere to naming conventions is harder
to read because it defies expectations of the reader (TP6).

• Missing components, such as header comments, that are
required by code conventions (DC4).

• The types of variables should be consistent when used for
the same purpose (DT10).

• The ordering of parameters should be consistent to avoid
simple mistakes occurring when functions or methods are
called (OR7).

7.2.5 Non-redundant Content (NC). This principle specifies that
‘All elements that are introduced are meaningfully used’. It should
be noted that redundancy here focuses exclusively on code (and
comments) that do not contribute meaningfully to the program;
redundancy related to duplication is dealt with separately. Examples
of this category from the tables in section 5 include:
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• Comments that do not meaningfully convey additional in-
formation are redundant and should be removed (DC1).

• Code that is never executed is considered redundant and
should be removed (CB7 ).

• Code that can be removed without impacting the functional
correctness of the code is also redundant (EX1, EX2, DT1,
DT2, DT3, CB3, CB4, CB6, and OR1).

7.2.6 Appropriate Implementation (AI). This principle specifies:
‘Implementation choices are suited to the problem to be solved’. In the
context of CS1, this can be interpreted as “using the right program-
ming constructs for the task at hand”. This includes algorithmic
issues where the code is more complex than needed because of
poor implementation choices (e.g., adding a sentinel to a list of
data values during a read process, then needing to remove it later).
Examples from the tables in section 5 include:

• The appropriate type should be used for each variable, e.g.,
integers should not be used in place of a Boolean (DT7).

• Functions thatmodify parameters passed by reference should
instead return values where it makes sense to do so (DT12).

• The control variable in a for loop should not be modified
within the loop (CB15).

• A while loop should not be used as a single-iteration replace-
ment for an if statement (CB18).

• Loop constructs should be selected based on the purpose
of the loop — for loops should be used to iterate through a
data structure, and while loops should be used when the end
condition is indeterminate using static analysis (CB20).

• Infinite loops with a break to terminate the loop should be
replaced with a loop using an explicit end condition (CB22).

7.2.7 Avoid Duplication (AD). This principle specifies that: ‘Code
duplication is avoided’.4 Duplicated code requires more effort to
read and makes it more likely to be inconsistent and to introduce
errors. Examples from Tables 16 and 18 include:

• Expressions that could be calculated once and stored for
reuse in multiple places (EX3).

• Similar code appearing in multiple branches of conditional
statements (CB10, CB12).

• Conditional statements with the same condition that could
be merged (CB11).

7.2.8 Modular Structure (MS). This principle states that ‘Related
code is grouped together and dependencies between groups minimised’.
This is intended to apply to algorithmic structures, functions, and
classes (where appropriate). If code that is related is grouped to-
gether then it is easier to understand the relationships between
elements, and if the inter-relatedness of ‘chunks’ of code is mini-
mized, then the mental effort required to remember the relation-
ships is reduced. Further, modular code is easier to modify without
requiring consequential changes to other code. This is a common
design principle that is typically introduced in CS1 courses, and
aligns with advice to minimise the use of global variables and in-
stead prefer variables with local scope. Examples from Tables 14,
21 and 23 include:
4In this paper, we use the term Avoid Duplication instead of Avoid Repetition, as in [88],
for the same principle to ensure that the reader does not interpret this as avoiding the
use of loops.

• Parameters should be passed by value whenever possible,
rather than passed by reference, to improve the indepen-
dence of functions (DT9).

• Long lists of parameters should be made more compact to
reduce high levels of inter-relatedness between code (i.e., to
improve modularity) (DT13).

• Where possible, variables should be local rather than global
(or instance variables if teaching OOP) (DT8, DT14)

• Decomposition should be used to reduce the complexity of
problems (OR6).

• Long functions should be decomposed into smaller parts (OR8).

7.3 Modelling the Cognitive Demands of Code
Quality-Related Tasks

One of the concerns when teaching to novice programmers is to
identify the cognitive effort implied by the tasks we propose. This
is of course related to the level of complexity and abstraction of the
code artefacts learners are required to interact with.

A reference framework that has been proved useful to anal-
yse core aspects of program comprehension is Schulte’s Block
Model [129]. This instrument introduces a two-dimensional map-
ping of abstraction and complexity (see Figures 3–6), primarily
addressed to introductory programming education. The merits of
the BlockModel have been substantiated by different studies. In par-
ticular, it can be used to characterise programming tasks [72, 127].
According to Whalley and Kasto [157], it has also the potential
to support a more accurate categorisation than those provided by
Bloom’s [7] or the SOLO [15] learning taxonomies.

The horizontal dimension of the Block Model distinguishes
among different levels of abstraction to look at the artefact at hand:
from static syntactic features of the program (Text surface), to dy-
namic aspects pertaining to the working of the underlying notional
machine [44] (Program execution), to the intent-related purposes of
the program as a problem-solving tool (Function/purpose). The verti-
cal dimension spans through four levels of structural complexity of
program components: atomic components such as expressions and
individual statements (Atoms), code chunks built up by combining
basic flow control constructs (Blocks), relations and dependencies
between program parts (Relationships), and overall program struc-
ture (Macrostructure).

The two dimensions outlined above are organised into a 4×3ma-
trix, as shown in the figures 3–6, where the rows represent a hierar-
chy of increasingly complex programming structures, whereas the
columns correspond to the three levels of abstraction throughwhich
we inspect the code. From a pedagogical point of view, stepping
upwards within the matrix, from simple to complex, and rightwards,
from text to execution to purpose, is connected with progress in the
program comprehension process [129, 130] and implies thinking at
increasingly higher levels of abstraction.

Drawing inspiration from Izu et al. [72], we can then take a
similar approach and map code quality-related tasks into different
cells of the matrix. In this respect, Schulte’s framework can also be
used to identify paths in the Block Model corresponding to issue-
fixing or refactoring interventions — more specifically, trajectories
from the cell pertaining to detection of a quality issue to the cell
accounting for how the artefact can be restructured. A similar
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Block  

Atom  
Ex64: resolve

Text surface Program execution Function/purpose
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Relationships  

Block  
R6 (CB7): detect

Atom  
R6: resolve

void printTime( int & hour, int & min, int & sec )
{
   cout << hour << ":" << min << ":" << sec;
}

(delete all  &)

return x

return x
print(x)

Figure 3: Mappings of sample code quality tasks into Schulte’s Block Model framework. The example is an instance of
unreachable code (R6).
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Text surface Program execution Function/purpose
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Atom  

def euclidean_distance(coord1, coord2):

  return (abs(coord1[0] - coord2[0]) * abs(coord1[0] - coord2[0]) + ↵
          abs(coord1[1] - coord2[1]) * abs(coord1[1] - coord2[1])) ** (1 / 2)

def euclidean_distance(coord1, coord2):

  x_dist = abs(coord1[0] - coord2[0])
  y_dist = abs(coord1[1] - coord2[1])
  return (x_dist * x_dist + y_dist * y_dist) ** (1 / 2)

while num1 + num2 < 9:
  print(num1 + num2, "...") 
  break

if num1 + num2 < 9:
  print(num1 + num2, "...")

Figure 4: Mappings of sample code quality tasks into the Block Model matrix: an instances of “single-iteration loop” (B6).
More
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Ex64 (DT9): detect

Block  

Atom  
Ex64: resolve

Text surface Program execution Function/purpose

Macrostructure  

Relationships  

Block  
R6 (CB7): detect

Atom  
R6: resolve

void printTime( int & hour, int & min, int & sec )
{
   cout << hour << ":" << min << ":" << sec;
}

(delete all  &)

return x

return x
print(x)

Figure 5: Mappings of sample code quality tasks into the Block Model matrix: an instance of inappropriate parameter passing
(Ex64).

picture gives some insight into the level of challenge students may
face. A few examples follow (refer to the categorisation in section 5):

• Several quality issues pertaining to the syntactic facet can
be detected and fixed at the same structural level of the Text

surface area — e.g., layout and formatting issues such as TP1,
TP2 or TP5. It is also the area where automatic tools are more
helpful. In the spirit of the Block Model, the prominent focus
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Atom  

def euclidean_distance(coord1, coord2):

  return (abs(coord1[0] - coord2[0]) * abs(coord1[0] - coord2[0]) + ↵
          abs(coord1[1] - coord2[1]) * abs(coord1[1] - coord2[1])) ** (1 / 2)

def euclidean_distance(coord1, coord2):

  x_dist = abs(coord1[0] - coord2[0])
  y_dist = abs(coord1[1] - coord2[1])
  return (x_dist * x_dist + y_dist * y_dist) ** (1 / 2)

while num1 + num2 < 9:
  print(num1 + num2, "...") 
  break

if num1 + num2 < 9:
  print(num1 + num2, "...")

Figure 6: Mappings of sample code quality tasks into the Block Model matrix: example of lack of decomposition (Ex107).

of this area is on code layout and indentation, since they are
related to the learner’s awareness of code structure.

• Duplicate code is detected at a Text surface level, typically
either Atom or Block, but can be resolved at a Program execu-
tion level — examples are CB10, CB11, CB12 at the Block level;
CB13 at the Relationships level; or OR3 (extract function) at
the Macrostructure level.

• Lack of conciseness may emerge at a Text surface level, but
the code can be cleaned at a corresponding level of the Pro-
gram execution dimension — e.g., EX1, EX4 at the Atom level
or CB2, CB8 at the Block level. In the case of long scripts, such
as OR8, the target code can be even the result of a revision
at the Macrostructure level.

• Useless or unreachable code, on the other hand, is often
detected at a Program execution (Atom, Block or Relationships)
level, but once identified it can be removed at the Text surface
(usually Block) level; related example are DT1, DT3, CB4 and
CB7.

• Well-structuredness of code — including examples such as
CB15, CB16, CB20, CB21 and CB22 — is commonly evaluated
and enhanced at the Block level of Program execution.

• Decomposition can involve knowledge extrinsic to the pro-
gram code, in which case it can be evaluated and dealt with
at the Function/purpose (up toMacrostructure) level; examples
are OR2, OR5 and OR6.

• Similarly, header and inline comments usually imply extrin-
sic considerations which make only sense in the context
of the problem to be solved and hence pertain to the Func-
tion/purpose facet of the model.

For the sake of illustration, the figures 3 through 6 consider four
examples drawn from our catalogue. R6 is a simple instance of
unreachable code (Figure 3): to identify this issue it is necessary
to envisage how a chunk of code is executed (Program execution –
Block cell) and to fix it it is sufficient to remove a single statement
(Text surface – Atom). The second example, B6 (Figure 4), is about the
inappropriate use of a loop to perform a single iteration, whereas
a simpler if statement would do the job more smoothly. This kind

of issue can be detected and resolved “within” the same (Program
execution – Block) cell.

The third example, Ex64 (Figure 5), presents a case where using
pass-by-reference parameters is not a sensible choice: this kind of
issue can be recognised by putting into relation the list of param-
eters in the function header with the code in the function body
and, more in general, also with the caller code (Program execution
– Relationships); fixing the issue is then effortless (Text surface –
Atom). The last example, Ex107 (Figure 6), includes a long expres-
sion (Text surface – Atom) of no immediate interpretation: to render
it more readable it is necessary to decompose the computation —
into a code chunk — in such a way that the meaning of its parts
becomes clearer, i.e., by making self-evident the purpose of each
sub-expression (Function/purpose – Block).

As visualised in Figures 3 and 5, it is interesting to observe that
a refactoring intervention, i.e., editing the code, is not always more
cognitively demanding than the detection of that quality issue.
There are defects, such as R6 and Ex64, that once identified are
indeed straightforward to resolve. Others, such as instances of code
duplication or Ex107, are easily detected but improving the code
may be challenging for novices.

Dealing with code presenting multiple quality defects can be
described by more complex “trajectories” along the Block Model
dimensions. The four refactoring steps illustrated in Figure 1, for
instance, can be mapped into two edits of expressions at the Atom
level and two interventions on chunks of code at the Block level, all
of them moving from Text surface (detection) to Program execution,
where the transformation can be understood — see Figure 7.

As a further observation, in a few cases, such as those pertaining
to CB8 or CB10, it may appear that the refactoring consists simply
in the application of syntactic rules, and is therefore restricted
to the left column of the Block Model matrix. Nevertheless, to
understand the rationale underlying the transformations and be
able to appreciate the equivalence between the code before and after
editing, the student is required to reason at the Program execution
level.

To sum up, Schulte’s Block Model can be an helpful device avail-
able to the instructor in order to plan a sequence of code quality
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Block     Ex107: resolve
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                    Ex64: resolve

Atom                  R6: resolve

Ex107 (OR6): detect

return x

return x
print(x)

def euclidean_distance(coord1, coord2):

  return (abs(coord1[0] - coord2[0]) * abs(coord1[0] - coord2[0]) + ↵
          abs(coord1[1] - coord2[1]) * abs(coord1[1] - coord2[1])) ** (1 / 2)

def euclidean_distance(coord1, coord2):

  x_dist = abs(coord1[0] - coord2[0])
  y_dist = abs(coord1[1] - coord2[1])
  return (x_dist * x_dist + y_dist * y_dist) ** (1 / 2)

void printTime( int & hour, int & min, int & sec )
{
   cout << hour << ":" << min << ":" << sec;
}

(delete all  &)

Figure 7: Mapping into the Block Model framework of the
task described in Figure 1, dealing with with multiple code
quality defects in the same program (E1).

tasks of gradually increasing complexity, starting from examples
that can be mapped into the bottom-left cells of the matrix and then
moving forward, towards higher structural complexity and more
abstract perspectives on the programs. The (very) simplest tasks we
can think of are restricted to detection of issues identifiable by just
looking at the program text, or resolvable by removing a few lines
of code after receiving feedback on the kind of issue (possibly via
automatic tools). A reasonable objective for CS1, however, could be
to cover (at least) a bit of each of the four complexity levels of the
Program execution perspective.

7.4 Challenges and Recommendations for CS1
Instructors

Fitting code quality in CS curricula is challenging because it re-
quires a shift in emphasis on the code and the coding process. This
challenge is reflected in many ways: (1) the lack of topics in the
curricula that would support code quality activities, such as reading,
reviewing and modifying code; (2) the lack of focused instruction to
develop related programming skills; (3) the lack of validated assess-
ments of these programming skills, for example, about how to pick
a programming construct for a specific problem; and, maybe most
importantly, (4) the perception that teaching code quality would
be an additional burden to our already crammed CS curricula. We
now discuss each challenge and provide some recommendations
for educators.

Challenge 1: Limited quality-related topics in the CS curricula. His-
torically, CS curricula emphasise concepts over coding. Coding is
viewed as a vehicle for demonstrating CS concepts. Therefore, un-
surprisingly the way our students engage with code during their for-
mal education years does not match how they do it in the profession.
A finding from Börstler et al.’s 2017 ITiCSE Working Group [24] re-
vealed a stark contrast between the programming tasks of students
and developers. Though the sample size of the survey was small,
58% of students disagreed with the statement that other people are
reading or modifying the code that they have written, whereas only
27% of developers disagreed with that statement [24].

This challenge is also reflected in the limited richness of activ-
ities that we found in the literature. Many of these activities are
inherently designed as a supplement — often a resource or tool that
is offered to students outside of class with no direct instruction
component in lecture (refer to section 4, point 4.4.2 for more details).
In addition, most activities are focused on the end product, such as
identifying code style violations in students’ code and providing

feedback or illustrative examples (as summarised in Table 12), and
rarely on the refactoring process. Lastly, most papers lack sugges-
tions for assessment and grading of similar activities (see section 4,
point 4.4.3), what presents further issues of incentivising students
as we discuss later in this section.

Recommendation 1: Replace some writing code activities with
alternative activities that require reading, reviewing and modi-
fying code.

In our view, CS1 instructors should reflect on how code quality
fits in their current curriculum, and how to make small and gradual
changes to their classroom activities. For example, instead of giving
students time to write a few lines of code in a workshop, you may
provide one or two alternative programs to compare and evaluate,
which they can actively discuss using a Think, Pair, Share structure.
Replacing code creation activities with code evaluation activities
would not only change the focus to code quality, but it would be a
very valuable task considering the increasing use of AI-supported
coding tools.

Challenge 2: Limited incentives for students to write quality code. Our
analysis revealed that CS1 students have limited incentives to write
quality code. Two separate observations illustrate this issue. First,
very few activities actually reward good code quality in terms of
grading. Our extraction of pedagogical activities in subsection 4.4
showed that only 18% of those addressed to the CS1 level include any
grading components related to code quality. Instead, the majority
of the activities were tools that students could use to improve the
quality of their code, but had little incentive to do so.

Second, there is a lack of activities in the CS1 curricula that
would enable good habits to improve code style, in particular code
review activities. Given our framing of code quality in terms of ease
of understanding and modifying code, the limited opportunities
for students to write code that will be read or modified by others
certainly reduce the intrinsic motivations for caring about code
quality. Indeed, the activities we extracted in the present study
show that only three (11%) of the 28 activities involved peer review,
which would require students to read each other’s code.

Recommendation 2: Engage students by adding incentives for
evaluating the quality of their own code, as well as of the code
developed by their peers.

Similar incentives could range from opportunities to interact
with code written by other programmers or peers, group discussion
of code quality for participation marks, peer reviews or, when
possible, adding a code quality grading component to practical
assignments. The instructor could direct peer reviews to relevant
areas by creating a one-page checklist with a small set of defects to
identify and fix; for example, if the assignment focuses on iteration,
the checklist could include some of the defects related to the use of
variables and loop constructs, plus some typographic defects. Later
assignments can then have an overlapping set of defects to check.
The same approach could be used to provide a self-checklist to be
completed before the last submission.

Whatever the “operational” incentives we may figure out, it is
clear that students’ intrinsic motivation to learn about code quality
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is the most effective one. While discussing the challenges faced by
novices to learn programming, du Boulay [44] identified as the first
area of difficulty the “general problem of orientation, finding out
what programming is for [...] and what the eventual advantages
might be of expending effort in learning the skill” [44, p. 57]. In
other words: how to make programming relevant to learners from
their perspective. Similarly, when trying to teach students to be
aware of and appreciate the value and benefit of code quality, we
have to make this program-related topic meaningful to them, from
a learner’s perspective.

Challenge 3: Limited time to cover code quality topics. Covering all
quality principles and the whole range of code quality defects is a
time-intensive endeavour. Most CS1 courses are dense in content,
and there is already a challenge to make time for new content.
Instructors should then become familiar with the Kirk et al.’s taxon-
omy and explore the catalogue to identify a few quality principles
and a manageable subset of defects.

Students write complicated and verbose code. This is often due
to inappropriate choice of constructs combined with duplication
and redundancy. Duplication is a perfect entry point for discus-
sion of code structure as it is easy to spot and fix. Redundancy is
sometimes harder to spot, but it forces students to comprehend the
program flow. The refactoring involved to fix duplication and elim-
inate redundancy helps students to improve their implementation
choices; furthermore, avoiding duplication motivates the need for
modularity.

Recommendation 3: Introduce code quality to CS1 students
by focusing first and foremost on two quality principles: Non-
redundant Content and Avoid Duplication.

These two principles target code structure, providing students
with a sense of achievement as they learn to detect and remove
unnecessary and verbose code. They could be complemented with
other principles — we suggest focusing attention on Explanatory
Language in the first half of the course and Modular Structure in
the second half.

Challenge 4: Limited incentives for instructors to adopt quality-oriented
activities. Switching to the instructor’s perspective, there are also
limited incentives to adopt activities in terms of the effort required
to find and adapt those drawn from the literature. Whilst we have
found multiple papers that focus on an activity, we also found a
new challenge in extracting the actual activity in a reusable way
for an instructor to consider.

Due to the expectations and constraints of research papers, more
room is given to the experimental process and the outcomes than
to the actual steps taken by an instructor and the experience of the
students. Consequently, repetition in a new context is difficult if
not impossible. This further complicates matters as the activities
are hardly ever evaluated in a different context. As it appears from
the activities we have identified, the range of contexts varies con-
siderably and effort is needed to repeat activities more broadly to
test their potential. (refer to section 4, point 4.4.2 for more details).

We have suggested that developing activity cards might be a
more viable way of communicating the essence of an activity —

see section 6. Whilst the initial sample of such cards in [70] (Appen-
dix B) is not extensive, our hope is that an open collection, much
likeNifty Assignments [115] or the Canterbury Question Bank [128],
could be a starting point in increasing the incentives for instructors
to easily find and more readily adopt code quality-related activities
for their students.

Recommendation 4: Is addressed to the broader CS Education
community in terms of an invitation to share their efforts to
develop code quality-related activities in ways that facilitate
portability and set-up in different contexts.

8 Summary and Conclusion
While the bulk of studies addressing introductory programming
are concerned with typical misconceptions and errors made by
novices, a distinctive perspective of the present work is that we have
restricted our attention to syntactically and functionally correct
code, which may exhibit quality defects, such as code smells or
poor documentation.

The CS Education literature has recently identified gaps regard-
ing the coverage of code quality in the CS curriculum and advocates
for the development of related teaching materials. At the same time,
in the last decade, we have witnessed a growing research effort
to explore, capture and analyse both the quality of student code
and their perceptions about this topic, as accounted for by Keun-
ing et al.’s recent systematic review [85]. In an attempt to provide
suggestions for introducing code quality at the early stages of pro-
gramming education, this working group analysed 248 papers to
produce two resources intended for use at the CS1 level: a catalogue
of code examples that illustrate quality defects and a representative
set of instructional activities.

After Keuning et al.’s review, two very recent works by Silva
et al. [133] and Řechtáčková et al. [123] have developed a catalogue
of code smells with a broader scope. The decisions of what issues
to catalogue may have been influenced by multiple factors, such
as course structure, programming language and assumed program
size. Besides, reporting every little issue may overload students and
discourage them from progressing.

A key contribution of the present study is the curation of a cata-
logue of examples that builds upon prior efforts and captures most
structural code defects that have a simple-to-describe resolving
transformation, both from the instructor’s perspective as well as
from the student’s perspective. The set of examples is large and
has been organised into the 63 patterns presented in subsection 4.3
(with 161 examples to illustrate several variations). The patterns
have been arranged according to two dimensions: source and is-
sue qualifier. This is meant to facilitate the planning of activities
focusing on a single dimension, for example, by choosing a source
such as Data or Organization, or perhaps an issue such as Unnec-
essary or Duplication. The catalogue is extensive, but it cannot be
all-comprehensive. We hope to consolidate this initial effort into a
public repository that can evolve and grow with consensus from
CS1 educators.

In addition, we have identified from the literature 28 instructional
activities that address code quality at the CS1 level, including an
analysis of their scope. This has also led to the proposal of “activity
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cards” to summarise the main characteristics of code quality-related
activities from the perspective of an interested instructor. More
work needs to be done to facilitate the dissemination and adoption
of successful activities.

To sum up, the material covered in this work is intended to
support CS1 instructors and is meant to offer:

• A broad repertory of examples amongwhich to choose, based
on the learning objectives and the course context (full set
can be found in [70] under Appendix A;

• A multifaceted characterisation of the examples supporting
the identification of the topics to address (section 5);

• A set of insightful activities to draw inspiration from if plan-
ning some significant intervention (section 6 and longer set
in [70] under Appendix B);

• A framework to characterise code quality topics from an
abstract perspective (subsection 4.2 and subsection 7.2);

• The suggestion of a model to relate code quality to program
comprehension and characterise the challenge level of the
considered tasks (subsection 7.3).

We hope that such composite resources could support the adop-
tion and further development of teaching materials by CS1 instruc-
tors willing to address code quality in their classrooms.
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