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Highlights

Dynamic Pharmaceutical Product Portfolio Management with Flexible Resource

Profiles

Xin Fei, Jürgen Branke, Nalân Gülpınar

• Formulated the pharmaceutical portfolio management problem as a Markov decision pro-

cess.

• Determined resource allocation and trial scheduling under uncertain trial outcomes.

• Proposed Monte Carlo tree search and statistical racing approach.

• Achieved policy quality and computational efficiency over the existing methods.
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Abstract

The pharmaceutical industry faces growing pressure to develop innovative, affordable products

faster. Completing clinical trials on time is crucial, as revenue strongly depends on the finite

patent protection. In this paper, we consider dynamic resource allocation for pharmaceutical

product portfolio management and clinical trial scheduling, proposing a modelling framework,

where resource profiles for ongoing clinical trials are flexible, with the possibility to add addi-

tional resources, thereby accelerating the completion of a clinical trial and enhancing pipeline

profitability. Specifically, we treat both resource profiles and clinical trial scheduling as decision

variables in the management of multiple pharmaceutical products to maximise the expected

discounted profit, accounting for uncertainty in clinical trial outcomes. We formulate this prob-

lem as a Markov decision process and design a Monte Carlo tree search approach that can

identify the best decision for each state by utilising a base policy to estimate value functions.

We significantly improve the algorithm efficiency by proposing a statistical racing procedure

using correlated sampling (common random numbers) and Bernstein’s inequality. We demon-

strate the effectiveness of the proposed approach on a pharmaceutical drug development pipeline

problem, finding that the proposed modelling framework with flexible resource profiles improves

the resource efficiency and profitability, and the proposed Monte Carlo tree search algorithm

outperforms existing approaches in terms of efficiency and solution quality.

Keywords: Dynamic programming, Product scheduling, Flexibility, Sampling

1. Introduction

The pharmaceutical sector faces growing challenges in sustaining innovation. Research

and development (R&D) expenses by medium-to-large pharmaceutical firms have risen by an

average of 10% annually over the past decade (Forman et al., 2021). However, returns on

investment have declined, dropping from 6.4% to 2.7% between 2014 and 2020 (Colin and Neil,

2022). Factors include a focus on rare diseases, the shift to precision medicine, advanced biotech

methods, longer development timelines, and higher failure rates. Some firms have raised drug

prices to offset costs, but excessive prices risk making treatments unaffordable, particularly

for those without comprehensive insurance coverage or access to public healthcare. A key
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reason for rising R&D costs and declining returns is the lengthy, expensive, and risky clinical

trial process required for pharmaceutical product development. This involves several stages,

including discovery, preclinical trials, clinical trials, and market approval, as shown in Figure 1.

These stages exhibit finish-to-start dependencies. Among them, clinical trials are particularly

challenging, requiring substantial time and resources while determining product safety and

efficacy. A clinical trial consists of three phases that a product must complete before regulatory

submission. Phase I tests the product on healthy volunteers to assess adverse effects and

pharmacokinetics. Phases II and III evaluate optimal dosage, benefits, risks, and comparative

effectiveness on patients. Failure in any phase removes the product from the pipeline. After

Phase III, regulatory authorities decide whether to grant market exclusivity. This period is

critical for pharmaceutical companies to recover costs and earn revenue, as it allows them to sell

products without generic competition. However, patent expiration eventually allows generics,

causing a substantial drop in price and market share, a phenomenon known as the ‘patent cliff’

that threatens profitability. Consequently, companies aim to speed up development to maximise

revenue. For products addressing unmet medical needs or showing great promise, regulatory

agencies may allow phase-skipping or concurrent Phases II and III. This study considers a

clinical trial setting with pre-determined Phase I, II, and III designs and patient numbers. This

structured approach is more widely used in practice than adaptive trial designs, allowing us to

focus on strategic resource allocation rather than trial design optimisation.

Managing a single pharmaceutical product involves complex decision-making, and managing

a portfolio intensifies these challenges. For medium-to-large pharmaceutical companies, R&D

pipelines comprise multiple products, requiring intricate scheduling and careful allocation of

resources (e.g., research sites, staff, and nurses). Pharmaceutical product portfolio manage-

ment can be regarded as a type of R&D product scheduling problem. Prescriptive analytics

provides potential solutions by identifying (near-)optimal management policies. While past

studies assumed resource profiles of clinical trial phases to remain constant over time, our study

allows adding further resources to speed up the completion of any phase of a clinical trial,

which often occurs in practice in the form of additional test sites. By optimising the resource

profile, decision-makers can distribute resources in a more targeted way to avoid bottlenecks

and ensure efficient scheduling. We formulate the pharmaceutical product portfolio manage-

ment as a discrete Markov decision process and develop an efficient Monte Carlo tree search

(MCTS) approach to identify a (near-)optimal decision for each state. The approach uses a

base policy with scenario modelling and mathematical programming to estimate state-action

Phase I

Failure Failure Failure

Pass Pass Pass
Phase II Phase III

Stop trial 

Patent protection period (20 years) 

Research
Preclinical 

phase

Timeline 

Drug available for 
patients 

0 

Years

20 

The focus of this paper
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authorisation

Figure 1: The development stages of a single pharmaceutical product.
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value functions, quantifying the expected cumulative reward of each decision. The proposed

base policy satisfies sequential consistency and improvement, guaranteeing policy improvement.

A statistical racing procedure is then used to efficiently compare and select the best decision,

utilising Bernstein’s inequality and correlated sampling to quantify decision performance and

reduce variance when assessing differences between potential decisions. Efficiency comes from

iteratively eliminating inferior decisions during simulation and focusing on promising ones. We

show that the procedure outperforms other sampling approaches and reliably identifies the best.

This paper is structured as follows: Section 2 reviews prior studies. Section 3 formulates

the pharmaceutical product portfolio management as a Markov decision process, highlighting

its complexity and the motivation for approximate dynamic programming. Section 4 details the

base policy, Q-function estimation, and MCTS implementation. Section 5 presents our novel

contribution through accelerating simulations using statistical racing and correlated sampling

to enhance MCTS efficiency. Section 6 presents the numerical experiments and results, demon-

strating the efficacy of the proposed approach. Finally, Section 7 summarises our findings,

discusses implications, and outlines future research directions.

2. Literature Review

Table 1 offers an overview of prior studies in pharmaceutical product portfolio manage-

ment. The early studies such as Schmidt and Grossmann (1996) and Jain and Grossmann

(1999) primarily focused on the offline task scheduling problem under uncertainties in both

activity duration and clinical trial outcomes for completing trials for a single product. Their

objective was to maximise the expected discounted profit, which is negatively correlated with

market exclusivity duration. The authors modelled the uncertain parameters using pre-specified

distributions, generated sample sets from these distributions, and approximated the stochas-

tic programming formulation with a deterministic counterpart solvable through cutting plane

methods. De Reyck and Leus (2008) studied a similar problem through the lens of probabilistic

graphical models. While these early studies provided valuable insights, the field has evolved

to address more complex challenges. Over time, the emphasis in literature has shifted to opti-

mising entire pharmaceutical product portfolios. Rogers et al. (2002) and Gupta and Maranas

(2004) drew parallels between investing in real options and pharmaceutical products. They

formulated the product portfolio management problem using the discrete-time Black-Scholes

model to maximise market value and to determine optimal investment policies. Another ap-

proach in the literature is the multi-stage stochastic programming. This method delineates

decisions over time under a scenario tree to maximise the expected discounted profit of a prod-

uct portfolio. A limitation is that the scenario tree must be generated prior to modelling, posing

challenges due to decision-dependent trial timelines and uncertainties. While lacking stability

and optimality guarantees, various tree generation strategies have been proposed, with models

solved through branch-and-bound (Colvin and Maravelias, 2008; Apap and Grossmann, 2017) or

heuristic methods (Verderame et al., 2010; Christian and Cremaschi, 2015). Moreover, Markov

decision processes have been used to formulate the product portfolio management problem

without requiring scenario tree generation. However, due to the curse of dimensionality, exact

algorithms are generally not applicable. To address this, Choi et al. (2004) proposed rollout
3
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Table 1: Approaches for modelling and resolving pharmaceutical portfolio management.

References Modelling Framework Solution Approach Resource Profile

Schmidt and Grossmann (1996);
Jain and Grossmann (1999)

Two-stage stochastic pro-
gramming

Scenario generation and cut-
ting plane

Fixed

De Reyck and Leus (2008) Probabilistic model Branch-and-bound Fixed

Rogers et al. (2002); Gupta and
Maranas (2004)

Black-Scholes model Branch-and-bound Fixed

Colvin and Maravelias (2008); Apap
and Grossmann (2017)

Multi-stage stochastic
programming

Scenario tree generation and
branch-and-bound

Fixed

Verderame et al. (2010); Christian
and Cremaschi (2015)

Multi-stage stochastic
programming

Scenario tree generation and
heuristics

Fixed

Choi et al. (2004) Markov decision process State reduction Fixed

Gökalp and Branke (2020) Markov decision process Value function approxima-
tion

Fixed

This work Markov decision process MCTS with statistical rac-
ing and correlated sampling

Flexible

algorithms with heuristic-based state reduction to derive (near-)optimal policies. Gökalp and

Branke (2020) introduced a double-pass value function approximation algorithm for the same

purpose. Our study builds upon the Markov decision process framework but differs from pre-

vious work by employing MCTS with an efficient sampling procedure to obtain (near-)optimal

policies. More broadly, this work is also related to the stochastic resource-constrained project

scheduling problem (SRCPSP), as both involve optimising the scheduling of multiple projects

under resource constraints. While similarities exist, SRCPSP studies typically aim to maximise

resource efficiency (Krüger and Scholl, 2010; Issa et al., 2021), the total profit (Satic et al., 2024),

or minimise makespan or delays over finite time horizons (Pérez et al., 2016; Van Den Eeckhout

et al., 2021). The SRCPSP studies often consider uncertainties in aspects such as duration,

project arrival, or resource availability (Li and Womer, 2015; Xie et al., 2021; Satic et al., 2024).

However, they typically do not account for the success probability of a project, which is crucial

in pharmaceutical products. Recent SRCPSP studies (e.g., Naber (2017); Kogan et al. (2024)),

allow for dynamic adjustment of resource profiles within pre-specified ranges. To the best of

our knowledge, incorporating flexible resource usage has not been considered in pharmaceutical

portfolio management, and our work aims to bridge this gap.

SRCPSP problems have been solved using a variety of approaches including dynamic pro-

gramming, linear programming, constraint programming, and heuristics; for a comprehensive

review, see Sánchez et al. (2023). We study the problem of maximising the expected discounted

profit of a pharmaceutical product portfolio with flexible resource profiles using the Markov de-

cision process. The main challenge is the curse of dimensionality and high-dimensional states.

This makes exact solution methods (e.g., backward induction) intractable for large-scale prob-

lems. Therefore, approximate algorithms have been developed to balance optimality and com-

putational efficiency. Powell (2016) provided reviews of approximate dynamic programming

approaches. One such approximate approach is the rollout algorithm, which leverages one or

multiple base policies to explore the state space and sequentially improve the policy through

the policy improvement principle (Goodson et al., 2013). This method was originally proposed
4
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by Bertsekas et al. (1997) for deterministic dynamic programming with numerous states, where

(near-)optimal policies were produced by estimating state-value functions from a state to the

terminal or a limited number of states using base policies, under sequential improvement and

consistency conditions. Secomandi (2001) then extended the rollout approach to stochastic

environment. The versatility of the rollout algorithm is evident in its successful application

to various SRCPSP variants, as demonstrated in the works of Li and Womer (2015) and Xie

et al. (2021). Despite its advantages, a key limitation of the rollout is that for every feasible

decision, all state-trajectories must be evaluated, becoming computationally burdensome when

the number of decisions and trajectories is large. One such technique is MCTS (also known

as simulation-based rollout algorithm) which uses efficient tree policy instead of evaluating all

possible state trajectories, to balance the simulation of promising decisions with sufficient ex-

ploration (Bertsekas, 2019). For over a decade, MCTS has received significant attention in

game playing settings (Silver et al., 2017). More recently, its applications have expanded into

operations research gaining popularity (Bertsimas et al., 2017; Świechowski et al., 2023). In

this work, we propose an MCTS algorithm to address the pharmaceutical project management

problem and develop an efficient sampling procedure to balance exploration and exploitation,

to identify the best action at each state with fewer simulations.

In the MCTS literature, a sampling procedure (also known as tree policy) is the strategy

used to select which action to explore during the selection phase. The objective of a sampling

procedure is to maximise the probability of finding the optimal decision or minimise the ex-

pected difference between the optimal and selected decision’s performance. The development of

sampling procedures has a close connection with multi-armed bandit and ranking and selection

studies. For example, Kocsis and Szepesvári (2006) and Silver et al. (2017) implemented an

upper confidence bound (UCB) algorithm in MCTS. Under a mild assumption of bounded ran-

dom variables, UCB uses Hoeffding’s inequality to estimate the range of expected cumulative

reward for each decision. It balances exploration and exploitation by favouring decisions with

high potential reward, as discussed by Krafft and Schmitz (1969). Alternatively, Li et al. (2021)

integrated optimal computing budget allocation into the MCTS framework. These sampling

approaches assume the prior and posterior distributions of cumulative rewards are well-defined

and conjugate. They allocate the simulation budget to decisions based on the expected improve-

ment. In this paper, we integrate MCTS with a statistical racing procedure using correlated

sampling and empirical Bernstein’s inequality to improve efficiency. Maron and Moore (1997)

first proposed a statistical racing procedure that used Hoeffding’s inequality to compare model

performance and eliminate poor models during simulation. In the context of pharmaceutical

product portfolio management, revenues can vary greatly under different scenarios. Revenues

may be negative with only development costs in failure cases but very high in success cases.

Compared to Hoeffding’s inequality, Bernstein’s inequality, by incorporating variance, can pro-

vide a more accurate bound on estimation errors. Moreover, as discussed by Fu et al. (2007),

variance reduction techniques like correlated sampling can significantly reduce the samples re-

quired for differentiation. By combining Bernstein’s inequality and correlated sampling within

MCTS, the pharmaceutical product portfolio management problem can be efficiently resolved

as discussed in Section 6.
5
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3. Problem Description and Model Formulation

In this section, we introduce a pharmaceutical R&D pipeline management formulation that

incorporates flexible resource profiles to better reflect real-world dynamics. We then formulate

this problem as a Markov decision process and discuss the computational challenges involved

in identifying the optimal policy. Appendix A summarises the notation used in the model

formulation, providing a quick reference to facilitate understanding.

3.1. Flexible Resource Profiles in Pharmaceutical R&D Pipeline Management

A pharmaceutical R&D pipeline consists of a set of pharmaceutical products, denoted I =

{1, . . . , I}. Before a marketing authorisation application can be submitted, regulations require

that each product successfully completes three clinical trial phases, denoted J = {1, 2, 3}. Let
2-tuple (i, j) ∈ I × J represent Phase j of pharmaceutical product i. Conducting any clinical

trial phase incurs substantial expenses for activities like patient recruitment and data analysis.

Patient recruitment involves identifying and enrolling suitable participants, gathering initial

data, and informing participants. Data analysis involves systematically examining, interpreting,

and statistically assessing the collected data to derive conclusions about the study outcomes.

We assume the designs of clinical trials in the R&D pipeline are fixed. Let cRecr
i,j and cData

i,j

represent the costs to complete patient recruitment and data analysis, respectively. We assume

that the total time taken to complete any phase of a clinical trial is the sum of time spent

on recruitment and data analysis. Efficient resource allocations can reduce recruitment time,

which depends on the number of active test sites and the estimated recruitment rate per site.

The patient recruitment activity for (i, j) can be executed at a variable number of test sites.

The number of test sites ranges from a minimum of hMin
i,j to a maximum of hMax

i,j . The total

target for patient recruitment is denoted by qTargeti,j , with an expected average recruitment rate

per site of ρSitei,j . Given that the targeted number of patients is predetermined, the duration

for data analysis activities related to (i, j) remains constant, represented by λi,j . One of the

primary challenges in R&D pipeline development involves balancing recruitment speed against

resource consumption, especially considering the competition for limited resources among multi-

ple pharmaceutical projects. This process requires various types of resources, denoted by the set

K = 1, 2, . . . ,K. The resource requirements in pharmaceutical R&D can be broadly categorised

into two main components: data analysis and patient recruitment. For (i, j), the data analy-

sis activity requires an amount rData
i,j,k of resource type k ∈ K. Regarding patient recruitment,

Kaitin and DiMasi (2011) found that increasing the number of operational test sites can accel-

erate patient recruitment, as wider geographical reach accesses a larger patient population. The

resource requirement for patient recruitment is modelled as directly proportional to the number

of test sites. Let βi,j,k denote the resource allocation coefficient, representing the amount of

resource k required per test site for (i, j). In practice, this coefficient can be estimated using a

combination of data analysis, historical information, and expert judgement.

Figures 2(a) and 2(b) show how resource flexibility affects patient recruitment in a clinical

trial with two resource types. With fixed resources (10 and 4 units) over two periods, two test

sites recruit 100 volunteers per period, taking 15 time units to reach 3,000 patients. When
6
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(b)
(a) Resource profile, showing actual resource us-
age versus availability across time periods.
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(a) (b) Reduction in time required to reach recruit-
ment targets due to resource profile adjustments.

Figure 2: Impact of resource profile adjustments on recruitment efficiency.

resources become adjustable after period two, enabling five test sites through reallocation,

recruitment time decreases by 6 units, demonstrating improved efficiency through flexibility.

3.2. Decision Variables

During the planning horizon, defined as a set of discrete time steps T = {1, 2, . . . , T}, a
sequence of scheduling and resource allocation decisions is required. At each epoch t ∈ T , the
company needs to make decisions regarding the initiation of patient recruitment, the allocation

of test sites, and the commencement of data analysis. The scheduling decision, represented

by the binary variable xRecr
i,j,t , indicates whether patient recruitment for (i, j) starts at time t

with the minimum number of test sites. Concurrently, the resource allocation decision, denoted

by the integer variable xSitei,j,t, specifies the number of additional test sites allocated to (i, j).

Additionally, the binary variable xData
i,j,t represents the scheduling decision for starting data

analysis for (i, j) at time t. We assume that the number of test sites for recruitment can

only increase, and a clinical trial phase can begin only after the previous phase is completed.

Importantly, a trial, once begun, must be brought to completion. If a drug product successfully

passes phase III, it becomes eligible to apply for market authorisation. The decisions made at

each epoch t are collectively denoted by the triple Xt = (xRecr
t ,xSite

t ,xData
t ) where xRecr

t , xSite
t ,

and xData
t are aggregates of decisions xRecr

i,j,t , x
Site
i,j,t and xData

i,j,t , respectively.

3.3. State Variables

At epoch t, the R&D pipeline status is defined by the availability of various resource types

and the progress status of different tasks. Specifically, LRecr
i,j,t represents the number of patients

still required for trial phase (i, j) at epoch t, while LData
i,j,t denotes the remaining duration for data

analysis for phase (i, j). Additionally, ARecr
i,j,t indicates whether patient recruitment for (i, j) can

be scheduled at epoch t, and AData
i,j,t indicates whether data analysis for (i, j) can be scheduled

at epoch t. RSite
i,j,t denotes the number of testing sites assigned to patient recruitment for (i, j).

The total amount of resource type k available at epoch t is represented by Rk,t. Thus, the state

of the R&D pipeline at epoch t is captured by the following 6-tuple:

St =
(
LRecr
t ,LData

t ,ARecr
t ,AData

t ,RSite
t ,Rt

)
,

7
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where LRecr
t , LData

t , ARecr
t , AData

t , RSite
t and Rt aggregate these state variables across all tasks.

At epoch t = 1, Phase I for all drug products can be scheduled, such that ARecr
i,1,1 = 1 for all drug

products i ∈ I. The number of patients still required, LRecr
i,j,1 , for all (i, j) is initialised to qTargeti,j ,

while the remaining time for completing data analysis, LData
i,j,1 , for all (i, j) is set to λi,j . These

values define the initial condition of the R&D pipeline.

3.4. Exogenous Information

The outcome of clinical trial phase (i, j) is modelled as a Bernoulli random variable Ωi,j ,

where the probability of success is pi,j . Let ωi,j represent an observed outcome of Ωi,j . The

probability mass function for the outcome of a clinical trial phase is expressed as follows:

P (Ωi,j = ωi,j) =





pi,j , if ωi,j = 1 (successful)

1− pi,j , if ωi,j = 0 (failure).

In practice, the success probability of a clinical trial phase can be estimated by analysing

historical data from previous similar trials and early phase results. The set of trial outcomes

at decision epoch t, denoted as Wt, is an exogenous observation revealed once data analysis is

completed by the end of that epoch, Wt =
{
ωi,j | LData

i,j,t = 1
}
.

3.5. Feasible Region

Given state St, the feasible region Xt is defined by the following Constraints (1a) - (1e).

xRecr
i,j,t ≤ ARecr

i,j,t , ∀(i, j) (1a)

xSite
i,j,t ≤





xRecr
i,j,t (h

Max
i,j − hMin

i,j ), ∀(i, j) ∈| ARecr
i,j,t = 1

hMax
i,j −RSite

i,j,t, ∀(i, j) ∈| 0 < LRecr
i,j,t < qTargeti,j

0, otherwise

(1b)

xData
i,j,t ≤ AData

i,j,t , ∀(i, j) (1c)

Rk,t ≥
∑

(i,j)

(
βi,j,k(x

Site
i,j,t + xRecr

i,j,t h
Min
i,j ) + ri,j,kx

Data
i,j,t

)
, ∀k (1d)

xRecr
i,j,t ∈ {0, 1}, xSite

i,j,t ∈ Z, xData
i,j,t ∈ {0, 1}, ∀(i, j). (1e)

Constraint (1a) establishes that recruitment scheduling is restricted to eligible phases, ensur-

ing proper sequencing of activities. Constraint (1b) governs the allocation of additional test

sites, limiting the number based on both the maximum allowable sites and the satisfaction of

recruitment prerequisites. Constraint (1c) enforces the sequential nature of clinical trials by

permitting data analysis to commence only after patient recruitment has reached the required

number. Constraint (1d) maintains operational feasibility by ensuring that the total resource

consumption remains within available capacity at each time period.

3.6. Transition Function

The state transition function describes how the R&D pipeline evolves from one state to

another. Let f(·) represent the transition function that generates the next state St+1 based on

the current state St, decision Xt, and exogenous information Wt. This evolution of the system

state is formally described by

f(St, Xt,Wt) =
(
LRecr
t+1 ,LData

t+1 ,ARecr
t+1 ,AData

t+1 ,RSite
t+1,Rt+1

)
(2)
8
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where

LRecr
i,j,t+1 = max

{
0, LRecr

i,j,t − ρSitei,j

(
hMin
i,j xRecr

i,j,t + xSite
i,j,t +RSite

i,j,t

)}
, ∀(i, j) (3)

LData
i,j,t+1 =





max
{
0, LData

i,j,t − 1
}
, ∀(i, j) | 0 < LData

i,j,t < λi,j ,

max
{
0, LData

i,j,t − xData
i,j,t

}
, otherwise.

(4)

ARecr
i,j,t+1 =





ωi,j−1, ∀(i, j) | ωi,j ∈Wt, j ∈ J \ {1},
0, ∀(i, j) | xRecr

i,j,t = 1,

ARecr
i,j,t , otherwise.

(5)

AData
i,j,t+1 =





1, ∀(i, j) | LRecr
i,j,t > 0, LRecr

i,j,t+1 = 0,

0, ∀(i, j) | xData
i,j,t = 1,

AData
i,j,t , otherwise.

(6)

RSite
i,j,t+1 =





hMinxRecr
i,j,t + xSite

i,j,t +RSite
i,j,t, ∀(i, j) | 0 < LRecr

i,j,t ≤ qTargeti,j ,

0, otherwise.
(7)

Rk,t+1 = Rk,t −
∑

(i,j)

(
βi,j,k

(
hMin
i,j xRecr

i,j,t + xSite
i,j,t

)
+ ri,j,kx

Data
i,j,t

)
+

∑

(i,j)|LData
i,j,t >0, LData

i,j,t+1=0

ri,j,k

+
∑

(i,j)|LRecr
i,j,t>0, LRecr

i,j,t+1=0

βi,j,k

(
hMin
i,j xRecr

i,j,t + xSite
i,j,t +RSite

i,j,t

)
, ∀k.

(8)

Equation (3) describes the remaining number of patients to recruit, which is updated based

on the number of test sites multiplied by the recruitment rate when recruitment is scheduled

or additional sites are assigned. Equation (4) defines the evolution of the remaining analysis

duration, which decreases by one unit per epoch once analysis commences. Equation (5) specifies

conditions for scheduling patient recruitment, which can proceed only after a successful outcome

in the previous phase. Recruitment, once started, sets the corresponding state values to 0 to

prevent repetition, while unscheduled states remain unchanged. Equation (6) describes the

transition for data analysis, which starts only after recruitment completion. States are set to

0 if analysis begins or remain unchanged otherwise. Equation (7) updates test site allocations,

resetting corresponding state values to 0 after recruitment completion. Equation (8) models

resource usage, subtracting consumption from available resources and returning resources upon

phase completion.

3.7. Bellman Equation

In the pharmaceutical industry, drug pricing transitions from monopolistic pricing during

patent protection to competitive pricing upon patent expiration. This shift, characterised by

the entry of lower-priced generic drugs, requires careful consideration of the post-patent rev-

enue decline when calculating discounted profits. Our model captures this concept, with Γi

representing the maximum projected revenue for product i during its patent life. This value

is influenced by factors such as the size of the patient population and the availability of alter-

native treatments. In contrast, γi denotes the periodic revenue loss associated with a reduced

patent life. We define the immediate reward after taking Xt at St, given the realised exogenous
9
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information Wt, as

ut (St, Xt,Wt) =
∑

i:ωi,3∈Wt

ωi,3

(
Γi − γi(t+ 1)

)
−

∑

(i,j)

cRecr
i,j xRecr

i,j,t −
∑

(i,j)

cData
i,j xData

i,j,t . (9)

The objective is to identify the optimal policy that generates the maximum expected discounted

profit from the initial to final time step. The Bellman equation is given by:

Vt(St) = max
Xt∈Xt

{
ut (St, Xt,Wt) + E {Vt+1(St+1) | St+1 = f(St, Xt,Wt)}

}
. (10)

The optimal decision that maximises the expected reward can be obtained by solving the

Bellman equation recursively. However, this equation presents computational challenges as it

lacks a compact form, requiring recursive relationships between value functions across time steps.

In our context, the state space complexity grows exponentially with the number of products and

the length of planning horizon. This exponential growth renders backward induction intractable

for large-scale problems. To address this computational complexity, we employ an approximate

dynamic programming method known as Monte Carlo Tree Search (MCTS) to find (near-

)optimal decisions.

4. Monte Carlo Tree Search

MCTS is a simulation-based rollout that is useful when dealing with large state space or

when the optimal policy is challenging to compute. By leveraging the principle of ‘policy iter-

ation truncated to one step,’ the rollout often yields (near-)optimal actions while maintaining

reasonable computational effort (Bertsekas et al., 1997). At the core of this approach is the

Q-function, which estimates the long-term value of taking a given action in a particular state.

Specifically, Q-function Q(St, Xt) calculates the expected discounted reward after taking Xt in

St and then following the optimal policy thereafter. The Q-function is defined as:

Q(St, Xt) = E
{
ut (St, Xt,Wt) + Vt+1(St+1) | St+1 = f(St, Xt,Wt)

}
. (11)

Computing the Q-function poses the same level of complexity as solving (10). This is because

it requires knowledge of the optimal policy to determine the future value Vt+1(·). The rollout

algorithm addresses this challenge by using a base policy to guide state-action exploration.

Future values are estimated by simulating the base policy rather than the optimal one.

4.1. Base Policy

The base policy plays a pivotal role in the rollout. It is a function, denoted as Π(·), that
maps state Sτ to decision Xτ for τ = t+1, . . . , T −1: Π(Sτ ) : Sτ → Xτ , ∀τ ∈ {t+1, . . . , T −1}.
According to the studies by Bertsekas et al. (1997), a base policy could take various forms such

as a heuristic rule, a mathematical program, or a search method.

Definition 1. Sequential Consistency: A base policy is sequentially consistent if it produces

a state-trajectory
{
St,St+1,St+2, . . . ,ST

}
from state St, and also generates the same subsequent

state-trajectory
{
St+1,St+2, . . . ,ST

}
from state St+1.
10
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The sequential consistency ensures that the rollout algorithm, which simulates multiple potential

outcomes based on the base policy, yields value estimates that are optimal or at least as good

as directly applying the base policy.

This study introduces a base policy, developed through mathematical programming and

scenario modelling, to effectively navigate potential future states. Let us consider estimating

the future value Vt+1(St+1) which requires decisions from the base policy across states Sτ , τ =

t+1, t+2, . . . , T . Modelling R&D pipeline dynamics with mathematical programming involves

estimating the conditional success probability for each product in future states. The conditional

success probability for product i in state Sτ is denoted by Pi(wi,3 = 1 | Sτ ). For a pharmaceutical

product i, failure results in the cessation of its development, thereby resulting in its conditional

success probability being Pi(wi,3 = 1 | Sτ ) = 0. Conversely, if the product has successfully

passed j-th phase in state Sτ , its conditional probability can be computed as

Pi(wi,3 = 1 | Sτ ) =
∏

j′:j′>j

pi,j′ , ∀j.

Our base policy determines the duration required to complete the remaining developmental

activities for clinical trial phases, accounting for factors such as scheduling and resource alloca-

tion. To simplify this while ensuring that base policy decisions maintain the feasibility of state

Sτ , we relax the resource capacity constraints for states Sτ ′ , τ ′ ≥ τ + 2. To model the system

dynamics, we introduce auxiliary decision variables xBase = {xBase | i ∈ I, j ∈ J } representing
the duration to complete remaining clinical trial phases. Let MRecr(Sτ ) denote the set of phases
where patient recruitment is either ready or underway and has not failed in state Sτ :

MRecr(Sτ ) = {(i, j) | 0 < LRecr
i,j,τ ≤ qTargeti,j }.

MData(Sτ ), on the other hand, represents the set of trials where data analysis is in progress

and has not encountered any failures:

MData(Sτ ) = {(i, j) | 0 < LData
i,j,τ ≤ λi,j}.

Lastly, MFuture(Sτ ) denotes future trials after those inMRecr(Sτ ) andMData(Sτ ) are completed:

MFuture(Sτ ) =
{
(i, j) | i = i′, j > j′,

(
0 < LRecr

i′,j′,τ ≤ qTargeti′,j′ or 0 < LData
i′,j′,τ ≤ λi′,j′

)}
.

The base policy Π(Sτ ) solves the following mathematical program and is iteratively applied

along a sampled path (τ = t+ 1, . . . , T ) to inform decisions xRecr
τ ,xSite

τ , and xData
τ :

max
xBase,xRecr

τ

xSite
τ ,xData

τ

∑

i∈I
Pi(wi,3 = 1 | Sτ )

(
Γi − γi

(
1 +

∑

(i,j)

xBase
i,j

)
−

∑

(i,j)

(
cRecr
i,j + cData

i,j

))
(12a)

s.t. xBase
i,j ≥

LRecr
i,j,t+1 −

(
hMin
i,j xRecr

i,j,τ + xSite
i,j,τ +RSite

i,j,τ

)
ρSitei,j

ρSitei,j

+ λi,j , ∀(i, j) ∈MRecr(Sτ ) (12b)

xBase
i,j ≥ LData

i,j + (1− xData
i,j,τ )A

Data
i,j,τ , ∀(i, j) ∈MData(Sτ ) (12c)

xBase
i,j ≥

qTargeti,j

ρSitei,j hMax
i,j

+ λi,j , ∀(i, j) ∈MFuture(Sτ ) (12d)

xBase
i,j ≥ 0, constraints (1a) - (1e) for xRecr

i,j,τ , x
Site
i,j,τ , x

Data
i,j,τ , ∀(i, j) ∈ I × J . (12e)

The objective function in (12a) calculates the total expected discounted profit across all phar-
11
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maceutical products using the base policy decisions. Constraints (12b) and (12c) describe the

completion time for trials where patient recruitment or data analysis is ready to start or al-

ready underway in state Sτ . Constraint (12d) relates the completion time for future trials.

Constraint (12e) ensures that the base policy’s scheduling and resource allocation decisions

remain operationally feasible within the constraints of state Sτ .
Proposition 1. The base policy in (12a) - (12e) satisfies the property of sequential consistency.

Proof. The proof is provided in Appendix B. □

4.2. Q-Function Estimation

The base policy, as detailed in (12a) - (12e), estimates the Q-function value for a feasible

action taken at a specific state by guiding decisions in future states and evaluating cumulative

rewards along sampled trajectories. One such trajectory can be written as:

{
(St,St+1, . . . ,ST ) | St+1 ∈ f(St, Xt,Wt),Sτ+1 ∈ f(Sτ ,Π(Sτ ),Wτ ) for τ = t+ 1, . . . , T − 1

}
.

The trajectory often is not uniqueand varies with different trial outcomes, resulting in numerous

possible realisations. By enumerating all trajectories and computing their cumulative rewards,

we can estimate the future value Vt+1(St+1) as

Vt+1(St+1) ≥ E
{ T∑

τ=t+1

uτ

(
Sτ ,Π(Sτ ,Wτ )

)}
, (13)

where St+1 = f(St, Xt,Wt) and for τ > t + 1, Sτ = f(Sτ−1,Π(Sτ−1),Wτ−1). Thus, the

rollout algorithm identifies the best decision from a set of feasible options Xt by comparing

their estimated Q-functions:

max
Xt∈Xt

Q(St, Xt)

≥ max
Xt∈Xt

E

{
ut (St, Xt,Wt) +

T∑

τ=t+1

uτ (Sτ ,Π(Sτ ),Wτ )

∣∣∣∣∣

St+1 = f(St, Xt,Wt),

Sτ = f(Sτ−1,Π(Sτ−1),Wτ−1),

τ = t+ 2, . . . , T

}
.

(14)

In practical applications, both rollout methods (including MCTS) and value function ap-

proximation methods offer distinct advantages, with neither approach demonstrating clear su-

periority across all scenarios. The optimal choice depends largely on specific implementation

requirements and problem characteristics. For pharmaceutical product portfolio management,

we chose MCTS because we identified a heuristic that is sequentially consistent, making it an

effective base policy for the rollout algorithm. While value function approximation approaches

can be highly effective in certain scenarios, they face difficulties in accurately approximating

the value function in discrete decision spaces with nonlinear response surfaces, as demonstrated

in Section 6. MCTS allows us to leverage the problem-specific base policy and our efficient

sampling procedure to solve the problem without explicitly approximating the value function.

4.3. Implementation of Monte Carlo Tree Search

The rollout algorithm requires enumerating all possible trajectories to compute Q-function

values, which becomes computationally intractable for large-scale pharmaceutical product port-

folios. MCTS addresses this challenge by limiting the number of simulations for each decision,
12
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Figure 3: Illustration of the MCTS process with key steps such as selection, expansion, simulation, and back-
propagation over search tree.

ensuring computational feasibility. The strategy for distributing the computational budget is

defined by the tree policy or sampling procedure.

Algorithm 1 outlines how the base policy (12a - 12e) is integrated into MCTS to identify the

best decision. Starting from the current state St, MCTS selects a decisionXt ∈ Xt for simulation

using a sampling procedure. The decision is then executed, exogenous information is observed,

the immediate reward is calculated, and the state is updated via the transition function. From

epoch t + 1 until T , the base policy guides subsequent decisions while the state and rewards

are updated with realised information. After completing a simulation, the backpropagation

phase updates Q-function estimates for state-action pairs. Our MCTS implementation focuses

on updating the Q-function values at the current state. This design choice is motivated by the

high dimensionality of the state space, the rarity of overlapping states across sampled paths,

and the design of the sampling procedure described in Section 5. Let N(St,Xt) represent the

number of simulations performed for state-action pair (St, Xt), and let Q̂N (St, Xt) denote the

corresponding Q-function estimate based on these simulations, computed as:

Q̂N (St, Xt)

=
1

N(St,Xt)

N(St,Xt)∑

n=1

{
ut (St, Xt,W

n
t ) +

T∑

τ=t+1

uτ (Sτ ,Π(Sτ ),Wn
τ )

∣∣∣∣∣

St+1 = f(St, Xt,W
n
t )

Sτ = f(Sτ−1,Π(Sτ−1),W
n
τ−1)

τ = t+ 2, . . . , T

}
(15)

After each simulation, the Q-function estimate for each simulated decision is updated based

on the cumulative rewards observed along the sampled path, as described in (15). Figure 3 pro-

vides a visual representation of this iterative process, illustrating the four key phases: selection,

expansion, simulation, and backpropagation. The procedure continues until the pre-determined

computational budget reaches its limit. Upon completion, the algorithm selects and implements

the decision associated with the highest estimated Q-function value in the current state. How-

ever, the constrained number of rollout simulations creates a significant challenge in accurately

identifying the optimal action. To address this limitation, we present in the next section an

efficient sampling procedure that strategically allocates computational resources whilst ensuring

a high probability of selecting the correct decision.
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Algorithm 1: Monte Carlo tree search to determine the best decision

Input : Feasible decisions Xt in state St, base policy Π(·), simulation budget N
Output: Best decision in state St
Initialise N(St,Xt) ← 0
while simulation budget N is not exhausted do

Selection : Select Xt ∈ Xt for simulation based on the sampling procedure
Expansion: Implement Xt, observe Wt, and compute ut(St, Xt,Wt)
Simulation: Update St+1 = f(St, Xt,Wt)
for τ ∈ {t+ 1, . . . , T} do

Use base policy (12a)-(12e) to generate a decision Π(Sτ )
Observe Wτ , compute uτ (Sτ ,Π(Sτ ),Wτ ), and update Sτ+1 = f(Sτ ,Π(Sτ ),Wτ )

end
Increment N(St,Xt) ← N(St,Xt) + 1

Backpropagation: Update Q̂N (St, Xt) using (15)
end
Return the decision with the highest Q-function estimate

5. Accelerating Simulations with Statistical Racing and Correlated Sampling

We propose a statistical racing procedure to identify the best decision with high probability.

This procedure combines two complementary elements: correlated sampling, which reduces the

variance of Q-function estimates, and Bernstein’s inequality, which provides a statistical bound

on the difference between two Q-function estimates. Through this combination, the procedure

enables early elimination of suboptimal decisions, thereby allowing computational resources to

focus on more promising alternatives. Algorithm 2 details how this statistical racing procedure

integrates with MCTS to enhance simulation efficiency. For implementation, consider feasible

decisions Xt ∈ Xt, each with unknown Q-function values. Let d(Xt, X
′
t) denote the difference

between Q-values obtained by implementing Xt and X ′
t in state St, which is defined as

d(Xt, X
′
t) = E

{
ut(St, Xt,Wt)− ut(St, X ′

t,Wt) +
T∑

τ=t+1

uτ (Sτ ,Π(Sτ ),Wτ )−
T∑

τ=t+1

uτ (S ′τ ,Π(S ′τ ),W ′
τ )

}
,

where St+1 = f(St, Xt,Wt), S ′t+1 = f(St, X ′
t,Wt), Sτ = f(Sτ−1,Π(Sτ−1),Wτ−1) and S ′τ =

f(S ′τ−1, Π(S ′τ−1),W
′
τ−1). The process begins with an initial sampling stage, evaluating the cu-

mulative reward for each decision over a small set of state-trajectories. Let us assume Xt and

X ′
t, evaluated using the same number of simulations. Let N̄(Xt,X′

t)
denote this common num-

ber, i.e., N(St,Xt) = N
(St,X

′
t)

= N̄(Xt,X′
t)
. For analytical purposes, we introduce two statistics:

d̄(Xt, X
′
t), denoting the sample mean of the pairwise difference between decisionsXt andX ′

t, and

Var(Xt, X
′
t), representing its sample variance. We employ Bernstein’s inequality to bound the

sampling error, i.e., the difference between the population mean and sample mean given N̄(Xt,X′
t)

sampled paths. This concentration inequality is particularly effective when N̄(Xt,X′
t)
is small and

the underlying population is highly skewed (Audibert et al., 2009), as it incorporates variance

information. Proposition 2 establishes that all pairwise Q-value differences remain bounded,

thereby satisfying the fundamental assumptions required for applying Bernstein’s inequality.

Proposition 2. For any two decisions Xt and X ′
t, their Q-value absolute difference |d(Xt, X

′
t)|

is bounded by a non-negative constant θ(Xt, X
′
t).

Proof. The proof can be found in Appendix C. □
14
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Definition 2. Bernstein’s Inequality for Bounded Random Variables. Assuming that

Proposition 2 holds, and decisions Xt and X ′
t are evaluated using the same number of rollout

simulations N̄(Xt,X′
t)
, Bernstein’s inequality for a given significance level α states:

|d(Xt, X
′
t)− d̄(Xt, X

′
t) |≤

√
2Var(Xt, X ′

t) log(1/α)

N̄(Xt,X′
t)

+
2θ(Xt, X

′
t) log(1/α)

3N̄(Xt,X′
t)

. (16)

Bernstein’s inequality provides a probabilistic bound on the difference between the true mean

and the sample mean based on the sample variance and the number of sampled paths. As the of

evaluations increases, the bound becomes tighter, implying our estimates are more likely to be

close to the true values. Reducing sample variances can further tighten the Bernstein’s bound.

To achieve this, we implement correlated sampling, which introduces controlled dependence

between random variables. This technique, also known as common random numbers, enables

more precise differentiation between Q-function values by ensuring that different decisions are

evaluated using identical sets of Bernoulli trial outcomes.

To further improve the sampling efficiency, Algorithm 2 dynamically allocates samples to the

most promising decisions while eliminating inferior ones. The procedure compares cumulative

reward estimates to select the decision maximising Q-value. Let X∗
t denote the current best

decision based on sample averages. Another decision Xt stops sampling in the next iteration if

its reward gap with X∗
t satisfies

d̄(Xt, X
∗
t ) < −

√
2Var(Xt, X∗

t ) log(1/α)

N̄(Xt,X′
t)

− 2θ(Xt, X
∗
t ) log(1/α)

3N̄(Xt,X′
t)

. (17)

This elimination rule is derived from Definition 2. An upper bound on d(Xt, X
∗
t ) can be

obtained as:

d(Xt, X
∗
t ) ≤ d̄(XtX

∗
t ) +

√
2Var(Xt, X∗

t ) log(1/α)

N̄(Xt,X′
t)

+
2θ(Xt, X

∗
t ) log(1/α)

3N̄(Xt,X′
t)

.

If d(Xt, X
∗
t ) is negative, Xt has a lower expected cumulative reward than X∗

t and need not be

explored further. The sampling should focus on decisions that can potentially outperform X∗
t .

Since d(Xt, X
∗
t ) is unknown, we stop exploring Xt when its upper bound becomes negative.

Setting this upper bound less than zero yields the elimination condition. By comparing the cu-

mulative rewards of various decisions using the same trial outcomes, we can iteratively eliminate

inferior decisions. Racing terminates when the simulation budget N is exhausted, ultimately

returning the decision with the highest empirical mean reward over the sampled paths.

To assess the performance of the statistical racing method, we employ the family-wise error

rate (FWER), which quantifies the probability of observing at least one false positive among

multiple comparisons (Ryan, 1959). Controlling the FWER at a desired level is essential for

improving the likelihood of correctly identifying the best decision. Loose or overly strict bounds

can result in incorrect conclusions about pairwise differences, adversely affecting the results of

multiple comparisons. We can show that the FWER of the statistical racing method is bounded

above by the Bonferroni correction. Specifically, if the confidence level 1 − α is the same for

N Bernstein’s bounds, the FWER satisfies FWER ≤ Nα. This result follows directly from the

properties of Bernstein’s bounds. The probability of a single bound being exceeded is α, and
15
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Algorithm 2: MCTS using statistical racing and correlated sampling

Input : Feasible decisions Xt in state St, base policy Π(·), type I error α, budget for initial
sampling N0, total simulation budget N

Output: Best decision in state St
Initialise N(St,Xt) ← 0
while simulation budget N is not exhausted do

Selection: If ∀Xt ∈ Xt, N(St,Xt) ≤ N0, select all feasible decisions for initial estimation;
Otherwise, select from the set of non-eliminated decisions

Correlated sampling : Generate trial outcomes for the sampled path
for each selected Xt do

Expansion: Implement Xt, observe Wt, and compute ut(St, Xt,Wt)
Simulation: Update St+1 = f(St, Xt,Wt)
for τ ∈ {t+ 1, . . . , T} do

Use base policy (12a)-(12e) to generate decision Π(Sτ )
Observe Wτ , compute uτ (Sτ ,Π(Sτ ),Wτ ) and update Sτ+1 = f(Sτ ,Π(Sτ ),Wτ )

end
Increment N(St,Xt) ← N(St,Xt) + 1

Backpropagation: Update Q̂N (St, Xt) using (15)
end
Statistical racing: for each (Xt, X

′
t), where Xt ̸= X ′

t, in the selected list do
Calculate d̄(Xt, X

′
t) and Var(Xt, X

′
t)

Estimate Bernstein’s bound for |d(Xt, X
′
t)− d̄(Xt, X

′
t)| via (16) at confidence 1− α

end
Identify the decision with the highest average X∗

t , and eliminate Xt if (17) holds

end
Return the decision with the highest Q-function estimate

applying Boole’s inequality to N such bounds yields the stated upper bound on the FWER.

By maintaining this upper bound, the statistical racing method ensures that the FWER is

controlled according to the chosen confidence level. This control enhances the reliability of the

method for identifying optimal decisions in scenarios involving multiple comparisons.

6. Numerical Experiments

This section presents numerical experiments validating the proposed method for pharmaceu-

tical pipeline management under uncertainty. The first experiment evaluates the comparative

effectiveness of flexible versus fixed resource profiles in portfolio management. The second ex-

periment benchmarks the proposed statistical racing procedure against state-of-the-art sampling

methods in MCTS. The final experiment evaluates MCTS with statistical racing against other

approximate dynamic programming approaches.

6.1. Pharmaceutical Pipeline Parameters and their Estimations

Our testbed simulates a pharmaceutical pipeline with 8 products across major therapeutic

areas including oncology, endocrinology, central nervous system, anti-infective, and genitouri-

nary system. Table D.4 presents revenue and clinical parameters derived from 2021 global sales

data and established analyses by Wong et al. (2014) and Wong et al. (2019). Revenue projec-

tions incorporate patent life adjustments, calculated as half the annual sales every six months

over a 20-year period. Clinical trial parameters, sourced from the ClinicalTrials.gov database

and detailed in Table D.5, reflect therapeutic area characteristics. Oncology trials feature larger
16
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patient populations and extended analysis periods in later phases, with lower recruitment rates.

Anti-infective trials require more volunteers initially but achieve faster recruitment. Other ther-

apeutic areas follow standardised parameters based on Wong et al. (2019)’s findings. Following

the UK Health Research Authority guidelines (Authority, 2017), we focus on three essential

roles: investigators (k = 1), nurses (k = 2), and statisticians (k = 3). The available resource

pool comprises 50 investigators, 50 nurses, and 20 statisticians, with specific requirements for

each trial phase detailed in Table D.6. The staffing model reflects phase-specific requirements.

Phase I maintains consistent staffing across all drugs, requiring one investigator and one statis-

tician, with research nurses excluded from data analysis tasks. Phase II requirements vary

by therapeutic area, with anti-infective and oncology trials requiring additional statistical sup-

port whilst maintaining standard investigator levels. Phase III demands increased statistical

resources across all products due to larger trial populations. Site administration follows a linear

resource allocation model, with investigator and nurse requirements scaling proportionally with

the number of sites. The numerical experiments were conducted using an Intel Xeon W-2133

CPU with 64GB memory, implemented in Python 3.10.9. The base policy calculations utilised

the IBM CPLEX solver with a 0.005 relative gap tolerance.

6.2. Profitability of Flexible and Fixed Resource Profiles

As our first contribution, we introduce flexible resource profiles into the pharmaceutical

product portfolio management model, demonstrating improved profitability compared to fixed

resource profiles. We establish three fixed profile benchmarks: maximum, medium, and mini-

mum resource levels. The maximum resource level conducts patient recruitment at the highest

allowable number of test sites. The medium level fixes patient recruitment at the midpoint be-

tween the maximum and minimum allowable numbers, while the minimum level sets recruitment

at the lowest allowable number. We hypothesize that the flexible model, which adjusts resources

based on project needs and economic benefits, will outperform these fixed benchmarks. Both

fixed and flexible profiles were implemented in the 8-product testbed. The proposed MCTS

approach was used to identify the (near-)optimal decisions. To ensure fair simulation allocation

across states with varying numbers of decisions, we define “average evaluations per decision,”

which quantifies the average number of simulations performed per decision. For this, we set the

value to 150, dynamically adjusting the total simulation budget based on the number of feasible

decisions at each state. For example, if a state has 20 feasible decisions, the total simulation

budget would be 3,000 (20 × 150) evaluations. This metric ensures states with more decisions

receive a proportionally larger budget. Additionally, we set the family-wise error rate (FWER)

during racing to 10%, maintaining statistical validity in the procedure’s outputs.

We assessed the performance of resource profiles by measuring average cumulative reward

over 30 pipeline development scenarios, each with 25 epochs. The result presented by Figure

4(a) shows a V-shaped reward pattern. Flexible resource profiles provide a significant increase

in cumulative reward around epoch 15, whilst fixed resource profiles increased around epoch

18. This suggests that certain drug products successfully completed Phase III, with costs only

incurred before this stage. We find that the flexible resource profiles expedited trial completion

and produced the highest rewards eventually. Fixed resource profiles at maximum and medium

levels per trial yielded similar rewards. The minimum profile led to negative average cumulative
17
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(a) Average cumulative reward across 30 scenar-
ios, comparing fixed and flexible resource profiles.
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(b) Box plot of cumulative rewards across 30 sce-
narios under different resource profiles.
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(c) Cumulative reward trajectory for the best sce-
nario.
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(d) Resource allocation dynamics for product 2 in
the best scenario.

Figure 4: Performance comparison of fixed and flexible resource profiles.

reward over the 30 simulation scenarios due to slow patient recruitment within the planning

horizon. We analysed the distribution of cumulative rewards at the end of the planning horizon

using box plots in Figure 4(b). Each box represents the interquartile range with the median line;

whiskers extend to 1.5 times the interquartile range; points indicate outliers. Flexible resource

profiles exhibit a higher median reward and greater variability, indicating potential for higher

returns but with increased uncertainty. We also conduct a Kruskal-Wallis test and confirmed

significant differences between resource profiles at significant level p < 0.001.

In a ‘best-case’ scenario where all products were approved, we analysed cumulative rewards

across all products, and resource usage for product 2. As Figure 4(c) shows, flexible profiles

consistently achieved the highest cumulative rewards. Resource allocation analysis for product

2 (Figure 4(d)) shows that fixed maximum profiles prioritised its development - due to its higher

revenue potential - at the expense of other products, leading to resource bottlenecks. In contrast,

flexible profiles dynamically adjusted resource allocation, maximising overall profitability by

balancing the needs of all products. These findings emphasise the importance of optimising

resource profiles, as fixed pre-specified profiles seldom achieve maximum profitability.

Finally, Table 2 compares drug approvals across resource profiles. A benchmark is the av-

erage number of successful drug products (1.83) achievable under optimal allocation with no

constraint. This serves as an upper bound for performance evaluation. The flexible model

achieved an average of 1.67 approvals, approaching the upper bound. The minimum fixed pro-

file results in no approvals across all 30 developmental scenarios, aligning with the findings
18
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Table 2: Impact of different resource profiles on pharmaceutical product approvals.

Resource Profile Flexible Maximum Medium Minimum Optimal∗

Average number of 1.67 0.80 1.07 0.00 1.83
products approved

Average Probability of Approval (%)

Product 1 10.00 0.00 0.00 0.00 13.33
Product 2 0.00 0.00 0.00 0.00 6.67
Product 3 13.33 6.67 16.67 0.00 23.33
Product 4 23.33 0.00 6.67 0.00 26.67
Product 5 23.33 3.33 10.00 0.00 36.67
Product 6 23.33 10.00 0.00 0.00 36.67
Product 7 3.33 3.33 3.33 0.00 16.67
Product 8 13.33 0.00 0.00 0.00 23.33

∗ Optimal refers to optimal resource allocation under the unlimited resource scenario.

presented in Figure 4(a). This finding demonstrates the importance of adequate resource allo-

cation, as insufficient resources severely impede patient recruitment and, consequently, product

development progress. Examining the product-specific approval probabilities reveals further

advantages of the flexible profile model. The flexible profile model demonstrates higher or equal

approval probabilities compared to fixed profiles for most products, with product 3 being an

exception where the medium fixed profile shows higher approval probability. Products 4, 5, and

6 exhibit the highest approval probabilities under the flexible profile model, each achieving a

23.33% chance of approval. When compared to the upper bounds, the flexible profile’s perfor-

mance confirms its ability to achieve near optimal allocations even under resource constraints,

making it a valuable tool for pharmaceutical firms managing limited resources.

6.3. Budget Allocation and Efficacy Across Sampling Procedures

The second contribution of this paper is the development of a novel sampling method that

efficiently allocates a limited sampling budget (as measured by the number of evaluations) to

decision alternatives. We consider a case of just five feasible decisions at the initial state, and

thereafter follow the base policy for subsequent states. To benchmark our proposed statistical

racing, we have selected four state-of-the-art sampling methods from the literature. Table 3

summarises the main features of these methods in terms of the assumptions and hyper-parameter

choices required. The UCB method (Chang et al., 2005) for Q-learning necessitates no hyper-

parameters and only assumes that the reward distributions of decision alternatives have finite

means and variances. The ϵ-greedy approach (Tokic and Palm, 2011) assumes the reward

distributions to have finite means and variances and requires setting a hyper-parameter, ϵ,

to balance exploration and exploitation. The expected value of information (EVI) approach

(Chick et al., 2010) aims to maximise information gain from sampling. We assume the mean

reward distribution for any decision alternative follows a normal distribution and the variance

follows an inverse χ2 distribution, so the marginal posterior distribution for the mean is a

scaled and shifted t-distribution. It is worth noting that UCB, ϵ-greedy, and EVI approaches

typically assume independence among the rewards of different arms. Implementing correlated

sampling with these methods introduces additional complexities, as the induced correlations

potentially cause deviations from their theoretical foundations. The indifference zone (IZ)

approach, proposed by Malone et al. (2005), assumes that reward distributions are Gaussian.
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Table 3: Description of various sampling approaches.

Sampling Approaches Hyper-parameters Assumptions Correlated Sampling?

UCB N/A Distributions have finite means
and variances

No

ϵ-Greedy Change in randomly
sampling a policy 10%

Distributions have finite means
and variances

No

EVI N/A Prior and posterior distributions
of rewards are conjugate pairs

No

IZ
1) Rate of incorrect se-
lection 10% 2) Indiffer-
ence zone parameter

1) Difference in reward between
the best and the second best poli-
cies is known and non-zero 2) Re-
wards are normally distributed

Yes

Statistical Racing FWER 10% Distributions have finite means
and variances

Yes
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(a) Distributions of cumulative rewards for five
decision alternatives.
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(b) Box plot of cumulative rewards by five deci-
sion alternatives.

Figure 5: Descriptive statistics comparing decision alternatives.

The IZ parameter represents the minimum difference between the best and second-best decisions

that is considered practically significant. If the goal is to identify the best alternative, the choice

for this parameter would be the actual difference between the best and second-best decisions.

While the actual value is generally not known, we employ the perfect information assumption

and use this true difference for this algorithm. The proposed statistical racing leverages the

Bernstein’s inequality and assumes that the reward distributions of decision alternatives have

finite means and variances.

Figure 5(a) displays a ridgeline plot comparing the cumulative reward distributions for the

five decisions across 1,000 developmental scenarios. The reward distributions do not exhibit a

simple Gaussian shape but rather present three distinct peaks. The central tendency, dispersion,

and range of these reward distributions are depicted using a box plot in Figure 5(b). The result

shows that decision 5 has the lowest mean (2,386.05), whilst decisions 2 and 4 display the highest

and second-highest sample means (3,188.59 and 3,175.74), respectively. These results suggest

that an optimal sampling approach should dedicate the majority of the simulation budget to

evaluating the performance of alternatives 2 and 4.

We present results comparing performance of sampling methods in Figure 6(a). The y-axis

represents the average probability of incorrect selection over 1, 000 runs, whilst the x-axis shows

the average number of allocated evaluations for each method. The UCB, ϵ-greedy, and EVI
20
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(b) Simulation budget allocation across decisions.

Figure 6: Performance comparison of sampling methods.

methods, which do not utilise correlated sampling, show a slower decline in their probability of

incorrect selection under equivalent evaluation counts. The ϵ-greedy method demonstrates the

weakest performance overall. Whilst the upper confidence bound algorithm outperforms the EVI

until 220 evaluations, after which EVI becomes more effective, all three methods fail to reduce

the probability of incorrect selection to the controlled level. The IZ and the statistical racing

methods are compatible with correlated sampling. As shown, even after a few evaluations,

their probability of incorrect selection is significantly lower than those of other approaches,

suggesting that correlated sampling is a powerful tool for reducing comparison difficulty. It is

worth noting that when perfect information on the difference between the best and the second-

best is provided (although this assumption is unrealistic in practice), the IZ exhibits strong

performance, quickly decreasing the probability of incorrect selection below the controlled level.

The proposed statistical racing approach with correlated sampling employs a more reasonable

assumption and achieves the best performance under the same number of evaluations. Overall,

the findings indicate that the reward distribution of decision alternatives is often irregular

in shape, which can affect the performance of sampling approaches that rely on assumptions

about the reward distribution. Our statistical racing method is compatible with any sub-

Gaussian distribution, offering a more general and robust approach compared to several well-

known sampling methods. Additionally, for the pharmaceutical pipeline management model,

correlated sampling effectively reduces variance and enhances the performance of sampling

approaches, a factor that has been overlooked in the literature.

Figure 6(b) shows the average evaluations assigned to each decision, highlighting differences

in sampling across methods. Optimal sampling should minimise evaluations for decision 5, which

demonstrates the lowest expected reward. However, the ϵ-greedy method allocates evaluations

more uniformly due to random sampling, explaining its weaker performance. The UCB algo-

rithm focuses on the decision with the highest upper bound, heavily sampling decision 2, but,

as shown in Figure 6(a), this allocation fails to sufficiently reduce the probability of incorrect

selection. In contrast, both the EVI and IZ methods concentrate their evaluations on distin-

guishing between decisions 2 and 4, reflecting a more nuanced approach to sampling budget

allocation. Our statistical racing method demonstrates sampling behaviour that aligns with its
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theoretical foundations. Our method efficiently eliminates decision 5 due to its consistently low

average reward, whilst allocating similar evaluation resources to the more competitive decisions

1, 3, and 4. As expected, decision 2 receives the largest simulation budget.

6.4. Performance Comparison of Various Approximate Dynamic Programming Techniques

Lastly, we compare the performance of the proposed MCTS with statistical racing and

correlated sampling to the following approximate dynamic programming techniques:

• Parametric Value Function Approximation (PVFA) combines forward and backward passes

to approximate the value function using multivariate linear regression. This method em-

ploys state variables as independent variables and cumulative reward as the dependent

variable. The regression coefficients are initialised to zero, with the algorithm executing

up to 2,000 iterations using a temporal difference learning rate of 0.1. During the for-

ward pass, the algorithm begins from the initial state, transitioning from random action

selection in early iterations to Bellman equation-guided selections in later stages. The

system evolves according to its dynamics, observes rewards, and updates state variables

until reaching the final time horizon, thereby generating a complete trajectory. The back-

ward pass refines the value function by updating regression coefficients through temporal

difference learning, incorporating new data from the forward pass. This process iterates

until reaching the specified limit. This approach aligns with Gökalp and Branke (2020),

with our implementation differing in allowing for flexible resource profiles.

• Rollout with PVFA is derived from the Bellman equation solution using the PVFA after

2,000 iterations. At each state, the tree policy selects a decision randomly for simulation

with the base policy, choosing the action with the highest Q-function value. Due to

the policy improvement property, this approach may yield performance improvements

compared to PVFA alone.

• Pure Base Policy utilises the mathematical programming model detailed in Section 4 to

determine decisions directly for a given state, without employing MCTS. This serves as a

baseline for evaluating the effectiveness of both MCTS and rollout approaches.

We evaluated the average cumulative reward across 30 scenarios, examining four levels of

average evaluations per decision (50, 70, 100, and 150) to simulate varying time constraints

for decision execution. To assess scalability and robustness, we extended the analysis to a

larger pharmaceutical R&D pipeline scenario with 20 products, maintaining the same resource

capacity to create a more constrained environment. The expanded scale aligns with industry

practices (Citeline, 2024), representing a typical portfolio size for a mid-sized pharmaceutical

company or a therapeutic area division in a large organisation. Pipelines typically range from 10

to 50 products. The planning horizon consists of 25 epochs (six months per epoch), consistent

with standard portfolio decision-making cycles. Our model incorporates critical operational

constraints, including limited skilled workforce, restricted clinical test sites, and varying patient

recruitment rates across therapeutic areas. This configuration creates a tightly constrained set-

ting for evaluating both proposed and benchmark methods under increased complexity. Detailed

information about the additional 12 products and related parameters appears in Appendix E.
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(b) 20-product R&D pipeline.

Figure 7: Average cumulative reward obtained by approximate solution techniques for pharmaceutical R&D
pipelines of varying scales.

Figures 7(a) and 7(b) compare the average cumulative rewards across four approximate

approaches for both the 8-product and 20-product scenarios. The pure base policy, which func-

tions as a heuristic without requiring pre-training and operates independently of the evaluation

number. In contrast, while the value function approximation offers rapid implementation after

initial setup, it requires substantial upfront training time. The pure base policy achieves su-

perior results compared to PVFA (trained with 2,000 iterations) in both scenarios, potentially

due to the limitations of linear functions in capturing the complexity of the value function.

Both MCTS and rollout with PVFA demonstrate progressive improvement as the number of

evaluations per action increases. Under constrained computational conditions (50-55 evalua-

tions per action), the pure base policy maintains a slight performance advantage over both

MCTS and rollout with PVFA approaches, indicating the efficacy of heuristic methods when

computational resources are limited. However, with increased evaluation capacity, both MCTS

and rollout with PVFA show enhanced performance through improved Q-function estimation.

The proposed MCTS approach emerges as the superior method, consistently outperforming

rollout with PVFA across all evaluation ranges in both scenarios. This performance advantage

maintains consistency between the 8-product and 20-product scenarios, demonstrating MCTS

robust scalability to more complex problem environments.

7. Conclusions

We examined a pharmaceutical portfolio management problem focused on optimising clin-

ical trial activity scheduling and feasible resource allocation. We formulated this as a Markov

decision process and developed an MCTS approach that iteratively identifies near optimal deci-

sions via Q-function value estimation and a base policy. The base policy demonstrates sequential

consistency, enabling performance improvement. We proposed a statistical racing method using

Bernstein’s inequality and correlated sampling to improve MCTS efficiency and provide correct

selection guarantees within a limited sampling budget. Numerical experiments demonstrated

three key benefits: the advantages of flexible resource profiles in pharmaceutical product port-
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folio management, the efficiency of statistical racing with correlated sampling for allocating

computational budget, and the effectiveness of the proposed MCTS approach in identifying

near optimal policies. Several promising directions exist for future research. The model could

be extended to incorporate additional uncertainties, such as variable recruitment rates and

task durations. Integration of adaptive trial designs could enable early termination when data

indicates negative outcomes. Furthermore, combining MCTS with multivariate regression or

Gaussian processes could yield more efficient Q-function approximation methods that eliminate

the need to evaluate all decisions.
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Appendix A. Notation and Definitions

Indices

- t: Decision epoch, t ∈ T = {0, 1, . . . , T}.

- i: Pharmaceutical product, i ∈ I = {1, . . . , I}.

- j: Phase of a clinical trial, j ∈ J = {1 (Phase I), 2 (Phase II), 3 (Phase III)}.

- k: Types of resources, k ∈ K = {1, 2, . . . ,K}.

Parameters

- cRecr
i,j , cData

i,j : Patient recruitment and data analysis costs for Phase j of product i.

- qTargeti,j : Number of patient volunteers required for Phase j of product i.

- λi,j : Time periods required to complete data analysis for Phase j of product i.

- ri,j,k: Amount of resource of type k required to complete analysis for Phase j of product i.

- ρSitei,j : Average recruitment rate at each site for Phase j of product i.

- βi,j,k: Resource allocation coefficient for Phase j of product i.

- hMax
i,j , hMin

i,j : Maximum and minimum numbers of test sites for Phase j of product i.

- Γi: Maximum revenue of product i if marketing authorisation is obtained.

- γi: Revenue loss due to the reduced period of exclusive marketing for product i.
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Decisions & States

- Xt: Decision variables at epoch t.

- xRecr
i,j,t : 1 if Phase j recruitment starts for product i at epoch t, 0 otherwise.

- xSite
i,j,t: Number of additional test sites assigned to Phase j of product i at epoch t.

- xData
i,j,t : 1 if data analysis for Phase j of product i starts at epoch t, 0 otherwise.

- St: State variable at decision epoch t.

- LData
i,j,t : Remaining time to complete analysis for Phase j of product i at epoch t.

- LRecr
i,j,t : Remaining patients needed for Phase j of product i at epoch t.

- ARecr
i,j,t : 1 if patient recruitment for Phase j of product i can be scheduled at epoch t.

- AData
i,j,t : 1 if data analysis for Phase j of product i can be scheduled at epoch t.

- RSite
i,j,t: Number of test sites assigned to Phase j of product i at epoch t.

- Rk,t: Amount of resources of type k available at epoch t.

Uncertainties

- Wt: Exogenous information at epoch t.

- ωi,j : Outcome of Phase j of product i, following Bernoulli variable Ωi,j with success probability

pi,j .

Reward

- ut (St, Xt,Wt): Discounted profit of the R&D pipeline at decision epoch t.

- Vt(St): Maximum expected profit value when starting in state St and acting optimally thereafter.

Appendix B. Proof Proposition 1

The base policy decisions are obtained by solving the mathematical programming (12a) - (12e).

If state Sτ remains unchanged, the optimal decisions will be the same regardless of how many times

the optimisation is solved. Consider applying the base policy to estimate future value. It informs

decisions in state Sτ , τ = t+1, . . . , T , resulting in a state trajectory
{
St+1,St+2, . . . ,ST

}
and exogenous

information {Wt+1, . . . ,WT }. If the outcomes in the exogenous information remain unchanged, re-solving

the base policy optimisation will yield the same state trajectory. Therefore, we can conclude the base

policy satisfies sequential consistency - applying it repeatedly in a given state will reproduce the same

trajectory, as long as the exogenous information realisations remain fixed.

Appendix C. Proof Proposition 2

The cumulative rewards from time t to T depend on both the decisions made over the planning

horizon, and the outcomes of pharmaceutical product development. Since the planning horizon is finite,

there is a limit to the reward obtained from any single decision. Also, the reward of a decision can

vary substantially based on whether products are approved or not. Therefore, we can define a constant

θ(Xt, X
′
t) that bounds the difference between Q-values achieved by any two decisions Xt and X ′

t from

time t to T . This constant can be estimated by comparing the best-case scenario (all products are

approved) and the worst-case scenario (no product is approved) for each decision.
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Appendix D. 8-Product Pharmaceutical Pipeline Parameters

Table D.4: Product success probabilities, work costs by phases (P.1, P.2 and P.3), max revenues, and patent loss.

Prod. Therap. P.1 P.2 P.3 Γi γi

ID Areas
% $(106) % $(106) % $(106)

$(106)
$(106)
/6mopi,1 cRecr

i,1 cData
i,1 pi,2 cRecr

i,2 cData
i,2 pi,3 cRecr

i,3 cData
i,3

1 Oncol. 58 3 2 33 9 3 30 18 5 8,750 218

2 Oncol. 57 3 1 30 9 4 28 18 4 8,125 203

3 Endocrinol. 76 1 1 59 9 3 52 13 5 5,000 125

4 Cent. Nerv. 72 3 1 53 10 4 52 15 5 4,062 101

5 Cent. Nerv. 74 4 1 52 10 4 54 13 5 4,375 109

6 Anti-infect. 68 3 1 59 11 4 68 18 5 6,625 165

7 Anti-infect. 70 4 2 61 12 5 67 21 6 6,250 156

8 Genitourin. 67 2 1 46 11 4 64 13 5 1,625 40

Table D.5: Recruitment, data analysis time, and test site information by phases.

Prod. qTarget
i,j ρSitei,j

∗ [hMin
i,j , hMax

i,j ] λi,j
†

ID P.1 P.2 P.3 P.1 P.2 P.3 P.1 P.2 P.3 P.1 P.2 P.3

1 50 80 3,300 6 6 25 [2,6] [2,10] [4,40] 3 2 8

2 80 100 2,000 6 8 20 [2,6] [2,10] [4,40] 3 3 7

3 25 50 340 2 4 6 [2,6] [2,6] [10,40] 2 2 4

4 24 55 400 2 4 6 [2,6] [2,6] [10,50] 2 2 5

5 20 60 350 4 4 6 [2,6] [2,6] [10,50] 2 3 4

6 70 200 400 8 10 14 [2,6] [2,6] [2,6] 2 2 5

7 100 160 300 8 10 16 [2,6] [2,6] [2,6] 3 3 4

8 30 70 350 2 4 6 [2,6] [2,6] [10,50] 2 2 4

∗ Number of individuals recruited per 6 months.
† Duration is expressed in 6-month units.

Table D.6: Staffing requirements for data analysis and test site administration.

Prod. Data Analysis Site Administration

ID ri,1,1 ri,1,3 ri,2,1 ri,2,3 ri,3,1 ri,3,3 ri,j,2, ∀j βi,j,1, ∀j βi,j,2,∀j βi,j,3,∀j

1 1 1 1 2 1 4 0 1 1 0

2 1 1 1 2 1 4 0 1 1 0

3 1 1 1 1 1 2 0 1 1 0

4 1 1 1 1 1 2 0 1 1 0

5 1 1 1 1 1 2 0 1 1 0

6 1 1 1 2 1 2 0 1 1 0

7 1 1 1 2 1 2 0 1 1 0

8 1 1 1 1 1 2 0 1 1 0

Appendix E. Expanded Pharmaceutical Pipeline Details
29



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table E.7: Expanded pipeline - Success probabilities, work costs by phases, max revenues, and patent loss

Prod. Therap. P.1 P.2 P.3 Γi γi

ID Areas
% $(106) % $(106) % $(106) $(106) $(106)

/6mopi,1 cRecr
i,1 cData

i,1 pi,2 cRecr
i,2 cData

i,2 pi,3 cRecr
i,3 cData

i,3

9 Oncol. 59 3 2 35 10 3 32 18 4 8,500 212
10 Endocrinol. 74 1 1 57 9 4 50 13 5 5,250 131
11 Cent. Nerv. 70 3 2 54 11 4 53 15 5 4,200 105
12 Anti-inf. 69 3 2 60 12 4 70 18 6 6,500 162
13 Genitourin. 65 3 1 48 12 3 62 14 5 1,750 43
14 Oncol. 56 4 2 32 12 3 29 19 5 8,375 209
15 Endocrinol. 78 1 1 61 9 3 54 13 3 4,750 118
16 Cent. Nerv. 73 4 1 51 11 3 55 13 5 4,150 103
17 Anti-inf. 71 4 2 62 12 5 69 21 4 6,375 159
18 Genitourin. 68 2 1 47 11 4 65 13 5 1,500 37
19 Oncol. 60 3 1 34 9 3 31 17 4 8,625 215
20 Endocrinol. 75 1 1 58 9 3 51 12 5 5,125 128

Table E.8: Expanded pipeline - Recruitment, data analysis time, and test site information by phases.

Prod. qTarget
i,j ρSitei,j [hMin

i,j , hMax
i,j ] λi,j

ID P.1 P.2 P.3 P.1 P.2 P.3 P.1 P.2 P.3 P.1 P.2 P.3

9 80 90 2,800 5 7 22 [2,32] [3,10] [4,40] 3 3 8
10 30 55 360 2 4 6 [2,40] [2,8] [10,40] 3 3 4
11 22 58 380 2 4 6 [2,50] [2,10] [10,50] 3 3 5
12 85 180 350 8 10 15 [2,6] [2,6] [2,6] 3 3 5
13 35 75 370 2 4 6 [2,50] [2,10] [10,50] 3 2 5
14 70 95 3,300 5 7 22 [2,32] [3,11] [5,41] 3 3 8
15 28 52 340 2 4 6 [2,40] [2,8] [10,40] 2 3 4
16 23 57 390 2 4 6 [2,50] [2,10] [10,50] 2 3 4
17 90 190 375 8 10 15 [2,6] [2,6] [3,8] 3 3 4
18 32 72 365 2 4 6 [2,50] [2,10] [10,50] 2 3 4
19 65 88 3,100 5 7 24 [2,22] [3,11] [6,41] 3 3 8
20 27 53 350 2 4 6 [2,40] [2,8] [10,40] 2 3 4

Table E.9: Expanded pipeline - Staffing requirements for data analysis and test site administration.

Prod. Data Analysis Site Administration

ID ri,1,1 ri,1,3 ri,2,1 ri,2,3 ri,3,1 ri,3,3 ri,j,2, ∀j βi,j,1, ∀j βi,j,2,∀j βi,j,3,∀j
9 1 1 1 1 1 4 0 1 1 0
10 1 1 1 2 1 2 0 1 1 0
11 1 1 1 1 1 2 0 1 1 0
12 1 1 1 1 1 2 0 1 1 0
13 1 1 1 2 1 2 0 1 1 0
14 1 1 1 1 1 4 0 1 1 0
15 1 1 1 2 1 2 0 1 1 0
16 1 1 1 1 1 2 0 1 1 0
17 1 1 1 2 1 2 0 1 1 0
18 1 1 1 1 1 2 0 1 1 0
19 1 1 1 2 1 4 0 1 1 0
20 1 1 1 1 1 2 0 1 1 0
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Highlights

Dynamic Pharmaceutical Product Portfolio Management with Flexible Resource

Profiles

Xin Fei, Jürgen Branke, Nalân Gülpınar

• Formulated the pharmaceutical portfolio management problem as a Markov decision pro-

cess.

• Determined resource allocation and trial scheduling under uncertain trial outcomes.

• Proposed Monte Carlo tree search and statistical racing approach.

• Achieved policy quality and computational e!ciency over the existing methods.


