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Abstract—Being aware of the channel and its properties
is critical for coherent transmission in massive multiple-input
multiple-output (M-MIMO) systems due to the large channel
dimension in the space domain. In cell-free (CF) systems, the
channel dimension increases further as each user is served by
multiple access points, with a significant burden on signal pro-
cessing. Angle domain transmission and channel maps promise
to alleviate this burden by reducing channel dimensions in the
angle domain and providing a priori channel information through
channel measurements and modeling, respectively. In this paper,
we propose a channel map-based angle domain multiple access
scheme for the uplink CF M-MIMO communications. First, we
propose an angle domain data reception scheme constituting
receive combining and large-scale fading decoding to maximize
spectral efficiency. Then, we derive an initial access criterion
utilizing the angle domain channel similarity between users,
based on which we propose pilot assignment and access point
selection schemes for better trade-offs between spectral and
energy efficiency. Finally, we construct two channel map-based
transmission mechanisms by wielding different levels of channel
information, where a tailored data reception scheme with a
newly derived spectral efficiency upper bound is also proposed
for quantitative evaluation. Simulation results show that the
proposed channel map-based angle domain schemes outperform
their space domain alternatives and the schemes without using
channel maps regarding spectral and energy efficiency.

Index Terms—Cell-free massive MIMO, angle domain, multi-
ple access, channel map, distributed processing.
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I. INTRODUCTION

LOOKING towards 2030 and beyond, sixth-generation
(6G) mobile communication systems are envisioned to

initialize a “global coverage, all spectra, full applications, all
senses, all digital, and strong security” communication era [2].
Compared to fifth-generation (5G) systems, 6G systems are
expected to have a much denser and more flexible network
infrastructure with a dramatically increased number of access
points (APs) and user equipment (UE). Each node might be
equipped with a large antenna array to perform diverse and
delicate signal processing tasks, resulting in a tenfold and
even hundredfold system transmission performance improve-
ment indicated by spectral efficiency (SE), energy efficiency
(EE), connection density, latency, etc [3]. This improvement
could be achieved by employing and integrating new enabling
technologies, such as cell-free (CF) massive multiple-input
multiple-output (M-MIMO) [4], ultra-M-MIMO [5] with elec-
tromagnetic information theory [6], integrated sensing and
communication, millimeter wave/terahertz transmission, and
artificial intelligence-enabled transmission. Among these can-
didates for 6G, CF M-MIMO has attracted extensive attention
from academia and industry in the past few years due to its
benefits from both the network and radio access perspectives in
multiple access scenarios. Specifically, as illustrated in Fig. 1,
CF M-MIMO achieves a user-centric networking, allowing
each UE to be served by multiple APs coordinated by a
central processing unit (CPU) rather than only one AP as
in cellular M-MIMO systems. This eliminates the inevitable
inter-cell interference of cellular M-MIMO and provides al-
most uniform service to all UEs by offering more freedom
for cooperative signal processing among APs. From the radio
access perspective, CF M-MIMO inherits the proven signal
processing techniques from cellular M-MIMO by equipping
multiple antennas per AP and enhances the so-called macro-
diversity gain by shortening average AP-UE distances.

The distributed nature of CF M-MIMO leads to the featured
two-stage approach for signal processing [7]. Taking the uplink
transmission as an example, the pilot and data signals from
UEs are pre-processed at the local APs in a distributed manner
and then gathered at the CPU for final processing by weighted
soft combining. The distributed pre-processing at APs can
be designed to minimize the local channel estimate and data
mean-squared-error (MSE) during channel estimation and data
decoding, respectively. Since the weight design at the CPU
only exploits the large-scale fading (LSF) coefficients, this
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distributed approach is known as the LSF decoding (LSFD)
in the uplink [8] and the LSF precoding in the downlink
[9]. Compared to the centralized approach, where the CPU is
responsible for all processing tasks and the APs only play the
role of relays, the distributed approach achieves a comparable
user experience data rate, i.e., the 95%-likely SE indicating
the SE can be achieved by 95% of UEs, but with much lower
computational complexity.

Besides, the distributed AP deployment topology brings new
opportunities and challenges for the initial access design for
CF M-MIMO, comprising pilot assignment and AP selection
[10], [11]. More precisely, each UE is assigned a pilot for
channel estimation and served by a subset of influential APs
with strong channels during data processing instead of all APs.
Determining which AP will serve which UE with which pilot
is a combinatorial problem, which can be solved by heuristic
approaches compromising transmission performance and com-
putational complexity. For the pilot assignment, random as-
signment and greedy assignment are the most commonly used
approaches [7]. The former assigns each UE to a randomly
selected pilot, and the latter refines the SE of the weakest UE
by iterative pilot updating while the global optimal cannot be
guaranteed. Exploiting more elaborate schemes, such as graph
theory-based [12] and genetic algorithm-based [13] schemes,
can improve the assignment performance, but at the price
of high complexity. The AP selection is affected by pilot
assignment since an AP serves at most one UE per pilot from
causing substantial pilot contamination. Hence, the most intu-
itive AP selection scheme is that each AP serves τp UEs with
the strongest channels, where τp is the number of available
pilot sequences. This simple greedy approach maximizes the
system’s utility with the risk that UEs with weak channels
might not be served. To achieve a better AP-UE association,
the matching theory [14] was used to associate each UE with
at least one AP with the maximum association quota τp for
each AP. Although the aforementioned schemes perform well
in their respective target scenarios, they operate in the space
domain while the practical data streams are propagated as
beams in the angle domain. Moreover, these schemes usually
ignore the environment-related channel state information (CSI)
that can be exploited to assist the transmission. Therefore, the
transmission performance still has room for improvement by
being aware of the channel and benefiting the properties.

The angle domain channel model [15], also known as the
beam domain channel model, has been applied to M-MIMO
communications with many successful cases, e.g., multiple ac-
cess [16], [17], channel estimation [18]–[20], beam scheduling
[21], unmanned aerial vehicle (UAV) communications [22],
[23], etc. The benefits are mainly twofold. On the one hand,
projecting the transmission design from the space domain into
the angle domain reduces the processing complexity due to
the reduced channel dimension [15]. It enjoys the comparable
accuracy and pervasiveness of the corresponding space domain
channel models, e.g., the conventional correlated Rayleigh
and Rician fading channels and the pioneering 6G pervasive
channel model (6GPCM) [24], [25]. On the other hand, the
natural channel sparsity in the angle domain can be exploited
to identify channel differences between different APs and
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Fig. 1. Considered CF M-MIMO system.

UEs more prominently [21], which improves the interference
suppression and resource allocation qualities in large CF M-
MIMO systems with complicated communication node as-
sociations. In addition to utilizing the angle domain CSI to
highlight channel characteristics, the transmission performance
can be further improved by exploiting more accurate CSI
refined by the practical propagation environment. Channel map
is emerging as an attractive concept and tool that describes
the propagation environment-related channel characteristics
within a specific geographic area [26]. Working as a site-
specific database equipped at the APs or base stations, a
channel map takes the geographical locations as inputs and
outputs the desired CSI, such as channel gains, path losses,
and even the complete channel coefficients [27]. Therefore,
the channel map can improve transmission quality with re-
duced processing complexity thanks to its provided a priori
environment-related CSI, and thus, enable a channel map-
based transmission for beamforming [28], UAV trajectory
planning [29], localization [30], etc. However, to the best
of the authors’ knowledge, channel map-aided angle domain
transmission has not been considered in the literature on CF
M-MIMO, where the distributed nature and increased channel
dimension yield a substantial burden on signal processing and
present a considerable potential for enhanced performance.

To this end, in this paper we propose a channel map-based
angle domain multiple access scheme for uplink CF M-MIMO
systems. Receive combining, LSFD, pilot assignment, and AP
selection schemes are proposed based on the angle domain
CSI, which can be obtained from the channel maps [31]. Our
main contributions are listed as follows:

• We propose a two-stage data reception scheme that ex-
ploits angle domain LSF coefficients for uplink CF M-
MIMO. The angle domain receive combining vectors and
LSFD vectors are derived to minimize the local data MSE
at APs in the first stage and maximize the SE per UE at
the CPU in the second stage, respectively.

• We derive an initial access criterion that minimizes the
channel estimate normalized MSE (NMSE), guided by
which we propose a pilot assignment scheme and an AP
selection scheme. The former utilizes the angle domain
similarity between UEs for overall interference minimiza-
tion and the latter employs sparse optimization on the
angle domain LSFD vectors for EE improvement.

• We construct two channel map-based transmission mech-
anisms with different levels of CSI, i.e., the large-scale
CSI refined by the practical propagation environment
and the perfect complete CSI. An upper bound of the
SE expression is proposed for quantitative evaluation.
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The corresponding MSE-minimizing combining and SE-
maximizing LSFD vectors are derived as well.

• We compare the proposed angle domain schemes
with their space domain alternatives. Simulation results
demonstrate that the angle domain schemes improve SE
performance and offer a better SE-EE trade-off. Com-
pared to the schemes without using channel maps, the
channel map-based schemes further boost transmission
performance by exploiting more accurate and additional
CSI for transmission scheme design.

The conference version of this paper, [1], only considers
the pilot assignment design for SE maximization. This paper
considers pilot assignment and AP selection design for better
SE-EE trade-off along with the partial receive combining and
LSFD schemes.

The rest of this paper is organized as follows. Section II
introduces the considered CF M-MIMO system and channel
model. Section III details the angle domain data reception
scheme including pilot and date transmission. The angle
domain pilot assignment and AP selection are proposed in
Section IV. Section V elaborates on the channel map-based
transmission mechanisms with a tailored data reception design.
Simulation results are provided in Section VI to evaluate the
proposed channel map-based angle domain multiple access
schemes. Finally, Section VII draws the conclusions.

Notation: The boldface lowercase letters, x, boldface up-
percase letters, X, and calligraphic uppercase letters, A,
denote the column vectors, matrices, and sets, respectively.
The superscripts (·)T, (·)⋆, (·)H, and (·)†, denote the transpose,
conjugate, conjugate transpose, and pseudo-inverses, respec-
tively. We denote by NC (0,R) the multi-variate circularly
symmetric complex Gaussian distribution with correlation
matrix R. We denote by In the n×n identity matrix and ∥ ·∥F
the Frobenious norm. We use E{·} to compute the expectation
values and Cov{·} for the covariance values.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a CF M-MIMO system
with L geographically distributed N -antenna APs and K
single-antenna UEs. We assume that each AP is elevated
and equipped with a uniform linear array (ULA) with half-
wavelength-spaced omnidirectional antennas and each UE is
surrounded by dense scatterers.

A. User-Centric CF M-MIMO System

We utilize the two-stage distributed processing approach [7]
in a user-centric network, where each UE is served by multiple
APs coordinated by a CPU via fronthaul connections for joint
signal processing. More precisely, only the final data decoding
is handled at the CPU and the other signal processing tasks
are performed at the APs. How to determine the association
between APs and UEs is discussed in Section IV. For now,
we let Dl⊂{1,. . .,K} denote the set of UEs served by AP l.

We adopt the block fading model with standard time di-
vision duplex (TDD) operation, where each time-frequency
resource is divided into multiple coherence blocks so that the
pilot sequences and payload data can be assumed to transmit
in each block with fixed channel coefficients. Each coherence

block of τc channel uses is separated into two segments, where
τp channel uses are dedicated to pilot transmission and channel
estimation and the remaining τu = τc − τp channel uses are
used for the uplink payload data transmission.

B. Angle Domain Channel Model

We consider the angle domain channel model where the
space domain channel transfer function (CTF) between AP l
and UE k is denoted by hkl ∈ CN , which can be represented
by the corresponding angle domain channel vector gkl ∈ CN

as [22]
hkl = Ugkl ∈ CN (1)

where U ∈ CN×N is a deterministic matrix of which the
columns are the sampled steering vectors of the N angular
beams covering the entire angle domain. Recall that the AP
antenna arrays are assumed to be half-wavelength-spaced.
Then, the sampled steering matrix is expressed as

U = [u(ω1), . . . ,u(ωN )]T ∈ CN×N (2)

where the sampled steering vector is given by [22]

u(ωn) = [1, e−ȷπωn , . . . , e−ȷπ(N−1)ωn ]T ∈ CN (3)

with ωn = 2(n−1)−N
N being the sampled directional cosines,

n = 1, . . . , N . It can be checked that UHU = NIN .
We consider a narrowband system operating in the angle do-

main where the received signal at each AP is first transformed
to the angle domain and then processed in the digital domain.
The angle domain channel vectors are obtained according to
(1). According to the multidimensional central limit theorem,
the space domain channel hkl can be drawn from a simplified
instance of the 6GPCM [24] as

hkl = hL
kle

ȷϕkl + hN
kl = UgL

kle
ȷϕkl +UgN

kl (4)

when the number of multipath components between AP l and
UE k tends to be infinite. The deterministic line-of-sight (LoS)
component is denoted by hL

kl ∈ CN with βL
kl =

1
N (hL

kl)
HhL

kl

and gL
kl ∈ CN being its LSF coefficient and angle domain

representative, respectively. The phase shift of the LoS com-
ponent, i.e., ϕkl ∼ U [−π, π], is uniformly distributed. The
stochastic non-LoS (NLoS) components are represented by
hN
kl ∼ NC(0,R

N
kl) with RN

kl = E{hN
kl(h

N
kl)

H} ∈ CN×N ,
βN
kl = 1

N tr(RN
kl), and gN

kl ∈ CN being the corresponding
covariance matrix, LSF coefficient, and angle domain repre-
sentative, respectively. Note that the phase shift ϕkl varies
at the same pace as hL

kl and is assumed to be independent
and identically distributed in each coherence block. Accord-
ingly, the covariance matrix of the CTF hkl is obtained as
Rkl = E{hklh

H

kl} = hL
kl(h

L
kl)

H +RN
kl with βkl =

1
N tr(Rkl)

being the corresponding LSF coefficient. Additionally, Ωkl =
E{gklg

H

kl} = 1
N2U

HRklU = gL
kl(g

L
kl)

H+ΩN
kl ∈ CN×N is the

covariance matrix of gkl with ΩN
kl = E{gN

kl(g
N
kl)

H} ∈ CN×N .
The covariance matrices of all UEs {Rkl : ∀k} are assumed
to be available at AP l, ∀l, through channel maps in Section
V. This implies that the proposed schemes in this paper are
also applicable to ultra-M-MIMO when near-field channel
characteristics are represented by the covariance matrices [5].
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The LSF coefficient βkl is allocated to the LoS and NLoS
components by the location-related Rician K-factor κkl = pLkl ·
101.3−0.003dkl [32] in linear scale as

βL
kl =

κkl

κkl + 1
βkl, βN

kl =
1

κkl + 1
βkl (5)

where dkl = ∥capl − cuek ∥2 ∈ R is the distance between AP l
and UE k determined by their available three-dimensional (3D)
location vectors capl ∈ R3 and cuek ∈ R3 with pLkl ∈ {0, 1}
being the corresponding LoS probability. More precisely,
pLkl = 1 indicates the existence of the LoS component and
pLkl = 0 when the LoS component does not exist (e.g.,
blocked by buildings). Therefore, the K-factor κkl and LoS
probability pLkl are strongly related to the location vectors and
the practical propagation environment, and further influence
the channel hkl. Considering the effects of these environment-
related information during the signal processing and initial
access will significantly improve the transmission performance
quality, thanks to the better match between the designed
transmission schemes and the real wireless channels, over
which the signal transmissions actually take place. This is
elaborated in Section V.

III. ANGLE DOMAIN PILOT AND DATA TRANSMISSION

In this section, we elaborate the angle domain pilot and
data transmission where the angle domain receive combining
vectors and LSFD vectors are derived.

A. Channel Estimation via Pilot Transmission

During the uplink pilot phase, each AP locally performs
channel estimation based on the received uplink pilots trans-
mitted from the UEs. Each UE is assigned a τp-length pilot
sequence from an orthogonal pilot set with a cardinality of τp.
The pilots must be shared between the UEs since it is likely
to have τp ≪ K in practical large networks. We denote by
ιk the pilot index assigned to UE k and Sιk the set of UEs
sharing pilot ιk.

When the UEs transmit their pilots, the received pilot signal
yp
ιkl
∈ CN at AP l after despreading with pilot ιk is [33, Sec.3]

yp
ιkl

=
∑
i∈Sιk

√
τppphil + nl

=
√
τpppUgkl +

√
τppp

∑
i∈Sιk

\{k}

Ugil + nl

(6)

where pp represents the transmit power for pilots and nl ∼
NC(0, σ

2IN ) represents the receiver noise with power σ2.
If the deterministic LoS component hL

kl is available at AP l
while the phase shift ϕkl is not, the linear minimum MSE
(MMSE) estimate of gkl can be derived as [33, Sec. 3]

ĝkl =
√
τpppΩklU

HΨ−1
ιkl

yp
ιkl

(7)

where Ψιkl = E{yp
ιkl

(yp
ιkl

)H} = τppp
∑

i∈Sιk
UΩilU

H +

σ2IN is the correlation matrix of yp
ιkl

in (6). Due to the pilot-
sharing among the UEs in Sιk , Ψιkl contains not only the
statistical CSI of the desired UE k but also that of the other
UEs in Sιk , which induces the so-called pilot contamination
and thus degrades the channel estimation quality. The angle

domain channel estimate ĝkl and its estimation error g̃kl =
gkl − ĝkl are uncorrelated random variables with

E{ĝkl} = 0, Cov{ĝkl} = Ωkl −Ξkl (8)
E{g̃kl} = 0, Cov{g̃kl} = Ξkl (9)

where Ξkl=Ωkl− τpppΩklU
HΨ−1

ιkl
UΩkl. The linear MMSE

estimate of hkl can be represented as ĥkl = Uĝkl.

B. Data Transmission with LSFD

We consider the distributed uplink data transmission where
the so-called LSFD strategy is employed. Each AP locally
performs an arbitrary receive combining scheme to compute
local data estimates. Then, these estimates are gathered and
combined at the CPU for final decoding by performing LSFD.
More precisely, AP l physically receives the data signals from
all UEs, which is given by

yul
l =

K∑
i=1

hilsi + nl (10)

where si ∈ C represents the signal transmitted by UE i
with transmit power pi = E{|si|2} and nl ∼ NC(0, σ

2IM )
represents the independent additive receiver noise. According
to the fractional power control policy [7], [8], the transmit
powers {pk, ∀k} can be obtained as

pk = pmax

mini∈{1,...,K}

√∑L
l=1 tr(Dil)βil√∑L

l=1 tr(Dkl)βkl

(11)

where pmax is the maximal transmit power of a UE and matrix

Dkl =

{
IN , if k ∈ Dl

0N , otherwise
(12)

indicates if UE k is served by AP l or not.
AP l first transforms the received signal into the angle

domain as 1
NUHyul

l and then selects the local angle domain
combining vector Dklvkl ∈ CN for UE k to compute the local
estimate of sk as

ŝkl =
1

N
vH

klDklU
Hyul

l . (13)

In analogy with the local MMSE (L-MMSE) combining
scheme [7], we propose an angle domain L-MMSE combining
scheme that provides the best local data estimate ŝkl with
minimal conditional MSE E{|sk − ŝkl|2|{ĝil : ∀i}}, which
is given in the following lemma.

Lemma 1. At AP l, the local conditional data MSE for UE k
is minimized by the angle domain L-MMSE combining vector

vl−mmse
kl =pk

(
K∑
i=1

pi (ĝilĝ
H

il+Ξil)+
σ2

N
IN

)−1

Dklĝkl.

(14)

Proof: This can be proved by computing the conditional
expectation and letting ∂E{|sk−ŝkl|2|{ĝil : ∀i}}/∂vkl=0.

The computational complexity of the angle domain L-
MMSE combining scheme grows with the UE number K,
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which leads to an unacceptable computational burden. Inspired
by the local partial MMSE (LP-MMSE) combining scheme
[10], we propose the angle domain LP-MMSE combining
scheme as

vlp−mmse
kl =pk

(∑
i∈Dl

pi (ĝilĝ
H

il+Ξil)+
σ2

N
In

)−1

Dklĝkl (15)

in which AP l only exploits the channel estimates and statistics
of its serving UEs in Dl for interference suppression. Since
the UEs in Dl generate the most dominated interference to
AP l during the data detection, the angle domain LP-MMSE
combining scheme will achieve almost the same interference
suppression capability as the optimal angle domain L-MMSE
combining scheme in (14) but with limited and much lower
computational complexity. Apart from the aforementioned
MMSE-type combining schemes, the maximum ratio combin-
ing scheme with vmr

kl = Dklĝkl can be alternatively used.
Next, the CPU performs the final decoding of sk by linearly

combining the local soft estimates forwarded by the APs. We
denote by bki = [vH

k1Dk1gi1, . . . ,v
H

kLDkLgiL]
T ∈ CL the

angle domain receive-combined channels from UE i when
receiving signals from UE k, and ak = [ak1, . . . , akL]

T ∈ CL

the LSFD weight vector of UE k, where akl ∈ C is the weight
corresponding to ŝkl. Then, we can obtain the final estimate
of sk as

ŝk =
L∑

l=1

a⋆klŝkl = aH

kE{bkk}sk︸ ︷︷ ︸
Desired signal

+ (aH

kbkk − aH

kE{bkk})sk +
K∑

i=1,i̸=k

aH

kbkisi︸ ︷︷ ︸
Interference

+ n′
k︸︷︷︸

Noise

(16)

where n′
k = 1

N

∑L
l=1 a

⋆
klv

H

klDklU
Hnl is the resulting noise.

The LSFD vectors {ak : ∀k} are selected as a deterministic
function of the channel statistics at the CPU where the
average effective uplink channel E{aH

kbkk} = aH

kE{bkk} is
deterministic and non-zero if the aforementioned combiners
are selected and employed.

C. Spectral and Energy Efficiency

Based on (16) and by treating interference as noise, the
achievable uplink SE can be quantified by using the hardening
bound [33, Thm. 4.4] as

SEul
k =

τu
τc

log2

(
1 + SINRul

k

)
bit/s/Hz (17)

where

SINRul
k

=
pk|aH

kE{bkk}|2

aH

k(
∑K

i=1 piE{bkibH

ki}−pkE{bkk}E{bH

kk}+Fk)ak
(18)

is the effective uplink signal-to-interference-plus-noise ratio
(SINR) [7, Thm. 5.4] in angle domain with

Fk =
σ2

N
diag(E{∥Dk1vk1∥2}, . . . ,E{∥DkLvkL∥2}). (19)

With the fact that the effective uplink SINR in (18) is a
generalized Rayleigh quotient of ak, the optimal LSFD weight
vector that maximizes the effective uplink SINR is given by

aoptk = pk

(
K∑
i=1

piE{bkib
H

ki}+Fk

)†

E{bkk} (20)

with the help of [33, Lem. B.10] and [33, Lem. B.4]. The
resulting maximum SINR value is SINRul

k = pkE{bH

kk}
(
∑K

i=1 piE{bkib
H

ki} − pkE{bkk}E{bH

kk} + Fk)
†E{bkk}. It

can be checked that the computational complexity of the
optimal LSFD is not scalable with respect to the number of
UEs K. Inspired by the partial LSFD vector [7], [8], we
propose the angle domain partial LSFD vector to approximate
the optimal LSFD vector aoptk with scalable computational
complexity as

apark = pk

(∑
i∈Pk

piE{bkib
H

ki}+Fk

)†

E{bkk} (21)

where set Pk includes the UEs having at least one common
serving AP with UE k.

In addition to SE, which indicates the achievable data rates,
EE is another essential performance metric considering energy
consumption, which is defined as [9], [33]

EE =
B ·
∑K

k=1 SE
ul
k

Ptot
bit/Joule (22)

where B represents the system bandwidth and the total power
consumption Ptot consists of the power consumed at the UEs
{P ue

k : ∀k}, the active APs {P ap
l : ∀l}, fronthaul connections

{P fh
l : ∀l}, and the CPU Pcpu [9]

Ptot =

K∑
k=1

P ue
k +

L∑
l=1

P ap
l +

L∑
l=1

P fh
l + Pcpu. (23)

The total power consumption is affected by the AP-UE serving
relationship. Detailed definitions of each term in (23) can be
found in [9] and omitted due to limited space.

IV. ANGLE DOMAIN PILOT ASSIGNMENT
AND AP SELECTION

In this section, we propose an angle domain initial access
strategy considering pilot assignment and AP selection, which
are tightly coupled since an AP can only reasonably serve at
most one UE per pilot to prevent the weaker pilot-sharing
UEs from strong interference. A pilot assignment scheme
assigns each UE with one pilot sequence aiming to mitigate
pilot contamination caused by pilot-sharing and thus improve
the channel estimation quality and the resulting SE. An AP
selection scheme selects at least one serving AP for each UE
aiming to refine the multi-AP collaborative signal processing
and avoid the unnecessary power consumptions.

A. Access Criterion with Minimized NMSE

Before we delve into the angle domain pilot assignment
and AP selection design, we first derive an initial access
criterion with the goal of minimizing the NMSE of the
channel estimates (abbreviated as NMSE). More precisely, in
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the considered user-centric CF system, the collective channel
hk = [hT

k1, . . . ,h
T

kL]
T ∈ CLN of UE k is first locally

estimated by its serving APs and then delivered to the CPU,
in which its estimate is formed as

Dkĥk = [(Dk1ĥk1)
T, . . . , (DkLĥkL)

T]T, ∀k (24)

with Dk = diag(Dk1, . . . ,DkL) ∈ CLN×LN and ĥk =
[ĥT

k1, . . . , ĥ
T

kL]
T ∈ CLN . Then, the NMSE of the collective

channel estimate Dkĥk is given by

NMSEk =
E{∥Dkhk −Dkĥk∥2}

E{∥Dkhk∥2}

= 1−
τppp

∑L
l=1 tr(DklΩklU

HΨ−1
ιkl

UΩkl)∑L
l=1 tr(DklΩkl)

.

(25)

Recall that the pilot contamination is induced by the statistical
CSI of the undesired UEs contained in Ψιkl. Inspired by this,
a lower bound of the NMSE in (25) of UE k can be obtained
if NMSEk is only related to its own statistical CSI, which is
elaborated in the following lemma.

Lemma 2. Considering a CF M-MIMO system over the angle
domain channels, the NMSE in (25) is lower bounded as

NMSEk ≥ NMSEk

= 1−
τppp

∑L
l=1 tr(DklΩklU

HΨ̃−1
ιkl

UΩkl)∑L
l=1 tr(DklΩkl)

(26)

where Ψ̃ιkl = τpppUΩklU
H+σ2IN . For any l and i ̸= k, the

equality in (26) occurs when one of the following conditions
is satisfied

1) DklΩklΩil = 0,
2) DklΩklΩil ̸= 0, ιk ̸= ιi.

Proof: The details are relegated to Appendix A.

Note that DklΩklΩil = 0 occurs when the angle domain
channels gkl and gil are non-overlapping and/or UE k and UE
i are not served by AP l simultaneously. Therefore, Lemma 2
implies that for UE k, AP l, and another UE i, ∀i ̸= k, NMSEk

is approaching NMSEk if AP l: 1) can directly separate UE k
with the other UEs when ΩklΩil = 0; 2) or serves UE k and
the other UEs with different pilots such the UEs can separated
during the despreading when ΩklΩil ̸= 0; 3) or does not serve
UE k and the other UEs at the same time, which is dedicated to
CF systems. To characterize the degree of overlap between the
UEs in the angle domain when each UE is served by multiple
APs, a metric referred to as similarity is defined as

ρki =

∑L
l=1 tr(DklΩklDilΩil)√∑L

l=1 ∥DklΩkl∥2F
√∑L

l=1 ∥DilΩil∥2F
, ∀k, i. (27)

Therefore, a criterion for the AP selection and pilot assign-
ment design in the angle domain can be obtained as follows:

• For the considered CF M-MIMO system, given each UE
is served by at least one AP, the angle domain similarity
of the pilot-sharing UEs should be as low as possible.

B. Similarity-Based Pilot Assignment

Based on the angle domain similarities defined in (27), we
formulate the pilot assignment as a max-K cut problem,

P1 : max
{Sι:ι=1,...,τp}

∑
1≤ι<ι′≤τp

∑
i∈Sι,j∈Sι′

ρij . (28)

where the overall inter-set angle domain similarities∑
1≤ι<ι′≤τp

∑
i∈Sι,j∈Sι′

ρki is maximized by properly al-
locating the UEs into τp sets, i.e., S1, . . . ,Sτp . In other
words, solving P1 minimizes the overall intra-set angle domain
similarities, i.e., the overall angle domain similarities of the
pilot-sharing UEs in the system, since we assign the UEs in
the same set with the same pilot. This implies that the overall
pilot contamination is minimized as well.

Since P1 is a combinatorial problem, the complexity of
evaluating all (τp)K possible assignments grows exponentially
with the number of UEs K, which is infeasible in practical
large networks. Therefore, we employ a suboptimal heuristic
algorithm [34], which provides an approximate solution as the
brute-force approach but in polynomial time. The algorithm
proceeds as follows.

1) The first τp UEs are assigned to τp mutually orthogonal
pilots with |Sι| = 1, ∀ι.

2) An arbitrary remaining UE k computes ριk =∑
i∈Sι∪{k} ρki, ι = 1, . . . , τp according to (27). Since

the AP selection is not performed yet, we replace Dkl

in (27) by

D̃kl =

{
IN , if k ∈ D̃l

0N , otherwise
(29)

where set D̃l includes τp UEs with the largest values of
LSF coefficients to AP l.

3) Assign UE k to pilot

ι′ = arg minι ρ
ι
k (30)

and update Sι′ ← Sι′ ∪ {k}.
4) Repeat steps 2) and 3) until all UEs have been assigned

to a pilot.

C. Sparsity-Induced AP Selection

Recall that the optimal angle domain LSFD vector aoptk in
(20) is not energy-efficient by letting all AP serve all UEs
and the partial angle domain LSFD vector apark in (21) is
suboptimal without taking the AP selection as a part of the
LSFD design. By noticing that aoptk is typically “sparse” with
a small number of large elements and many small elements
due to the natural path loss differences between distributed
located APs and UEs, we formulate the AP selection as a
Lasso problem [35]

P2 : min
ak∈CL

MSEk + λ∥ak∥1, k = 1, . . . ,K (31)

and the AP selection indication matrix Dkl is obtained ac-
cording to optimized LSFD vector ak as Dkl = IN if akl ≥ 0
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Fig. 2. Procedure of the proposed channel map-based multiple access transmission.

and Dkl = 0 otherwise. The first term in (31)

MSEk = E{|sk − ŝk|2|{ĝil : ∀i}} (32)

= aH

k

(
K∑
i=1

piE{bkib
H

ki}+Fk

)
ak−2pkℜ(aH

kE{bkk})+pk

represents the MSE cost regarding to the data estimate ŝk,
where the L-MMSE combining vectors {vl−mmse

kl : ∀l} in
(14) are used in bki. The second term in (31) is a ℓ1-norm
penalty, which induces sparsity on ak by enforcing a number
of elements of ak to 0 depending on a tunable regularization
parameter λ ≥ 0. A lager value of λ implies more sparsity,
and thus reduces the average number of serving UEs per AP
from an AP selection perspective. It can be checked that the
SINR-maximizing LSFD vector aoptk also minimizes MSEk.
Therefore, solving P2 maximizes the SE performance by
designing the proper LSFD vector ak with a certain degree of
sparsity induced by the ℓ1-norm penalty. Since the unnecessary
serving relationships are removed with an appropriate λ, the
total power consumption is reduced and thus a higher EE can
be achieved given the SE loss is marginal.

With the fact that both the MSE cost MSEk and the ℓ1-
norm penalty ∥ak∥1 are convex functions with respect to ak,
the well-used optimization tool CVX [36] can be employed
to solve P2. Alternatively, the proximal methods [35] are also
applicable for solving P2 efficiently due to the non-smoothness
of ∥ak∥1.

V. CHANNEL MAP-BASED MULTIPLE ACCESS
TRANSMISSION

The capability of distinguishing between UEs that like-
ly cause severe interference is improved by projecting the
channels from the space domain into the angle domain due
to the natural channel sparsity in the angle domain. System
performances like SE and EE are thus enhanced thanks to the
reformative angle domain signal processing and initial access

schemes, verifying the positive effects obtained by exploiting
the appropriate acquired CSI for coherent transmission in the
considered CF M-MIMO system. Bearing this in mind, the
transmission performance can be further boosted by improving
the CSI acquisition quality. This can be achieved by consider-
ing the practical propagation environment, which is generally
ignored in conventional channel estimation schemes.

Recall that a channel map serves as a site-specific database
that maps the geographical locations to the desired CSI, e.g.,
LoS probability, Rician K-factor, channel gains, etc. Using
channel model hkl = hL

kle
ȷϕkl + hN

kl in (4), in this section,
we propose two channel map-based transmission mechanisms
aided by different levels of CSI, namely partial channel
map (PCM) and full channel map (FCM), respectively. The
former outputs the large-scale CSI of hkl including hL

kl and
RN

kl, by providing an accurate LoS probability based on the
location vectors with practical building layouts. The latter is
the ultimate form of channel maps where the complete channel
coefficients in hkl are available by further providing the small-
scale CSI hN

kl and eȷϕkl on the basis of the PCM. Note that
FCM serves as the performance upper bound of the channel
map-based transmissions since accurate phase shifts {eȷϕkl :
∀k, l} are only ideal in practice. The procedure of channel
map-based multiple access transmission is demonstrated in
Fig. 2, where the complete channel vectors {hkl} or {gkl}
are regarded as the “ground-truth” CSI when computing the
SE and the acquired CSI obtained with or without channel
maps are used to design the transmission schemes including
receive combining, LSFD, pilot assignment, and AP selection.
The details are elaborated as follows.

A. Large-Scale CSI-Aware Transmission via PCM

The considered PCMMPCM can be expressed as a mapping
from the current 3D location vectors (capl , cuek ) of the desired
AP-UE pair (l, k) to the corresponding large-scale CSI hL

kl
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and RN
kl by the conditional function fPCM(·|E), i.e.,

MPCM : {hL
kl,R

N
kl} = fPCM((capl , cuek )|E) (33)

where E represents the environment database, which can be
constructed by approaches like channel measurements and ray-
tracing simulations. More precisely, with the half-wavelength-
spaced ULA assumption at each AP, the deterministic LoS
component hL

kl is represented as

hL
kl =

√
βL
kl

[
1, eȷπ sin(φkl) cos(θkl),

. . . , eȷπ(N−1) sin(φkl) cos(θkl)
]T (34)

where φkl and θkl are the azimuth angle of arrival (AAoA)
and elevation angle of arrival (EAoA) to UE k seen from
AP l, respectively. For the covariance matrix of the NLoS
components RN

kl, we first let φ̄kl = φkl+δφ denote the AAoA
of a multipath component, where δφ ∼ N (0, σ2

φ) is a random
deviation from φkl with standard deviation σφ. Analogically,
θ̄kl = θkl + δθ denotes the EAoA of a multipath component
with a random deviation δθ ∼ N (0, σ2

θ). Then, RN
kl can be

generated according to the local scattering model, of which
the (m,n)-th element is calculated as [7]

[RN
kl]mn = βN

kl

∫∫
eȷπ(m−n) sin(φ̄kl) cos(θ̄kl)f(δφ, δθ)dδφdδθ

(35)
where f(δφ, δθ) = 1

2πσφσθ
e−δ2φ/(2σ2

φ)e−δ2θ/(2σ
2
θ) is the joint

PDF of δφ and δθ.

The LSF coefficients βL
kl in (34) and βN

kl in (35) are obtained
based on βkl according to the K-factor κkl and LoS probability
pLkl in (5), where βkl is calculated in dB as [32, Tab. 5.1]

βkl=

{
−30.18− 26 log10

(
dkl

1m

)
+ FL

kl, if pLkl = 1

−34.53− 38 log10
(
dkl

1m

)
+ FL

kl, otherwise
(36)

with FL
kl ∼ N (0, 42) and FN

kl ∼ N (0, 102) representing the
shadow fading in the LoS and NLoS scenarios, respectively.
Note that penetration loss is negligible in the studied scenario
and so is not considered.

As illustrated in Fig. 2, the LoS probability pLkl can be as-
sumed to be accurately obtained based on the location vectors
(capl , cuek ) and environment database E by employing advanced
localization methods with powerful data mining capabilities
[27]. Alternatively, pLkl can be modelled as a distance-related
continuous variable [32]

pLkl =

{
300−dkl

300 , if 0 < dkl < 300

0, otherwise
(37)

with pLkl ∈ [0, 1], which is irrelevant to the practical propa-
gation environment. To convert the range of pLkl in (37) from
[0, 1] to {0, 1}, a parameter δL ∈ [0, 1] is used to approximate
the effect of blocking on the LoS probability by controlling
the number of LoS paths, denoted as NL, in the considered
area. As a result, the LoS probability in (37) is rewritten as

pLkl =

{
1, if 0 < dkl < 300(1− δL)

0, otherwise
(38)

which is a binary variable and can be used for calculating the
K-factor and the LSF coefficients.

Given the environment-related LoS probability pLkl, PCM is
capable of providing the large-scale CSI hL

kl and RN
kl which

match the actual wireless channel better than that calculated
based on the LoS probability in (38). The transmission perfor-
mance can be improved by applying these environment-aware
large-scale CSI to the signal processing and initial access
schemes proposed in Section III and Section IV.

B. Small-Scale CSI-Aware Transmission via FCM

The ultimate FCMMFCM is expected to provide the small-
scale CSI hN

kl and eȷϕkl based on the current 3D location
vectors (capl , cuek ) by the function fFCM(·|E) conditioned on
the environment database E . Together with the large-scale CSI
obtained from the PCM, the complete channel hkl and its
angle domain representation gkl can be obtained, i.e.,

MFCM : {hkl,gkl} = fFCM((capl , cueu )|E). (39)

It should be noted that the SE expression in (17) in Section
III only provides an achievable lower bound of the SE when
the channel hardening effect is prominent. With the help of the
FCM MFCM, an upper bound of the SE with perfect “FCM-
aided” CSI {gkl : ∀k, l} can be derived. To this end, we first
rewrite the final estimate ŝk in (16) as

ŝk = aH

kbkksk︸ ︷︷ ︸
Desired signal

+

K∑
i=1,i̸=k

aH

kbkisi︸ ︷︷ ︸
Interference

+ n′
k︸︷︷︸

Noise

(40)

where the first term is the desired signal obtained over a known
channel. By combining interference and noise in one term, an
upper bound of SE is obtained as follows.

Proposition 1. A SE upper bound of UE k with FCM-aided
CSI is

SE
ul

k = E
{
log2

(
1 + SINR

ul

k

)}
bit/s/Hz (41)

where the SINR is

SINR
ul

k =
pk|aH

kbkk|2

aH

k(
∑K

i=1,i ̸=k pibkib
H

ki + Fk)ak
(42)

with bki = [vH

k1Dk1gi1, . . . ,v
H

kLDkLgiL] and Fk =
σ2

N diag(∥Dk1vk1∥2, . . . , ∥DkLvkL∥2).

Proof: The proof follows a similar approach as in [7,
Coro. 5.10] but with angle domain receive-combined channels
{bki :∀k, i} and combining vectors {vkl :∀k, l}.

Similar to (20), the generalized Rayleigh quotient of SINR
ul

k

in (42) allows computing the best LSFD vector aoptk that
maximizes SINR

ul

k , which is given as follows.

Corollary 1. The effective uplink SINR in (42) for UE k is
maximized by

aoptk = pk

(
K∑
i=1

pibkib
H

ki + Fk

)†

bkk (43)
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Fig. 3. Illustration of the considered communication scenario.

which leads to the maximum value SINR
ul

k =
pkb

H

kk(
∑K

i=1 pibkib
H

ki + Fk)
†bkk.

Proof: The proof follows the results in [33, Lem. B.10]
and [33, Lem. B.4].

The SE upper bound in Proposition 1 is applicable to
any receive combining vector vkl and any channel model,
including the one in (4) and the 6GPCM. One can choose the
computationally efficient MR combing scheme with vmr

kl =
Dklgkl or the MMSE-type combining schemes with more
sophisticated interference suppression capability, which are
given as follows.

Lemma 3. At AP l with perfect angle domain CSI {gil : ∀i},
the local conditional data MSE E{|sk − ŝkl|2|{gil : ∀i}} for
UE k is minimized by the following angle domain L-MMSE
combining vector

vl−mmse
kl = pk

(
K∑
i=1

pigilg
H

il +
σ2

N
IN

)−1

Dklgkl. (44)

Proof: The proof is similar as in Lemma 1 but with the
local conditional data MSE E{|sk − ŝkl|2|{gil : ∀i}}.

Analogously, we obtain the angle domain LP-MMSE com-
bining scheme with perfect angle domain CSI as

vlp−mmse
kl = pk

(∑
i∈Dl

pigilg
H

il +
σ2

N
IN

)−1

Dklgkl. (45)

With the proposed upper-bound SE expression in Proposi-
tion 1 and the corresponding angle domain receive combining
and LSFD schemes, we are able to evaluate the proposed
channel map-based transmission design quantitatively, which
is discussed in the next section.

VI. RESULTS AND ANALYSIS

In this section, we will quantitatively evaluate our proposed
angle domain signal processing and initial access schemes in
Sections III-IV and the transmission design aided by the FCM
and PCM in Section V, in terms of SE, EE, and NMSE. As
illustrated in Fig. 3, we consider an urban microcell scenario
where the buildings are taking the same exterior dimensions
and layouts as that in the China Network Valley, Nanjing,
China. There are L APs, each equipped with N antennas,
mounted on the rooftops of the buildings offering an adequate

TABLE I
SYSTEM PARAMETERS.

Parameters Definitions Values

L, K Number of APs and UEs 16, 20

N Number of antennas per AP 4

B System bandwidth 20 MHz

τc, τp Number of available channel
uses and pilot sequences

200, 10

pp, pmax Transmit power for pilots and
maximal transmit power for data

0.1 W, 0.1 W

σφ, σθ Standard deviation for AAOA
and EAoA

10◦, 10◦

network coverage, and K UEs distributed in the coverage
area of 318×330 m2 randomly following an independent and
uniform distribution. Unless otherwise specified, the adopted
system parameters for simulation are given in Table I, the PCM
is used to obtain the large-scale channel statistics, and the SE,
EE, and NMSE are calculated with the channel model in (4)
according to (17), (22), and (25), respectively.

A. Considered Schemes

To quantify the performance achieved by the proposed angle
domain uplink receive combining, LSFD, pilot assignment,
and AP selection design, we proposed several schemes, namely
“O-Angle”, “P-Angle”, and “S-Angle”. More precisely, O-
Angle uses the L-MMSE combining in (14) and optimal
LSFD in (20) where each AP serve all UEs, P-Angle uses
the LP-MMSE combining in (15) and partial LSFD in (21)
where each AP serve all UEs each AP serve τp UEs with
the strongest channels, and S-Angle also uses the LP-MMSE
combining in (15) while the LSFD vector and AP selection
are obtained by solving the sparse optimization problem P2

in (31). All the three aforementioned schemes employ the
proposed similarity-based pilot assignment and operates in the
angle domain. Analogically, we propose three space domain
schemes corresponding to O-Angle and S-Angle, namely “O-
Space” and “S-Space”, respectively. Moreover, three space
domain benchmark schemes are considered for comparison,
namely “Scalable [10]”, “Weighted [12]”, and “Random”,
which are elaborated in Table II.

Additionally, we evaluate the transmission design aided by
the FCM and PCM in Section V. In the case of utilizing the
FCM, we propose the scheme “F-Angle” where the pilot as-
signment is not needed due to the obviated channel estimation.
As illustrated in Fig. 2, the FCM-aided CSI {gkl : ∀k, l} is
used for designing the angle domain transmission schemes
where the SE is computed according to upper-bound expres-
sion in (41). In the case of utilizing the PCM, which is the
default case where the channel estimation for the small-scale
CSI is still needed and the used large-scale channel statistics
are obtained with the LoS probability provided by the PCM.
On the contrary, when neither the FCM nor PCM is used, the
large-scale channel statistics used for channel estimation are
obtained with the LoS probability computed according to (38).
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TABLE II
THE CONSIDERED MULTIPLE ACCESS SCHEMES.

Schemes Domain Combining LSFD Pilot Assignment AP Selection

O-Angle Angle
L-MMSE Optimal LSFD

Obtained by solving P1

in (28)

Each AP serves all UEs
O-Space Space
S-Angle Angle

LP-MMSE

Obtained by solving P2

in (31)
Obtained by solving P2

in (31)S-Space Space
P-Angle

Angle

Partial LSFD
Each AP serves τp UEs

with the strongest channels
F-Angle –

Weighted [12]
Space

Heuristic scheme [12]
Random Random allocation

Scalable [10]

Partial LSFD

Joint pilot assignment and AP selection scheme [10]

Fig. 4. (a) CDFs of SE per UE and (b) 95%-likely SE and average SE,
considering different combinations of K and N .

B. Analysis for the angle domain Transmission

Fig. 4 demonstrates the SE performance considering differ-
ent combination of the number of UEs K and the number
of antennas per AP N , where the proposed scheme P-Angle
is compared to the benchmark Graph, Scalable, and Random.
More precisely, Fig. 4 (a) depicts the cumulative distribution
functions (CDFs) of the uplink SE per UE and Fig. 4 (b)
quantifies the corresponding 95%-likely SE and average SE,
where the average SE values are larger than the 95%-likely
SE values and drawn in lighter colors in the histogram. The
first observation is that P-Angle outperforms the benchmark
on both 95%-likely SE and average SE in every considered
case with respect to K and N . This is expected since the
interference caused by pilot reuse is effectively suppressed by
P-Angle where the similarities between UEs are revealed more
prominently in the angle domain to be exploited to find the
best pilot assignment with the minimum overall interference
in (28). By comparing the case with K = 20, N = 4 and

2 4 6 8 10 12 14 16 18

4

4.5

5

5.5

6

6.5

7

2 4 6 8 10 12 14 16 18
10-4

10-3

10-2

10-1

100

Fig. 5. (a) Average NMSE and (b) average SE versus τp.

that with K = 40, N = 4, it can be seen that the former
outperforms the latter by around 1.8× on average SE and
around 5.6× on 95%-likely SE thanks to the reduced inter-
UE interference by having fewer serving UEs. Taking the case
with K = 20, N = 4 as a baseline, the average SE is further
improved to around 1.5× and the 95%-likely SE is further
improved to around 2.4× in the case with K = 20, N = 8.
This comes from the enhanced interference suppression gain
of the LP-MMSE combiner by having more antennas per AP.
Additionally, we notice that the performance gaps between
P-Angle and the most competitive benchmark Weighted are
widened in the “preferable” cases. For instance, compared to
Weighted, P-Angle achieves a 9.1% improvement in average
SE when K = 20, N = 8, and this improvement shrinks to
2.3% when K = 40, N = 4 since the performances of both
schemes are limited in an inferior case.

Considering the same schemes and benchmark as Fig. 4
with K = 20, N = 4, Fig. 5 (a) and Fig. 5 (b) further
discuss the impact of the number of pilots τp on the average
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Fig. 6. (a) Average SE and (b) average EE versus λ, considering different
operation domains.

NMSE and average SE, respectively. Similar to Fig. 4, P-
Angle demonstrates its advantages over the benchmark on
both average NMSE and average SE for the same reason as
explained in Fig. 4. Then, we notice that the average NMSE
decreases monotonically as τp increases, which is consistent
with (25) since the matrix Ψιkl is likely to include fewer
undesired UEs’ statistical CSI during the channel estimation
when there are more available pilot sequences. Moreover, we
observe that the average SE is a concave function with respect
to τp. The reason is that increasing τp not only promotes the
SINR SINRk but also reduces the prelog factor τu

τc
=1− τp

τc
in

(17). The former effect dominates in the region of insufficient
available pilots and causes the escalation of average SE with
the increased τp until the saturation point (i.e., the Maximum)
is reached. Henceforth, the latter effect starts to dominate and
increasing τp will do more harm than good on average SE.

The benefits obtained by the proposed angle domain
similarity-based pilot assignment has been exhibited in Fig. 4
and Fig. 5. In Fig. 6, we evaluate the proposed sparsity-
induced AP selection in terms of average SE and average
EE considering the angle domain schemes (i.e., O-Angle, P-
Angle, and S-Angle) and the space domain schemes (i.e., O-
Space and S-Space) for various values of the regularization
parameter λ. Since Weighted behaves as the most competitive
benchmark in Fig. 4 and Fig. 5, we only include Weighted
into the comparisons in Fig. 6 for concise presentation. Note
that Weighted operates in the space domain as well. Fig. 6 (a)
is dedicated to average SE where the vertical axis is broke and
the unnecessary blank space is removed for clear presentation
due to the large SE gaps between the angle domain schemes
and space domain schemes. We first observe that the average
SE decreases as λ increases. The average SE loss is marginal
since each UE is served by a subset of APs that contribute

Fig. 7. (a) CDFs of SE per UE and (b) 95%-likely SE and average SE,
considering different channel maps.

the most during the LSFD. Consequently, a significant aver-
age EE improvement is achieved due to the reduced power
consumption. For instance, compared to O-Angle where each
AP served all UEs, S-Angle achieves a 3.6× average EE
with an average SE loss of less than 1% when λ = 10−1.
Compared to P-Angle, S-Angle achieves a 1.6× average EE
and almost identical average SE when λ = 10−1.5, and this
average EE improvement increases to 1.8× with an average
SE loss of less than 1% when λ = 10−1. This comes from
the joint optimization of the LSFD and AP selection design
utilized in S-Angle, which outperforms the separate LSFD
and AP selection design utilized in P-Angle. Similar trends in
average SE and average EE concerning λ observed in the angle
domain schemes can be observed in the space domain as well.
When comparing the schemes operated in different domains,
the average EE of the angle domain schemes is around 8.0%
higher than that of their space domain alternatives due to the
higher achieved average SE.

C. Analysis for the Channel Map-Aided Transmission

Fig. 7 demonstrates the SE performance by comparing
the proposed scheme P-Angle with the most competitive
benchmark Weighted considering two cases: 1) case “w/ PCM”
that exploits the channel statistics provided by the PCM
for designing transmission schemes and 2) case “w/o PCM”
that exploits the channel statistics obtained with the help of
the LoS probability computed according to (38). The LoS
probability in case w/o PCM takes the same value as that
of the average LoS probability in case w/ PCM for a fair
comparison. Moreover, the impact of channel model on the
SE performance is also demonstrated by considering scheme
“F-Angle (6GPCM)” where the 6GPCM is adopted. Similar to
Fig. 4, the CDFs of SE per UE, 95%-likely SE, and average
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Fig. 8. (a) Average SE and (b) average EE versus NL, considering different
channel maps.

SE are regarded as performance metrics. We first observe that
P-Angle outperforms Weighted in both cases w/ PCM and w/o
PCM. Then, better SE performance is observed when utilizing
the PCM, which assists the transmission by providing the a
priori environment-related large-scale channel statistics. More
precisely, the average SE and 95%-likely SE of the schemes
in case w/ PCM are around 9.8% and 36.0% higher than that
of the schemes in case w/o PCM, respectively. Note that these
performance improvements will decay as the localization error
increases due to the inaccurate LoS probabilities in practice.
Then, the SE performance is further improved by employing
the FCM which provides the complete CSI on the basis of
the PCM. Taking P-Angle in case w/o PCM as a baseline,
F-Angle further increases the average SE and 95%-likely SE
improvements to 22.0% and 110.2%, respectively. Compared
to scheme F-Angle, F-Angle (6GPCM) achieves the similar
average SE but 25.0% higher 95%-likely SE, implying that
the channel realizations modeled by 6GPCM is more uniform
than that modeled by (4).

In Fig. 8, we investigate the impact of number of LoS paths,
i.e., NL, on the average SE and average EE in Fig. 8 (a)
and Fig. 8 (b), respectively. The value of NL could range
from 0 to 320 with L = 16 APs and K = 20 UEs.
For the considered scenario illustrated in Fig. 3 where the
layouts of APs and buildings are fixed, NL is hardly possible
to go through the aforemention range when the UEs are
independently and uniformly distributed in the coverage area.
Therefore, we consider a case marked as “Appr”, where the
large-scale channel statistics used for generate the approximate
“ground-truth” CSI are obtained with the LoS probability in
(38) as well. Therefore, the case Appr can be regarded as a
PCM-aided case based on the approximate “ground-truth” CSI.
The parameter δL is used to keep NL between 0 and 320. It can
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Fig. 9. (a) Average SE and (b) average EE versus λ, considering different
channel maps.

be seen in Fig. 7 (a) that the average SE is a concave function
with respect to NL, where the deteriorations in average SE
appear when NL approaches either 0 or 320. The reason is
that the received signal strength is week when the LoS paths
are missing, that reduces the average SE; on the opposite, too
many LoS paths will cause undesirable interference between
the UEs, which also causes an average SE reduction. In Fig. 7
(b), we notice that the average EE is also a concave function
concerning NL for the similar reason as that in Fig. 7 (a). By
comparing P-Angle (w/ PCM) with P-Angle (Appr) when NL

is 71.8, which is the average NL of the considered scenario
in Fig. 3, the interesting observation is that P-Angle (Appr)
achieves a higher average SE than P-Angle (w/ PCM). This
comes from the fact that the overall received signal strength
in case w/ PCM is weaker than that in case Appr due to actual
building blocking, which lengthens the average distances of the
LoS paths when the both cases have the same NL. That is to
say, the actual propagation environment needs to be considered
during the transmission scheme design to avoid overestimating
the achievable SE and EE performance.

In Fig. 9, the average SE and EE of the angle domain
schemes (i.e., O-Angle and S-Angle) and the benchmark
Weighted are demonstrated to highlight the achieved good
SE-EE trade-offs with various values of λ in case w/o PCM.
Additionally, F-Angle (6GPCM) and F-Angle are included in
comparison as well. Together with Fig. 6 which presents the
average SE and EE in case w/ PCM, the impact of the a
priori CSI provided by different channel maps is discussed.
Comparing with Fig. 6 (a), we first observe that the average
SE of S-Angle (w/o PCM) decreases as λ increases and the
average SE loss compared to O-Angle (w/o PCM) is less than
1%, which are consistent with that in case w/ PCM for the
similar reason. Moreover, the average SE of O-Angle (w/o
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PCM) is 5.6% higher than that of Weighted (w/o PCM). This
average SE improvement is further increased to around 31.6%
by F-Angle (6GPCM) and F-Angle thanks to the provided the
complete CSI, where the average SE of F-Angle (6GPCM) is
slightly higher than that of F-Angle. Similar to that in case
w/ PCM, the average EE of S-Angle (w/o PCM) increases as
λ increases due to the reduced power consumption. Taking
λ = 10−1 as an example, compared to F-Angle (6GPCM),
Weighted (w/o PCM), and O-Angle (w/o PCM), S-Angle (w/o
PCM) improves the average EE to 1.5×, 2.0×, and 3.6×,
respectively. Furthermore, it can be seen that the average EE
of F-Angle (6GPCM) is slightly higher than that of F-Angle,
and is 1.3× and 2.4× that of Weighted (w/o PCM) and O-
Angle (w/o PCM), respectively.

VII. CONCLUSIONS

This paper has proposed a channel map-based angle do-
main multiple access scheme for uplink CF M-MIMO com-
munications. A two-stage data reception scheme dedicated
to angle domain CF M-MIMO has been proposed where
the angle domain MMSE-type receive combing and LSFD
vectors are derived. Based on this, an angle domain initial
access strategy, including pilot assignment and AP selection,
has been developed to suppress the overall interference and
reduce unnecessary power consumption under the guidance of
the derived access criterion. Simulation results have demon-
strated that the proposed angle domain schemes effectively
improve the SE performance and offer a better SE-EE trade-
off compared to their space domain alternatives. Moreover,
two channel map-based transmission mechanisms aided by
PCM and the ultimate FCM have been constructed with a
tailored data reception scheme consisting of the newly derived
upper-bound SE expression with MMSE-type combining and
LSFD vectors. Results have shown that the channel map-based
schemes can further boost transmission performance compared
to the schemes without using channel maps, verifying the
positive effects by being aware of the channel and exploiting
the appropriate CSI.

APPENDIX A
PROOF OF LEMMA 2

According to the definition of NMSEk in (25), the definition
of Ψ̃ιkl in (26), we have

tr
(
DklΩklU

HΨ−1
ιkl

UΩkl

)
(46)

=tr

(
DklΩklU

H

(
Ψ̃ιkl + Ω̃res

kl

)−1

UΩkl

)
(47)

≤tr
(
UΩklDklΩklU

HΨ̃−1
ιkl

)
(48)

where Ω̃res
kl = τppp

∑
i∈Sιk

\{k} UΩilU
H, the inequality in

(48) comes from the results in [7, Lem. B.4], and the equality
occurs when

Ω̃res
kl Ψ̃

−1
ιkl

UΩklDklΩklU
H = 0. (49)

With the help of the results in [33, Lem. B.5] and the definition
of steering matrix U, we rewrite the condition in (49) as

τppp
∑

i∈Sιk
\{k}

UDklΩilΩkl

(
τpppΩkl +

σ2

N
IN

)−1

ΩklU
H=0

(50)
which holds when one of the conditions in Lemma 2 is
satisfied, and the lower bound in (26) is therefore achieved.
This completes the proof.

REFERENCES

[1] S. Chen, C.-X. Wang, J. Li, C. Huang, H. Chang, and Y. Chen,
“Improving cell-free massive MIMO through channel map-based angle
domain multiple access,” in Proc. IEEE ICC’25, Montreal, Canada,
accepted for publication, 2025.

[2] C.-X. Wang, et al., “On the road to 6G: Visions, requirements, key
technologies, and testbeds,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,
pp. 905–974, 2nd Quart. 2023.

[3] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, Mar. 2019.

[4] S. Chen, J. Zhang, J. Zhang, E. Björnson, and B. Ai, “A survey on
user-centric cell-free massive MIMO systems,” Digit. Commun. Netw.,
vol. 8, no. 5, pp. 695–719, Oct. 2022.

[5] Z. Wang, et al., “A tutorial on extremely large-scale MIMO for 6G:
Fundamentals, signal processing, and applications,” IEEE Commun.
Surveys Tuts., vol. 26, no. 3, pp. 1560–1605, 3rd Quart. 2024.

[6] C.-X. Wang, Y. Yang, J. Huang, X. Gao, T. J. Cui, and L. Hanzo,
“Electromagnetic information theory: Fundamentals and applications for
6G wireless communication systems,” IEEE Wireless Commun., vol. 31,
no. 5, pp. 279–286, Oct. 2024.
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