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Generalising the maximum independent set algorithm via Boolean
networks

Maximilien Gadouleau and David C. Kutner∗

January 16, 2025

Abstract

A simple greedy algorithm to find a maximal independent set (MIS) in a graph starts with the
empty set and visits every vertex, adding it to the set if and only if none of its neighbours are already
in the set. In this paper, we consider the generalisation of this so-called MIS algorithm by allowing it
to start with any set of vertices and we prove the hardness of many decision problems related to this
generalisation. Our results are based on two main strategies. Firstly, we view the MIS algorithm as
a sequential update of a Boolean network, which we shall refer to as the MIS network, according to
a permutation of the vertex set. The set of fixed points of the MIS network corresponds to the set
of MIS of the graph. Our generalisation then consists in allowing to start from any configuration
and to follow a sequential update given by a word of vertices. Secondly, we introduce the concept
of a constituency of a graph, that is a set of vertices that is dominated by an independent set.
Deciding whether a set of vertices is a constituency is NP-complete; decision problems related
to the MIS algorithm will be reduced from the Constituency problem or its variants. In this
paper, we first consider universal configurations, i.e. those that can reach all maximal independent
sets; deciding whether a configuration is universal is coNP-complete. Second, we consider so-
called fixing words, that allow to reach a MIS regardless of the starting configuration, and fixing
permutations, which we call permises; deciding whether a permutation is fixing is coNP-complete.
Third, we consider permissible graphs, i.e. those graphs that have a permis. We construct large
classes of permissible and non-permissible graphs, notably near-comparability graphs which may
be of independent interest; deciding whether a graph is permissible is coNP-hard. Finally, we
generalise the MIS algorithm to digraphs. In this case, the algorithm uses the so-called kernel
network, whose fixed points are the kernels of the digraph. Deciding whether the kernel network of
a given digraph is fixable is coNP-hard, even for digraphs that have a kernel. As an alternative,
we introduce two further Boolean networks, namely the independent and the dominating networks,
whose sets of fixed points contain all kernels. Unlike the kernel network, those networks are always
fixable and their fixing word problem is in P.

1 Introduction

The MIS algorithm A simple greedy algorithm to find a maximal independent set (MIS) in a
graph starts with the empty set and visits every vertex, adding it to the set if and only if none of
its neighbours are already in the set. We shall refer to it as the MIS algorithm. Because the MIS
algorithm always terminates in a maximal independent set, it has been the subject of a stream of work
(see [9] and references therein).

A core feature of the classical MIS algorithm is that the starting set of vertices is the empty set.
However, the seminal observation of this paper is that this constraint can be lifted. Indeed, starting
from any set of vertices and visiting each vertex once, removing a vertex if one of its neighbours
already appears in the set, one always terminates at an independent set. Moreover, starting from any
independent set and visiting each vertex once, one always terminates at a MIS. Thus, iterating over
the vertex set twice is sufficient to obtain a MIS from any starting set of vertices.
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As such, the scope of this paper is the generalisation of the MIS algorithm, where one can start
with any (not necessarily independent) set of vertices, and one can visit vertices in any order with
possible repetitions. Of course, some sequences of vertices will guarantee reaching a MIS from any
starting configuration – we shall call those fixing words, while others will not, as in Example 1.1 below.

Example 1.1. Consider the path on three vertices:

a b c

This graph has two MIS, namely {a, c} and {b}. Starting at the empty set, the MIS algorithm terminates
at {b} if the sequence begins with b (i.e. w = bac or w = bca) or at {a, c} otherwise (i.e. w ∈
{abc, acb, cab, cba}).

For this graph, abc is not a fixing word: if one starts from the set {b, c}, then one terminates at
{c}. However, acb is a fixing word: if the starting set contains b, then one terminates at {b}; otherwise
one terminates at {a, c}.

Finally, for this graph, the words w = abcabc and w = acbacb are fixing words, as are any words of
the form w = w1w2, where w1 and w2 are permutations of the vertex set.

Contributions for graphs Below we give a summary of our contributions for the MIS algorithm
on graphs.

When starting from the empty set, the MIS algorithm is able to reach any possible maximal
independent set (if the algorithm goes through the MIS first, then it would terminate with that MIS).
However, the empty set is not the only set with that property: the full set of vertices also allows that
(this time, if the algorithm finishes with a MIS). In Theorem 4.1, we prove that deciding whether a
set of vertices can reach every MIS is coNP-complete.

As we showed in Example 1.1, though iterating over the whole set of vertices twice is always
sufficient to reach a MIS, it is not always necessary. Consequently, we ask: what are the sequences of
vertices which always reach a MIS, regardless of the starting set of vertices? In Theorem 5.1, we prove
that deciding whether a sequence offers that guarantee is coNP-complete.

Since the MIS algorithm visits each vertex exactly once, we also consider permutations of vertices
that are guaranteed to reach a MIS; we call those permises. In Theorem 5.11, we prove that deciding
whether a permutation of vertices is a permis is coNP-complete. A graph that admits a permis is
called permissible. Not all graphs are permissible; the smallest non-permissible graph is the heptagon.
We exhibit large classes of permissible and non-permissible graphs. In particular, we introduce near-
comparability graphs and classify them in Theorem 6.2; they naturally generalise comparability graphs
and can be recognised in polynomial time. We prove that near-comparability graphs are permissible
in Proposition 6.1. In Theorem 6.13, we prove that deciding whether a graph is permissible is coNP-
hard. There is no obvious candidate for a no-certificate, so it may be that the problem is not actually
in coNP.

In some situations, one can skip some vertices and still guarantee a MIS is reached. For instance,
in the complete graph, one can simply update all but one vertex and still reach a maximal independent
set, from any starting configuration. We prove in Theorem 5.8 that deciding whether a given set of
vertices can be skipped is coNP-complete. We also prove in Theorem 5.9 that deciding whether any
vertices can be skipped is coNP-complete.

Boolean networks Our main tool is Boolean networks. A configuration on a graph G = (V,E) is
x ∈ {0, 1}V , i.e. the assignment of a Boolean state to every vertex of the graph. A Boolean network
is a mapping F : {0, 1}V → {0, 1}V that acts on the set of configurations. Boolean networks are
used to model networks of interacting entities. As such, it is natural to consider a scenario wherein
the different entities update their state at different times. This gives rise to the notion of sequential
(or asynchronous) updates, by updating the state of one vertex at a time; a word w then gives the
order in which those vertices are updated (with repeats allowed in general). Since the original works
by Kauffman [21] and Thomas [29], asynchronous updates have been widely studied, both in terms
of modelling purposes and of dynamical analysis (see [11, 4] and references therein). The problem
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of whether a Boolean network converges (sequentially) goes back to the seminal result by Robert on
acyclic interaction graphs [27]; further results include [19, 18, 24]. Recently, [5] introduced the concept
of a fixing word: a word w such that updating vertices according to w will always lead to a fixed
point, regardless of the initial configuration. Fixing words are a natural feature of Boolean networks,
for two main reasons. Firstly, almost all networks with a fixed point, and hence a positive asymptotic
proportion of all networks, have fixing words [10]. Secondly, large classes of Boolean networks, including
monotone networks and networks with acyclic interaction graphs, have short fixing words (of length
at most cubic in |V |) [5, 15].

We refer to the Boolean network where the update function is the conjunction of all the negated
variables in the neighbourhood of a vertex as the MIS network on the graph, i.e. M : {0, 1}V → {0, 1}V
with M(x)v =

∧
u∼v ¬xu for all v ∈ V . The MIS network was highlighted in [26, 3], where the fixed

points of different conjunctive networks on (directed) graphs are studied. In particular, [26] shows that
the set of fixed points of the MIS network is the set of (configurations whose supports are) maximal
independent sets of the graph. It is further shown in [3] that for square-free graphs, the MIS network
is the conjunctive network that maximises the number of fixed points.

The MIS algorithm can be interpreted in terms of Boolean networks as follows: starting with the all-
zero configuration x, update one vertex v at a time according to the update function M(x)v =

∧
u∼v ¬xu.

Once all vertices have been updated, we obtain the final configuration y where the set of ones is a
maximal independent set, regardless of the order in which the vertices have been updated. As such,
fixing words of the MIS network correspond to sequences of vertices that guarantee that the MIS
algorithm terminates for any starting set of vertices. The seminal observation of this paper is that for
any permutation w, the word ww is a short fixing word (of length 2|V |).

Self-stabilization and distributed computing Some of our results may be applied in the context
of distributed computing. Similar to Boolean networks, distributed algorithms produce an output
through local, independent updates of nodes in a fixed topology. Asynchronous models for distributed
computing do not assume a bound on message delay [2], making them less relevant here. Consequently,
we focus on synchronous models, in which time is discrete and all nodes perform a SEND-RECEIVE-
UPDATE loop synchronously at each time step. The algorithm executed at all nodes is identical, and
the state of some node at time t depends only on the state of (all nodes in) its inclusive neighbourhood at
time t−1. Some key differences with the Boolean Network setting are worth emphasizing. For example,
in standard models for synchronous distributed computation: nodes each have an (unbounded-size)
internal state, and may solve arbitrarily hard problems during their UPDATE; messages sent may
differ from the sender’s state; nodes may choose not to SEND anything at all; and updates occur
synchronously.

The problem of finding a MIS has been a focus of much study in this setting, including in the LOCAL
[17], CONGEST [16] and Beeping models [1, 8]. LOCAL is characterized by its unrestricted message
size, whereas CONGEST limits messages to O(log |V |) bits per outgoing edge. The Beeping model is
a significant restriction, in which nodes can communicate only via beeps (which are indistinguishable)
and silence [13]. We refer the interested reader to [12] for a more complete treatment of this model’s
variants, which also includes a discussion of the distributed MIS problem in Sections 4.5 and 6.2.

An algorithm or procedure is said to be “self-stabilizing” if it is guaranteed to reach a legitimate state
regardless of its initial state, and additionally will never reach an illegitimate state from a legitimate
state [14, 28]. This notion has been integrated into the design of distributed algorithms [22] and is
explicitly identified as a feature of the Beeping MIS algorithm given in [1].

Our results do not directly apply to these models; in particular, we assume (and sometimes exploit)
asynchronous and instantaneous updates. That is, each vertex’s local update is immediately “visible”
to all its neighbours. This differs from standard models of distributed computing, which generally
incorporate some transmission delay (which is typically one unit in synchronous models, and controlled
by an adversary in asynchronous models).

To emulate the MIS network M studied in the present work, it would then be sufficient for a
distributed model to support: asynchronous updates (scheduled by an adversary or a helper) and
instantaneous transmission. We call the minimum length of time within which each node updates at
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least once a phase. In the adversarial setting, our seminal observation translates to the fact that this
protocol necessarily reaches a MIS within two phases from any starting configuration and self-stabilizes.
In the helpful setting, a Permis is an update schedule which guarantees self-stabilization within a single
phase. By Theorem 5.1, it is coNP-complete to determine whether some update schedule satisfies this
property; by Theorem 5.11, the problem remains coNP-complete even if the schedule is guaranteed to
contain every node exactly once; and by Theorem 6.13 it is coNP-hard to determine whether any such
update schedule exists at all for the given network. If the helpful scheduler is limited to some subset
of nodes, Theorem 5.8 means it is coNP-hard to determine whether there is a self-stabilizing schedule
which uses only that subset of nodes. Furthermore, Theorem 5.9 entails that deciding whether there
exists any such schedule using n− 1 nodes (even allowing repetitions) is coNP-hard.

Constituencies The main tool for the hardness results in this paper is that of a constituency. A
constituency is a set of vertices of a graph that is dominated by an independent set, i.e. S is a
constituency if there exists an independent set I such that S ⊆ N(I). We believe that the constituency
problem is of independent interest for a couple of reasons. Firstly, this is a natural definition for a
set of vertices, but to the best of the authors’ knowledge, it has not been considered in the literature
yet. Secondly, the Constituency problem asks whether a set S is a constituency. Unlike problems
like Clique, Independent Set or Vertex Cover, the Constituency problem does not rely on
an integer parameter. Nonetheless, Constituency is NP-complete, while the problem of deciding
whether a set is a clique (or independent set, or vertex cover) is clearly in P. As such, Constituency
provides a natural intractable graph problem whose input does not include an integer. We heavily use
Constituency and its variants in our hardness proofs, and we believe that this problem could be
used more broadly for reductions in the wider graph theory community.

Extension to digraphs In this paper, we further generalise the MIS algorithm by applying it to
the digraph case. In this case, a vertex is added to the set if and only if none of its in-neighbours are
already in the set. The expected outcome is a kernel, i.e. a dominating independent set (equivalent to
a maximal independent set if the digraph is a graph). Unfortunately, not all digraphs have a kernel:
odd directed cycles provide an intuitive example of kernel-less digraphs. In fact, deciding whether a
digraph has a kernel is NP-complete (see [7], p. 119).

Nonetheless, the algorithm for digraphs now corresponds to sequential updates of the kernel net-
work, with K(x)v =

∧
u→v ¬xu. Again, the set of fixed points of the kernel network is the set of

(configurations whose supports are) kernels [26]. As a side note, the kernel network has been heavily
used in logic and philosophy. Indeed, Yablo discovered the first non-self-referential paradox in [30].
The construction for this paradox implicitly applies the fact that the kernel network on a transitive
tournament on N has no fixed point. The study of acyclic digraphs that admit a paradox is continued
further in [25], where the kernel network is referred to as an F-system.

Some digraphs have a kernel and yet the corresponding kernel network does not have a fixing word.
More strongly, in Theorem 7.4 we show that deciding whether the kernel network has a fixing word is
coNP-hard, and we show in Theorem 7.5 that the result holds even for a restricted class of oriented
digraphs that have a kernel.

We then consider two other Boolean networks, that are fixable for any digraph. Firstly, the inde-
pendent network is given by I(x)v = xv ∧

∧
u→v ¬xu; its set of fixed points consists of the independent

sets of the digraph. We classify the fixing words of the independent network in Proposition 7.7 and in
Corollary 7.8 we prove that deciding whether a word fixes the independent network is in P. Secondly,
the dominating network is given by D(x)v = xv ∨

∧
u→v ¬xu; its set of fixed points consists of the

dominating sets of the digraph. Similarly, we classify the fixing words of the dominating network in
Proposition 7.10 and in Corollary 7.11 we prove that deciding whether a word fixes the dominating
network is in P.

Outline The rest of the paper is organised as follows. Some necessary background is given in Section
2. Constituencies and districts are introduced in Section 3, where some decision problems based on
those are proved to be NP- or coNP-complete. The configurations that allow to reach any possible
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maximal independent set are determined in Section 4. Fixing words, fixing sets, and permises for the
MIS network are studied in Section 5. Classes of permissible and non-permissible graphs are given in
Section 6. The extension to digraphs is carried out in Section 7, where we first consider fixing words of
the kernel network and then study the independent and dominating networks instead. Finally, some
conclusions and possible avenues for future work are given in Section 8.

2 Preliminaries

2.1 Graphs and digraphs

Most of our contributions (Sections 3 to 6) will focus on (undirected) graphs. However, when we extend
our focus to directed graphs, we shall view graphs as natural special cases of digraphs. As such, we
give the background on graphs and digraphs in its full generality, i.e. for digraphs first, and then we
make some notes about the special case of graphs.

By digraph, we mean an irreflexive directed graph, i.e. G = (V,E) where E ⊆ V 2 \{(v, v) : v ∈ V }.
We use the notation u → v to mean that (u, v) ∈ E. We say an edge (u, v) ∈ E is symmetric if
(v, u) is also an edge, and oriented otherwise. We will sometimes emphasize that (u, v) is symmetric
by writing it uv instead. For a vertex v, the open in-neighbourhood, closed in-neighbourhood, open
out-neighbourhood and closed out-neighbourhood of the vertex v are respectively defined as

N in(v) = {u ∈ V : u→ v}, N in[v] = N in(v) ∪ {v},
Nout(v) = {u ∈ V : v → u}, Nout[v] = Nout(v) ∪ {v}.

All of those are generalised to sets of vertices, e.g. N in(S) =
⋃
s∈S N

in(s). Clearly, all notations above
should reflect the dependence on the digraph G, e.g. N in(v;G); we shall omit that dependence on any
notation when the digraph is clear from the context.

For a digraph G = (V,E) and set of vertices S ⊆ V , we call the digraph (S, {(u, v) : (u, v) ∈
E ∧ {u, v} ⊆ S}) the induced subgraph on S, which we denote G[S]. We denote G− S the digraph
G[V \ S]. A path is a sequence of edges v1 → v2 → · · · → vk where all vertices are distinct; a cycle
in a digraph is a sequence of edges v1 → v2 → · · · → vk → v1 where only the first and the last vertices
are equal. A digraph is strong if for all vertices u and v, there is a path from u to v. A strong
component of G is a subset of vertices S such that G[S] is strong, but G[T ] is not strong for all
T ⊋ S. A digraph is acyclic if it has no cycles. An acyclic digraph has a topological order, whereby
u → v only if u ≤ v. For instance, the digraph where each vertex is a strong component of G and
C → C ′ if and only if u → u′ for some u ∈ C, u′ ∈ C ′ is acyclic. If C → C ′ in that digraph, we say
that C is a parent component of C; a strong component without any parent is called an initial
component.

We say that two vertices u and v are closed twins if N in[u] = N in[v]. Accordingly, we say that
the vertex m is a benjamin of G if there is no vertex v with N in[v] ⊂ N in[m]. We denote the set of
benjamins of G by B(G) and the corresponding induced subgraph by GB = G[B(G)]. We say that a
set of vertices S is tethered if there is an edge st between any s ∈ S and any t ∈ T = N(S) \ S.

An out-tree is a digraph where all edges are oriented, one vertex has no in-neighbours (the so-
called root), and all other vertices have exactly one in-neighbour each. A spanning out-forest of a
digraph G rooted at a set S ⊆ V is a collection of out-trees, each rooted at a different vertex of S,
such that each out-tree is a subgraph of G and each vertex of G appears in exactly one out-tree. We
shall use the following simple fact about spanning out-forests.

Lemma 2.1. If G is strong, then for any nonempty S ⊆ V , G has a spanning out-forest rooted at S.

Proof. Let S = {s1, . . . , sk}. For any u ∈ V , let sn(u) denote the nearest vertex in S from u with
the smallest index. More formally, let d(a, b) denote the length of a shortest path from a to b, then
we define sn(u) such that d(sn(u), u) < d(sl, u) for all 1 ≤ l ≤ n(u) and d(sn(u), u) ≤ d(sm, u) for all
n(u) ≤ m ≤ k. For all 1 ≤ l ≤ k, let Tl = {u ∈ V : n(u) = l}. It is clear that if v is on a shortest
path from sn(u) to u, then n(v) = n(u) (in particular, n(sl) = l). Therefore, each Tl has a spanning
out-forest rooted at sl. The union of all the Tl trees forms the desired spanning out-forest rooted at
S.

5



A digraph is undirected if all its edges are symmetric; which we shall simply call a graph. We then
denote N(v) = N in(v) = Nout(v), which we call the neighbourhood of v. A strong graph is called
connected, and the (initial) strong components of a graph are called its connected components.
In a graph, if u → v, then v → u, which we shall denote by u ∼ v. Lemma 2.1 applied to graphs is
given below – a spanning forest of a graph G rooted at a set S ⊆ V is a collection of trees, each
rooted at a different vertex of S, such that each tree is a subgraph of G and each vertex of G appears
in exactly one tree.

Corollary 2.2. If G is connected, then for any nonempty S ⊆ V , G has a spanning forest rooted at
S.

2.2 Boolean networks

A configuration on a digraph G = (V,E) is x ∈ {0, 1}V = (xv : v ∈ V ), where xv ∈ {0, 1} is the state
of the vertex v for all v. We denote 1(x) = {v ∈ V : xv = 1} and 0(x) = {v ∈ V : xv = 0}. Conversely,
for any set of vertices S ⊆ V , the characteristic vector of S is the configuration x = χ(S) such that
1(x) = S. For any set of vertices S ⊆ V , we denote xS = (xv : v ∈ S). We denote the all-zero (all-one,
respectively) configuration by 0 (by 1, respectively), regardless of its length.

We consider the following kinds of sets of vertices of, and accordingly configurations on, a digraph
G:

1. An independent set I is a set such that (i, j) /∈ E for all i, j ∈ I. (In other words, Nout(I) ∩
I = ∅.) Every digraph G has an independent set, namely the empty set ∅. The collection of
characteristic vectors of independent sets of G is denoted by I(G).

2. A dominating set D is a set such that for every vertex v ∈ V , either v ∈ D or there exists
u ∈ D such that (u, v) ∈ E. (In other words, Nout(D) ∪ D = V .) Every digraph G has an
dominating set, namely V . The collection of characteristic vectors of dominating sets of G is
denoted by D(G).

3. A kernel K is a dominating independent set. (In other words, Nout(K) ⊎ K = V .) Not all
digraphs have a kernel, for instance the directed cycle C⃗n (with vertex set Zn and edges (v, v+1)
for all v ∈ Zn) does not have a kernel whenever n ≥ 3 is odd. The collection of characteristic
vectors of kernels of G is denoted by K(G).

4. If G is a graph, then a kernel is a maximal independent set of G, i.e. an independent set
I such that there is no independent set J ⊃ I. Every graph has a maximal independent set.
In order to highlight this special case of particular importance to this paper, the collection of
characteristic vectors of maximal independent sets of G is denoted by M(G).

Let w = w1 . . . wl ∈ V ∗ be a sequence of vertices, or briefly a word. For any a, b ∈ {1, . . . , l},
we denote wa:b = wa . . . wb if a ≤ b and wa:b is the empty sequence if a > b. We also denote by
[w] = {u ∈ V : ∃j wj = u} the set of vertices that w visits. For any S ⊆ V , the subword of w
induced by S, denoted by w[S], is obtained by deleting all the entries in w that do not belong to S;
alternatively, it is the longest subword of w such that [w[S]] ⊆ S. A permutation of V is a word
w = w1:n such that [w] = V and wa ̸= wb for all a ̸= b.

A Boolean network is a mapping F : {0, 1}V → {0, 1}V . For any Boolean network F and any
v ∈ V , the update of the state of vertex v is represented by the network Fv : {0, 1}V → {0, 1}V where
Fv(x)v = F(x)v and Fv(x)u = xu for all other vertices u. We extend this notation to words as follows:
if w = w1 . . . wl then

Fw = Fwl ◦ · · · ◦ Fw2 ◦ Fw1 .

Unless otherwise specified, we let x be the initial configuration, w = w1 . . . wl be a word, y = Fw(x) be
the final configuration, and for all 0 ≤ a ≤ l, ya = Fw1:a(x) be an intermediate configuration, so that
x = y0 and y = yl.

If there is a word w such that y = Fw(x), we say that y is reachable from x, and we write x 7→F y.
For any two configurations x and y, we denote ∆(x, y) = {v ∈ V : xv ̸= yv}. An F-geodesic from x to
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y is a word w such that y = Fw(x), [w] = ∆(x, y) and wa ̸= wb for all a ̸= b, i.e. w visits every vertex v
where x and y differ exactly once, and does not visit any other vertex. If there exists a geodesic from
x to y, we denote it by x geo7−−→F y.

The set of fixed points of F is Fix(F) = {x ∈ {0, 1}V : F(x) = x}. It is clear that x ∈ Fix(F) if
and only if Fw(x) = x for any word w, i.e. a “parallel” fixed point is also a “sequential” fixed point.
The word w is a fixing word for F [5] (and we say that w fixes F) if for all x, Fw(x) ∈ Fix(F) (see [5]
for some examples of fixing words). A Boolean network is fixable if it has a fixing word.

3 Constituencies and districts

In this section, we introduce two kinds of sets of vertices, namely constituencies and districts, and
we determine the complexity of some decision problems related to them. Even though both concepts
will be useful to the sequel of this paper (an intuition behind the role of constituencies is given in
the introduction of Section 5), we believe that the concept of constituency in particular is a natural
property and is interesting to the wider graph theory community.

3.1 Constituencies

Let G = (V,E) be a graph. A subset S of V is a constituency of G if there exists an independent
set I such that S ⊆ N(I) (note that this requires that S ∩ I = ∅). The following are equivalent for a
set of vertices S ⊆ V (the proof is easy and hence omitted):

1. S is a constituency of G, i.e. there exists an independent set I of G such that S ⊆ N(I);

2. V \ S contains a maximal independent set of G;

3. there exists a maximal independent set M of G such that M ∩ S = ∅;

A non-constituency is a set of vertices that is not a constituency. The Constituency (Non-
Constituency, respectively) problem asks, given a graph G and set S, whether S a constituency (a
non-constituency, respectively) of G.

Constituency
Input: A graph G = (V,E) and a set of vertices S ⊆ V .
Question: Is S a constituency of G?

Non-Constituency
Input: A graph G = (V,E) and a set of vertices S ⊆ V .
Question: Is S a non-constituency of G?

Theorem 3.1. Constituency is NP-complete.

Proof. Membership of NP is known: the yes-certificate is an independent set I such that S ⊆ N(I).
The hardness proof is by reduction from Set Cover, which is NP-complete [20]. In Set Cover,

the input is a finite set of elements X = {x1, . . . , xn}, a collection C = {C1, C2, . . . , Cm} of subsets of
X, and an integer k. The question is whether there exists a subset Y ⊆ C of cardinality at most k
such that ∪Ci∈Y Ci = X.

We first construct the graph G on n +mk vertices. G consists of: vertices Qj = {q1j , . . . , qkj }, for
each j ∈ [m]; vertices vi for each i ∈ [n]; edges from each vertex in Qj to vi, whenever xi ∈ Cj ; edges
connecting {ql1, ql2, . . . , qlm} in a clique, for each l ∈ [k]. Let the target set S = {v1, . . . , vn}. This
concludes our construction; an illustrative example is shown in Figure 1.

We now show that if (X,C, k) is a yes-instance of Set Cover, then (G,S) is a yes-instance of
Constituency. Let Y ⊆ C be a set cover of X of cardinality at most k. We obtain the set I as
follows:

I = {qaj : Cj is the ath element of Y }.

Note that every vertex in I exists in G since Y has cardinality at most k (if |Y | = k then the last subset
to appear in Y is its kth element exactly). Further, I is an independent set, since by construction
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Colony is NP-h: reduction from Set Cover

v4v3v2v1

q14

q13

q12

q11

q24

q23

q22

q21

Figure 1: Illustration of the reduction from Set Cover to Constituency (the set S is the vertices in
the dashed box). Here the Set Cover instance has C1 = ∅, C2 = {x1}, C3 = {x2, x3}, C4 = {x4}, with
k = 2. Observe that both the Set Cover instance and the Constituency instance are no-instances.

every vertex qaj is adjacent to some other vertex qbl if and only if a = b. Lastly, every vertex vi ∈ Y is
incident to some vertex in I; for any i, ∃j : vi ∈ Cj . Then necessarily ∃a : qaj ∈ I, and by construction
(vi, q

a
j ) is an edge in G.

Conversely, if (G,S) is a yes-instance of Constituency then (X,C, k) is a yes-instance of Set
Cover. Let I be an independent set in G which dominates S. By construction of G, I has cardinality
at most k. Suppose otherwise, for contradiction - then by the pigeon-hole principle there is some clique
Cj such that |Cj∩I| ≥ 2, contradicting that I is an independent set. We obtain the set Y of cardinality
|I| as follows:

Y = {Cj : ∃a such that qaj ∈ I}.

We now show Y is a set cover of X. For each i ∈ [n], vi must be adjacent to some vertex in I; denote
this vertex qaj - now by construction xi is in the set Cj , and Cj ∈ Y .

Corollary 3.2. Non-Constituency is coNP-complete.

We make four remarks about constituencies. Let G be a graph, S be a subset of its vertices, and
T = N(S) \ S. First, if G − S has an isolated vertex t, then S is a constituency of G if and only
if S \ N(t) is a constituency of G − t. Second, whether S is a constituency of G is independent of
the edges in G[S]. As such, we can (and shall) reduce ourselves to either of two canonical types of
instances (G,S) of Constituency (and of course, of Non-Constituency as well):

Complete type: G[S] is complete and G− S has no isolated vertices.

Empty type: G[S] is empty and G− S has no isolated vertices.

Third, S is a constituency of G if and only if S is a constituency of G[S ∪ T ]. Therefore, we could
reduce ourselves to the case where V = S ∪ N(S); however, this assumption shall be unnecessary in
our subsequent proofs and as such we shall not use it. Fourth, if S is a constituency of G then every
subset of S is also a constituency of G.
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3.2 Districts

A subset T of vertices of a graph G is a district of G if there exists v ∈ V \ T such that T ∩ N(v)
is a constituency of G − v. A non-district is a set of vertices that is not a district. The District
(Non-District, respectively) decision problem asks, given a graph G and a set T , whether T is a
district (a non-district, respectively) of G.

District
Input: A graph G = (V,E) and a set of vertices T ⊆ V .
Question: Is T a district of G?

Non-District
Input: A graph G = (V,E) and a set of vertices T ⊆ V .
Question: Is T a non-district of G?

Theorem 3.3. District is NP-complete.

Proof. Membership of NP is known: the yes-certificate is a vertex v and a set of vertices I such that
v /∈ I ∪ T , I is an independent set, and T ∩N(v) ⊆ N(I).

The hardness proof is by reduction from Constituency, which is NP-complete, as proved in
Theorem 3.1. Let (G,S) be an instance of Constituency, and construct the instance (Ĝ, Ŝ) of
District as follows.

Let G = (V,E) and denote T = V \S. Then consider a copy T ′ = {t′ : t ∈ T} of T and an additional
vertex v̂ /∈ V ∪ T ′. Let Ĝ = (V̂ , Ê) with V̂ = V ∪ T ′ ∪ {v̂} and Ê = E ∪ {tt′ : t ∈ T} ∪ {sv̂ : s ∈ S},
and Ŝ = S ∪ T ′. This construction is illustrated in Figure 2.

We only need to prove that S is a constituency of G if and only if Ŝ is a district of Ĝ. Firstly, if
S is a constituency of G, then there exists an independent set I of G such that S ⊆ N(I;G). Then
Ŝ ∩N(v̂; Ĝ) = S is contained in N(I; Ĝ− v̂), thus Ŝ is a district of Ĝ.

Conversely, if Ŝ is a district of Ĝ, then there exists u ∈ V̂ \Ŝ such that Ŝ∩N(u; Ĝ) is a constituency
of Ĝ− u. Then either u = v̂ or u ∈ T . Suppose u = t ∈ T , then t′ ∈ Ŝ is an isolated vertex of G− t,
hence Ŝ ∩N(t; Ĝ) is not a constituency of Ĝ− t. Therefore, u = v̂ and there exists an independent set
Î of Ĝ− v̂ such that Ŝ ∩N(v̂; Ĝ) = S is contained in N(Î; Ĝ). Since S ⊆ V and N(S; Ĝ− v̂) ⊆ V , we
obtain S ⊆ N(Î ∩ V ; Ĝ− v̂)∩ V = N(Î ∩ V ;G), where I = Î ∩ V is an independent set of G. Thus, S
is a constituency of G.

Corollary 3.4. Non-District is coNP-complete.

If T is a district of G, then any subset of T is also a district of G. Therefore, any superset of a
non-district is also a non-district. Furthermore, every graph G has a trivial non-district, namely V .
The Non-Trivial Non-District problem asks whether G has any other non-district. We provide
some illustrative instances in Figure 3. We need only consider sets W with |W | = n − 1. For C4

and C3, we can by symmetry assume W = V \ {a}, and then for C4 {c} is an independent set which
dominates N(a) ∩W , whereas for the C3 there are no vertices outside N(a) ∩W and hence {b, c} is a
non-district. Similarly, for P3, W = V \ {b} is a non-trivial non-district.

Non-Trivial Non-District
Input: A graph G = (V,E).
Question: Does there exist a non-district S ̸= V of G?

Theorem 3.5. Non-Trivial Non-District is coNP-complete.

Proof. Since any superset of a non-district is also a non-district, G has a non-district S ̸= V if and only
if there exists v ∈ V such that V \{v} is a non-district of G. Therefore, Non-Trivial Non-District
is in coNP, where the no-certificate is a collection (Iv : v ∈ V ) such that Iv is an independent set of
G− v and N(v) ⊆ N(Iv) for all v.
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Dominion reduction
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Figure 2: Example reduction from a no-instance of Constituency (G,S) to the corresponding no-
instance of District (Ĝ, Ŝ), with Ŝ := S ∪ T ′.

Examples for Non-Trivial Non-Dominion
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d

a

c

a

b

a b c

Figure 3: Some example instances of the Non-Trivial Non-District problem. C4 (left) is a no-
instance, whereas C3 (center) and P3 (right) are yes-instances.
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The hardness proof is by reduction from Non-Constituency, which is coNP-complete by Corol-
lary 3.2. Let (G = (V,E), S) be an instance of Non-Constituency of complete type (i.e. where S is
a clique in G) and denote T = V \S. Let V ′ = {v′ : v ∈ V } be a copy of V , T ′′ = {t′′ : t ∈ T} be a sec-
ond copy of T , and σ′′ and v̂ be two additional vertices. For any A ⊆ V , we denote A′ = {a′ : a ∈ A}.
Let Ĝ = (V̂ , Ê) with V̂ = V ∪ V ′ ∪ T ′′ ∪ {σ′′, v̂} and Ê = E ∪ {vv′ : v ∈ V } ∪ {v̂s, v̂s′, s′σ′′ : s ∈
S} ∪ {t′′t̄′′, t′′σ′′ : t, t̄ ∈ T}. This is illustrated in Figure 4.

We first show that Wa = V \{a} is a district of Ĝ for all a ̸= v̂ (note that Wa∩N(a; Ĝ) = N(a; Ĝ)).
Necessarily one of the following holds.

• a = s ∈ S.
Then N(s; Ĝ) = {v̂, s′} ∪N(s;G) is dominated by the independent set {σ′′} ∪N(s;G)′.

• a = s′ ∈ S′.
Then N(s′; Ĝ) = {v̂, s, σ′′} is dominated by the independent set {s̄, s̄′} where s̄ ∈ S \ {s} (and
so necessarily ss̄ ∈ E).

• a = σ′′.
Then N(σ′′; Ĝ) = S′ ∪ T ′′ is dominated by the independent set {v̂} ∪ T ′.

• a = t ∈ T .
Then N(t; Ĝ) = t′∪N(t;G) is dominated by the independent set {t′′}∪N(t;G)′ (or alternatively
{t′′, v̂}).

• a = t′ ∈ T ′.
Then N(t′; Ĝ) = {t, t′′} is dominated by the independent set {t̄, t̄′′} where tt̄ ∈ E. (Recall G−S
has no isolated vertices in a Constituency instance of complete type.)

• a = t′′ ∈ T ′′.
Then N(t′′; Ĝ) = {t′, σ′′}∪ (T ′′ \ {t′′}) is dominated by the independent set {t}∪ (V ′ \ {t′})∪S′.

We now show that Wv̂ is a district of Ĝ if and only if S is a constituency of G. We remark that
Wv̂ ∩N(v̂; Ĝ) = S ∪ S′. If Wv̂ is a district of Ĝ, then S ⊆ N(I \N [v̂; Ĝ]; Ĝ) for some independent set
I. Therefore S ⊆ N(I ∩ T ;G), i.e. S is a constituency of G. Conversely, if S is a constituency of G,
say S ⊆ N(I;G) for some independent set I of G, then I ∪ {σ′′} is an independent set of Ĝ such that
S ∪ S′ ⊆ N(I ∪ {σ′′}; Ĝ), i.e. Wv̂ is a district of Ĝ.

4 Reachability of the MIS network

4.1 The MIS network

By identifying a configuration x ∈ {0, 1}V with its support 1(x), one can interpret the MIS algorithm
as sequential updates of a particular Boolean network. The MIS network on G, denoted as M(G) or
simply M when the graph is clear from the context, is defined by

M(x)v =

{
0 if ∃u ∈ N(v) : xu = 1

1 if ∀u ∈ N(v) : xu = 0

=
∧
u∼v
¬xu,

with M(x)v = 1 if N(v) = ∅. We then have Fix(M(G)) = M(G) [26, 3].
The MIS algorithm then begins with the all-zero configuration, updates the state of every vertex

in order, and leads to a configuration whose support is a maximal independent set. In the language of
Boolean networks:

• x = 0;
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Dominion is coNP-complete even with fancy restrictions
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Figure 4: Illustration of the reduction from Non-Constituency to Non-Trivial Non-District.
.
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• w is a permutation of V ;

• y = Mw(x) ∈ M(G).

The pivotal role of constituencies for the MIS network can be explained by the equivalence below
(its proof is easy and hence omitted). For a set of vertices S ⊆ V , S is a constituency of G if and only
if there exists a fixed point y ∈ M(G) such that yS = 0.

4.2 Universal configurations

In this paper, we are interested in removing the constraint on the initial configuration x. This in turn
will lead to constraints on the word w, as we shall see in the sequel. For now, in this section, we are
interested in initial configurations x that can lead to any MIS y.

Say a configuration x is F-universal if every fixed point of F is reachable from x, i.e. x 7→F z for
all z ∈ Fix(F). Clearly, the all-zero configuration is M(G)-universal, as one can reach any MIS from
the empty set. In fact, those fixed points can be reached by a geodesic. We now classify the universal
configurations for the MIS network, which actually also allow to reach all fixed points by a geodesic.
Since the classification is based on constituencies, the problem of deciding whether a configuration is
universal is coNP-complete.

M-Universal Configuration
Input: A graph G and a configuration x.
Question: Is x an M(G)-universal configuration?

Theorem 4.1. M-Universal Configuration is coNP-complete.

We first characterise the configurations y that are reachable from a given configuration x. For any
configuration x on G, we denote the collection of connected components of G[1(x)] as C(x). Before
giving the full statement of the result, we provide some intuition. Suppose y is reachable from x; we
show that y must satisfy two conditions. First, y cannot “create an edge”: if [w] intersects an edge
of G[1(x)], then it will destroy it. Therefore, any edge in G[1(y)] must be an (untouched) edge of
G[1(x)]. Second, y cannot “empty out” a connected component: in order to update a vertex v from
xv = ya−1

v = 1 to yv = yav = 0, there must be a neighbour a of v such that ya−1
v = 1. Therefore, for

any C ∈ C, yC ̸= 0.
Proposition 4.2 then shows that these two conditions are indeed sufficient for reachability, and in

fact for reachability by a geodesic.

Proposition 4.2 (Reachability for the MIS network). Let G be a graph and x, y be two configurations
on G. The following are equivalent:

1. x 7→M y;

2. x geo7−−→M y;

3. every edge in G[1(y)] is an edge in G[1(x)] and yC ̸= 0 for any C ∈ C(x).

Lemma 4.3. Let x be a configuration on G, w be a word, and y = Mw(x). If uv is an edge in G[1(y)],
then [w] ∩ {u, v} = ∅.

Proof. Suppose v is the last updated in {u, v}, say v = wa+1 while wb /∈ {u, v} for all b > a+ 1. Then
yau = 1 and hence yv = ya+1

v = M(ya)v = 0, which is the desired contradiction.

Proof of Proposition 4.2. Suppose that x 7→M y. It follows from Lemma 4.3 that every edge in G[1(y)]
is an edge in G[1(x)]. We prove that yC ̸= 0 for any C ∈ C(x). Suppose yC = 0 for some C ∈ C(x)
with w = w1:l but yl−1

C ̸= 0. Then wl ∈ C, yl−1
C\{wl} = 0, and yl−1

wl
= 1. Since M(yl−1)wl

= 0, there
exists u such that u ∼ wl and yl−1

u = 1.

Claim 1. u ∈ [w1:l−1].
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Proof. Firstly, since yl−1
C\{wl} = 0 and yl−1

u = 1, we have u /∈ C. Secondly, since u ∈ N(wl) \ C while
N(wl)∩1(x) ⊆ C, we have u ∈ 0(x). Thirdly, since xu = 0 and yl−1

u = 1, we must have u ∈ [w1:l−1].

Finally, uwl is an edge in G[1(yl−1)] with [w1:l−1] ∩ {u,wl} ̸= ∅, which contradicts Lemma 4.3.

Conversely, suppose that every edge in G[1(y)] is an edge in G[1(x)] and yC ̸= 0 for any C ∈ C(x).
We first describe a word w and we then prove that w is a geodesic from x to y. The word w is
constructed in four steps as follows.

1. Let w0 be any permutation of 1(y) ∩ 0(x).

2. For any C ∈ C(x), the word wC is constructed as follows. By Corollary 2.2, let T be a spanning
forest of C rooted at D = 1(y) ∩ C, then wC is a traversal of the spanning forest from leaves
towards roots, skipping the roots. More formally, wC = t1 . . . tk where {t1, . . . , tk} = C \D and
if ti is a parent of tj in T , then i > j.

3. Let w1 be a concatenation (in any order) of wC for every C ∈ C(x). More formally, let C(x) =
{C1, . . . , Cm} then w1 = wC1 . . . wCm .

4. Let w = w1w0.

We now verify that w is a geodesic from x to y, i.e. that [w] = ∆(x, y) and y = Mw(x). Firstly,

[w0] = 1(y) ∩ 0(x),

[w1] =
⋃

C∈C(x)

[wC ] =
⋃

C∈C(x)

C ∩ 0(y) = 0(y) ∩ 1(x),

[w] = [w0] ∪ [w1] = ∆(x, y).

Secondly, we prove that Mw(x)[w1] = 0 while Mw(x)[w0] = 1. Let C ∈ C and wC = t1 . . . tk. By
induction on 1 ≤ j ≤ k, we have Mw(x)tj = MwC

(x)tj = 0 since tj has a parent ti ∈ C which will
only be updated after tj . This shows that Mw(x)[w1] = 0. Moreover, let w0 = v1 . . . vl. Suppose
Mw(x)vi = 0, then let z = Mw1

(x) then there exists u such that u ∼ vi and zu = 1. We derive a
contradiction from a case analysis on u.

1. Case 1: yu = 1.
Then uvi is an edge in G[1(y)], hence it is an edge in G[1(x)] so that xvi = 1, which is a
contradiction.

2. Case 2: yu = 0 and xu = 0.
Then u /∈ ∆(x, y) = [w] hence zu = xu = 0, which is a contradiction.

3. Case 3: yu = 0 and xu = 1.
Then u ∈ [w1] and hence zu = yu = 0, which is the desired contradiction.

Therefore Mw(x)[w0] = 1.

Corollary 4.4. The configuration x is M(G)-universal if and only if every C ∈ C(x) is a non-
constituency of G.

Proof. If C ∈ C(x) is a constituency of G, then there exists a fixed point z ∈ M(G) with zC = 0, which
is not reachable from x by Proposition 4.2. Conversely, if every C ∈ C(x) is a non-constituency of G,
then for any z ∈ M(G) we have zC ̸= 0 for all C, and hence z is reachable from x.

In particular, the all-zero and all-one configurations are M-universal for all graphs.

Proof of Theorem 4.1. Membership of coNP is known: the no-certificate is a fixed point z ∈ M(G)
that is not reachable from x; checking that certificate is by finding C ∈ C(x) such that zC = 0.

We prove coNP-hardness by reduction from Non-Constituency. If (G,S) is an instance of
Non-Constituency of complete type, then let x = χ(S) so that C(x) = {S}. By Corollary 4.4, x is
universal if and only if S is a non-constituency of G.
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Another consequence of Proposition 4.2 is that any initial configuration can reach a fixed point via
a geodesic.

Corollary 4.5. For any configuration x, there exists y ∈ M(G) such that x geo7−−→M y.

Proof. Choose a vertex vC for every C ∈ C(x), then I = {vC : C ∈ C(x)} is an independent set. Let
M be a maximal independent set that contains I, then y = χ(M) ∈ M(G) satisfies Property 3 of
Proposition 4.2 and hence is reachable from x by a geodesic.

5 Words fixing the MIS network

We now focus on words fixing the MIS network. As we shall prove later, every graph G has a fixing
word. Whether a word w fixes the MIS network does not only depend on the set [w] of vertices it visits.
Indeed, as seen in Example 1.1 for the graph P3, the word w = abc does not fix M, while w = acb does
fix M. We define Fixing Word to be the decision problem asking, for an instance (G,w), whether w
fixes M(G).

Fixing Word
Input: A graph G = (V,E) and a word w.
Question: Does w fix M(G)?

Theorem 5.1. Fixing Word is coNP-complete.

Fixing Word is in coNP; the certificate being a configuration x such that Mw(x) /∈ M(G). We
shall prove that Fixing Word is coNP-complete, even when restricted to permutations, in Section
5.3. As such, we omit the proof of Theorem 5.1.

5.1 Prefixing and suffixing words

The seminal observation is that if G is a graph, and w is a permutation of V , then ww fixes M(G): for
any initial configuration x, Mw(x) ∈ I(G); then for any y ∈ I(G), Mw(y) ∈ M(G). We shall not prove
this claim now, as we will prove stronger results in the sequel (see Propositions 5.3 and 5.5).

Following the seminal observation above, we say that wp prefixes M(G) if Mwp
(x) ∈ I(G) for all

x ∈ {0, 1}V , and that ws suffixes M(G) if Mws
(y) ∈ M(G) for all y ∈ I(G). In that case, for any word

ω, wpω also prefixes M(G) and ωws also suffixes M(G). Clearly, if w = wpws, where wp prefixes M(G)
and ws suffixes M(G), then w fixes M(G). We can be more general, as shown below.

Proposition 5.2. If w = w1:l where w1:a prefixes M(G), wb:l suffixes M(G), and [wb:a] is an indepen-
dent set of G for some 0 ≤ a, b ≤ l, then w fixes M(G).

Proof. First, suppose a < b, so that w = w1 . . . wa . . . wb . . . wl. As mentioned above, wp = w1:b−1

prefixes M(G) and ws = wb:wl
suffixes M(G), hence w = wpws fixes M(G).

Second, suppose a ≥ b, so that w = w1 . . . wb . . . wa . . . wl. It is easily seen that for any two
non-adjacent vertices u and v, Mvv = Mv and Muv = Mvu. As such,

Mw = Mw1...wb...wa...wl = Mw1...wbwb...wawa...wl = Mw1...wb...wawb...wa...wl ,

and again if we let wp = w1:a and ws = wb:l, we have Mw = Mwpws , hence w fixes M(G).

We now characterise the words that prefix (or suffix) the MIS network. Interestingly, those prop-
erties depend only on [w]. Also, while deciding whether a word prefixes the MIS network is computa-
tionally tractable, deciding whether a word suffixes the MIS network is computationally hard as it is
based on the Non-District problem.

Proposition 5.3. Let G be a graph. Then the word w prefixes M(G) if and only if [w] is a vertex
cover of G.
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Proof. Suppose [w] is a vertex cover of G and that y = Mw(x) /∈ I(G), i.e. yuv = 11 for some edge
uv of G. Without loss, let the last update in {u, v} be v, i.e. there exists a such that wa+1 = v and
wb /∈ {u, v} for all b > a + 1. We obtain yau = yu = 1 hence yv = ya+1

v = 0, which is the desired
contradiction.

Conversely, if [w] is not a vertex cover, then there is an edge uv ∈ E such that [w] ∩ {u, v} = ∅.
Therefore, if we take x = χ({u, v}) then xuv = 11 and we have yuv = 11 as well.

Prefixing Word
Input: A graph G = (V,E) and a word w.
Question: Does w prefix M(G)?

Corollary 5.4. Prefixing Word is in P.

Proposition 5.5. Let G be a graph. Then the word w suffixes M(G) if and only if [w] is a non-district
of G.

Proof. Suppose [w] is a district of G, i.e. there exists an independent set I and a vertex v /∈ [w] such
that W = [w] ∩ N(v) is dominated by I. Let x = χ(I) (in particular, xv = 0), and let y = Mw(x).
Then for any u ∈W , u has a neighbour in I, hence yu = 0; thus yN [v] = 0 and w does not suffix M.

Conversely, suppose w does not suffix M(G), i.e. there exists x ∈ I(G) and v ∈ V such that y =
Mw(x) with yN [v] = 0. By Proposition 4.2, y ∈ I(G) and y ≥ x, hence xN [v] = 0. Let W = [w] ∩N(v)
and I = 1(y) ∩N(W ); we note that I is an independent set. For each u ∈ W , we have yu = 0 hence
there exists i ∈ V such that yi = 1 and u ∈ N(i), and hence i ∈ I. Therefore, W ⊆ N(I) and W is a
constituency of G− v, i.e. [w] is a district of G.

Suffixing Word
Input: A graph G = (V,E) and a word w.
Question: Does w suffix M(G)?

Corollary 5.6. Suffixing Word is coNP-complete.

Proof. This immediately follows from Theorem 3.3.

5.2 Fixing sets

Some graphs have fixing words that do not visit all vertices. For instance, if G = Kn is the complete
graph with vertices v1, . . . , vn, then it is easily shown that w = v1 . . . vn−1 is a fixing word for the MIS
network. In general, we say that a set S of vertices of G is a fixing set of G if there exists a word w
with [w] = S that fixes M(G).

We first characterise the fixing sets of graphs. Interestingly, those are the same sets S such that
ww is a fixing word of M(G) for any permutation w of S.

Proposition 5.7. Let S be a subset of vertices of G. The following are equivalent.

1. S is a fixing set of M(G), i.e. there exists a fixing word w of M(G) with [w] = S.

2. For all words wp, ws such that [wp] = [ws] = S, the word wpws fixes M(G).

3. S is a vertex cover and a non-district.

Proof. 1 =⇒ 3. Since w prefixes M(G), S = [w] is a vertex cover by Proposition 5.3; similarly, since
w suffixes M(G), S = [w] is a non-district by Proposition 5.5.

3 =⇒ 2. Since S is a vertex cover, then by Proposition 5.3 wp prefixes M(G); similarly, by
Proposition 5.5 ws suffixes M(G). Therefore, wpws fixes M(G).

2 =⇒ 1. Trivial.

The Fixing Set problem asks, given a graph G and a set of vertices S, if S is a fixing set of G.
In other words, it asks whether the vertices outside of S can be skipped by some fixing word.

Fixing Set
Input: A graph G = (V,E) and a set S ⊆ V .
Question: Is S a fixing set of M(G)?
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Figure 5: Example reduction from a no-instance of Non-District (G,S) to the corresponding no-
instance of Fixing Set (Ĝ, Ŝ), with Ŝ = Vc ∪ Vd ∪ Ve.

Theorem 5.8. Fixing Set is coNP-complete.

Proof. Membership of coNP is known: the no-certificate is a permutation w of S and an initial
configuration x ∈ {0, 1}V such that Mww(x) /∈ M(G) (by Proposition 5.7).

The hardness proof is by reduction from Non-District, which is coNP-complete, as proved in
Theorem 3.3. Let (G,S) be an instance of Non-District, and construct the instance (Ĝ, Ŝ) of Fixing
Set as follows.

Let G = (V,E) and T = V \ S. For any t ∈ T , let Gt = (Vt ∪ {t̂}, Et) be the graph defined as
follows: Vt = {ut : u ∈ V \ t} is a copy of all the vertices apart from t, which is replaced by a new
vertex t̂ /∈ Vt, and Et = {atbt : ab ∈ E, a, b ̸= t} ∪ {stt̂ : st ∈ E, s ∈ S} is obtained by removing the
edges between t̂ and the rest of T . Then G is the disjoint union of all those graphs, i.e. G =

⋃
t∈T Gt,

while Ŝ =
⋃
t∈T Vt. For the sake of simplicity, we shall use the notation At = {ut : u ∈ A} for all

A ⊆ V \ {t}. Our construction is illustrated in Figure 5.
By construction, Ĝ − Ŝ is the empty graph on {t̂ : t ∈ T}, hence Ŝ is a vertex cover of Ĝ. All

we need to show is that Ŝ is a non-district of Ĝ if and only if S is a non-district of G. We have
that Ŝ is a district of Ĝ if and only if there exists t̂ and an independent set Î of Ĝ − t̂ such that
W = Ŝ ∩N(t̂; Ĝ) = (S ∩N(t;G))t is contained in N(Î; Ĝ). We have Î ∩ Vt = It for some independent
set I of G. Since W ⊆ Vt and N(W ; Ĝ− t̂) ⊆ Vt, we have W ⊆ N(Î ∩ Vt; Ĝ)∩ Vt = N(I;G)t, which is
equivalent to S being a district of G.

Clearly, if S is a fixing set of M(G), then every superset of S is also a fixing set. Moreover, every
graph G has a trivial fixing set, namely V . The Non-Trivial Fixing Set asks whether G has any
other fixing set. Equivalently, it asks whether any vertex can be skipped by a fixing word.

Non-Trivial Fixing Set
Input: A graph G.
Question: Does there exist a fixing set S ̸= V of G?
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Figure 6: C4 is a no-instance of the Non-Trivial Non-District problem, and hence also a no-
instance of Non-Trivial Fixing Set. For any word w with [w] = {b, c, d}, Mw(1000) = 1000 /∈
M(C4). By symmetry, no set of three vertices is a fixing set for M(C4).

Theorem 5.9. Non-Trivial Fixing Set is coNP-complete.

Proof. We prove that G has a non-trivial fixing set if and only if it has a non-trivial non-district. If G
has a non-trivial fixing set, then there exists S ̸= V which is a vertex cover and a non-district of G,
hence S is a non-trivial non-district of G. Conversely, if G has a non-trivial non-district, then there
exists v such that S = V \ {v} is a non-district of G, in which case S is also a vertex cover, and hence
a non-trivial fixing set of G.

The coNP-completeness of Non-Trivial Fixing Set then follows Theorem 3.5. The connection
between the two problems is illustrated in Figure 6.

5.3 Permises

The MIS algorithm doesn’t use any word w to update the state of each vertex, but instead restricts
itself to w being a permutation of V . As such, we now focus on permutations and we call a permutation
of V that fixes M(G) a permis of G. The Permis decision problem is equivalent to the Fixing Word
problem, restricted to permutations.

Permis
Input: An undirected graph G = (V,E) and a permutation w of V .
Question: Is w a permis of G?

Let w be a permutation of V , then w naturally induces a linear order on V , whereby wi ≻ wj
whenever i < j, i.e. wi is updated before wj . Then consider the orientation of G induced by w:
Gw = (V,Ew) with Ew = {(u, v) : uv ∈ E, u ≻ v}. We see that Gw is acyclic, and that conversely
any acyclic orientation of G is given by some Gw. A simple application of [6, Theorem 1] shows that if
w,w′ are two permutations of V such that Gw = Gw

′ , then w is a permis if and only if w′ is a permis.
We say that the vertex v is covered by w if for every x ∈ {0, 1}V , yN [v] ̸= 0, where y = Mw(x).

Thus, w is a permis if and only if w covers all vertices.

Covered Vertex
Input: A graph G = (V,E), a permutation w of V and a vertex v ∈ V .
Question: Is v covered by w?

We now give a sufficient condition for a vertex to be covered. Let G be a graph, H be an orientation
of G, and let t and v be vertices of G. We say t is transitive if for all a, b ∈ V , t→ a→ b implies t→ b
in Gw. We say v is near-transitive if there exists a transitive vertex t such that N [t;G] ⊆ N [v;G].

Lemma 5.10. If v is a near-transitive vertex of Gw, then v is covered by w.

Proof. First, suppose v = t is transitive. Let x such that yN [t;G] = 0. We shall repeatedly use the fact
that for any vertex u, if yN in[u;Gw] = 0, then there exists u′ ∈ Nout(u;Gw) ∩ 1(x), i.e. xu′ = 1 and
u→ u′ (u is updated after u).
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Since yN in[t;Gw] = 0, there exists a ∈ Nout(t;Gw) ∩ 1(x). Without loss let a be the last vertex of
this kind to be updated: if a′ ̸= a satisfies a′ ∈ Nout(t;Gw) ∩ 1(x), then a′ → a. Again, since xa = 1,
we have yN in(a;Gw) = 0; and since ya = 0 as well, there exists b ∈ Nout(a;Gw)∩ 1(x). Since t→ a→ b
and by transitivity of t, we obtain t → b, but then b ∈ Nout(t;Gw) ∩ 1(x) and hence b → a, which is
the desired contradiction.

Second, suppose that t is transitive (and hence, as shown above, covered) and that N [t;G] ⊆
N [v;G]. For all x we have yN [t;G] ̸= 0, and hence yN [v;G] ̸= 0, thus v is also covered by w.

Theorem 5.11. Permis is coNP-complete.

Proof. Membership of coNP is known: the no-certificate is a configuration x such that y = Mw(x) /∈
M(G).

The hardness proof is by reduction from Non-Constituency, which is coNP-complete by Corol-
lary 3.2. Let (G,S) be an instance of Non-Constituency of empty type and construct the instance
(Ĝ, w) of Permis as follows. Let T = V \ S and T ′ = {t′ : t ∈ T} be a copy of T . Then let Ĝ be the
graph with vertex set V̂ = {v, a, b}∪V ∪T ′, and with edges Ê = E∪{sv : s ∈ S}∪{va, ab}∪{tt′ : t ∈ T}.
Let w be a permutation of V̂ such that v ≻ a ≻ b ≻ T ≻ T ′ ≻ S. This is illustrated in Figure 7.

We claim that w is a permis of Ĝ if and only if S is not a constituency of G. Firstly, the vertices
in S ∪ T ′ ∪ {b} are all transitive and hence the vertices in T ∪ {a} are near-transitive. Therefore, w is
a permis if and only if v is covered. We prove that v is covered if and only if S is not a constituency
of G.

If S is a constituency of G, then let I ⊆ T be a maximal independent set of G (and hence an
independent set of Ĝ as well) such that S ⊆ N(I). Let x = χ(I ∪ {a, b}). Then yv = 0 (because
xa = 1), ya = 0 (because xb = 1), yI = 1 and yS = 0 (because for any vertex u, if xu = 1 and
xN(u) = 0, then yu = 1 and yN(u) = 0). Thus yN [v] = 0.

Conversely, if yN [v] = 0, then for any s ∈ S, yN(s) ̸= 0. Since yv = 0, there is t ∈ T such that
ts ∈ E and yt = 1. Therefore, the set 1(y) ∩ T is an independent set that dominates S, i.e. S is a
constituency of G.

The proof of Theorem 5.11 also settles the complexity of Covered Vertex.

Theorem 5.12. Covered Vertex is coNP-complete.

6 Permissible and non-permissible graphs

We say that G is permissible if it has a permis. As we shall see, not all graphs are permissible. In this
subsection, we exhibit permissible and non-permissible graphs, and we prove that deciding whether a
graph is permissible is computationally hard.

We classified (non-)permissible graphs by computer search, using nauty’s geng utility (https:
//doi.org/10.1016/j.jsc.2013.09.003) to exhaustively generate connected graphs up to 9 vertices.
Full results are available at https://github.com/dave-ck/MISMax/. Here are some highlights. Of
273194 connected graphs on at most nine vertices, only 432 are non-permissible; the heptagon C7,
13 8-vertex graphs (including the perfect graph shown in Figure 8), and 418 9-vertex graphs. The
Petersen graph is also non-permissible.

We prove the graph in Figure 8 is perfect as follows. First note that four vertices in the graph have
degree 3 and four vertices in the graph have degree 5. The absence of an induced C5 can be verified
manually. There is no induced C7: any subgraph on seven vertices includes at least one vertex formerly
of degree 5 hence of degree at least 4 in the induced subgraph. Similarly, there is no induced C7; any
subgraph on seven vertices includes at least one vertex formerly of degree 3 and hence of degree at
most 3 in the induced subgraph (C7 is 4-regular).

6.1 Permissible graphs

We now exhibit large classes of permissible graphs.
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Figure 7: Illustration of the reduction from Non-Constituency to Permis.
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Permisless perfect graph

Figure 8: An 8-vertex perfect graph with no permis.

An orientation of G is transitive (near-transitive, respectively) if all the vertices are transitive
(near-transitive, respectively). Any transitive orientation is necessarily acyclic. A graph that admits
a transitive orientation is called a comparability graph. The following are comparability graphs:
complete graphs, bipartite graphs, permutation graphs, cographs, and interval graphs. Accordingly, we
say that a graph that admits a near-transitive orientation is a near-comparability graph. Lemma
5.10 immediately yields the permissibility of near-comparability graphs.

Proposition 6.1. All near-comparability graphs are permissible.

We now give a characterisation of near-comparability graphs below. Recall that the vertex m is a
benjamin of G if there is no vertex v with N in[v] ⊂ N in[m] and that GB is the subgraph of G induced
by its benjamins.

Theorem 6.2. Let G be a graph. The following are equivalent:

1. G is a near-comparability graph, i.e. it admits a near-transitive orientation;

2. G admits a near-transitive acyclic orientation;

3. GB is a comparability graph.

Proof. 1 =⇒ 2. Let H be a near-transitive orientation of G. Let T be the set of transitive vertices
of H. Then T is disjoint from all the cycles in H (for if t ∈ T belongs to the cycle t → v1 → · · · →
vk → t, we must have t→ vk by transitivity), and in particular H[T ] is acyclic. Construct any acyclic
orientation of G, say Gw, such that Gw[T ] = H[T ] and V \ T ≻ T . Note such an orientation can be
constructed efficiently (for example by a greedy algorithm). Then any vertex in T is still transitive in
Gw, and hence Gw is near-transitive.

2 =⇒ 3. Let G be a near-comparability graph. In order to prove that GB is a comparability
graph, we need to consider the graph ⟨G⟩ obtained by only keeping one twin out of every set of twins.
More formally, for any v ∈ V (G), let ⟨v⟩ = {u ∈ V : N [u] = N [v]} be the equivalence class of v. We
further denote ⟨V ⟩ = {⟨v⟩ : v ∈ V }, ⟨E⟩ = {⟨v⟩⟨v′⟩ : vv′ ∈ E}. Then ⟨G⟩ = (⟨V ⟩, ⟨E⟩).

Say that a graph is closed twin-free if there are no closed twins, i.e. N [u] ̸= N [v] for all u ̸= v ∈ V .

Claim 2. ⟨G⟩ is closed twin-free.

Proof. Suppose N [⟨u⟩; ⟨G⟩] = N [⟨v⟩; ⟨G⟩]. Then N [u;G] =
⋃

⟨a⟩∈N [⟨u⟩;⟨G⟩]⟨a⟩ = N [v;G], hence u and
v are closed twins in G and ⟨u⟩ = ⟨v⟩.

Claim 3. ⟨G⟩ is a near-comparability graph.
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Proof. Suppose Gw is a near-transitive acyclic orientation of G. Then for every equivalence class
c ∈ ⟨V ⟩, Gw[c] is a transitive tournament with a unique source. Consider the orientation H of ⟨G⟩
naturally induced by w, i.e. ⟨u⟩ → ⟨v⟩ in ⟨G⟩ if and only if u→ v, where u and v are the unique sources
of Gw[⟨u⟩] and Gw[⟨v⟩], respectively. We now prove that all vertices of ⟨G⟩ are near-transitive in H.
Firstly, if t is transitive in Gw, then ⟨t⟩ is transitive in H. Secondly, if v satisfies N [v;G] ⊇ N [t;G] for
some transitive t, then N [⟨v⟩; ⟨G⟩] ⊇ N [⟨t⟩; ⟨G⟩] and hence ⟨v⟩ is near-transitive in H.

Claim 4. ⟨G⟩B is a comparability graph.

Proof. Let ⟨G⟩w be a near-transitive acyclic orientation of ⟨G⟩ and let B = B(⟨G⟩). If m ∈ B, then
there exists a transitive vertex t such that N [m] ⊇ N [t]. Since m ∈ B we have N [m] = N [t] and since
⟨G⟩ is closed twin-free we obtain m = t, i.e. m is transitive in ⟨G⟩w. Therefore, m is also transitive in
⟨G⟩w[B] = ⟨G⟩Bw[B]. Thus, ⟨G⟩Bw[B] is a transitive orientation of ⟨G⟩B.

Claim 5. GB is a comparability graph.

Proof. We first remark that ⟨u⟩ ∈ B(⟨G⟩) if and only if u ∈ B(G). Now, let ⟨G⟩Bw
′

be a transitive
orientation, then consider the orientation GB

w of GB as follows. First, fix an arbitrary order of every
equivalence class ⟨v⟩. Second, orient u→ v if ⟨u⟩ → ⟨v⟩ in ⟨G⟩Bw

′
.

We now verify that this orientation is transitive. If u → a → b in GB
w, then ⟨u⟩ → ⟨a⟩ → ⟨b⟩ in

⟨G⟩Bw
′
, hence ⟨u⟩ → ⟨b⟩ in ⟨G⟩Bw

′
, and finally u→ b in GB

w.

3 =⇒ 1. Construct the orientation of G as follows. First, use the transitive orientation on GB.
Second, orient every edge v → m where v /∈ B(G) and m ∈ B(G). Third, use any orientation on
G−B(G). Then the vertices in B(G) remain transitive, and for any v /∈ B(G), there exists m ∈ B(G)
such that N [m;G] ⊆ N [v;G], i.e. v is near-transitive.

Recognising comparability graphs can be done in polynomial time; see [23] and references therein.
In fact, the algorithm in [23] not only decides whether a graph is a comparability graph, but it also
produces a transitive orientation if such exists. In view of Theorem 6.2, applying that algorithm to GB

not only decides whether a graph is a near-comparability graph, but it also produces a near-transitive
orientation (see the proof of Claim 5) if one exists.

Any induced subgraph of a comparability graph is a comparability graph. However, as we shall
prove below, any graph is the induced subgraph of some near-comparability graph. Thus, Proposition
6.1 shows that every graph is the induced subgraph of a permissible graph. This entails that the class
of permissible graphs is not hereditary, i.e. it is impossible to characterize permissible graphs by some
forbidden induced subgraphs.

Corollary 6.3. For every graph G, there exists a near-transitive (and hence permissible) graph H such
that G is an induced subgraph of H.

Proof. Let G = (V,E) and construct the graph Ĝ = (V̂ , Ê) so that G = Ĝ[V ] as follows. Let
V ′ = {v′ : v ∈ V } be a copy of V , V̂ = V ∪ V ′, and Ê = E ∪ {vv′ : v ∈ V }. Then Ĝ is a near-
comparability graph: let w be a permutation of V̂ where V ≻ V ′, then Ĝw is a near-transitive acyclic
orientation of Ĝ. By Proposition 6.1, H is permissible.

We now introduce an operation on graphs, that we call graph composition, that preserves per-
missibility. Let H be an n-vertex graph, G1, . . . , Gn other graphs, then the composition H(G1, . . . , Gn)
is obtained by replacing each vertex h of H by the graph Gh, and whenever hh′ ∈ E(H), adding all
edges between Gh and Gh′ . More formally, we have

V (G) = {vh : h ∈ V (H), v ∈ V (Gh)},
E(G) = {vhv′h′ : hh′ ∈ E(H), v ∈ V (Gh), v

′ ∈ V (Gh′)} ∪ {vhv′h : h ∈ V (H), vv′ ∈ E(Gh)}.

This is illustrated in Figure 9.
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Composition illustration
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Figure 9: Illustration of the composition operation.

This construction includes for instance the disjoint union of two graphs: G1 ∪ G2 = K̄2(G1, G2)
and the join of two graphs: K2(G1, G2). In the special case where only a single vertex b is replaced by
the graph Gb, we use the notation

H(b,Gb) = H(K1, . . . ,K1, Gb,K1, . . . ,K1).

This special case includes adding an open twin (a new vertex b′ with N(b′) = N(b)): H(b, K̄2) and
adding a closed twin (N [b′] = N [b]): H(b,K2). In fact, any composition can be obtained by repeatedly
replacing a single vertex.

Lemma 6.4. Let G = H(G1, . . . , Gn) be a graph composition, where V (H) = {1, . . . , n}. For all
0 ≤ i ≤ n, let Gi be defined as G0 = H and Gi = Gi−1(i, Gi). Then Gn = G.

Proof. The proof is by induction on 0 ≤ i ≤ n. Let I = {1, . . . , i} and J = {i + 1, . . . , n}. We prove
that

V (Gi) = J ∪ {va : a ∈ I, v ∈ V (Ga)},
E(Gi) = E(H[J ]) ∪ {vav′a : a ∈ I, vv′ ∈ E(Ga)}

∪ {vav′b : ab ∈ E(H[I])} ∪ {hva : h ∈ J, a ∈ I, ha ∈ E(H)}.

This is clear for i = 0, and for i ≥ 1 this is easily verified from the recurrence property:

V (Gi) = (V (Gi−1) \ {i}) ∪ {vi : v ∈ V (Gi)}
E(Gi) = E(Gi−1 − i) ∪ {viv′i : vv′ ∈ E(Gi)} ∪ {hvi : v ∈ V (Gi), hi ∈ E(H)}.

The details are omitted.

Proposition 6.5. If G = H(G1, . . . , Gn), where each of H,G1, . . . , Gn is permissible, then G is
permissible.

Proof. According to Lemma 6.4, we only need to prove the case where G = H(b,Gb), where the vertices
are sorted according to a permis ŵ = ŵ1:b−1ŵbŵb+1:n of H. We denote the vertex set of Gb as Vb, and
we let wb be a permis of Gb. Then we claim that w = ŵ1:b−1w

bŵb+1:n is a permis of G.
For any configuration x of G, let x̂ be the configuration of H such that x̂u = xu for all u ̸= ŵb and

x̂ŵb
=

∨
v∈Vb xv. We then prove that y ∈ M(G) by considering the three main steps of w.

• Step 1: before the update of Gb (ŵ1:b−1).
In Step 1, the initial configuration is x and the final configuration is α = yb−1. It is easy
to show that for any 1 ≤ a < b, we have Mw1:a(x;G)G−Vb = Mŵ1:a(x̂;H)H−ŵb

. We obtain
α̂ = Mŵ1:b−1(x̂;H).
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• Step 2: update of Gb (wb).
In Step 2, the initial configuration is α = yb−1 and the final configuration is β = yb−1+|Vb|. Note
that Vb is a tethered set of G, so let T = N(Vb;G) \ Vb. If αT ̸= 0, then the whole of Gb will
be updated to 0: βVb = 0. Otherwise, it is as if Gb is isolated from the rest of the graph and
βVb = Mwb

(αVb ;Gb). In either case, we have β̂ = Mŵb(α̂;H).

• Step 3: after the update of Gb (ŵb+1:n).
In Step 3, the initial configuration is β = yb−1+|Vb| and the final configuration is y. Again, we
have for all b < a ≤ n, Mwb+1:a(β;G)G−Vb = Mŵb+1:a(β̂;H)H−ŵb

. We obtain ŷ = Mŵb+1:n(β̂;H).

We obtain

ŷ = Mŵb+1:n(β̂;H)

= Mŵb+1:n(Mŵb(α̂;H);H)

= Mŵb+1:n(Mŵb(Mŵ1:b−1(x̂;H);H);H)

= Mŵ(x̂;H).

We can now prove that yN [v;G] ̸= 0 for every vertex v of G. First, if v is not a vertex of Gb, then
ŷN [v;H] ̸= 0, and hence yN [v;G] ̸= 0. Second, if v = ub is a vertex of Gb, then we need to consider two
cases. Either ŷb = 0, in which case there exists a ∈ N(b;H) ⊆ N(ub;G) with ŷa = ya ̸= 0; or ŷb = 1,
in which case yVb = Mwb

(xVb ;Gb) ∈ M(Gb) and in particular yN [ub;G] ̸= 0.

6.2 Non-permissible graphs

We now exhibit classes of non-permissible graphs. As mentioned earlier, the smallest non-permissible
graph is the heptagon; in fact, any odd hole with at least seven vertices is non-permissible.

Proposition 6.6. For all k ≥ 3, the odd hole C2k+1 is not permissible.

Proof. Let w be a permutation of the vertex set of G = C2k+1. We shall prove that if w is a permis
there cannot be two consecutive arcs in Gw with the same direction; this shows that the direction of
arcs must alternate, which is impossible because there is an odd number of arcs in the cycle. We do
this by a case analysis on the arcs preceding those two consecutive arcs.

We consider six vertices a to f , where the first two arcs a← b← c are in the same direction. The
first case is where c← d; in that case, if xabc = 111, then ybcd = 000 and hence c is not covered. This
is shown in Figure 10, along with the other three cases.

We now give two ways to construct larger non-permissible graphs.
Recall that a set of vertices S is tethered if there is an edge st between any s ∈ S and any

t ∈ T = N(S) \ S.

Proposition 6.7. Let G be a graph. If G has a tethered set of vertices S such that G[S] has no permis,
then G has no permis.

Proof. Let w be any permutation of V and ŵ = w[S]. Let x̂ be a configuration of G[S] which is
not fixed by ŵ: Mŵ(x̂;G[S]) /∈ M(G[S]). We first note that x̂ ̸= 0 and that for all 0 ≤ a ≤ |ŵ|,
Mŵ1:a(x̂;G[S]) ̸= 0.

Let T = N(S) \ S and U = V \ (S ∪ T ) and x = (xS = x̂, xT = 0, xU ), where xU is any partial
configuration. We prove by induction on 0 ≤ b ≤ |w| that

yb := Mw1:b(x;G) =
(
ybS = Mŵ1:b′ (x̂;G[S]), ybT = 0, ybU

)
,

where b′ is defined by [ŵ1:b′ ] = S ∩ [w1:b]. The base case b = 0 is clear. Suppose it holds for b− 1.
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Big odd holes are not permissible
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Figure 10: Illustration of Proposition 6.6.

• Case 1: wb ∈ S.
Then b′ = (b− 1)′ + 1 and wb = ŵb′ . Since yb−1

T = 0, we have

ybwb
= M(yb−1;G)wb

= M(yb−1
S ;G[S])wb

= M(Mŵ1:b′−1(x̂;G[S]);G[S])ŵb′ = Mŵ1:b′ (x̂;G[S])wb
,

and hence ybS = Mŵ1:b′ (x̂;G[S]).

• Case 2: wb ∈ T .
Then b′ = (b− 1)′. Since yb−1

S ̸= 0, we have M(yb−1;G)wb
= 0 and hence ybT = 0.

• Case 3: wb ∈ U .
This case is trivial.

For b = |w| we obtain y = Mw(x;G) = (Mŵ(x̂;G[S]), 0, yU ), for which yS /∈ M(G[S]), and hence
y /∈ M(G).

Propositions 6.6 and 6.7 yield perhaps the second simplest class of non-permissible graphs. The
wheel graph is Wn+1 = K2(Cn,K1).

Corollary 6.8. For all k ≥ 3, the wheel graph W2k+2 is not permissible.

Clearly, a graph is permissible if and only if all its connected components are permissible. In
particular, for any G, the union H = G ∪ C7 is not permissible, but is disconnected. An interesting
consequence of Proposition 6.7 is that permissibility of a connected graph cannot be decided by focusing
on an induced subgraph, even if the latter has all but seven vertices of the original graph. Indeed, for
any graph G, the join H ′ = K2(C7, G) is not permissible, since the heptagon is tethered in H ′.

Corollary 6.9. Let G be a graph. Then there exists a connected non-permissible graph H ′ such that
G is an induced subgraph of H ′.

Second, and unsurprisingly, we can construct larger non-permissible graphs by using a constituency.

Proposition 6.10. Let G be a graph. If there exists A ⊆ V such that G[A] is not permissible and
S = N(A) \A is a constituency of G−A, then G is not permissible.
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Figure 11: Graphs C7 (non-permissible), C7+ (permissible), and C7++ (non-permissible).
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Figure 12: The permis of C7+.

Proof. Let I be an independent set of G − A such that S ⊆ N(I). Let w be a permutation of V
and w[A] be the permutation of A induced by w. Then let ẋ ∈ {0, 1}A be a configuration such that
ẏ = Mw[A](ẋ) /∈ M(G[A]). Then consider x ∈ {0, 1}V such that: xI = 1, xA = ẋ, xV−A−I = 0. We
then have yI = 1, yS = 0, and hence yA = ẏ. Since ẏ /∈ M(G[A]) and yS = 0, we obtain that y /∈ M(G),
i.e. w is not a permis of G.

For all k ≥ 3 the odd hole C2k+1 is non-permissible. Consider the graph C2k+1+ by adding a vertex
of degree one to C2k+1; as we shall see later it is permissible. Now add another vertex of degree one to
the tail of C2k+1+ to obtain C2k+1++. The graphs C7, C7+ and C7++ are illustrated in Figure 11. In
C7++, the vertex S = {η} is a constituency and is the neighbourhood of the heptagon; therefore C7++

is not permissible. Obviously, this reasoning applies to all larger C2k+1++ as well.

Corollary 6.11. For all k ≥ 3, C2k+1++ is not permissible.

6.3 The Permissible decision problem

We now prove that deciding whether a graph is permissible is computationally hard.

Permissible
Input: A graph G.
Question: Is G permissible?

As mentioned above, C7+ is permissible; the proof of Lemma 6.12 below can easily be generalised
to show that C2k+1+ is permissible for all k ≥ 3.

Lemma 6.12. Any w such that C7+
w is given on Figure 12 is a permis of C7+.

Proof. The vertices β, δ, ζ, and η are all transitive, and v is near-transitive, and hence these are
covered. We only need to show that α, γ and ϵ are covered.

26



For α, suppose yvαβ = 000. We then have the following chain of implications:

(yα = 0 ∧ yβ = 0) ∧ (α→ β ← γ) =⇒ yγ = 1

(yγ = 1) ∧ (γ → β) =⇒ xβ = 0

(xβ = 0 ∧ yv = 0) ∧ (v → α→ β) =⇒ yα = 1,

which is the desired contradiction.
For γ, suppose yβγδ = 000. We then have the following chain of implications:

(yβ = 0 ∧ yγ = 0) ∧ (α→ β ← γ) =⇒ yα = 1

(yα = 1) ∧ (α→ β) =⇒ xβ = 0

(yγ = 0 ∧ yδ = 0) ∧ (γ → δ ← ϵ) =⇒ yϵ = 1

(yϵ = 1) ∧ (δ ← ϵ) =⇒ xδ = 0

(xβ = 0 ∧ xδ = 0) ∧ (β ← γ → δ) =⇒ yγ = 1,

which is the desired contradiction.
For ϵ, suppose yδϵζ = 000. We then have the following chain of implications:

(yδ = 0 ∧ yϵ = 0) ∧ (γ → δ ← ϵ) =⇒ yγ = 1

(yγ = 1) ∧ (γ → δ) =⇒ xδ = 0

(yϵ = 0 ∧ yζ = 0) ∧ (ϵ→ ζ ← v) =⇒ yv = 1

(yv = 1) ∧ (ζ ← v) =⇒ xζ = 0

(xδ = 0 ∧ xζ = 0) ∧ (δ ← ϵ→ ζ) =⇒ yϵ = 1,

which is the desired contradiction.

Theorem 6.13. Permissible is coNP-hard.

Proof. Reduction from Non-Constituency. Let (G,S) be an instance of Non-Constituency of
empty type, and let T = V \ S. Let T ′ be a copy of T . Let A be another set of 7 vertices inducing a
heptagon and let v ∈ A. Then consider the instance Ĝ = (V̂ , Ê) of Permissible with

V̂ = V ∪ T ′ ∪A
Ê = E ∪ {tt′ : t ∈ T} ∪ C7(A) ∪ {sv : s ∈ S}.

This construction is illustrated in the left hand side of Figure 13.
We claim that (G,S) is a yes-instance of Non-Constituency if and only if Ĝ is a yes-instance

of Permissible. First, if S is a constituency of G, then S is a constituency of Ĝ − A, and hence Ĝ
is not permissible by Proposition 6.10. Second, if S is not a constituency of G, let ω be the permis
of C7+ given in Lemma 6.12 and consider the orientation Ĝw such that T ′ ∪ S are all sinks and
Ĝw[A ∪ {s}] = C7+

ω for all s ∈ S. (The edges of Ĝ[T ] can be oriented arbitrarily.) This is illustrated
in the right hand side of Figure 13.

The vertices in T ∪ T ′ ∪ S are all near-transitive, and hence covered by w. We now prove that
the vertices in B = A \ {v} are also covered by w. Let ẋ ∈ {0, 1}A∪{η} be given by ẋa = xa for all
a ∈ A and ẋη =

∧
s∈S ¬xs, and let ẏ ∈ {0, 1}A∪{η} = Mω(ẋ;C7+). Since A ≻ V \ A in Ĝw, we obtain

yA = Mw(x; Ĝ)A = Mω(ẋ;C7+)A = ẏA. For all u ∈ B, we have N [u; Ĝ] = N [u;C7+] and since ω is a
permis, yN [u;Ĝ] = ẏN [u;C7+] ̸= 0, thus u is covered by w. Therefore, the only vertex in contention is v.
Suppose yv = 0 and let I = 1(y) ∩ T . Since I is an independent set of G and S is not a constituency
of G, there exists s ∈ S outside of the neighbourhood of I. Thus, yN(s) = 0 and hence ys = 1, which
yields yN [v] ̸= 0. Thus v is covered, and w is a permis of Ĝ.
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Permissible is coNP-h
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Figure 13: Illustration of the reduction from Non-Constituency to Permissible.

7 Extension to kernels in digraphs

The MIS network can be easily extended to digraphs as follows. The kernel network, denoted by
K(G), is defined by

K(x)v =
∧
u→v

¬xu,

where K(x)v = 1 if N in(v) = ∅. We then have Fix(K(G)) = K(G).

7.1 Fixability of the kernel network

Henceforth we consider the fixability of the kernel network. We saw that C⃗2k+1 has no kernel, and
hence it is not fixable. However, the existence of kernels does not guarantee fixability, as we shall prove
in Proposition 7.1.

First, we give some sufficient conditions for a digraph to have a kernel and yet to not be fixable.
Generalising the definition from the undirected case, we say a set of vertices S is tethered if there is an
undirected edge st between any s ∈ S and any t ∈ T = N in(S) \S. Note that necessarily T ⊆ Nout(S)
but possibly Nout(S) \ T ̸= ∅.

Proposition 7.1. If G has a tethered set S such that K(G[S]) is not fixable, then K(G) is not fixable.

We need two lemmas before giving the proof of Proposition 7.1.

Lemma 7.2. If x ∈ {0, 1}V ̸= 0 and x 7→K y, then y ̸= 0.

Proof. Suppose, for the sake of contradiction, that y = Kw(x) = 0 with w = w1:l, while yl−1 ̸= 0. Then
yl−1
N in(wl)

= 0, hence ywl
= K(yl−1)wl

= 1, which is the desired contradiction.

Lemma 7.3. If K(G) is not fixable, then for any word w, there exists a nonzero configuration x of G
such that Kw(x) /∈ K(G).
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Proof. For the sake of contradiction, suppose Kw(x) ∈ K(G) for all nonzero x. We remark that
K(0)w1 = 1 hence Kw1(0) ̸= 0 and by Lemma 7.2, Kw(0) ̸= 0. Therefore, Kww(0) ∈ K(G), and by
hypothesis Kww(x) ∈ K(G) for any nonzero x, which shows that ww fixes K(G).

Proof of Proposition 7.1. Partition the vertex set of G into three parts: S, T = N in(S) \ S, and
U = V \ (S ∪ T ).

Let w ∈ V ∗ be a word, then by Lemma 7.3 there exists a nonzero configuration x̂ of G[S] such
that Kw[S](x̂;G[S]) /∈ K(G[S]). Let x be a configuration of G such that xS = x̂ ̸= 0 and xT = 0. By
induction on 0 ≤ a ≤ l, we prove that yaS ̸= 0 and yaT = 0. The claim is clear for a = 0, hence suppose
it holds for a− 1. We consider three cases.

• Case 1: wa ∈ S.
Since ya−1

T = 0, we have yaS = Kwa(ya−1;G)S = Kwa(ya−1
S ;G[S]) ̸= 0 by Lemma 7.2. Also,

yaT = ya−1
T = 0.

• Case 2: wa ∈ T .
Since ya−1

S ̸= 0, we have K(ya−1;G)wa = 0. Also, yaS = ya−1
S ̸= 0.

• Case 3: wa ∈ U .
Then yaS = ya−1

S ̸= 0 and yaT = ya−1
T = 0.

Therefore yS = Kw[S](xS ;G[S]) and hence yS /∈ K(G[S]). Since yT = 0, this implies that y /∈
K(G).

In particular, if G has a tethered set S with G[S] = C⃗2k+1 and G − S is a graph, then G has a
kernel (namely every maximal independent set of G− S) but K(G) is not fixable.

We are now interested in the computational complexity of deciding whether the kernel network is
fixable.

Fixable
Input: A digraph G.
Question: Is K(G) fixable?

Theorem 7.4. Fixable is coNP-hard.

Proof. The proof is by reduction from Tautology, which is coNP-hard. Let ϕ be a DNF with set
of variables A, set of literals B = {α,¬α : α ∈ A}, and set of clauses Γ, so that ϕ can be expressed as
ϕ =

∨
γ∈Γ

∧
β∈Bγ

β with Bγ ⊆ B for all γ ∈ Γ. We construct a graph that has a vertex per literal, then
builds a NOR-gate circuit for ϕ, and finally attaches the output of this circuit to a C⃗3. Intuitively, a
0 output of the circuit (which occurs whenever ϕ is not a tautology) will isolate the C⃗3, which is not
fixable, while a 1 output will guarantee convergence.

Let G = (V,E) with

V = B ∪ Γ ∪ {¬ϕ, ϕ, a, b, c},
E = {α¬α : α ∈ A} ∪ {β → γ : ¬β ∈ γ, γ ∈ Γ} ∪ {γ → ¬ϕ : γ ∈ Γ} ∪ {¬ϕ→ ϕ→ a→ b→ c→ a}.

This is illustrated in Figure 14.
If ϕ is a tautology, then let w = wBwΓ¬ϕϕabc, where wB and wΓ are any permutations of B and Γ,

respectively. For each α, let α′ = {α,¬α}. Then G[α′] is a complete graph, and has w[α′] as a permis.
Therefore, at the end of wB, we have yα′ = y

|B|
α′ ∈ {01, 10}. Let z ∈ {0, 1}A = y

|B|
A . The graph G then

induces a circuit for ϕ, so that yγ = y
|B|+|Γ|
γ =

∧
β∈γ ¬y

|B|
¬β = γ(z) and y¬ϕ = ¬ϕ(z) and eventually

yϕ = ϕ(z) = 1. Finally, we obtain yabc = 010, and it is easily verified that y ∈ K(G).
If ϕ is not a tautology, let w be any word and construct the configuration x as follows. Let z ∈

{0, 1}A such that ϕ(z) = 0 then let xα = zα, x¬α = ¬zα, xγ = γ(z), x¬ϕ = ¬ϕ(z), xϕ = ϕ(z) = 0 and
xabc can be chosen arbitrarily, since in a C⃗3 every configuration is such that Kw[abc](xabc) /∈ K(G[abc]).
By construction, updating the value of any vertex outside of the C⃗3 will not change anything, i.e.
y = Kw[abc](x;G). Now, since xϕ = yϕ = 0, we have Kw[abc](x;G)abc = Kw[abc](x;G[abc]) /∈ K(G[abc]),
and hence y /∈ K(G).
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Fixable is coNP-hard
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ϕ = (α1 ∧ α2 ∧ ¬α3) ∨ (¬α1 ∧ ¬α2)
γ1 γ2

G is fixable ⇐⇒ ϕ ∈ Tautology

ϕ

Figure 14: Illustration of the reduction from Tautology to Fixable.
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We now refine Theorem 7.4 by restricting ourselves to a very specific class of digraphs. For any
ϵ > 0, say a digraphG is ϵ-fixable if there is a word w that fixes at least a fraction 1−ϵ of configurations,
i.e. |{x ∈ {0, 1}V : Kw(x) ∈ K(G)}| ≥ (1− ϵ)2n.

Theorem 7.5. For any ϵ > 0, Fixable is coNP-hard for oriented ϵ-fixable digraphs of maximum in-
and out-degree 2.

Proof. The proof is by reduction from 3-Tautology restricted to expressions where each literal
appears at most twice, which is coNP-hard. We use the notation introduced in the proof of Theorem
7.4.

Let ϕ be a 3-Tautology instance where each literal appears at most twice. Let Ω be an additional
set of ⌈− log2 ϵ⌉ variables, and let

ψ = ϕ ∨
∨

Ω.

Let G be the graph constructed in the proof of Theorem 7.4 for the expression ψ. Now replace each K2

corresponding to a variable by a C⃗4 as follows. Let u be a variable in A∪Ω and let u′ = {u,¬u, u̇,¬u̇}
induce the cycle u → ¬u → u̇ → ¬u̇ → u. We finally adapt the NOR-gate circuit of ψ to have fan-in
2. The new graph Ĝ is illustrated in Figure 15.

By construction, Ĝ is oriented. Since each literal appears at most twice in ψ, the out-degree of
each vertex in C⃗4 is at most 2; it is easily verified that the in-degree at out-degree of each vertex is
then at most 2. Also, as before, Ĝ is fixable if and only if ψ is a tautology, which in turn occurs if and
only if ϕ is a tautology.

We now prove that the new graph Ĝ is ϵ-fixable by exhibiting a word w that fixes all configurations
with xω = 1 for some ω ∈ Ω. Let u ∈ A∪Ω, then the word wu = ¬uu̇¬u̇ fixes Ĝ[u′] without updating
the vertex u. Then let w′ = (wu : u ∈ A ∪Ω) be the concatenation of all the wu words (in any order).
Let w′′ be a word that follows the circuit in topological order, and finally let w = w′w′′abc. Let x be
a configuration such that xω = 1 for some ω ∈ Ω. Note that because we chose |Ω| ≥ − log2 ϵ at least
1 − ϵ of all configurations satisfy this property. We have ψ(xA∪Ω) = ψ(yA∪Ω) = 1 and hence yψ = 1

and yabc = 010. Thus y ∈ K(Ĝ).

7.2 The independent network

Since the kernel network is not fixable in general, and since it is not even tractable to decide whether
the kernel network of a particular digraph is fixable, we now introduce and study two Boolean networks
that are always fixable, and whose sets of fixed points contain all kernels.

The independent network on G, denoted by I(G), is defined by

I(x)v = xv ∧
∧
u→v

¬xu,

with I(x)v = xv if N in(v) = ∅. We then have Fix(I(G)) = I(G). Moreover, as we shall prove later, any
permutation of V is a fixing word of I(G).

We first settle the reachability problem for the independent network. We shall tacitly use the
simnple fact that if x 7→I y, then y ≤ x. We characterise the configurations y that are reachable from
a given initial configuration x. Generalising the undirected case, for any configuration x ∈ {0, 1}V , we
let C(x) denote the collection of initial strong components of G[1(x)].

Proposition 7.6 (Reachability for the independent network). Let x, y ∈ {0, 1}V be two configurations.
The following are equivalent:

1. x 7→I y;

2. x geo7−−→I y;

3. y ≤ x and yC ̸= 0 for any C ∈ C(x).
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Fixable is coNP-h even with degree constraints

δ

¬δ

γ2

ω̇

¬ω̇

¬ω

ω

¬ϕ

ϕ

¬ψ

ψ

γ1

α1

¬α1

¬α̇1

α̇1 α2

¬α2

¬α̇2

α̇2 α3

¬α3

¬α̇3

α̇3

a

bc

Figure 15: Illustration of the reduction from 3-Tautology where each literal appears at most twice
to Fixable.
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Proof of Proposition 7.6. If x = 0 then the proposition trivially holds as G[1(x)] is the empty digraph
and y = x, so the geodesic is the empty word; we now consider x ̸= 0.

We first prove that if x 7→I y, then yC ̸= 0 for all C ∈ C(x). Suppose y = Iw(x) satisfies yC = 0,
with w = w1:l, and that yl−1

C ̸= 0. Then wl ∈ C and there exists a vertex u such that yl−1
u = xu = 1

and u→ wl; but then u ∈ C and hence yC ̸= 0, which is the desired contradiction.
We now prove that if y ≤ x and yC ̸= 0 for all C ∈ C(x), then there is a geodesic from x to y. We

use Lemma 2.1. The geodesic is a concatenation of words wB, one for each strong component B of
G[1(x)], in reverse topological order. The word wB is described as follows.

• Case 1: yB = 0.
Then B is not an initial component, hence there exists u ∈ B with an in-neighbour in a parent
strong component and T a spanning out-tree of B rooted at u. Then wB is the word obtained
by traversing the tree from leaves to root.

• Case 2: yB ̸= 0.
Let S = 1(y) ∩ B and T be the spanning out-forest of B rooted at S. Then wB is the word
obtained by traversing the out-forest but missing out the roots. (In particular, if S = B, then
wB is empty.)

It is easy to verify that w is indeed a geodesic from x to y.

We now determine the words that fix the independent network. We generalise the concept of a
vertex cover to digraphs as follows: a directed vertex cover of a digraph is a set of vertices S such
that for every symmetric edge uv, {u, v} ∩ S ̸= ∅ and for every oriented edge (u, v), v ∈ S.

Proposition 7.7 (Words fixing the independent network). Let G be a digraph. Then w fixes the
independent set network I(G) if and only if [w] is a directed vertex cover of G.

Proof. Suppose w fixes I. If uv is a symmetric edge with {u, v} ∩ [w] = ∅, then for any configuration x
with xuv = 11, we have yuv = 11. If (u, v) is an oriented edge with v /∈ [w], then if xN in(u),u,v = (0, 1, 1),
we have yuv = 11.

Suppose [w] is a directed vertex cover. Suppose yuv = 11. If uv is symmetric, without loss let v be
updated last. Let ya be the configuration before the last update of v, then yau = yu = 1, which implies
yv = 1, which is a contradiction. If (u, v) is oriented, then let ya be the configuration before the last
update of v, then yau = yu = 1, which implies yv = 1, which is a contradiction.

I fixing word
Input: A digraph G = (V,E) and a word w.
Question: Does w fix I(G)?

Corollary 7.8. I fixing word is in P.

7.3 The dominating network

The dominating network on G, denoted by D(G), is defined by

D(x)v = xv ∨
∧
u→v

¬xu,

with D(x)v = 1 if N in(v) = ∅. We then have Fix(D(G)) = D(G). Moreover, once again, any permuta-
tion of V fixes the dominating network.

We first settle the reachability problem for the dominating network. We use the simple fact that if
x 7→D y, then y ≥ x. We characterise the configurations y that are reachable from a given configuration
x. For any configuration x, let A(x) = 0(x) ∩Nout(1(x)) and B(x) = 0(x) \Nout(1(x)).

Proposition 7.9 (Reachability for the dominating network). Let x, y ∈ {0, 1}V be two configurations.
The following are equivalent:

1. x 7→D y;
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2. x geo7−−→D y;

3. y ≥ x, yA(x) = 0, and G[1(yB(x))] is acyclic.

Proof. We first prove that if x 7→D y, then yA(x) = 0. We prove that yaA(x) = 0 by induction on a. This
is clear for a = 0, so assume it holds for a. If wa+1 /∈ A(x), then we’re done. Otherwise, since ya ≥ x,
we have ya1(x) = 1, therefore D(ya)wa+1 = 0 and hence ya+1

A(x) = 0.
We now prove that if x 7→D y, then G[1(yB(x))] is acyclic. Suppose that G[1(yB(x))] has a cycle

v1, . . . , vk and without loss, suppose that vk is the last updated. Let z be the configuration before that
last update, then zvk−1

= 1 hence yvk = D(z)vk = 0, which is the desired contradiction.
We finally prove that if y ≥ x, yA(x) = 0, and H = G[1(yB(x))] is acyclic, then there is a geodesic

from x to y. Let w be a traversal of H in reverse topological order; it is easily shown by induction on
a that N in(wa+1;G) ⊆ 0(ya) and hence D(ya)wa+1 = 1, as required.

We now determine the words that fix the dominating network.
We denote the set of closed twins of v by ⟨v⟩ and we note that ⟨v⟩ ⊆ N in(v). Note that V can be

efficiently partitioned into these equivalence classes.

Proposition 7.10 (Words fixing the dominating network). Let G be a digraph. Then w fixes the
dominating set network D(G) if and only if [w] ∩ ⟨m⟩ ̸= ∅ for all m ∈ B(G).

Proof. Suppose that there exists m ∈ B(G) such that [w] ∩ ⟨m⟩ = ∅, then we exhibit a configuration
x such that yN in[m] = 0. Let A = N in[m] \ ⟨m⟩ and B = N in(A) \N in[m]. For any a ∈ A, there exists
b ∈ N in(a) \ N in[m] ⊆ B, since otherwise we would have N in[a] ⊆ N in[m] and hence a ∈ ⟨m⟩. Let
x⟨m⟩,A,B = (0, 0, 1), then y⟨m⟩ = x⟨m⟩ = 0, yB ≥ xB = 1 and hence yA = 0, thus yN in[m] = 0.

Suppose that for all m ∈ B(G), we have [w]∩⟨m⟩ ̸= ∅, and suppose that yN in[v] = 0 for some v. For
all u with N in[u] ⊆ N in[v], we also have yN in[u] = 0, therefore, there exists m ∈ B(G), N in[m] ⊆ N in[v]

such that yN in[m] = 0. Since y ≥ x, we also have xN in[m] = 0. Let m′ ∈ [w] ∩ ⟨m⟩ ⊆ N in[m] and let
wa+1 be the first update of m′, then ya

N in[m′]
= ya

N in[m]
= 0, thus D(ya)wa+1 = 1 = ym′ and yN in[m] ̸= 0,

which is the desired contradiction.

D fixing word
Input: A digraph G = (V,E) and a word w.
Question: Does w fix D(G)?

Corollary 7.11. D fixing word is in P.

8 Conclusion

Summary of results In this paper, we have considered the generalisation of the MIS algorithm to
allow for any initial configuration and to use update words that are not necessarily permutations. We
have defined many decision problems with respect to this generalisation, such as:

• Given G and a configuration x, can x reach all MIS?

• Given G and a word w, does w fix M(G)?

• Given G and a set of vertices S, can we fix M(G) by only updating S?

• Given G, is there a word fixing M(G) that skips a vertex?

• Given G and a permutation w, does w fix M(G) (i.e. is w a permis of G)?

• Given G, does G have a permis?
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Even though every graph has a fixing word that guarantees terminating at a MIS regardless of the initial
configuration, all the decision problems about the MIS algorithm in this paper are computationally
hard. Additionally, we exhibit broad classes of graphs with and without permises, and relate these to
existing graph classes. We introduce the class of near-comparability (a strict superclass of comparability
graphs, which themselves encompass interval graphs and bipartite graphs, among others) and show
that all near-comparability graphs are permissible.

We further extended the MIS algorithm to digraphs; in this case, deciding whether the kernel
network has a fixing word is computationally hard once again. Lastly, we consider the independent
network and the dominating network, which are both related to the kernel network, and show that the
analogous problems for these networks are tractable.

Future work This paper can be extended in several ways. We give three potential avenues below.

1. Graph classes.
Since our problems are NP- or coNP-hard for the class of all graphs, it is natural to examine
the complexity of those problems when we restrict ourselves to particular graph classes. The
main tool for reductions is the Constituency decision problem. However, the reductions used
in this paper did not preserve certain graph classes. For instance, Constituency remains
NP-complete even for bipartite graphs, while Permissible is trivial for comparability graphs.

2. Minimum length of a fixing word.
We have investigated the existence of fixing words, but not their lengths. From our results
on prefixing and suffixing words, we get an upper bound on the minimum length of a fixing
word: a + b − 1, where a is the minimum size of a non-district and b is the minimum size of
a vertex cover. We conjecture that the problem of determining the minimum length of a fixing
word is computationally hard. The analogous problem when we can only start at the all-zero
configuration is obviously NP-hard, as this amounts to determining the minimum size of a
maximal independent set.

3. Permises with bounded diameter.
Let w be a permutation of V , and for any vertex v, let δ(v) denote the maximum length of a
path terminating at v in Gw. Let Ci = {v ∈ V : δ(v) = i}, then V = C0 ∪ · · · ∪ Cd, where d is
the diameter of w. Instead of updating the vertices sequentially according to w, one can update
all the vertices in Ci at once, thus only requiring d + 1 time steps. As such, the diameter of a
permis w measures the time it takes to fix the MIS network when we allow for some amount of
synchronicity. If ∆ is the maximum degree of G, then G always has a permutation of diameter
∆: partition V into colour classes C0, . . . , C∆ (since the chromatic number is at most ∆ + 1),
then C0 ≻ C1 ≻ · · · ≻ C∆. This is best possible if G is complete, for instance. We therefore ask:
if G has a permis, then does it have a permis of diameter bounded by a function of ∆?
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