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Galois groups of p-extensions of higher local fields

par VicTorR ABRASHKIN

RESUME. Soit K un corps local de dimension N et de caractéristique p # 0.
On note G, le quotient maximal de § = Gal(Kse,/K) de période p et de
classe de nilpotence < p. Soit K<p C Kyep tel que Gal(K,/K) = Gp.
On utilise la théorie nilpotente d’Artin-Schreier pour identifier G, avec le
groupe G(L) obtenu & partir d’'une F,-algebre de Lie £ via la loi de compo-
sition de Campbell-Hausdorff. On utilise la topologie canonique sur K dite
P-topologie pour définir une sous-algébre de Lie £¥ dense dans £. L’algebre
LP peut étre munie d’un systéme de générateurs topologiques et nous prou-
vons que la correspondance de Galois établit une bijection entre les extensions
N-dimensionnelles de K dans K, et les P-sous-algebres ouvertes de £7. Ces
résultats sont appliqués aux corps locaux supérieurs K de caractéristique 0
contenant une racine p-iéme primitive de l'unité. Si I' = Gal(Ky4/K), on
introduit de la méme maniere le quotient I'c,, de I' et on le présente sous la
forme G(L), ou L est une Fp-algébre de Lie profinie appropriée. On introduit
ensuite une F,-sous-algebre de Lie L7 dense dans L et on décrit la structure
de L” en termes de générateurs et relations. Le résultat général est illustré
par une présentation explicite de I'<,, modulo le sous-groupe engendré par les
3-commutateurs.

ABSTRACT. Suppose K is N-dimensional local field of characteristic p # 0,
G<p is the maximal quotient of period p and nilpotent class < p of G =
Gal(Ksep/K), and K< C Kep is such that Gal(K<,/K) = G<p,. We use
nilpotent Artin—Schreier theory to identify G, with the group G(£) obtained
from a profinite Lie Fj-algebra £ via the Campbell-Hausdorff composition
law. The canonical P-topology on K is used to define a dense Lie subalgebra
LP in L. The algebra L£F can be provided with a system of P-topological
generators and we prove that all N-dimensional extensions of K in K, are in
the bijection with all P-open subalgebras of £LF by the Galois correspondence.
These results are applied to higher local fields K of characteristic 0 containing
a nontrivial p-th root of unity. If I' = Gal(K 4/ K) we introduce similarly the
quotient I'c,, and present it in the form G(L), where L is a suitable profinite
Lie Fp-algebra. Then we introduce a dense F,-Lie subalgebra L” in L, and
describe the structure of L” in terms of generators and relations. The general
result is illustrated by explicit presentation of I'<,, modulo subgroup of third
commutators.

Manuscrit regu le 26 janvier 2023, accepté le 3 mars 2023.
2020 Mathematics Subject Classification. 11515, 11520.
Mots-clefs. Local field, Galois group.
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Introduction

Let p be a fixed prime number.

0.1. Higher local fields. The concept of a higher local field K of dimen-
sion N > 0 appears as an essential ingredient of the theory of higher adeles
in the study of arithmetic properties of algebraic varieties. In dimension 0,
we just require that K is finite of characteristic p. If N > 1 then K is a
complete discrete valuation field with the residue field isomorphic to some
(N — 1)-dimensional local field of characteristic p. (In this paper we re-
strict our attention to the fields, which have most interesting arithmetic
properties.)This residue field will be called the first residue field K @) of
K. Similarly, we obtain the next residue fields, the last (or N-th) residue
field is necessarily finite and will be always denoted by k >~ F n,. For ex-
ample, 1-dimensional fields appear as either finite extensions of Q,, or fields
of formal Laurent series in one variable with coefficients in k. The basics
of the theory of such fields including highly important concept of special
topology (we refer to it as P-topology) together with classification results
can be found in [34, 35], cf. also Section 2 below.

One of most considerable achievements of the theory of higher local fields
was the construction of a higher dimensional generalization of local class
field theory, cf. [19, 20, 21, 25, 26, 27] and (for explicit aspects of the theory)
[12, 31]. In this setting, the abelian extensions of N-dimensional fields are
described (in a functorial way) in terms of the appropriate Milnor K-
groups. More precisely, there is a natural morphism Vg : Ky(K) — F%’
with dense image and all finite abelian extensions of K can be uniquely
recovered from open subgroups of the image of V.

If N > 2 the map Vg is not injective, its kernel coincides with the max-
imal infinitely divisible subgroup Ay (K) := ;> IKn(K) and the image
of Wk can be identified with the image of the topological Milnor group
K\P(K) = Kn(K)/An(K), cf. [17, 34].

The group I'x = Gal(K,ep/K) is soluble and its most interesting part
appears as the Galois group 'k (p) of the maximal p-extension of K. Its
structure (as well as of any other profinite p-group) can be described in
terms of generators and relations. In particular, the generators of I'k(p)
come as lifts of generators of T'%2/(I'%)P. If N > 2 there is no more or less
reasonable way to fix a choice of such generators. However, we can do that
at the level of the dense subgroup Vg (K (K)): we can use the P-topology
on K to define a P-topological structure on Kf\‘,)p (K) together with the
appropriate set of P-topological generators. This allows us to work with
finite abelian p-extensions of K in terms of generators.

The main target of this paper is to generalize the above approach in
the context of non-abelian p-extensions of K. More precisely, we develop
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the appropriate formalism for finite p-extensions of K with Galois groups
of period p and nilpotent class < p. Note that in this context there is no
any analog of class field theory. Instead, we use a nilpotent analog of the
Artin—Schreier theory from [1, 2]. Below we give more detailed description
of our results.

0.2. Review of 1-dimensional case. Suppose K is 1-dimensional. In
this case (according to class field theory) generators of I'x (p) come from any
[F,-basis of K1(K)/p = K*/K*P. This basis can be chosen in a natural way
if we fix a uniformizing element ¢ € K. For example, suppose K ~ F,((t))
and for all

a € Z°(p) :={a € Zxo | ged(a,p) =1} U{0},

the elements T, € K, are such that TP — T, =t~ For b € Z%(p), let
7, € T (p) be such that 7,(T,) — T, = dap (the Kronecker symbol). Then
{7, | a € Z°(p)} is a minimal system of generators in I'x (p).

The structure of I'x(p) was described around 1960’s as follows:

e if char K = p or char K = 0 and K contains no non-trivial p-th
roots of unity the group I'k (p) is profinite free (I. Shafarevich);

e if K contains a non-trivial p-th root of unity then I'x(p) has a
minimal system of generators containing [K : Qp] + 2 elements
and one (explicitly known) relation (S. Demushkin), cf. [22, 29, 30].
(This result leads to a complete description of I', cf. [18].)

There is no straight way to extend the above results to higher local fields
for the following reasons.

First, there is no any reasonable choice of generators in I'i(p). To il-
lustrate this suppose N = 2 and K = Fp((t2))((t1)) is 2-dimensional lo-
cal field of iterated Laurent formal series. The extension K(7') such that
7P - T = tl_l(l +1t2+---+ 1ty +...) is not contained in the compositum
of all K(Ty,), where TP — T, = t;7't%, n > 0. As a result, the lifts of ele-
ments of the Galois groups of the elementary field extensions K(7},4,)/K,
where TP .. — Tya, = t; “'15"*, generate only very small piece of I'g(p).
This also can be seen at the level of class field theory, where the abelian
extensions of N-dimensional local field K are described via the quotients of
the K-group Ky (K). The profinite group Ky (K)/p has no natural system
of generators if N > 1 (but as we have mentioned earlier the situation can
be resolved if we provide this group with the P-topological structure and
use the appropriate P-topological systems of generators).

Another concern is related to the strategy used by Demushkin (in the

1-dimensional case). Let K be a 1-dimensional local field of characteristic

0 containing a non-trivial p-th root of unity. For s > 1, let Cs(p ) be the s-th

term of the p-central series of I'k(p). Then we can use the interpretation



674 Victor ABRASHKIN

of the abelian quotient Ik (p)/ Cép ) in terms of class field theory. Applying
formalism of Galois cohomology we can obtain then explicitly the action of

this quotient on C’ép )/ C’g(,p ); this involves calculations with Hilbert symbol.

As a result, we can describe the group theoretic structure of I' (p)/ Cép ) in
terms of a specially chosen minimal system of generators and one (explicitly
given) relation. Luckily, this allows us to recover the structure of I'x (p) by
choosing special lifts of generators which satisfy the simplest possible lift
of that relation.

The above strategy was applied in the case of local fields of dimension 2
in [13]. At that time the explicit aspects of higher local class field theory, in
particular, the explicit formulas for the Hilbert symbol, were just developed
by the second author of that paper. Its authors worked with the quotient
KiP(K) of Ko(K) and attempted (following the above 1-dimensional strat-

egy) to find the structure of some dense subgroups in I'k (p)/ C’ép ). The pa-
per [13] justifies that in higher dimensions the realisation of the Demushkin
strategy requires enormous calculations but don’t give us very much infor-
mation about the structure of I'k(p). This approach should be profoundly
revised at least for the following reason. When we use class field theory
and afterwards apply explicit formulas for the Hilbert symbol, we actually
move in two opposite directions (from Kummer or Artin-Schreier theory to
class field theory and vice versa). For this reason, it makes sense to avoid
the use of class field theory and to proceed exclusively within the frames of
Kummer (or Artin—Schreier) theory from the very beginning. Another im-
portant concern is that class field theory is not sufficient for understanding

the structure of I (p) better than just modulo C’?Ep ).

In [1, 2] the author initiated the study of Ik (p) modulo the subgroup of
p-th commutators for fields K of characteristic p via a (specially developed)
nilpotent version of Artin—Schreier theory. Later the author applied this
theory together with the Fontaine—Wintenberger field-of-norms functor to
study the case of 1-dimensional local fields K with non-trivial p-th roots
of unity, cf. [8, 9, 10]. As a result, this gave us a description of '}, =
Lk /TH.Cp(Tk) in terms of a specially chosen system of generators which
satisfy one relation. (Here Cp(I'i) is the closure of the subgroup of p-th
commutators in I'x.) This could be considered as an alternative approach
to the Demushkin result. Actually, we obtained in the above mentioned
papers much more: our result gives an explicit description of the images of

all ramification subgroups F([?), v >0, in ', (cf. also Section 0.4).

0.3. Main results. In this paper we develop a technique allowing us to
study the structure of I'c, = I'x /T C,(T'x) in terms of generators and
relations in the case of N-dimensional fields K. We consider the cases where
either K = K has characteristic p or K has characteristic 0 and contains
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a non-trivial p-th root of unity ¢; € K. In both cases we introduce a
dense subgroup I’7<3p of I'c), provided with P-topological structure (related

to the P-topology on K). This subgroup I‘7<Dp still allows us to study finite
extensions of K in K., but has a definite advantage: it admits a description
in terms of P-topological generators and relations.

Describe the content of the paper in more detail.

(a)

For N-dimensional local field K of characteristic p we apply the
nilpotent Artin—Schreier theory to fix an identification 7 : G, ~
G(L). Here G, = G/GPCp(G) is the maximal quotient of G =
Gal(Ksep/K) of period p and nilpotent class < p, £ is a profinite
Lie Fp-algebra and G(L£) is the profinite p-group obtained from £
via the Campbell-Hausdorff composition law. The identification 7
is defined uniquely up to conjugation after choosing a suitable ele-
ment e € LR K.

We use the P-topology on K to define a Lie subalgebra £ in £. This
is a P-topological algebra provided with a system of P-topological
generators. The algebra £ is dense in £, i.e. the profinite comple-
tion of £F coincides with L.

With respect to (defined up to conjugation) identifications of the
nilpotent Artin-Schreier theory 7 : G, ~ G(L) the algebra c?
gives rise to a class of conjugated subgroups g7<’p = 1 1(LF); the
profinite completions of the groups g7<’p coincide with G.,,.

The subgroups pr have P-topological systems of generators and
could be used to study N-dimensional local field extensions K’ of K
in K<p. More precisely, H is an open subgroup in G, (with respect
to the Krull topology) iff #? := gfp N H is a P-open subgroup of
finite index in GZ,. We have also (G<p, : H) = (G2, : H”) = [K : K],
where K' = ICgp. In particular, K'/K is Galois iff H” is normal in
G”, and in this case Gal(K'/K) = GZ /H".

Suppose t = (t1,...,tyN) is a system of local parameters in K, mg
is the maximal ideal in the N-valuation ring Ox of K, w € my, and
for 1 <m < N, h,fum) € Aut K are such that hc(,Jm) (t;) = tiE(wp)‘sm",
where E(X) is the Artin—Hasse exponential. Then all lifts of h&m),
1 <m <N, to K., generate a subgroup G, C Aut K., containing
G<p- Let IT',, be the maximal quotient of G,, of period p and nilpotent
class < p. If G is the image of G<p in I',, we obtain the following
short exact sequence of profinite p-groups

1—G— Ty — (WNZP oo (WNNEIP 7
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the corresponding exact sequence of Lie Fp-algebras (here I',, =

G(Ly))
0—L—L,— ][] F,h™ — 0,

1<m<N

and define the appropriate dense subalgebra LF such that

0—L — 1L — J[ Fh™ —o0.
1<m<N

We apply methods from [9, 10] to describe the structure of the

Lie algebras " ® k and LY ® k. In particular, for 1 < m < N,

. 7im
we obtain a recurrent procedure to recover the operators ad l((u ),

where Z&m) are lifts of h&m) to L, and find explicit formulas for all
[[&ml), Z&mﬂ] € L. These results are illustrated by explicit description
of the structure of the Lie algebra L” modulo the ideal of third
commutators.

We apply the results from (f) to the explicit description of I'), =
I'/TPC,(I"), where I' is the Galois group of N-dimensional local field
K containing a non-trivial p-th root of unity (;. More precisely,
we introduce a canonical class of conjugated dense subgroups FEP
in ', with P-topological systems of generators. Then we apply
Scholl’s construction of the field-of-norms functor to identify I' 7<3p
with IV, where w € my is defined in terms related to the p-th
root of unity (. This result is illustrated in the case where K =

Qp(C){{z}}-

0.4. Final remarks.

(a)

In 1-dimensional case, the Demushkin relation depends only on the
subgroup p(K) of roots of unity in K* and the degree [K : Q,].
In the general case, the structure of I';, depends only on a special
power series constructed from (; € K this series appears in the
p-adic Hodge theory as the period of G,,. In particular, the group
structure on I'c), is a very weak invariant of the field K.

In 1-dimensional case, I'x(p) (as well as ') has very important
additional structure given by the decreasing filtration of ramifica-
tion subgroups I'x (p)*), v > 1. According to [7], the group T'x(p)
together with the additional structure given by the ramification fil-
tration is an absolute invariant of K, cf. also [3, 24] in the context
of the whole group I'x. The papers [9, 10] contain the description of
the group structure of I'c), together with the induced ramification
filtration.
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(¢) In the case of local fields of arbitrary dimension N, it would be nat-
ural to suppose that most interesting structures on I'<, appear as
completions of the structures defined at the level of the subgroups
ng. (In particular, we see that the group structure on I', is in-

duced from F7<Dp.) As a result, such structures can be studied and
described in terms of generators and relations. In particular, it will
be natural to expect that the ramification subgroups introduced for
higher local fields in [4, 5, 36] satisfy this supposition. In particu-
lar, this holds for ramification subgroups of I'<,, modulo subgroup
of third commutators in the case of 2-dimensional local fields /C of
characteristic p, cf. [5].

(d) Recently we found more substantial and natural way to study the
ramification filtration of I'), in the 1-dimensional case, cf. [11].
We expect that the techniques of generators and relations provided
by that paper will allow us to develop more substantial and clear
approach to the proof of the local analog of the Grothendieck con-
jecture for all higher local fields.

(e) There is still an open question in the description of I'«,: we have not
yet found explicitly the commutators [ijml), Zo(JmQ)

7(m)

w

]. There is a strong

evidence that there are lifts [ which commute one with each
other: we verified this fact modulo Cy(I'y,) by direct computation.
The existence of commuting elements in sufficiently large Galois
groups may have interesting applications to anabelian geometry,
cf. [15].

(f) Notice the paper [32] where the case of the Galois group of 2-
dimensional fields with the first residue field of characteristic 0 was
considered. We are not considering such fields here, but this result
is not very far from the Demushkin one: the Galois group appears
as a profinite group with finitely many generators and one relation,
i.e. it is a group of the Poincaré type.

0.5. Notation. Let G be a topological group. For s > 1, denote by Cs(QG)
the closure of its subgroup of s-th commutators. Here C1(G) = G and for
s = 2, C4(Q) is the closure of the commutator subgroup (G,Cs_1(QG)).
Similarly, if L is a (topological) Lie algebra over some ring R then Cy(L) is
the closure of its R-submodule of commutators of order > s. If M and S are
R-modules we denote very often by Mg the extension of scalars M ®p S.

1. Constructions of nilpotent Artin—Schreier theory

In this section, we review basic results of the nilpotent Artin—Schreier
theory, cf. [1, 2]. This theory allows us to work with p-extensions of fields of
characteristic p having Galois groups of nilpotent class < p. In these notes,
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we use the simplest case of the theory involving Galois groups of period
p. In other words, if char K = p and I' = Gal(K.,/K) our approach
allows us to work efficiently with subfields of K., := K S,Fez;,c” O Note that

Gal(K.,/K) =T, = T/TPC,(T).

1.1. Groups and Lie algebras of nilpotent class < p. The basic
ingredient of the nilpotent Artin—Schreier theory is the equivalence of the
category of profinite p-groups of nilpotent class sy < p and the category of
Lie Z,-algebras of the same nilpotent class. In the case of objects killed by
p this equivalence can be explained as follows.

Let L be a Lie [F)-algebra of nilpotent class < p, i.e. C,(L) = 0.

Let 2 be an enveloping algebra of L. Then there is a natural embedding
L C A, the elements of L generate the augmentation ideal J of 2 and we
have a morphism of algebras A : 2 — A ® 2 uniquely determined by the
conditions A(l) =l ® 1+ 1®/ for all | € L. The Poincaré-Birkhoff-Witt
Theorem then implies:

e LNJP=0;

e L mod JP = {amod JP | A(a) =a®1+1®a mod (JR1+1®J)P};

e the set exp(L) mod J? is identified with the set of all “diagonal
elements” mod deg p, i.e. with the set of all @ € 1 4+ J mod J? such
that A(a) = a®a mod (J®1+1®J)P (here exp(z) = > gjcp, ' /!
is the truncated exponential).

In particular, there is a natural embedding L C 2l mod J? and in terms
of this embedding the Campbell-Hausdorff formula appears as

(l1712> —>liolo =0 +1y+ %[ll,lg] +..., li,ls €L,

where exp(l1) exp(l2) = exp(l1 o l2) mod JP. This composition law provides
the set L with a group structure and we denote this group by G(L). The
group G(L) has period p and nilpotent class < p. The correspondence
L — G(L) induces equivalence of the category of p-groups of period p
and nilpotent class s < p and the category of Lie Z/p-algebras of the
same nilpotent class s. This equivalence is naturally extended to the similar
categories of pro-finite Lie algebras and pro-finite p-groups.

1.2. Nilpotent Artin—Schreier theory. Let L be a finite Lie IF,,-algebra
of nilpotent class < p. Consider the extensions of scalars Lx and L, :=
Lk,.,- Then the elements of I' = Gal(K,ep/K) and the Frobenius o act
on Lge, through the second factor, Lgeplo=ia = L and (Lsep)F = L. If
e € G(Lk) then the set

F(e)={f € G(Lsep) | o(f) = €0 f}
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is not empty and for any fixed f € F(e), the map 7 — (—f) o 7(f) is a
continuous group homomorphism 7¢(e) : I' = G(L). The correspondence
e — m¢(e) has the following properties:

(a) if f" € F(e), then f' = f ol, where [ € G(L); in particular, ms(e)
and 7 (e) are conjugated via I;

(b) for any continuous group homomorphism 7 : I' — G(L), there are
e € G(Lk) and f € F(e) such that 7s(e) = m;

(c) for appropriate elements e, e’ € G(Lg), f € F(e) and f' € F(e'), we
have 7¢(e) = mp (€') iff there is an v € G(Lk) such that f' =z o f
and, therefore, ¢/ = o(z) oeo (—x).

In the case of a profinite Lie algebra L = l'ma L., where all L, are
finite Lie IFj)-algebras, consider e = l'ma eq € Lk, where all e, € L,k.
Then there is f = Y&na fa € LiLna F(eq) C Lgep (where all f, € F(eq)) and
my(e) = lim 7y, (eq) maps I' to G(L) = im G(La).

1.3. The diagonal element and abelian Artin—Schreier theory. Let
K = K/(0—id)K and M = Homp, iy (K, F,). If K is provided with discrete
topology (as an inductive limit of finite dimensional [F,-subspaces), its dual
M has the pro-finite topology and

Mf( = Hom]Fp-lin(K; K) .

Let IT : K — K be a natural projection and let the element e € My =
Home_lin(T(, K) be such that (idy; ®II)e = idj. Equivalently, let S be a
section of IT and e := eg := (idy ®5) id .

In notation of Section 1.2 the identification of the abelian Artin—Schreier
theory 7% : T' g := I'/TPC(T") ~ M can be obtained as follows:

e choose f € Mgy 1= Mk,,, such that of — f = eg and for any
T €T oo, let (1) :=7f — f € Mieplo=ia = M.

Remark. In the above formulas (and in similar situations below if there is
no risk of confusion) we use the simpler notation o and 7 instead of idy; ®c
and idy ®7.

The map 7 does not depend on a choice of f. If f; € M., is such that
oft — fi = es then f1 — f € Myeplo—ia = M and 7f1 — fi =7f — f.

The map 7 also does not depend on a choice of S. If S is another
section then there is ¢ € Mg such that egr — eg = og — g. Therefore,
f':= f + g satisfies the relation of' — f' = eg and 7f' — f' =7f — f.

1.4. Identifications m¢(e) : T« =~ G(L). Let L be a free profinite Lie
[F,-algebra with generating module M and L = L/C,(L). (Note that M is
a profinite limit of its finite quotients and L is the corresponding profinite
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limit of finite Lie algebras.) Consider the natural projection
proll: L ®p, K — L/Cy(L) ®p, K = My

and set £(Lg) = {e € Li | (pr®Il)e = id;}. Agree to denote the image
of e in My by eg, where S is the appropriate section of II, cf. Section 1.3.

Choose f € F(e) and consider the group homomorphism 7¢(e) : '), —
G(L) such that for any 7 € I'c, mf(e)(7) = (—f) o 7(f). Then 7s(e) is a
group isomorphism (use that I' is a free pro-p-group and 7¢(e) mod I'?Cy(T")
is isomorphism by Section 1.3).

If f" is another element from F(e) then there is [ € G(L) such that
f'=foland mp(e)(r) = (—f")o7(f") = (=) oms(e)(7) ol is conjugated
to ms(e). Study how m¢(e) depends on a choice of e € £(Lk).
Proposition 1.1. Ife, e’ € E(Lk) then there is x € Li and a section A
of the natural projection pr: L — L/Co(L) = M such that

e =0(z)o(A®idg)eo (—z),
where A € Autyie L s a unique extension of A.

Proof. Let {lo | @ € I} be an Fp-basis of K. Let la, @ € T, be the dual
(topological) basis for M, i.e. for any a1, a2 € Z, lo, (lay) = dayay- Then
we have the sections S and S’ of II such that es = >, 1a®S(lo) and
es =30 la®95 (1s).

Apply induction on r > 1 to prove the existence of z, € Lx and a
section A, of the projection L — M such that

¢ =o(x,)o (A ®idg)eo (—x,) mod Cr1(Lk),

where A, € Autre L is such that A, |y = A,.

If r =1, take A; =1idys and 21 = >, lo ® 14, Where all 21, € K are
such that S’(ly) — S(la) = 0(z1a) — T1a-

If » > 1 and the required z, and A, exist then there is ;41 € Cy11(Lk)
such that ¢ = oz, 0 (A, @ idg)e o (—z;) o I3 mod Cria(Lik).

Using that K = Im(S) @ (0 —id)K we can present [, as

ly1 =1 4+ o2 — 2

where I = ¢a @ S(la), all ¢y € Cry1(L) and 2’ € Cr41(Lg). It remains
to set Ary1(la) = Ar(la) + co and 2,41 = z, + 2’. The proposition is
proved. O
Corollary 1.2. With above notation there is f' € F(e') such that for any
T €Dy, mp(e)(7) = A(mp(e)(7))-
Proof. Let f' =z 0 (A®idsep)f, then f' € F(e'). Indeed,

o(f') =0z o (AR idsep)o(f) =0(x) o (A®idk)es o (AR idsep) f
=o(z)o(A®idg)eo (—x)o f' =€ o f.
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Therefore, for any 7 € T'cp, mp(¢/)(7) is equal to
(=) or(f) = (A®idsp)((=f) o 7(f)) = Alms(e)(7)) O

By the above corollary, a choice of e € £(Lk) determines the class 7, of
conjugated identifications {7¢(e) | f € F(e)} of I'c), with G(L). When e is
replaced by another ¢ € £(Lk) the new class of conjugated identifications
e is obtained from m. via the composition with some automorphism A =
Ale,e’') € Autye(L) such that A = idy modCq(L).

1.5. Compatibility with field extensions. Suppose K’ is a field exten-
sion of K in K. Consider the above defined objects: M, L, e € £(Lk),
f € F(e) and m = mg(e) : 'y >~ G(L) introduced in the context of the
field K. Let T ), M', L', ' € E(L.), f' € F(€') and 7' : T, ~ G(L') be
the similar objects for the field K’.

The embedding Gal(Ksep/K') — Gal(Kp/K) induces a natural group
homomorphism © : F’<p — I'<pp, which can be described in terms of the
identifications m and 7’ as follows.

Consider e ®g 1 € Ly @ K' = Lgr D Mg+ = Hom]Fp_hn(f(, K').

Proposition 1.3. There are a morphism of Lie algebras A : L' — L and
x € Ly such that

(a) e®@rg 1 =0(z) o (A®idg)e o (—x);

(b) for any ' € T, m(O(7')) = A(x'(1"));

(c) if K' C K<p then m(Gal(K<p/K')) = A(L).

Proof. Let {l., | & € '} be an Fp-basis of K = K'/(o —id)K". Let I,
a € ', be the dual (topological) basis for M’. Then for a suitable section
S of I : K’ — K', we have ey = 3., I, ® §'(1,) and {S'(I))| a € T'} is a
basis of Im(S”) C K’. Proceeding similarly to the proof of Proposition 1.1
prove the existence of ' € Ly and lo € L such that

ek l=o0c(x')o (Zfa ® S’(l&)) o(—a').

(The existence of 2’ is assumed in the remainder of the proof.) If A" : M’ —
L is a linear map such that for all a, it holds A’(I))) = [, the above relation
appears in the following form

e®g 1l=0(1)o (A @idg)e’ o (—2'),

where A’ is a unique morphism of Lie algebras L' — L such that A’|; =
A’. As a result, the both (—2’) o f and (A’ ® idsep)f’ belong to the set
F((A' ®@idgr)e’) C Lgep. So, there is I € L such that

(—2") o (f @K 1) = (A @idgep) f ol.
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If z =2'ol and A =adl- A" € Homp; (L', L) then the above equality
can be rewritten as

(—z) o (f®K 1) = (ADidsep) f .
In particular, we have e @ 1 = o(x ) (A®idgr)e’ o (—x) and for any

T € P,<p7 it holds w(O(7')) = (—f) o 7'(f) = (A@idx ) ((—f') o 7'(f)) =
A(7'(7")). The proposition is proved. O

1.6. Lifts of ¢ € Aut K. As earlier, e € £(Lk), f € F(e), m = my(e) :
F<p ~ G(L)

Suppose ¢ € Aut K. We are going to describe (the lifts) ¢, € Aut K,
such that ¢<p|x = ¢

Let ¢.e := (idr, ®¢)e € Li. As earlier, for any given ¢, establish the
existence of A = A(¢p<p) € Autrie L and C = C(¢p<p) € L such that
(1.1) pe =0(C)o(A®idg)eo (—C).

Let M(¢) be the set of all pairs (C,.A) satisfying (1.1). Let

K m(¢) — {¢<p € Aut K<p | ¢<p|K = ¢}
be the map defined as follows.
If (C,A) € M(¢), then g := Co(A®id)f € F(p«e). If ¢, is a lift of ¢,
then (id;, ®¢.,)f € F(¢«e). Then for some I € L,

g =(d®d,)(fol) = (da¢,,)([der 1) f = (de(d, ')/
and the composition ¢, := q5’<p -m 1 is a lift of ¢. It is easy to see that

the lift ¢, does not depend on the above choice of <Z>’<p. As a result, we
can set k(C, A) = dpp.

Proposition 1.4.

(a) If k(C,A) = ¢<p, then for any T € T'p, T(Ad(p<p)T) = A(7(T)).
(b) The map k is a bijection.

Proof. With above notation my4(¢.€)(7) = (—g) o 7(g) = A(w(7)). On the
other hand, g = (id;, ®¢<p)f implies that

7 (0-0)(T) = by ((—F) 0 927y (£)) = T(Ad(D)7)

The part (b) is implied by the following three facts:

(by) the map k is injective.

Indeed, let x(Cy, A1) = (Cq, Az). Then

Cio(A®id)f=Cr0(A2®id)f.

This implies the equality (A;7! ® id)((—=Cs) 0o C1) o f = (A7 ' As @ id)f
and, therefore, for any 7 € T'wp, it holds (1) = (A;'Ag)(n7) (use that
(AT ®@id)((=Cy) 0 C1) € Li). As a result, A7 Ay = idy, and (C1, A;) =
(C2, Az).
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(b2) {P<p | d<plk = &} is a principal homogeneous space over I' <), with
respect to the action ¢<p— ¢<p -7, T € I'cp;

(bg) the appropriate action of T € ') on the pair (C,.A) appears in the
form (C, A) — (C'", A"), where forl; :=n(e)r, C' = Col, and for
anyle L, A1) = (=l;) o A(l) o I, = (Ad 1, - A)(I).

The proof of (bg) and (bs) is straightforward. For more details cf. [8]. O

The above formalism allows us to use the identification 7 = m¢(e) to work
with the group of all lifts ¢, € Aut K., of automorphisms ¢ € Aut K.
Directly from definitions it follows that:

o if (C",A") and (C", A”) correspond to the lifts ¢, and ¢, of,
resp., ¢’ and ¢, then the couple ((id; ®¢')C" o (A’ ®idk)C’, A" A)
corresponds to the lift ¢ ¢~ of ¢'¢" (as usually, for any a € K,
¢'6"(a) = ¢/(¢"(a);

e the elements 7(7) = I, € G(L) appear as a special case of a lift
of idg and correspond to the pairs (I;,adl;), where adl, : | —
(=l;)olol,.

2. Higher local fields and P-topology

2.1. Higher local fields. Let K be N-dimensional local field, i.e.
e if N =0, then K is finite;
e if N > 1, then K is a complete discrete valuation field such that its
residue field is (N — 1)-dimensional.

If N > 1, then the residue field of K is the first residue field of K. It
will be usually denoted by K. The corresponding valuation ring Og) is
the first valuation ring. We agree to set by induction for all 1 < m < N,
Km) = gm=11): this is the m-th residue field of K. Note that KV is
0-dimensional and, therefore, finite.

Define the N-valuation ring Ok of K by induction on N as follows. If
N =0,set Ok = K. If N > 1, and pr : O%) — KW is the natural
projection then set Ox = pr=! Op).

If N > 1, then w:= {m1,...,wn} is a system of local parameters in K if:

e 7 is (the first) uniformizer in K
® Ty, ..., TN € Og) and their projections 7o, ..., 7n to K1) form a
system of local parameters for K1),

If [E : K] < oo, then the structure of N-dimensional field on K is
uniquely extended to E and vice versa.

If charK = p, and 7 = {m,...,7n} is a system of local parame-
ters in K then K appears as a field of iterated formal Laurent series
K = k((ny))...((m1)), where k = K™ ~ F, with ¢ = p™°. This is a
part of the classification result, [35]. In this case K1) is identified with the
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subfield k((7wn))...((m2)) of K. More formally, there is a system of local
parameters 7 := {7a,..., 7y} in K such that their lifts to K form a
subset {mg,...,mn} of m. We use the notation ¢z for the corresponding
embedding of K1) into K.

If char K = 0, we always assume that char K1) = p (such fields have most
interesting arithmetical structure). The appropriate classification result for
such fields K can be presented as follows.

Let KM = k((Tn)) ... ((72)) where 7 := {7, ..., T} are local parame-
ters for K(1). The elements 7o, . .., 7y form a p-basis in K1), [14]. We can
use this p-basis to construct an (absolutely unramified) lift Kg) of K
to characteristic 0, [14]. Recall that KS) is the fraction field of the ring
Hm o Opm(KM), where

Om(KWY = Wy (6™ P KW [y, ... wn] € Win(KW)

are the lifts of K1) modulo p™. (Here 7o, ..., mn are the Teichmuller rep-
resentatives of mo,...,7xn.) The field KS) has a natural structure of N-
dimensional local field of characteristic 0 with the system of local parame-
ters {p, ma,...,mn}. Now the classification result from [35] states:

K is a finite field extension of Kg).

In particular, we obtain an analogue t5 : Kg) — K of the above defined
embedding K(!) — K in the characteristic p case.
Note also that,

e there is m; € K such that {mj,7o,...,7mn} is a system of local
parameters in K

e the field K contains a (unramified 1-dimensional) local field F,, =
Frac W (k);

e the classification result from [35] states also the existence of a finite
totally ramified extension F’ of F,, such that K C F’ KS).

2.2. Definition and basic properties of P-topology. The topology
on N-dimensional local field K (we refer to it as the P-topology) can be
introduced as follows, [23, 26, 35].

If N =0, then P-topology on K is discrete.

Suppose N > 1 and m = {my,...,mn} is a system of local parameters
in K. Then P-topology on K is introduced by induction on N via the
following properties:

(1) any £ € K can be uniquely presented as a P-convergent series

€= Z[aa]ﬂ‘fl R ol



p-extensions of higher local fields 685

where the indices a = (a1,...,an) € ZV, all a, € k, [an] = oy if
char K = p and [«,] are the Teichmuller representatives of a4 in
W(k) C Kg) if char K = 0;
(2) the P-convergence property of the series { means the existence of
Ai(aq,...a;—1) € Z, 1 <i < N, satisfying the following condition:
ifaa#o then al 2141, as 2142((11), ..., aN >AN(a1, e ,aN_l);

(3) if @ := {F2,..., TN} is a system of local parameters for K1) used
to define the P-topology on K| then 1z induces the map

set Y, [ad7 . wY — > agms? . my

a=(az,...,an) a=(0,az,...,an)

which is a P-continuous (set-theoretic) section s, : K1) — Og) of
the natural projection Og) — KW,

The above properties allow us to construct by induction on N the base
Ur(K) of open subsets and the base of sequentially compact subsets C,(K)
in K as follows:

(a) a base of P-open subsets Ur(K) in K consists of the subsets
S pez s (Up), where all Uy € Uz(K(M) and for b>> 0, Uy = K1),

Remark. Note that any «p, € Uz(Up) appears as a P-convergent
power series in the variables 7o, . .., 7y in K. Then all sx(ap) ap-
pear as ‘P-convergent power series in Og) in the variables mo, ..., TN
and, finally 3, 7}ay, is a formal PP-convergent series in the variables

T,...,TN.

(b) a base Cr(K) of sequentially compact (closed) subsets in K consists
of Ypez ™57 (Cy) such that all Gy € Cz(K M) and for b < 0, Cj = 0;

(c) if @’ = {x],..., 7y} is another system of local parameters for K
then the appropriate analogs of the above properties a)-c) also hold
(i.e. the concept of P-topology does not depend on the original
choice of local parameters in K);

(d) if [E: K] = n and the identification of K-vector spaces E = K™ is
induced by a choice of some K-basis in E then {U" | U € U,(K)}
is a base of P-open subsets in L; similarly, {C" | C € C-(K)} is a
base of sequentially P-compact subsets in F;

(e) if C1,Cy C Cr(K) then C1Cs is also sequentially compact (i.e. there
is C' € Cx(K) such that C1Cy C C);

(f) K is a P-topological additive group but not a P-topological field;
however, K = hﬂ Ceca (K) C and the multiplication C x K — K is

P-continuous (i.e. for any U € U, (K) there is an U’ € Ur(K) such
that CU' C U).
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Note that the subset of K consisting of the series £ from above item (1)
satisfying the condition:
if ag # 0 then a1 > Aj,a2 = As(ar),...,an = An(ai,...,an—1)
(with a fized choice of A;i(ai,...,a;—1), 1 <i< N)
is sequentially compact. The family of all such subsets (with a fixed choice
of a system of local parameters m = {71, ..., mn}) forms the base Cr(K).
We can similarly describe the base U (K):
U € U (K) iff there are By, B2(ay),...,Bn(a1,...,an—1) € Z (de-
pending on U) such that & € U are characterized by the condition:
if a1 < Bi, as < Ba(a1), ..., any < By(a1,...,an—1) then ag, = 0.

2.3. P-topology in characteristic p. Assume that K = K has charac-
teristic p and has a system of local parameters ¢t = {t1,...,tnx}. We will
use the simpler notation U(K) and C(K) instead of U;(K) and C;(K) when
working with this fixed system of local parameters ¢. Note that all C' € C(K)
and U € U(K) are k-linear vector spaces (where k& = KV)) and their el-
ements appear as (some) formal k-linear combinations of the monomials
=t .. tQY, where all a = (ay,...,ay) € ZV.

Let Z = Z(K) and J = J(K) be the sets of indices such that C(K) =
{ColaeZ}and UK)={Us | B € T}

It is easy to see by induction on N that for any « € Z and § € J,

(2.1) dimy, Co/Co N U < 0.

Note that C,/CoNUpg are provided with the k-bases consisting of the mono-
mials t* mod C, N Ug such that t* € C, \ Ug. These bases are compatible
with respect to different choices of @ and (. Therefore, {t* | t* € C,} is
a P-topological k-basis in C,, a base of P-open neighborhoods in C, con-
sists of k-vector subspaces containing almost all elements of this basis and
Cy = @6 Co/CoNUp.

Let Nog = (Co/Ca N Ug)D be the dual k-vector space for C,/Cy N Ug.
Then dimy Nyp < oo, /\/’o% = Cy,/CoNUp and the spaces N3 are provided
with compatible (dual) k-bases

{Tn |t € Ca\UB}»
where for any ¢=° with b € ZN, T,(t7°) = 6,

Note that N7 := Homp_cont(Cas k) = liglﬁ Hom(]\/;%, k) = ligﬁ Nag
has a k-basis {T, | t7* € C,}. Using that C, is the set of all formal k-
linear combinations of the appropriate monomials t* we obtain a natural
identification C,, = N7 P,

Consider the [F)-vector spaces EP .= Homp_cont (Ca,Fp). Then

(":f ®k= Hom]Fp—lin,P—cont(Cou k) = GBTLEZ/NQNZ[) Rk k(n) )
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where k(™) is the (twisted) k-module k ®qn k. In this identification the
Frobenius o acts through the second factor on the left-hand side and shifts
Z/Np-summands by +1 on the right-hand side.

In particular, the extensions of scalars SZ(D ® k have the k-bases

(Ton =To @1 |t € Co,n € Z/Np}

which are compatible on a € Z. So, {Ty,, | @ € ZN,n € Z/Ny} is a topolog-
ical basis for £ @ k, where EP = Homp_cont (IC, }F L 5P

Proposition 2.1. Let £ := Hom(K,F,). Then & = EP PP (the double dual
Fp-vector space for EF).

Proof. We verify this on the level of extensions of scalars as follows:
Hom(K,F,) ® k = @Hom(C’a,FP) ® k
(0%

=lim P Homy(Co k) @4 k™ =lim P NP @ k7
& neZ/No @ neZ/No

DD
2@( D Na®kk(")> —lm(EL @ k)PP =7PP k. O

« nEZ/N() a

Corollary 2.2. The vector space Hom(IC,Fy) is the profinite completion
of its subspace Homp_cont (K, Fp).

Proof. Use that if L is a IF)-linear space then L”? is canonically isomorphic
to the profinite completion of L. We sketch briefly the proof of this fact
extracted from [16].

Suppose LP = limY,, where all Y,, are finite dimensional vector sub-

spaces in LP. Then LPP = @YQD. Note that Y, — Ann(Y,) C Lis a

bijection between the set of finite dimensional subspaces in L” and the
set of finite codimensional subspaces in L, and Y,” ~ L/ Ann(Y,). There-
fore, LPP ~ I'&nL/Za where Z, = AnnY, runs over the set of all finite
codimensional subspaces in L. [l

3. The group g7<’p

3.1. Frobenius and P-topology. Let K be N-dimensional local field of
characteristic p. The quotient K = K/(o — id)K can be provided with the
induced P-topological structure such that the projection II : K — K is
open. Choose a system of local parameters ¢ = {t1,...,txy} in K and let
C(K)={Cq | aeI}andU(K)={Us| B € J} be the corresponding bases
of sequentially compact and open subsets in K from Section 2.3. Then the
images Cp = II(Cy) and Ug = II(Ug) form the corresponding bases for K.

Choose ap € k with the absolute trace Try/r, ag = 1. Define Fp-linear
operators S, R : K — K as follows. Suppose o € k* and Z" is provided
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with the lexicographic order. If a € Z", a > 0 = (0,...,0) € Z" then
we set

S{t'a) =0, R(t'a)=-— Z ol(ta).

i>0

For a =0, set S(a) = ag Tryr, @, R(@) = Yocjcicn, (07 a0)o’av.
If a < 0 then there is a unique m > 0 such that a = —a;p™ with

a1 € 2 (p) = {b=(br,....bn) € ZV| b >0, ged(br, ..., by) = 1}
With these notation we set

St*a) =t "o "a, R(ta)= Z o (t%).

For b =" ,czn aqt® € K, set S(b) = ,ezn S(aat®), R(b) = 4czny R(agt?).
The proof of the following proposition is straightforward. It uses just that
o : K — K is P-continuous and K is a P-topological group with respect to
addition.
Proposition 3.1.
(a) R and S are P-continuous.

(b) For anybe K, b=38(b) + (o —id)R(b).

Notice that S? =S, R? = R and RS = SR = 0. In particular, Proposi-
tion 3.1 implies that the elements b € I can be uniquely presented modulo
(0 —id)K in the following form

(3.1) Z Yat ™" + Y500

aEZ;(p)
where all v, € k and 5 € IF,,. We have also the following proposition.

Proposition 3.2.

(a) The morphism I1(b) — S(b), where b € K, defines a P-continuous
section Stay 1 K — K of I such that S o ll(at™) = at™ if a €
Z3(p), a € k, and Sy oy (k/(0 —id)k) = Fpap C k.

(b) For a P-continuous section S of 11, there is a P-continuous map
Rgs : K — K such that for any b € K, b= S(II(b)) + (0 —id)Rs(b).

Proof. Ttem (a) follows from Proposition 3.1. For item (b), just notice that

b=S(b) + (0 —id)yR(b) = SII(b) + (S — SI)b + (0 — id)R(D)
= STI(b) + (0 — id)(R(S — STI) + R)(b) = STI(b) + (o — id)R (b — STIb)

and Rg := R (id —STII) is P-continuous. O



p-extensions of higher local fields 689

3.2. P-topological module 1P . Proceed similarly to Section 2.3 by
setting for all « € 7 and B € J:

(1) K2y := Hom(Co/Co N U, Fy) = Hompcont(Co/Co N U, Fp) ;

—=DP . =D =
(2) K, = hﬂg Keap = Homp_cont (Ca, Fp);
(3) KkP7 = lim Kfp = Homp_cont (K, F)) .

Remark.
(1) For any a and 3, dimg Co/(C N Up) < oo.
(2) K. = Hom(Ca, F,) = (K.7)"”
completion of £-7.

(3) It follows from (2) that kP = Jim

profinite completion of cP7 .

. . =D . .
, in particular, K is the profinite

(fDP)DD _ (ED’P)DD

oKy is the

Define the P-topology on KP7 as projective limit of discrete topologies

on all Efjp.
Set for any « € Z and 8 € J,

Ub .= {uD e &P” ’ uP(Cp) = 0} = Ann(C,).
CF ={cP e k"7 | P(Us) =0} = Ann(Tp).

Then in €77
(a) U(KDP) :={UP | a € T} is a base of open neighborhoods;
(b) C (EDP) = {Cg | B € J} is a base of sequentially compact subsets;
(c) K77 =1lim, CP and for any § € J, C} =lim CP/CP nUP;
(d) for any a € Z, 1657) = KDP/U(])?.
These properties are implied easily via the following observations.
Let {o; | 1 <i < N} be a basis of k over F,,. Consider the set
(3.2) {ait™ | 1< i< Nya € Z(p)} U{ao}.
Then:

e for any a € Z, there is a subset of (3.2) which forms a P-topological
basis of Cy;

e for any 3 € J, there is a subset of (3.2) which forms a P-topological
basis of Ug.

Let
(3.3) (DY | a € ZH(p),1 <i < N}U{Dg}

be the dual system of elements of K7 for system (3.2).
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Then for any o € Z, there is a subset of (3.3) which forms a P-topological
F,-basis of UL. Similarly, for any 3 € J, there is a subset of (3.3) which
forms a P-topological IF),-basis of C’é) .

As a result, the pairing K x Pt F, is a perfect pairing of P-
topological modules. This pairing identifies KP” with Homp_cont (K, Fp)-

Consider the presentations of elements from S(K) C K in the form (3.1).
For a € Zﬁ(p) and n € Z/Ny, let D, € P ®F, k be such that

Dan(T(7at™)) = 0"74 and Dy (T(ag)) = 0. If Dy € K77 is the element
appeared in (3.3), then Dg(v,t™%) = 0 and Dg(a) = 1.
The elements of the set

(3.4) D :={Dun | a € Z}(p),n € Z/No} U {Dg}

form a P-topological basis for Kfp. In particular:

(i) the elements of EkDP appear uniquely as P-convergent series

Z YanDan + 76D6 )

aGZX,(p)
TLGZ/NO

where all 74, and ~5 run over k;
(ii) the appropriate subsets of (3.4) provide us with compatible k-bases
=D =DP
for K5 and K" ;
(iii) the elements of K7 can be presented uniquely as P-convergent
series

Z Un(Va)Dan + 76D6 9
aEZ?\}(p)
n€Z/No

where 75 € F), and for a # 0, v, € k.

Remark. The condition of P-convergence in (i) means that for any o € Z,
{Yan # 0 | t7% € C4} is finite. Similar condition holds in (iii) (where 74y,
should be replaced by 0"7,).

Let ®” be the P-topological tensor product. Consider
Ki" = Homp.oon (K, K) = K77 0 K=K, oF K.
The following property is straightforward.

Proposition 3.3. The elements of /6,187) can be presented uniquely as P-

_ . . =D
convergent sums Y ,czn Mqt™ @ with coefficients m, € Kp, " .

Remark. The condition of P-convergency in Proposition 3.3 means that
for any a € Z, B € J, {ma # 0 | 7% ¢ Ug,my ¢ UL} is finite.
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3.3. Lie algebras £ and L?. Let L be a free profinite Lie algebra over I,
with the (profinite) module of free generators kP = Hom(K,Fp). Let £ =
L/Cy(L). Then L is a projective limit of finite Lie [F,-algebras generated
by the finite quotients of i’ ~

Let L7 resp. L7, be the Lie subalgebra in £, resp. in £, generated by the
elements of K7 = Homp_cont (K, Fp) C KP. Then Cp(LP) = LP N C,(L)
(use that the profinite completion of Kk°7 is KD) and LP = L7 /C,(LP).

Note that £F inherits the P-topological structure from o (use the
topology of tensor product on ZKKP(EDP)@ O L7), and the profinite
completion of £F coincides with L.

Introduce the Lie algebras £, with generators Ef = Hom(C,,F,) and
LF with generators Efp = Homp_cont(Ca, Fp). Then £F has discrete topol-
ogy, its profinite completion coincides with Lo, £ = lim L, and LP =

@a cPoIf Lqp is the subalgebra in £, generated by I@gﬁ then L, is finite
and LF = ligrlﬁ Logs.

The elements of the Lie algebra Ef = LF ®@p, k appear as convergent
k-linear combinations of the Lie monomials of the form

> byl [Dis-. ] Di.
Di,...,Dyr

where all Dy, ..., D, belong to (3.4). The condition of convergency means
that for any « € Z, all but finitely many of these monomials have the zero
image in L7,

We can describe similarly the enveloping algebra of £7. Namely, let A7
and A¥ be enveloping algebras for £7 and, resp., L taken modulo p-
th powers of the corresponding augmentation ideals. Then A7 = yLna AP
and lek consists of all polynomials of total degree < p in the subset of
variables Dy, from (3.4) satisfying the condition ¢t~ ¢ C,. In other words,
the elements of AP are characterized in the algebra 2 as P-continuous
polynomials on K with values in F, of total degree < p. Of course, 2 and
L can be recovered as the profinite completion of A7 and, resp., £7.

3.4. Class of conjugated subgroups cl1”(G.,). Let G = Gal(Kgep/K)
be the absolute Galois group of the field K.
If Goo := G/GPC5(G) is the maximal abelian quotient of period p of G

then the classical Artin-Schreier duality K x G2 — F,, allows us to identify
G2 with P = (EDP)DD and to introduce a dense subgroup G2 := KcPr
in G.o. Note that with respect to this identification, the elements D((f) €

&P from (3.3) appear as elements of G such that if T;; € Ky, are such
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that T, — Tp; = a;t7° (in notation from Section 2.3) then DY (Ty) =

Ty; + dapdi;. Similarly, the elements Dy, € EkDP from (3.4) act as follows:
if b €N, ged(b,p) = 1 and T, € Kyep is such that T)) — T, = t=° then for
0 < m < No, Dan(TP") = TP + a0

The reciprocity map of local class field theory Vg, cf. Introduction, in-
duces the identification G, ~ K4 (K)/p (as carlier, K\ is the topological
version of the functor Ky, cf. also e.g. [25, 26]). The subgroup G%, is con-
siderably smaller than G.o but its profinite completion recovers the whole

G<o. In particular, 952 can be used instead of G.o when studying finite

G<r) Our target is to introduce

(abelian) extensions of K inside Ko = Kg;
an analog of g7<’2 in the case of p-extensions of nilpotent class < p.

Let E? be the topological tensor product £F @F K.

From now on we will consider only e € £(LE) := LE N E(Lk). Under

this assumption if S is a section of the projection Il :  — K such that
e mod C2(LY) = eg then S is P-continuous.
As earlier, choose f € F(e) and set m = 7s(e) : G ~ G(L).

Definition. cl” (G<p) is the class of conjugated subgroups of G, containing
mr(e) ' G(LP).

Theorem 3.4. The class clp(g<p) does not depend on the choices of e €
E(LY) and f € F(e).

Proof. Suppose €' € E(LY), f € F(¢/) and set 7' = mp/(e’). We must prove
that 7 1G(L7) and (7')"1G(L”) are conjugated in G,.

Lemma 3.5. There are x € £7,é and a P-continuous section A : KDP —LP
of the natural projection LF — LF |Co(LF) = KP7 such that

¢ =o(x)o(A ®I7F9p idg)eo (—x),
where A € Autrie LF is such that A|I€DP = A.

Proof of Lemma 3.5. The proof appears as a P-topological version of the
proof of Proposition 1.1, where we use the (P-continuous) operators from
Proposition 3.1 and 3.2.

Let {lo | @ € I} be a P-topological F,-basis of K. Let lo, @ € T,
be the dual (P-topological) FF,-basis for I?DP, i.e. for any aj,a0 € Z,
lAal(lOQ) = Oayay- Then for the corresponding sections S and S’, we have
the P-convergent series eg = 3, lo ®” S(la) and € =20 o @7 S'(1y).

Apply induction on r > 1 to prove the existence of x, € Eﬁ and a
section A, of the projection £P — KP? such that

¢ =o(z) o (A ®idk)e o (—z,) mod Criq(LE),
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with the appropriate P-continuous automorphism A, of £F.

If » = 1, take A; = idy; and 1 = ZalAa ®F 214, where all 21, =
R(S'(lo) — S(lo)) € K and R is the operator from Proposition 3.1. Note
that x1 € EE because R is P-continuous.

If » > 1 and such x, and A, exist then there is [,+1 € CT+1(£E) such
that ¢ = oz, o (A, @ idg)e o (—,) 0 41 mod Cry2(LE).

Let l,41 =, Ca ®F b, with all ¢, € Cpy1(LP) and b, € K. Then

L1 =140 -2,

where the elements I = 3" ¢, @ (STI)(by) and ' = 3aca ®" Rg(ba)

belong to CTH(EE) C EE. It remains to set A,11(lo) = Ar(ln) + co and
Zry1 = 2, +2'. The lemma is proved. O

Remark. The main reason why the proof of Proposition 1.1 works in the
P-topological context is that EE = L7 ®7P K is stable with respect to the
action of P-continuous operators on the factor K.

Continue the proof of the theorem.

Denote by the same symbol A the (unique) extension of A to £ (use that
L is a profinite completion of £7). Then f” = z o (A®idsep)f € F(e') and
for any 7 € Gy, mpr(€)(7) = (A - )T

Then (A - 7)(GZ,) = A(LP) = LP. This implies that 7 'G(L”) =
mp () TLG(LP). But f', f” € F(€’) implies that the subgroups (7') "1G(L7)
and 7 (€/)"LG(LT) are conjugated in Goy. O

3.5. Galois P-correspondence. As earlier, consider ED, EDP, the el-
ements e € E(LY), f € F(e) and the corresponding identification 7 :=
ms(e) : Gop =~ G(L). Suppose K’ is a finite field extension of K in Kgep. Let
gL, KP KPP ¢ e €(LE), f € F(¢) and # = mp(e!) : Gy = G(L') be
the similar objects for the field K'.

The natural morphism of profinite groups © : g’<p — G<p can be de-
scribed in terms of identifications m and 7’ by Proposition 1.3. It admits
the following P-version.

Proposition 3.6. Suppose g’<7j, ecl” G.,. Then:

(a) there is pr ccl? G<p such that @(QZ,) C g7<’p;

(b) (GF,: 0(G])) = (G<p: ©(GL,)), i-e. O(GL) = O(GL,) N GE,.
Proof.

(a). We can assume that f’ € F(€') is such that g’<p = 771G(L'P). Then
we can apply the P-topological version of the proof of Proposition 1.3
to establish the existence of a P-continuous A € HomLie(ﬁlp,EP) and
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z’ € LF, such that
(3.5) e®@p Iy = o(z') o (A®idk)e o (—2).

From (3.5) it follows that both (—z') o f and (A ® idxr)f’ belong to
F((A®id)e’) C Lsep. Therefore, there is | € L such that

(—2") o f = (A®idsep) f o1
As a result, for any 7' € G, 1(O(7')) = (~1) o A(x'(')) o, and
7(O(GL) = (~1) o A(LP) o (1) C (1) o LP ol
Equivalently, for g = 771(I) € G, we have
0(G%) c(—g)or ' (LP)oged” Gy
So, we can take G¥, = Ad(g) (7' LP).

(b). Assume that in the notation from (a), [ = 0. This guarantees the
embedding @(QZ;) - g7<’p and the factorisation @ = A - 7/, where © =
mr(e) 1 Gop = G(L), 7' = 7p(e) : GL, ~ G(L') and A: L' — L is induced
by O.

Let p" = [K": K] = (G<p : ©(G,)).-

The case [K' : K] = p. Here K'/K is Galois of degree p, (L : A(L")) = p (cf.
Proposition 1.3), A(L') is an ideal in £, and A(L") = C2(L) + L, where
L c € is of index P.

Let A(L'P) = Co(LF) + L° € A(L'), where in notation from Section 3.2,

L0 ¢ K7 = lim Homp_con(Ca, F)
[0
Let K' = K(T"), where T” —T" = ¢ € K. Then K' = K, with H =
O(GL,) and 7(H) = G(Ca(L) + L). Therefore, L C KP is characterized by
the trivial action on T or, equivalently, L = Ann(é), where ¢ € K is the

image of ¢ under the natural projection II : K — K. B _
We can assume that for some index ag, II(c) € Cq,, because K is the

union of all C,, = II(C,). As a result:
e the P-subgroup H” appears in the form 77 1G(Cy(LP) + LO);
o LU is the preimage of a subspace Lgo C Homp_cont (Cags Fp);
e L) consists of all finite Fy-linear combinations of the elements
DY € Clao from (3.3) which annihilate & This means that LY is
of index p in Homp_cont(Cayg, Fp), L is of index p in EPD, ALP)
is of index p in £F and (b) is proved in the case n = 1.
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Inductive step. Suppose n > 2 and (b) is proved for field extensions of
degree p"~1.
Consider the tower K C K1 C K/, [K1: K] =p, [K': K] = p"~L.
Using similar notation for X’ and K1 we have:
(1) the fields tower K C K1 C K' C K<) C Ky <p C KL,
(2) the compatible identifications:
® Gop > G(L) CG1<p~ G(L) C G, ~G(L),
o G2 ~G(LP) c G, ~G(Ly) CcGL ~G(L7P)
(3) the natural group homomorphisms:
® O1:G1,<p = 01(G1,<p) C Gp,
e O /<p — @’(g;p) C G1,<p
® 01:0'(G<p) = O(G,) C 01(G1,<p) C Gy,
(4) the restrictions of the above ©, ©', ©1 to the corresponding P-
subgroups satisfy analogs of relations from above item (3)).
Note that Ker ©1 = Gal(Ki,«,/K<p) = J is the profinite closure of
JP =6l _,NJ=Ker @1’95@' Therefore, ©1(G] ) = G1,<p/ Ker J”.
Similarly, ©1 induces a group epimorphic map ©'(G<,) — ©(G~,) with
the kernel J, the corresponding epimorphism ©’ (pr) — @(QZ;) has the
kernel J” and ©(G%)) = ©'(GZ )/ J”.
Therefore, (G, : ©'(GT)) = (©1(G]_,) : ©(G)). By the inductive
assumption, this index equals p"~!. Finally, using the case n = 1 we obtain
(G%,:©(97,)) =" O

Definition. If H = @(g;p) then we set HP = H N pr.

Clearly, the conjugacy class of H” in its profinite completion H is well
defined.

Corollary 3.7.
(a) Any extension K' of K in K<), (in the category of N-dimensional
local fields) appears in the form IC7<"p, where H is the profinite com-
pletion of a P-closed subgroup HT of some ng ecl”? Gep-
(b) In the above notation, K' is Galois over K iff the subgroup H” of
GZ, is normal, and Gal(K'/K) = GZ,/H” .

It remains to characterize the subgroups HP gl’p such that K™ is an
extension of K in K.

Proposition 3.8. Let H C Q7<Dp be a subgroup. Then H = HF, where
K" = K is N-dimensional field extension of IC iff

(a) (pr tH) < oo;

(b) H is P-open in g7<’p.
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Proof. If K' is field extension of K in the category of N-dimensional fields
then [K': K] = (G<p : H) = (GZ, : H”) < 00 and by Proposition 3.6 #” is
P-closed. It is also P-open as a closed subgroup of finite index in g7<’p.

To proceed in the opposite direction note that H = G(L), where L is a
Lie subalgebra in £” and the index (L : L) is a power of p. Choose an
increasing sequence of Lie algebras L = Lo C Ly C --- C L, = LF where
each L;_; isideal in L; and (L; : L;—1) = p. As a result, we can proceed by
induction and it will be sufficient to consider the case n = 1.

Then L D C3(LF) and L = Co(LF) + LY, where

LO C HomP—cont (16’ ]Fp) = m HomP—cont<éou Fp) s
@

cf. notation from Section 3.2. Since L is P-open there is an index aq such
that LV is the preimage Bf a subgroup Lgo of index p in Homp_cont (gam Fp).
Therefore, there is ¢ € C,,, such that Lgo = Ann ¢ in Homp_¢ont (Cay, Fp).

Let K' = K(T"), where T"? — T" = II"'¢. Then K’ = K%,

subgroup H of G, is such that H = G(C(L) + L) and L C K" is charac-
terized by the trivial action on T". Therefore, the corresponding P-subgroup
HP = G(C2(L7) + L7), where L” consists of finite F)-linear combinations
of the elements Dc(f) from (3.3) which annihilate ¢. Therefore, LP = L0 and
HP = H. O

where the

3.6. More general P-groups. Suppose G’ C Aut K'. For example, X'/ K
is Galois and G’ = Gal(K'/K). Consider the group I' C Aut K, of all lifts
of the elements of G’ to K.,,. These lifts can be treated in terms of couples
(Cy, Ay), where g € G', Cp € Li, and A" € Autpie L', cf. Section 1.6.
This description uses the identification 7’ = 7 (e’) : GL, ~ G(L'). After
applying 7/~! we obtain the exact sequence

1 —¢., —I'—G —1.

Consider a subgroup I'"7 of IV coming from Cy € LP =r7@P K and P-
continuous Ay . (For example, use the P-continuous operators R and S from
Section 3.1 to recover the corresponding pairs (C;, A’g), cf. e.g. Section 4.2
below.) We obtain the following exact sequence

1—>QZ)—>F’P—>G’—>1.

This construction of the subgroup I'"7 of IV does not depend on a choice of
“P-continuous” lifts of elements of g € G’ (all such lifts differ by elements
of gZ;).

The above construction in the case G’ = Gal(K'/K) allows us to recover
(uniquely up to isomorphism) the group pr from H” = @(QZZ,). Even
more, if £ C K1 C Ky C Kep, Hi = Gal(lC<p/lCl-), 'HZD =H;N pr with
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i = 1,2, and Ky/K; is Galois then H} = Ha N g7<’p is uniquely (up to
isomorphism) recovered from H7 .

4. The groups gf and I‘f

As earlier, K is N-dimensional local field of characteristic p with fixed
system of local parameters ¢t = {t1,...,tx} and the last residue field k ~
Fny. Fix ap € k such that Trk/Fp(ao) = 1. Let S = St q, be the section
from Proposition 3.2.

Take e :=eg = ZaEZ}(p
T =m¢(e): Gop ~ G(L). i
0
Fix ¢? = (c{),...,c%) € pZ"N such that ¢ > 0, set = t! t(]:\]]\’
Choose w = 37, .5 Bt /p).J” € tCO/pO,*C, where all 3, = ,(w) € k, 5 # 0.
Let E(X) = exp(X ;50 X? /p’) be the Artin-Hasse exponential.

)t *Dao + agDg, choose f € F(e) and consider

4.1. Automorphisms h&m). For1<m <N, let h&m) be the P-continuous
automorphism of K such that h&m)| p = id, i (tm) = tmE(wP) and for all
j # m, h&m) (tj) = t;. Let mx be the maximal ideal in Ox. Clearly, mx
consists of all P-convergent k-linear combinations of t%, where a € Z]>V6.

For n € Z, let A" be the n-th iteration of A" and, similarly, denote
by hc(uml)hfumz) the composition of h&ml) and h&mz),

Proposition 4.1.

(a) For anyn >0, h((um)n(tm) =t E(nwP) mod 7" my;
(b) hS™RE™) = hEP BRI mod < myc.

Proof. Note that hfum) (tm) = t,m mod +’my and this implies for any ¢ > 0,
that h{™ (t"74) = "+ mod "’ my. As a result,

(4.1) AU (WP) = wP mod " myc .

Apply induction on n > 0 to prove part (a) of the proposition.
If it is proved for some n > 0 then

AL (Y = B (8, E(nwP)) =t B(wP) E(nwP) = tym E((n + 1)wP)

modulo #*¢'my (use that E(X +Y) = E(X)E(Y) mod degp).
Similarly, relation (4.1) implies part (b). O

Remark. The above proposition can be stated also for the truncated ex-
ponential exp(X) =1+ X + -+ + X?~1/(p — 1)! instead of E(X).
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4.2. The groups G, and g7’ Let h(m) € Aut K., be such that h \;c =
hg,m). Denote by G, the subgroup in Aut K., generated by the elements
of G, and the lifts lALE)m) with 1 < m < N. The elements Ew of G, are
characterised by the property Ew\ K€ <h£u1), . ,hSJN)> C Aut K. According

to Section 1.6 the lifts hfum), 1 < m < N, can be uniquely specified by the
couples (C(™) A™)) € Li x Aut £ such that

GV (f) = C o (A @id) f
or, equivalently, such that
(4.2) (ids @ h™)e = 0C™ o (A @ id)e o (—C™).

Relation (4.2) can be treated via the following recurrent procedure.

Suppose s > 0 and the couple (C’(m) Aﬁm)) satisfies relation (4.2) mod-
ulo (s + 1)-th commutators Cs11(Lx). Use the operators R and S from
Section 3.1 to obtain C, € Csy1(Lx) and A, € Hompie(L, Cs41L) such
that

oCy — Cg + (A ® idg)e
= (idz @ h{™)e — oC™ o (A @ id)e o (—C™) mod Cyyo(Lx) -

Then the couple (Cs+17 As+1) (Cs + CL, As + Al) satisfies (4.2) modulo
Cs+2([’lC)'

Denote by E?f’”) the lift of h(m) which is uniquely determined by the
couple (COm) | A0(m)) .— (C]ET%, .A(m)) Note that C%™) ¢ £Z and A°™)|.p
is a P-continuous automorphism of the Lie algebra £7.

Using that (idz ® h(m))e € LL and LN LY = L7 we obtain the following

property:

Proposition 4.2. A lift Rim corresponds to a couple (C™, A™) with
cm e EE and AM) ¢ Autp_cont (LT, if and only if there is | € LT such
that O™ = %™ o] and A™ = Adl- A%™)

Definition. G C G, is a subgroup generated by g7<’p = 771L7 and the
lifts Ao™. 1 < m < N.
Remark.

(i) The elements of the group G are specified via the couples (C, A) €
LR x Autp_cont LT (which satisfy relation (4.2)).
(ii) The profinite completion of GF coincides with G,
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Obviously, we have the following natural short exact sequences:

(4.3) 1— Gep — G — (B, ... WMy — 1,
(4.4) 1— G2 — gl — (W), ) — 1,

The structure of (4.3) can be uniquely recovered from (4.4) by going to
the profinite completions.

4.3. The commutator subgroups Cs(G?). Define the weight function
in £ by setting for s € N and (s — 1) < a < sé’,

Wt(Dapn) = s
Introduce the ideal LT (s) of L7 such that £7(s); is generated by all
[...[Dainys Dagns)s - - - s Dayn,] With 3, wt(Dg,n,) = s. Clearly, for any s, s2,

it holds [£7(s1), L% (s2)] C LK (s1 + s2).

Consider the lifts hg(m) c g]j from Section 4.2. Denote by Ad™ the
automorphism of G(£) obtained from conjugation by A™ on pr with
respect to the identification 7(= 7¢(e)) : GZ, ~ G(LP).

Let for a € Z§(p), Ady" (Dyo) = Dy and Ad{" (Dg) = DI
Lemma 4.3. For any 1 < m,mi < N,

(a) DY = Dgmod £F(3) + L5 (2) N Ca(LP);
(b) ifa = (aM,...,a™)) € Z}(p) and wt(Dyp) = s then

Dc(fg) =Dy — Z Aza(m)DaJrcoerho
>0
modulo LT, (s+2)+L7 (s+1),NCa(L]), where the elements A, € k
are such that E(wP) =1+ 5 At
(c) the commutator (ho™ hO™)) € T rG(LE (2)).

We shall prove this lemma after finishing the proof of Proposition 4.4
below.

Note that Lemma 4.3 implies 7C2(G)) C G(LE (2)).

Set L (1) = LP.

For s > 2, let LT (s) C LF be such that 7Cs(G7) = G(LE (s)).

Proposition 4.4. For 1 < s <p, LD (s) = LR (s).

Proof. Use induction on s > 1.

Clearly, £ (1) = £ (1).

Suppose sg = 1 and for 1 < s < s, Lf(s) = Efo(s). Let Eﬁn =
(Xam kDan) N L7 be “the subspace of linear terms” in £7. We have the
following properties for all s < sp:

o LN(s+1)=LR(s+1)NnLh + LR (s+1)NCa(LP);

lin
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o LE(s+ 1) NCo(LP) = Tyhaposir LD (51), £ <s2>}
o EP(S + 1) is the ideal in L7 generated by [EP( ), LF ] and the ele-
ments Ad™ (1) o (—1), where [ € £LP(s) and 1 <m < N. (If s9 = 1
we do need part (c) of Lemma 4.3.)
Now statements (a) and (b) of Lemma 4.3 imply:

(c1) if 1 € LT (s) then Ad™ (1) o (1) € LT (s + 1);
(c2) if I € L], N LY (s + 1) then there are m and ' € L N L(s) such
that

Ad™ () o (~1') = L mod L] (s +1) N Ca(£7)

(use that Aj 75 0 and for any a = (e, ..., a™) € Z{ (p), there is
m such that a™ # 0 mod p).
Then [£F (s0), £7] = [£% (s0), LT (1)] € LT (s0+ 1) and applying (c1) we
obtain £ (s +1) € L (so + 1).
For the opposite direction, note that by the inductive assumption,

Chso+)NC(LP) = S [£D(s1), £ (s0)] < LD (s0 +1)
s1+s2=s0+1

and then (co) implies that £, N L% (so + 1) C LE(so 4+ 1). As a result,
L% (so+1) € LE(so + 1) and our proposition is proved. O

Proof of Lemma 4.5. Let
N =St LR (8)my,

s>1

where mx is the maximal ideal of the N-valuation ring O of K. Clearly,
N has an induced structure of a Lie algebra over F), and e € N.

Let e := (Ad"™ ®idx)e = 2 ez (v) t=*D0y) + %Dém)'
The recovering of C%™) € G(LF) and ™ from relation

(4.5) (idsp ® h™)e o OO = (¢CO™)) o (™)

is a part of the recurrent procedure from Section 4.2. Clearly, the opera-
tors S and R from Section 3.1 map N to itself. Therefore, when follow-
ing the recurrent procedure we remain at each step in N. As a result, all
elm, COm) 5C0m) ¢ N/,
For any j > 0, introduce the ideals N(j) := t#’ N of N. The operators
R and S also map the ideals N(j) to itself.
The following properties are obtained by direct calculations:
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(i) (idg» ®h(m))e = e—i—egm) mod N (2), egm) = eg ™+ —i—el e N(D),

m)— aq (m)+ _ m —a+cP+pe
Z t A Da_;’_c()_;’_pL 0> 61 - — Z a( )ALt p Dao
120 20
aEZ;(p) 0<a<cO+pe

and, therefore, S(egm)Jr) = 0);

(ii) the congruence (id,» ® h&m))e = e mod N(1) implies that ™ =
e mod N'(1) and €% ¢C%™) ¢ N/(1). Indeed, in the procedure
of specification of E?fm) it holds that for all s, C’sm), UCS(m) e N(1)
and (Aém) ®idg)e = e mod N(1);

(iif) ™ = (—=oC%™) o (idr @ i )) o C0m) = (COm) _ UC’O m))
e—l—egm) mod N(2) + t<’ N @ where N@ .= Desat T ( ( )
Co(LP)) . (use that [N'(1), A/ (1)] CA'(2) and [N'(1), N € A7),

(iv) SIV(2) + "N @) c N(2) + t°N @ S(e M>—e—e§ ™Y = elm)
e— egm) , S(CM —gom) +e§m)+) = 0. Therefore, item (iii) implies

e = e+ egm)_ mod N (2) + " N@)
More explicitly,

(4.6) 6 = Z t ¢ (D 0— a(m ZA Da—l—co-i-pL 0> + OZOD

a€Zf (p) >0

(note that e(m) eLh

mgc

4
N

modulo N (2) + t N,

Deduce from this congruence statements (a) and (b) of our lemma. Con-
sider the presentation of an element [ € EE in the form of a P-convergent
series | = 3 ez tb,, with all I € Ef.

Suppose 5 = 1 and —(s — 1)c” > b > —sc. It follows directly from
definitions that:

e if | € N then ly € E?(S)k;
e if | € N(2) then [, € LR (s +2)y;
o if 1 € t"N® then I, € LE (s + 1), N Co(L]).
As a result, the parts (a) and (b) of our lemma are obtained by comparing

coefficients in (4.6).
Now note that for any m;,

(4.7) (idpr @ h™M))e = e + egml) mod N (2) .

Let Nep = 351 t_cosﬁfo (5)m.,, where m., is the maximal ideal of the
N-valuation ring Ox_,. Again, N, has the induced structure of a Lie
F,-algebra and for any j > 0, N, (j) = /9N, is ideal in Ny,
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As earlier, f,of € N.p, and congruence (4.7) implies that
(idyr ® h&ml)h&m)))e =e+ e(lm) + egml) mod N, (2) .

where ™) ¢ N<p(1) is such that g fm) _ plm) gl
This implies the following congruences modulo N, (2)

(idpr @ ROROMY £ = (idpp @ RAMDROM) = ¢ 4 plm) 4 plm)

and, therefore, (id, » ® (Tlg(m)ﬁg(ml)))f = f mod N,(2).

On the other hand, the commutator (A?f’”),ﬁg(ml)) is a lift of idx, i.e. it

coincides with 7! (Iym,) € g7<’p. Therefore, lmm, € L7 NN,(2) = LT (2).
The part (c) is proved. O

4.4. The group I‘f. Let £ = L/L.0(p) and EP = [,P/Efo (p). Then ZP is
dense in L. If K(p) = ICZ(DECO #) and G = Gal(K(p)/K) then the identifica-
tion 7s(e) induces the identification 7 : G ~ G/(L). This identification can
be obtained via nilpotent Artin—Schreier theory: for € € L and [ € L),
wehaveof =¢eof and T = 71'}7(6). However, the algebra L is too big for the

process of linearization, cf. below. This motivates the following definitions.
Let

M= 3t Loo(S)me + Lalp)i

1<s<p
.0
MP = Z 8¢ £§)(s)m,C —i—ﬁg(p)/c
1<s<p
.0
Moy = Z £ Lo ($)me, + Lo Pk,
1<s<p

where (as earlier) m«, is the maximal ideal of the N-valuation ring Ox_,,.
Then M and M7” have the induced structure of Lie F,-algebras (use the
Lie bracket from Lx). For s > 0, M(s) := t*’ M and MP(s) := t¢’ MP
form a decreasing central filtrations of ideals in M and M7P. Similarly,
My is a Lie Fp-algebra (containing M as its subalgebra), for s > 0,

Mop(s) = tSCOM<p is a decreasing central filtration of ideals in M,
and Mcp(s) N MP = MP(s). It can be easily seen that e € M” and
f, Uf S M<p.

There is a natural embedding
77) J—
M= MP/MP(p_ 1) CMepi=Mop/Mop(p—1),

and the induced decreasing filtrations of ideals ./\773(3) and Mp(s) (where
Mp(p —1) = Mcy(p—1) = 0) are compatible with this embedding. For
all 5> 0, (idz @ h" —id e ) M € M (s).
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The algebras M” and M, are naturally identified with the following
subquotients of ZZ and Lop:

= ( 2 tSC°cZ<s>m> ® O /t®~ D

1<s<p

./W<p = ( Z tiscofco (S)m<p> ® O]C<p/t(p71)co :
1<s<p
We can see easily that e® 1 € ./\773, f®lof®ele Myandof®1l=
(€® 1) o (f ®1). The following property shows that we still have a full
control of the identification 7.

Proposition 4.5. The correspondence 7+ (—f®@1)o7(f®1) induces the

natural projections Gp — G ~ G(L) and GZ, — G" ~ G(EP).

Proof. (—f®1)o7f®1 comes from (—f)o7f € G(L). It remains to notice
that LN M(p—1) = Le,(p) and LOMP (p—1) = LE (p). O

Remark. In the above setting we can replace M, by its analogue M K(
where the field K(p) is used instead of K, (because f € L))

p)’

Let I'D == G2 /(G )PC,(GT). Then T, := G,,/GECp(G.) can be recovered
as the profinite completion of I'”.

Proposition 4.6. Ezact sequence (4.3) induces the following exact se-
quence of profinite p-groups

1—G —TF — J[ ()i — 1.
1<m<N

Proof. Consider the orbit of f ® 1 with respect to the natural action of
G, C Aut K. on f (recall that all “values” of f belong to K., C Ksep).
Then the stabilizer H of f®1 equals G2C,(G,,). This fact and the remaining
part of the proof go along the lines of Proposition 3.5 from [9]. O

Suppose 7, : I'" ~ G(LF) extends ©# = 7#(€) for a suitable Lie Fp-
algebra LT containing L. Then the automorphisms ho(dm) give rise to the

Lie elements l&m) and we obtain the following property.

Corollary 4.7. There is a natural exact sequence of Lie IFy-algebras

(4.8) 0— L —LF — I Fim —o.

1<m<N

We recover the structure of LT below by analyzing the orbit of f.
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4.5. Filtered module ./Wf and the procedure of linearization. Let
B(m) I'” be a lift of h™ to K(p). We use below the notation [i,m) for
the correspondlng element Ww(h(m)) € LT. For example, cf. Section 4.3, if
lw(m) 7rw( )|;C y) then the notation Ad™) appears as Ad(lo(m))

Let TU™7 be the subgroup in I'” generated by hEJ and G = TT*IG(E )

(clearly, it does not depend on the choice of ﬁim)). Then we have the fol-

lowing exact sequence
1— G — TP (p(m)y j(pmpy 1
m)P

Let LU™7 be a Lie subalgebra in LF such that WW(F(m)P) G (L(E)m)P).
We have the following exact sequence of F,-Lie algebras

0— L — LIP 5 F 1m0,
obtained from (4.8) via the natural embedding ]F'plfum) = [icmen Fplfjm).

The structure of the Lie algebras LL(,Jm)7> (as well as the groups I‘L(,Jm)P)
can be studied via the “linearization techniques” from [8, 10].

Namely, the action of id P ®h&m) on EE induces the action on /\77D
which can be presented in the form exp(id 7 ® dn{™ )) where id zp ® dn{™

is a derivation on M . Indeed, the elements of M" can be written uniquely
as sums of elements of the form | ®¢~%, where all a = (a(V, ..., aN)) e ZN

and for some 1 < s < p, (s — 1) <a < sc®and | € Zp(s)k. Then this
derivation comes from the correspondences | @ t~% — [ @ (—a(™)t~%wP,

Let ./\7f be the minimal Lie subalgebra in M K(p) Obtained by joining to
M” the element f and its images under the action of the group generated

by idz ® Efjm). The algebra Mf still reflects all essential information about
the structure of I'y,. Then

(1dﬁ®h )f o (Z(m)(g)id/C(p))f)

where é(m) e M’ and fl(m) = Ad [im) € Aut ZP, cf. Section 1.6. Clearly,
this relation determines the action of the lift idz ® Bfum) on /Wf.

For any n > 1, we have (id ®h )f C mn) o(A ™ & id) f, where
the element C' (

(id @ n{mn- 1) (Z“”) ® h{mn= 2)c< ™. o (Z(m)"*l ®id) atm

Let Eg ™) ¢ M” be such that for all 1<n<p, o™ = ZKKpn‘c(m).
(m)

(Such elements ¢, are unique because det((n%))1<n,i<p # 0 mod p.) Sum-
marizing our approach from [8, 10] we obtain:

mm) e M” can be presented in the following form
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Proposition 4.8.

(a) .Z(m) = éﬁ)g(m), where E(m) is a derivation on /jp;
(b) if oy := Spec Fp[U] with UP = 0, is a finite group scheme with
coaddition AU =U ® 1 4+ 1Q U then the correspondence

IARAE AN Ued™ + - +urtedn)o (Z“”)U @id)f

= (Ued™+-+Ur T aa")o ( Y Ute m)n/n!@)id))f

o<n<p

induces a coaction of oy on /Wf;
(©) 5" () = 5y s
(d) if for all a € ZQ(p), V™ := ad 17 (Dyo) then

a

49) o™ —&™ 4+ S v

aEZ?V(p)
= — Z kl t (a1+- -t,-ak)wpa(m)[ .. [Da107 l)a2 0], ... ;Dak 0]
1<k<p
1 _
_ Z jt (a1+ +ak)[. . [Va(%)7 Dag 0]’ o 7Dak 0]
2<k<p
1 _
_ Z Ht (a1+ +ak)[_ - [chm),Dalo], o aDakO]
1<k<p
(the indices ay, . . ak in all above sums run over Z?V(p));

(e) the solutions {aﬁ ), aO | a € Z(p)} of (4.9) are in bijection with
the lifts B™ of K™ to K(p);

(f) suppose égm) = 7N égm)(b)# where all c(m)( ) € ZZ:, then dz’ﬁer-
ent solutions of (4.9) have different cg )(0), i.e. c( )(0) € [,

strict invariants of the lifts Eim)
Proof.

(a). Tt is just a general fact about the structure of unipotent automorphisms
on modules with filtration of length < p;

(b). This is also a sufficiently general interpretation of unipotent additive
action on modules with filtration of length < p (Section 3 of [8] contains
necessary background of the specification of this situation to the Campbell—
Hausdorff composition law.);

(c¢). This follows obviously from (b);
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(d). Note that the relations

(id@h{™me = (aé(m’")) o (Ad” N id) go (=C™™M)
imply that

(idehlV)e = (oC™) o (AdV ISV @id)eo (-,
where O™V = U Egm) -+ urt ( ) . This implies

(U)o ([den(™U)e = (06™U) o (AdV I @ id) mod U?,

and we need just to follow the coefficents for U;

Remark. Relation (4.9) can be unique(ly lifted to ZZ = L mod LT (p)x

by taking suitable unique lifts of élm) (use that o is nilpotent on
M(p — 1)k mod LT (p)x). In other words, we have unique lifts of Egm) to
Lic such that (4.9) is still an equality in EZ. We will use the same notation
&™ for these lifts

1 .

(e). Note, first, the corresponding data {égm),Va%n) | @ € Z%(p)} are in

a bijection with the lifts h(m) of h{™ to K(p), cf. Section 1.6. Therefore,
=(m

we should verify that ¢; ) determines uniquely the whole vector &™), This
follows formally from b) and can be verified as follows (we used a different
approach in [10], cf. Remark in Section 3.5).

Since Eim)U Mo F, U] ® M is the coaction of the group scheme
ap, we have in Fp[U, Us] ® M that

(idp, @ BUMP2) BT = Rl

Then we obtain in E,C(p),

(id @ MU o (AdU [T @ 1) ™ o (AQVHHU2 [T g id) F
_ é(m)U1+U2 ° (AdU1+U2 [E.;m) ® ld)f
implies

( Y Urid® hgm%)c;m)) o ( S AT @ id)cgm)

n=>1

= Z 722—712 (Ul +Us )n1+n2

ni,n2
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For n > 1, the coefficient for U;U% in the RHS equals (n + 1) 7(1+)1 The
corresponding coeffcient in the LHS coincides with the coeffcient in

(tr(id @ hEU)e™) o <(id +U,B™ 2id) 3 Ugcgm)

n=0

and, therefore, equals (B( ™) ® id)éy, m plus F,-linear combination of the
elements of the following form (cf. Remark below)

[ [Gd @d™ ™ fny)el™ &l ., )]

s bng
where ny +---+ns=mn, s >1and n; > 0. As a result, (n+ 1)62”1)1 can be
=(m) =(m)

uniquely recovered from ¢ 7, ..., ¢n

Remark. We used well-known relation,

X+UY=Xo UZ Y, X],...,X] | mod U?
el —
k—1 times

with U = Uy and X =), Ufé%m), cf. references in [9, proof of Proposi-
tion 3.7 in Section 3.5].

(f). Tt follows by induction on mod Ci(fz), i > 1, from relation (4.9). O

4.6. The structure of I‘f. We are going to determine the structure of
the Lie algebra LT. In the above section we indicated the way how to

specify the lifts ELm) = W_l([(m)), 1 < m < N. This can be done by

w w

applying recurrent procedure (4.9) to find the elements é(lm) and Va(gl) =
ad [U(Jm)(Dao) a € Z%(p ) In addition, we should specify the commutators
Lol j] = 19,191¢ 27, 1 <i,j < N.

w W

Remark. From Lemma 4.3 c) it follows that all I,,[i, j] € Co(LT) = L(2).
It would be very interesting to find explicit expressions for the elements
lw[7, j] in terms of the involved parameters A, = A,(w) (recall that E(wP) =

14>, ALtEOer‘). We verified by a direct calculation with relations (4.9) that
for any lifts ij) and Efj ), the corresponding elements [,[i,j] € C4(LE). Tt
would be natural to expect the existence of lifts Eg , 1 <7 < N, which

commute with each other. However, in the moment we do not see how to
simplify the process of calculation of the elements [,[i, j].

The following property could be useful to study the properties of the
elements [,[i, j]. To simplify the notation set for all m, id ® dhc(um) = d(m)
and Ad [‘(,Jm) ®id = ad™,
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Proposition 4.9. Foralll1 <i,j7 < N,
Loli, §] = (d9) — ad@)&?) — (O — ad®)e) + [0, &9 .
Proof. With above assumption we have in ZE[U | for all m,
(id + Ud™)e = (Uoe™) o (id + U ad™)é o (~U&™) mod U2.

Let £ = expeé in the enveloping algebra ‘Xz of ZZ. Then we have the
following congruence modulo (U2, (7 E)p), where 7 7,2 is the augmentation
ideal in @(E,

(id + Ud™)E = (1 + 0&™U) - (id + Uad™)E - (1 — &™U) .

Comparing the coefficients for U we obtain

(4.10) (d™) —ad™)E = Jégm) E-FE- égm) mod (j}é)p
Note that (d®d¥) — dWdD)E = 0 because
dWE = =3 A S (1Y (a1 + -+ ag) M (@FFaEip o
>0 520

In addition, for any 4, j, ad® and d) commute one with another.
Therefore, (4.10) implies

AdL[i, j)(E) = (d — ad” )(d(J — adU)E — (d9) — ad®)(dD — adE
= o(X)E — EX mod (FE,
where X = (d(®) — ad(i))égj) — (dY) — ad(j))égi) + [cg )’ ng)]
Let Xy = X — 1[4, 7], then
(4.11) o(Xy)E = EXy mod (jﬁ)p.
It remains to prove that

Lemma 4.10. A, = 0.

Proof of Lemma 4.10. As earlier, let A" be the enveloping algebra for .

Let 5[7;)(3), s = 1, be the ideal in A" generated by the monomials
Dgainy - Dayn, of weight > s, i.e. such that if s; € N for 1 < ¢ < v,
are such that (s; — 1)&® < a; < s;¢0 then s; + --- + s, > s. For each s,

5[?)(8) N f?) = Z?o(s), in particular, 5[7;) (p)N Z@ =0.
Note that X € Zz and let Ay = X0 4oy Xépil), where each XO(S) is
a K-linear combination of the Lie monomials of weight s,

[. .o [Da1n17Da2n2]a R ‘Daunu] °
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Clearly, X\ € L(s) and if X\* € A%(s + 1) then X = 0. It will be
enough to prove by induction on 1 < s < p that

Xo € Lio(s) + Ao (s + D

If s = 1 then (4.11) implies that o(Xp) = A mod AL o( )i (use that
E =1mod gl?)(l),c) So, O‘.)Cbu) = Xo(l) in ZE, ie. Xo(l) el = ZP( 1) and

Xo € Lao(1) + A% (2)x.
Suppose the above formula for XO is proved forsome 1 <s<p—1.
So, Xy = XO( °) -+ Xo(p Ve £5 (s)+ Qlao(s + 1)k, and (4.11) implies

oxft Xé” D= S 17%Dag, &) mod A (s +2)x
aeZl (p)
Thus (use Proposition 3.1) all [Dgo, Xés)] € 51?0 (s 4+ 2)x and
X e Eh(s+ 1) + AL (s + 2)x
If the weight of Dyy = 1 then [Dao,)(és)] has weight s + 1, therefore,

[Dao, X)) = 0 and X¥ = 0. Similarly, X € Zlo(s + 1).
The lemma is proved. O

Using the notation from item (f) of Proposition 4.8 we obtain:

Corollary 4.11. For1 <i,j <N,
Luli.j] = ad? (@ (0)) — adD (& (0)) + 3 [e} (o).

LeZN
4.7. The structure of I‘f modulo third commutators. Consider the

lift of relation (4.9) to ZZ taken modulo Co(LF)x = Zﬁ)( 2)xk (cf Remark
in the part d) of the proof of Proposition 4.8) where w? =3~ .5 A, (w )t50+pL
with all 4,(w) € k.

412) od™ —d™ 4 S i = 3 A )%™ Dy
aEZO (p) QEZO (»)
>0

Here Va(g") = Ad [E)m)(Dao) and a(™ is the m-th component of a € Z,(p).
Applying to (4.12) the operator R from Section 3.1 we obtain:

(1) VA = adi(™ (Dy) € Co(LE);
(2) for all a € Z};(p),

Vi = ad Il (Do) € Co(LP,).
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Property (2) means that all generators of L(m)73 of the form D, with

a> e and a(™ 7é 0 mod p, can be eliminated frorn the system
{Dan | @ € Z}(p)} U{Dg} U {I{™}

of generators of L( )P . Indeed, because Ag(w) # 0 and al™) =0 mod p, all
D,z belong to the ideal of second commutators

Co(LIWT) = (adIiS™)EL + Ca (L))

arddn =0"D, 0 also belong to 02(LL(:;)P),

and for any n € Z/Ny, all D
(m)P

Property (1) means that Lo, ' has only one relation with respect to any

minimal P-topological set of generators. Therefore, F&m)P
as a P-topological group with one relation.

On the other hand, the Lie algebra Lﬁ i has the system of generators

can be treated

{Dan | a € Z5(p)} U{Dg} U{ISY | 1< m < N}
with the corresponding system of relations

[Dan, 15" = VI, (D, 157 = V™ 19, 19) = 1[i, 4],

n w W

where a € Z{,(p) and 1 < m,i,j < N.

Choose for every a € Z}(p), ma € [1,N] such that a(™e) = 0 mod p.
Then the relations [Dy,, Zim“)] = (m“) ,a € Z1(p), can be used to eliminate

extra generators { Doy, | @ > ¢o} and to present the structure of Lﬁ 5 in terms
of the corresponding minimal system of generators

{Dan | a € Z3,(p), a<cO}U{DO}U{l }

Consider the second central step to obtain explicitly the above relations
modulo C3(Lg, P

Proposition 4.12. For 1 < m < N and a € Z§(p), there are the following
congruences mod Cg(LEk):

m 1 n m
V()() 9 v o" | A, Z ag )[DaLO’DaQ?O] ’

>0 ai1+az=
O<n<N0 O +pe
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= — Z o AL Z agm) [Dal,Ov Da2,*n}

n>1 ai1+az /pn
>0 =& 4pita/p"

— Z Aba(m) DEO—FPH-G,O Z g -n AL Z a,gm) [Dal,g, Da270]

10 n>0 a1taz=
>0 O +prtap™

Proof. From (4.11) we obtain (apply the operator R from Section 3.1)
cg’") = Z a”(AL)tpn(EOWL’“)a(m)Dan mod CQ(LE’]C) .

a,L>6
n=0

Then the right-hand side of (4.9) modulo Cs (Lf ) appears as

_ZAtc +pi—a, (m)Da0_§ Z A, t° Otpr—ai— a2a§ )[DCL107D(120]

ai,az,t
_ Z (& +pt—ar)— azagm)[DahmDaQO]
a1,a2,t
n>1
Applying the operators R and S we obtain our proposition. Il

Corollary 4.13. L” o, mod Cg(LP ) is the mazimal o-invariant quotient
of nilpotent class 2 of a free Lie k- algebm with generators

{Dan | a € ZH(p),a < @n € Z/No} U{D5} U{I"™ | 1 <m < N}
satisfying for 1 < my,me < N and a € Z§(p), the relations:

R(mi,m2) : [[(ml),[LmQ)] =0,

w

7 1
Rﬁ(m) : [D67 lf.zm)] + 5 Z a" A Z agm)[Dal,OvDamo] =0,
>0 a1taz2=
0<n<No & +pe

a(mi,ma) Z o' | A, Z (agml)agmz) - agmz)agm)) [Da1,07 Dazy—n]

nz1 ai+az/p"™
120 = +pita/p"

+3 ZU nla, Y ((m1) (m2) ang)agml)) [Day 0, Dag0] | = 0.

n>0 ai1+az=
>0 O +pirt-ap™
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Remark.

(a) If N =1 then there is only one (Demushkin) relation Rg(1), cf. [8,
10].

(b) T}]le simplest example can be obtained by choosing & = (p, 0, ... ,0),
wP =1 and Ny = 1, cf. Section 5.6.

(c) The structure of I'>" depends only on w, more precisely, only on
wP mod t(pfl)ao, i.e. on the constants A, with ¢ < (p — 2)e°/p.

(d) The structure of I, modulo Cs(I'”), s < p, depends only on the
constants A, with ¢ < (s —2)&"/p.

4.8. The simplest example. N = 2, Ny = 1, & = (p,0), A5 = 1, all
remaining A, = 0.
The minimal generators:

{Da | a € Z(p),a< (p,0)}U{D5}u {1}
The relations:

R(,2): 1M, 1],
(1
Ré(l) = [D67l( )] + Z [D(a»v)’D(pfa,fv)]

1<a<p 1
'y€Z
2
R5(2) = 05,0171+ > 4[Diary Dipa—)]
Oéaé%_l
YEZ
(1
Ra(1a2) : [Dava(z)l( ) - ( a<1 02“ D(P 1,9)» D(p a<2)—pv)]
1 2 2
+a(1)26 a+ ,p" 5)]"’_7 Z(ag)ag)_ag )ag)> [DalvDaz]'
n>1 al1tas=
BEZT (p) (1,0)<2Fa

5. Characteristic 0 case

In this section, K is an N-dimensional local field of characteristic 0. We
assume that the first residue field K of K has characteristic p. The last
residue field k of K is isomorphic to F,n,, No € N. We also fix a system of
local parameters m = {71,...,7n} of K, denote by v! the first valuation
of K such that v!(p) = 1 and by O} the corresponding valuation ring.
Starting Section 5.2 we assume that K contains a primitive p-th root of
unity (.

5.1. The field-of-norms functor. N-dimensional local fields are special
cases of (N — 1)-big fields used by Scholl [28] to construct a higher dimen-
sional analogue of the Fontaine-Wintenberger field-of-norms functor, [33].
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We can apply this construction to the case of higher local fields due to the
fact that the structure of an N-dimensional field is uniquely extended to
its finite field extensions. We don’t use here the construction of the field-of-
norms functor from [6]: it is based on essentially close ideas but works in the
category of higher local fields with additional structure given by “subfields
of constants” (because the whole theory in [6] is based only on the concept
of ramification for higher local fields).

Let K4 be an algebraic closure of K. Denote by the same symbol a
unique extension of the valuation v' to K4 For any 0 < c < 1, let p¢ =
{z € Kyy | v!(z) > c}. If L is a field extension of K in Ky, we use the
simpler notation O} /p¢ instead of O} /(p¢ N O}).

An increasing fields tower K, = (K, )n>0, where Ky = K, is strictly
deeply ramified (SDR) with parameters (ng,c), if for n > ng, we have

[Kni1: K] = p" and there is a surjective map Qél oL (O}7 /pe)N
Fn+1 Fn ol
or, equivalently, the p-th power map induces epimorphic maps

in(K.): Ok, ., /p° — Oj, /p°.

This implies that for all n > ng, the last residue fields K,(ZN) are the same
and there are systems of local parameters {m,1,...,m,n} in K, such that
forall 1 <m < N, 7r£+17m = Tpm mod p¢, where 7, = 7. Equivalently,
on the level of the N-valuation rings Ok, , the p-th power map induces
epimorphic maps

(5]‘) /Ln(K') : OK7L+1/pC — OKn/pC

Let O = lim Ok, /p¢. Then O is an integral domain and we can intro-
duce the field of fractions IC of O. The field-of-norms functor X associates
to the SDR tower K, the field K = X (K,). This field has characteristic p,
it inherits a structure of N-dimensional local field such that the elements
tm = l£nn Tnm, 1 < m < N, form a system of local parameters in K.
Then the N-dimensional valuation ring Ox of K coincides with O, and
for n > ng, the last residue fields of K and K, coincide. Since the iden-
tification Ox = @OKn /p°¢ relates the appropriate power series in given
systems of local parameters the field-of-norms functor is compatible with
P-topological structures on the fields K, and K.

Suppose L is a finite extension of K in K,,. Then the tower L, =
(LKy)n>0 is again SDR and X(L,) = L is a separable extension of K of
degree [LK,, : K], where n > 0. The extension £/K is Galois if and only
if for n > 0, LK,,/K,, is Galois. From the definition of £ and K it follows
that we have a natural identification of groups Gal(L/K) = Gal(LK,,/K,).
As a result, X (Kqy) = ligLX(L.) is a separable closure g of K and
the functor X identifies Gal(Ksep/KC) with Gal(Kyy/K°), where K =

%n Kp.
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Similarly to the classical 1-dimensional situation there is the following
interpretation of the functor X. Let C,(IN) be the v!-adic completion of
Kqgand let Ro(N) = @nw C, (V) with respect to the p-th power maps on
C,(N). The operations on Ry(INV) are defined as follows: if a = {ay, }n>¢ and
b = {bn}n>0 belong to Ry(N) then ab = {anbp}n>0 and a +b = {cy }n>o0,
where ¢, = limy, 00 (Gntm +bnim)? . So, Ro(N) is a field of characteristic
p, there is a natural embedding KCsp C Ro(IN), and Ro(N) appears as the
completion of K, with respect to the first valuation.

We denote by R(N) C Ry(N) the completion of the N-valuation ring of
Ksep, and let mp(y) be the maximal ideal of R(NV). Clearly,

R(N) = lim Oc,(n) = im Ok, /p.
n=0 n=0
Note that the P-topology on K is uniquely extended to Ry(N) and this
extension coincides with the extension of the P-topological structure of I
to Ro(N) (as the completion of the P-topology on Kyep).

5.2. Suppose u € N and ¢1,...,¢, € mg \ {0} are independent modulo
p-th powers, i.e. for any ni,...,n, € Z, the product ¢7* ... ¢l € K*P iff
all n; = 0 mod p. Let K¢ = Unso K(¢1n - - - s Pun), where for 1 < i < u,
¢i = ¢io and for all n € N, ¢ 1 = ¢F.

For n € N, let (,y1 € Ky be such that CﬁH = (. Here (; € K is our
given p-th primitive root of unity. Let K¢ = K¢({¢, |n € N}). Then K?¢/K
is normal and let I'? be its Galois group.

Lemma 5.1. If I’ﬁp is the mazimal quotient of T? of period p and nilpotent
class < p then there is a natural exact sequence of groups

Gal(K?/K?) — T2, — Gal(K(¢11,. .., ¢u1)/K) — 1.

Proof. Clearly, T' JE = (0,71,...,Ty), where for any 1 < i,m < u and
some 50 €Z, oG = (, +p507 0bin = Piny Tm(Cn) = Cns Tm(Pin) = <Z5mﬁgm",

d _ (1+p80) !
and 0770 = 7y,

Therefore, (I'?)? = <O’p 7P, ..., 7F) and for the subgroup of second com-
mutators we have CQ(F¢) C (rf,...,7P) C (I?)P. As a result, it holds
(T9)PC,(T?) = (0P, 77, ...,7P) and the lemma is proved. O

We are going to apply the above lemma to our field K and the set of local
parameters m = {m1,..., 7, }. The lemma provides us with the field exten-
sions K™ D K™ D K. Let T, := ['/TPC,() and Tgr = Gal(Kyy/K™).
The embedding I'g= C I' induces a continuous homomorphism (™ : I'gr —
I'p. Denote by ™ the natural surjection

I'cp, — Gal(K(¥m1,..., ¥7N)/K) = H (T ) 2P

1<m<N
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where 7, (¢/7;) = {'/ﬁ(fim.

Proposition 5.2. The following sequence of profinite groups

Tir 5Ty 5 [ (rn)?? —1
1<m<N

s exact.

Proof. Note that the elements of the group I' ;. = Gal(K 4/ K™) together
with a lift & € I'g= of o generate the group I'x~. Now the exact sequence
from Lemma 5.1 implies that Ker k™ is generated by ¢ and the image of
I'zr C I'kr. As a result, this kernel coincides with the image of 'y in
I'ep. O

Let R(N) be the ring from Section 5.1. Recall, there is a natural em-
bedding £ € R and for 1 < m < N, t,, := @n{ﬂmn}n>o € R(N), where
Tm0 = Ty and W%’n+1 = Tmn-

Following Section 2.3 set t = (t1,...,tn) and K = k((¢)). Then K is a
closed subfield of Ry(N) = Frac R(N) with a system of local parameters t.
The tower KT = {K(71pn, .., TNn) }n>0is SDR and K™ = KT *°. Therefore,
the field-of-norms functor X from Section 5.1 identifies X (K7) with K
and Ro(N) with the completion of KCycp. In particular, there is a natural
inclusion I' — Aut Ro(N) which induces the identification of the groups
G = Gal(Kyep/K) and I'ger.

We are going to apply below the results of the previous sections and will
use the appropriate notation related to our field K, e.g. G, = Gal(K.,/K),
where K., = ICg:pC” (g). The field-of-norms identification G ~ 'k~ com-
posed with the morphism ™ from Proposition 5.2 induces a group homo-
morphism (7, : G<;, — ') and we obtain the following property.

Proposition 5.3. The following sequence of profinite groups is exact
LTF .
g<p ﬁ> F<p L) H <Tm>Z/p — 1.
1<m<N

5.3. Isomorphism k.p. Let ¢ e Zi% be such that p = Wélu, where
_ 1 1
u € OF (as earlier, e = by with & = (], ..., ehy)- .
Set & = pe!/(p—1). Note that & € Zi%, because (1 € K, (1 —1 € 7¢O}
with & € Z; and (p — 1)&* = &".

Consider the auxiliary Lie algebra M, from Section 4.4 and its analogue

MRO(N) - ( Z tisEOZEO <S>mR(N)> ® R(N)/t(pil)éo-

1<s<p
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Clearly, f € ZRO(N) and f®1 € /WRO(N)- (Recall that 7 = wf(é) 1 G~
G(L).)

Consider a vj--continuous embedding 7 of the field K into Ro(N) such
that the image of (idz ® n)é in Mg, () coincides with e ® 1.

Such field embedding satisfies 7|, = id and is uniquely determined by
a choice of the elements n(t,,) € R(N)p, where 1 < m < N, such that

n(tm) = tm, mod t(p_l)EOmR(N).
Proposition 5.4. There is a unique lift 7 of n to K(p) such that
(idzonfel=Fel.
Proof. Let 1) be an extension of 1 to Ksep. Clearly, o((id; ® Nfel) =
(e®1)o((id;®7n)f ®1). So,
(=(fe1)o(idzenfel) e Mpynlo=ia = L.
In other words, there is I € £ such that for ¢ = 71(I), it holds
([denfel=(fol)ol=g(fiel.
As a result, we can take 77 = 7j- g~ !. The uniqueness of 7] is obvious because
any two such lifts differ by an element of G but G acts strictly on f®1. O
Let € = (¢, mod p)p>0 € R C R(N) be Fontaine’s element (here ¢(; € K

is our p-th root of unity and for all n, (£ = (,—1).

Let ¢ =1+ % > 55187, where all [3,] are the Teichmuller represen-
tatives of 3, € k and 5 # 0. Here 7r520K =((1— 10k = pl/ =Dk ie.
pé® = .

Consider the identification of rings R(N) /t‘}1 ~ Ok,,,/p, coming from
the projection R(N) = mrgo(of{alg)" to (Ok,,)o mod p. This implies
o le=1+ PR, B+ mod télR(N) and, therefore,

e=1+Y AT mod tP- VP R(N).
21>0

Assume the morphisms hfum) € Aut K from Section 4.1 are determined
by w such that E(wP) =143, 5 BPte P e, for all 1, A, (w) = BP. As a
result, for any m, 7, (t) = him (t) mod t(pfl)EOmR(N).

Suppose 7 € I' (recall that I' C Aut Rp(/N)). Then for some integers

mi,...,my, we have the following congruence modulo t(pfl)EOmR(N)
T(t) = {tie™, ..., tne™ } = {AI™ (1), .. BN (100}

Let h, = h&l)ml .. h&N)mN € Aut K. Then (use Proposition 4.1)

Tl (t) = h,(t) mod t(p*I)EOmR(N) .
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This means that 1 := 77| - h, : K — Ro(N) satisfies the assumption
of Proposition 5.4 and we can consider the corresponding lift 7 : K(p) —
Ro(N). Let 77 be a lift of 77 to Ksep.

Set hT;: (7‘ . ﬁ)|;¢(p) 3

Then h.|x = (7 -7)|x = hr and by Galois theory h, € I',, C Aut K(p).

As a result, we obtained the map (of sets) x : I' — Iy, uniquely charac-
terized by the property (id; ® 7)f = (id; ® x(7))f .

Proposition 5.5. k induces a group isomorphism k<, : I'cpy = T'y,.

Proof. Suppose 71,7 € . Let C' € Lx and A € Autz be such that (id; ®
k(7)) f = Co (A®idg())f. Then

(id; ® k(TT))f = (id; ® nr)f = (id; @ 7)(id; ® f

= (idz @ ) (idz ® k(7)) f = (idz @ 1)(C o (A® idi(p)) f)

= (1d£®7'1)C’o(.A®T1)f (idz ® K(11))C o (A @ idk(p))
( (7’1))00 (.A@ld]c(p))(idE@fi(Tl))
(ldﬁ & ( ))(éo (Z@ ldIC(p))f

= (id; ® K(11))(dz @ k(7)) f = (id; @ k(11)K(7)) [

and, therefore, x(717) = K(71)k(7) (use that T, acts strictly on the orbit
of f). In particular, x factors through the natural projection I' = I' ., and
defines the group homomorphism r<, : I'c), — T',.

Recall that we have the identification of I'x~ = Gal(Ky,/K™) with
G = Gal(Ksep/K) and, therefore, k), identifies the groups x(I'x~) and
G(L) C T. Besides, <, induces a group isomorphism of the group

(id@m)f

Gal(K (my1,...,mn)/K) = (1)%P x ... x (1,,)%/? and the quotient
<h£}1)>z/p X e X <h£JN)>Z/p of T'y,. Now Proposition 5.3 implies that r<p
is a group isomorphism. ]

5.4. Groups F7<’p. Consider the group isomorphism K<, : I'«c;, = I, from
Section 5.3.

Definition. c1” I',, is the class of conjugated subgroups in I'«,, containing
F7<>p = rk~HTP).
This definition involves a choice of local parameters in K.

Proposition 5.6. The class c1” ', does not depend on a choice of a
system of local parameters in K.

Proof. Let m = {m1,...,an}and 7’ = {n],..., 7y} b§ two systems of local
parameters in K. Let KT = K(m11,...,mn) and KT = K(7]1,...,Tn)s
where (as earlier) for all m, 7 =mm and 7 = 7!.. Denote by K1) the
composite of KT and KT .
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Consider the SDR-towers K™ and K7™, the fields-of-norms K = X (KT)
and K' = X (Kf/) with the corresponding systems of local parameters ¢ =
{ti,...,tn}and ¢/ = {t], ..., ty}.

Then we have the appropriate field extensions

Kc kW cKp) cKepC Ry(N)
K'c k'MW c K'(p) € KL, C Ro(N)
where K1) = X(KWKT), £'0 = X(KWKT), the fields K, and K(p)

were defined earlier, K, and K'(p) are their analogs if K is replaced by K'.
The exact sequence from Section 4.5

1—G—TI, —H,—1,

with Hy, = [[1<m< N(h&,m)) / <h£,m)p ), gives rise to the exact sequence
(5.2) 1—G" — 1, — Gal(kW/K) x H, — 1,
where G M Gal(K(p)/KM). We have a similar sequence for X’
(5.3) 1— G 1, — GV /K x H, — 1,
where H/, is an analog of H,,. The isomorphisms k<, : I', ~ ', and
n’<p : IV, ~T'<,, induce the isomorphisms

Gal(KW/K) ~ Gal(KV /K) x H, ~ Gal(K'M /K) x H!, ,

(5.4) o
Gal(Kp/KM) = g ~ gV

We want to study relation between the P-structures on 5(1) and Q’(l) (in-
duced from G and a ).
Recall, cf. Section 4.4, there is a Lie algebra

M= (Zt_SCOmK£c0 (s)) ® O;c/t(p_l)éo

and its analogue M K(p)> Where K is replaced by K(p). There are e 1 € M
and f®1 € M, such that o(f®1) = (€®1)o(f®1) and the identification
() : G~G(L)isgivenby 7+ (—f® 1) o (Tf®1).

The algebra Vol (as well as the group QP) is defined in terms of the P-
topological structure on M coming from the corresponding structures on
O;C/t(p_l)ao and L. Note that £ is the image of £ and the P-topology on
L is induced from L/Cs(L) = Hom(K,F,). Therefore, the P-structure on
L comes from

L/Cy(L) = Hom(t~ PV my /(0 — id)KC, F,) .
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As a result,
c@le M = <Zt‘scom/c£§)(s)> @ O/t D
S
and 7(e)'G(L7) =G
Similar construction is used to obtain (in the context of K') that

o1 = (Zt/%/om/oﬁ%@)) @7 O 1=V’
S

and 7 (e)1G(LT) =G".

The P-subgroups Gp and g’”’ “live in different worlds“, but the field-of-
norms functor X identifies them with subgroups in I'c,, = Gal(K.,/K).
This procedure can be specified as follows.

Let I'c, = G(L), where L is a suitable Lie Fp-algebra. Introduce

M= ( > (G- 1)_SCS(L)mK> ® Ok/p.

1<s<p

Moy = ( > (G- 1)_SCs(L)mK<p> ® Ok, /p-
1<s<p

The projection pr; : R(N) = @nw(OKalg/p)" — (Ok,,/p)1 estab-
lishes the ring isomorphism R(N)/tpé1 = R(]\f)/t(f"’l)EO ~ Ok, /P, cf.
Section 5.4 (note that Ker pr; is generated by ¢t®=D&").

Consider the induced by pry isomorphism O,/ tP=DE ~ O <,/p- This
gives for each 1 < s < p, the compatible identifications of the Oy, / #p—1)"_
module t_SEomK(p) ®(’),C(p)/t(7’_1)50 with Ok_,/p-module ((; —1)*mg_, ®
Ok_,/p- In addition, the field-of-norms functor identifies the group G with
I'T = Gal(K<,/KT) C T and the Lie algebra £ with the Lie subalgebra
LT C L, where G(LT) = I'T. As a result, we obtain the embedding F, :
Mic(p) = M <p and the induced embedding F' = Fep| 37 : M — M.

Set e = F(e® 1) and f™ = F,(f @ 1). Then o f™ = €™ o f™ and the
map 7 — (—f7) o 7(f™) recovers the identification I'T ~ G or, equivalently,
k™ : LT ~ L. (We used it earlier when constructing the isomorphism ry.)

The identification k™ is compatible with the P-topology.

Indeed, the P-topological structure on LT comes (via tensor topology)
from LT/C2(LT) = Hom(p 'mg /(0 — id)K,F,) and the field-of-norms
identification of p~'my /(0 — id) K with t_(p_l)éomlc/(a —id)KC.

Repeating the above argiments in the context of the system of parameters
7' we obtain the P-continuous identification £™ : LT ~ 7.
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Let ¢V = G(/:'(l)) and ¢V = G(E(l)). Then isomorphism (5.4) ap-
pears as compatible with P-structures isomorphisms L) ~ £1) ~ /(1)
Therefore, the conjugacy classes of (f@’r)_lf(l)P and (/<c7rl)_1£7,(1)73 coincide.

Finally, applying the interpretation from Section 3.6 we obtain from ex-

act sequences (5.2) and (5.3) that the conjugate classes of k<,(I'7) and
K, (I'T7) coincide. O

As a result, F7<3p is provided with the P-topology induced from the sub-

group ?7’ and this topology does not depend on a choice of such subgroup
(i.e. on the choice of local parameters in K).

For any (local N-dimensional) subfield K C K' C K, set H® = HN
F7<Dp, where H = Gal(K<,/K'). As earlier (in the case of local fields of
characteristic p), we easily obtain the following property.

Corollary 5.7.
(a) The profinite completion of H” is H;
(b) (Tep: H) = ([%, : HP) = [K': K;
(c) for all subfields K', the subgroups HF of I‘Ep can be characterized
as all P-open subgroups of finite index in Fﬁp.

5.5. Explicit structure of I‘Ep. Recall that K is an N-dimensional local
field, with the first residue field of characteristic p and the last residue field
k ~F n,. Review the above results about I'<,,.

Suppose m = {m1,...,mn} is a system of local parameters in K and
(1 € K is a primitive p-th root of unity. Then

(= E(Z[ﬁL]WQﬂ),
=0

where E(X) € Z,[X] is the Artin-Hasse exponential, all . € ZM. [3,]

>0’
are the Teichmuller representatives of 8, € k, B # 0. (Recall that =
Tt where & = (c1,...,cn).)

Associate with K the topological F)-algebra L7 as follows.

Consider an N-dimensional local field IC of characteristic p with finite
residue field k£ ~ F ~,. Then we have the topological module k7P =
Homp_cont (IC/ (0 —1id)KC, F,y), which generate the “maximal” F)-Lie algebra
L of nilpotent class < p, i.e. the quotient of a free Lie algebra with the
module of generators ol by the ideal of p-th commutators. (Note that £7
appears as the projective limit of “maximal” Lie algebras £5a (of nilpotent

class < p) generated by the elements of open subsets éf CM)Ift =
{t1,...,tn} is a system of local parameters in K then EL) is provided with
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a natural system of P-topological generators { Dy, | a € Z§(p),n € Z/No}U
{Do}. Recall that

Zx(p) = {a € 215 | ged(a,p) =1}, Z%(p) = Z* (p) U {0} .

Let & = pé® and introduce the weight function wt on L7 by setting
Wt(Dan) = s if (s — 1)e° < a < se°, wt(Dy) = 1. Let L] (p) be the ideal in
LT of elements of weight > p, Ly = L/L(p). Let o be the Frobenius auto-
morphism on k and denote by the same symbol the o-linear automorphism
of Ly such that Dy, — D1, Dy — Dg. (We also set Dg, = 0" (ag)Dyg,
where o is a fixed element from W (k) C K with absolute trace 1.)

Let £ = LT /LF (p)|o=ia with induced P-topological structure.

Introduce the Lie F,-algebra L’ as the maximal algebra of nilpotent class
< p containing £ and the generators {[(m) | 1 < m < N}. Introduce the

ideal of relations Rz in L?C as follows.
Specify recurrent relation (4.9) to our situation:

(5.5) oe™ —a™ 4 3 eyl
an?V(p)

1 —(a1+-+a v
:_Zﬁf Z gt (a1t ’“)J“pag )[...[Dalo,Daz()],...,Dako]

>0 1<k<p

1 —(ai1+-+a m
= X Gt O Ve, Dasol, -, Dayal
2<k<p
L (ai+ta _(m
- et ) [ [0&™) Dayol, - -, Dagol
1<k<p
the indices aq, ..., a; in all above sums run over p)). Recall that ¢; 7 €
he ind 1l ab 79 (p)). Recall that &™)

EE and Vo € Ef. Then the ideal R?g C L?c is generated by the following
elements:

(1) [Dan: 1™ = o™ (VG), a € Z8 (p);

(2) [[(i),Z(J)] — I[i, j], where [[i,j] € L is given in notation of Corol-
lary 4.11

i, 5] = ad® (& (0)) — adD (&) (@) + 3 [&7 (), & (—0)].

LeZN
Let Ly = L, /R}, and L = Ly|o—ia-
Remark. Taking another solutions

& v | ae 78 (p),1 <m< N}

of (5.5) is equivalent to replacing the generators "™ modulo £7.
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Summarizing the above results we state the following theorem.

Theorem 5.8.
(a) TZ, ~ G(LP);

<p =
(b) T'<, is the profinite completion of G(LT).

5.6. Simplest example. The above description of I'c,, essentially uses
the equivalence of the category of p-groups and IF,-Lie algebras (there is
no operation of extension of scalars in the category of p-groups). It could
be also verified that the study of involved p-groups at the level of their
Lie algebras gives much simpler form of the corresponding relations. At the
same time the above presentation of L as the quotient of L° by appropriate

relations is not the simplest one. Some relations, e.g. [Dqp, Z(m)] — Vi with
a > @ can be used to exclude extra generators D, with a > . Ideally,
the whole description should be done in terms of, say, the minimal system
of generators {Dy, | a < &} U {Z(m) | 1 < m < N}. This was done in
Section 4.7 where we presented our description modulo third commutators.

In the case of the last residue field k ~ F, we do not need the operation
of extension of scalars and can express the answer directly in terms of
groups. This will not give any simplifications, but can be easily obtained
when working modulo third commutators.

Namely, if & ~ F, then F7<)p mod Cg(FEp) appears as the group with
‘P-topological generators

(ra la€Z8(p)a<E}UulA™ 1< m< N

and the subgroup of relations generated (as normal subgroup) by following
relations:

o R(i,j) = (E(),E(J)) here 1 <i < j < N;
o Ry(m) = (7, A"V IT T (7 72) s 2.
1=0 b+c7
c +pL
7,a< a(®) O0) r)
* Rai,g) = (T“’h( /A ) [T I (om0 00es

n2l bic/pt=
20 04 pita/pr

XH H (Tb’TC)(bu)c(j)_b(wcu))gb/g;

n}Q bt+c=
=0 &0 +pit+ap™

here 1 <m < N,1<i<j<N,acZ(p).

The above example could be simplified if we take 2-dimensional K =
Qp(¢1){{m2}} with the system of local parameters m = {my,m2}, where
E(m) = (1. In this case & = (p,0), B = 1 and all remaining 3, = 0.
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We have the system of minimal generators
(1) (2
{ra | a € ZE(p),a < (p,0)} U {5} U {B, 5P}
and the following relations:
o R(1,2) = (A, 2?);
— 1 a
« Ro() = (6 h") T Tt 7o)
1y

lgagp%

—(2
e Ry(2) = (1, 2) 1 (T(an) Tp-ar—)”
Y

]_gag%*l

—(1)a®@ —(2)a®) —a®s
* Rao(1,2): (Ta,h( ) /h( ) ) X T[T o—1)s Tpa® —py) 0,a()

5
% H (T(p_g),TH(opng))“(l)ﬁX H (Tb’Tc)(b(l)c(Q)_b(Q)c(l))/Q'

n}l,,B b+c=
(p.0)+a
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