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A B S T R A C T

In statistical inferences, the estimation of population parameters using information obtained from a sample
is an important method. This involves choosing an appropriate sampling method to collect data. An efficient
sampling method used for data collection is Ranked Set Sampling (RSS). In this study, we investigate the
reproducibility of four well-known mean estimators under RSS using parametric predictive bootstrapping.
These estimators are called conventional, ratio, exponential ratio, and regression estimators. Reproducibility
is the ability of a statistical technique to obtain results similar to those based on the original experiment
if the experiment is repeated under the same conditions. We conduct a simulation study to compare the
reproducibility of mean estimators for varying sample sizes when sampling is based on perfect and imperfect
rankings. We consider data on abalone in our simulations to demonstrate real-world applications. This study
concludes that the regression estimator is the best reproducible estimator, while the conventional estimator is
the worst in this regard.
1. Introduction

Estimating the population parameters from sample data is an im-
portant aspect of statistical inferences. This involves selecting a group
of individuals from the population who are believed to represent the
entire population of interest. Sampling allows researchers to efficiently
collect and analyze data from a subset of the population, saving time
and resources while estimating reliable results. Although Simple Ran-
dom Sampling (SRS) is an easy sampling technique that does not
require many assumptions, the estimates based on it sometimes lack
precision. In order to yield more precise estimates, other sampling
strategies, such as Ranked Set Sampling (RSS) are available in the liter-
ature. The RSS was initially presented by [1] and is thought to be more
suitable in situations where assessing the population units are costly but
ranking them is inexpensive. This method improves estimation preci-
sion by reducing sampling error. [2] developed an unbiased estimator
of the population mean using the RSS method. [3] introduced the use
of the concomitant variable to order units of the study variable; for
example, one can use the length of the abalone to rank the data on the
weights of the abalone. Researchers are currently focused on efficiently
estimating the population mean of a study variable under RSS by using
the information of the auxiliary variable in the estimation stage. [4]
proposed the regression estimator of the population mean under RSS,
while [5] proposed the ratio estimator to estimate the population mean
of the study variable using the known population mean of the auxiliary
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variable. The exponential ratio estimator of the population mean under
RSS was proposed by [6]. Many other related studies in this regard can
be seen in [7–12], and [13]. Previous studies have mainly focused on
designing estimators and evaluating them based on relative efficiency
and mean square error. To address the methodological limitations,
we introduce a new measure, called the reproducibility of estimators.
This measure provides a more comprehensive framework for comparing
estimators, improving the theoretical foundation of estimation theory.

In the last decade, statistical reproducibility has received the atten-
tion of researchers. When estimating population parameters, it refers
to the ability to obtain consistently similar estimates when conducting
any statistical method, analysis, or experiment several times using the
same methods. Reproducing previous findings is essential for statistical
methods to enhance evidence. It serves as a primary aspect of scientific
research to ensure the reliability and validity of statistical methods and
their findings. [14] addressed the topic of the reproducibility of a statis-
tical test and discussed the confusion between reproducibility and the
statistical 𝑝-value. [15] emphasized how the 𝑝-value and reproducibility
are different. [16] expresses doubts about drawing meaningful conclu-
sions from a single initial experiment, as the power of the test will be
unknown due to the lack of knowledge of the effective sample size. [17]
estimated reproducibility by comparing the value of a test statistic cal-
culated based on the actual test with the associated critical value. [18]
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suggested three techniques for estimating reproducibility, including the
Bayesian approach. The predictive nature of reproducibility was em-
phasized by [19], who also relates it to the useful sample size. Multiple
definitions of the reproducibility of a statistically significant result were
proposed by [20]. He also assessed various reproducibility estimators
for the Wilcoxon rank sum test and compared their effectiveness. [21]
reproduced approximately 25% significant results in preclinical cancer
trials, highlighting concerns about the reproducibility of the experiment
in this context.

On the other hand, bootstrapping is a statistical technique that
estimates sampling distributions by resampling sample data, unlike
conventional approaches that rely on theoretical assumptions. Though
many bootstrapping methods are available in the literature, a novel
technique for bootstrapping was recently introduced by [22] called
parametric predictive bootstrap (PPB). This technique is primarily de-
signed for predictive inference based on parametric models. The PPB
allows us to make predictions about future observations, assuming
that the underlying distribution has some known parameter(s). This
is related to the concept of reproducibility probability (RP) in the
traditional frequentist statistical framework, estimated by [23]. Con-
sidering the explicitly predictive nature of PPB, reasonable conclusions
regarding RP can be drawn. [22] estimated the RP of some parametric
tests using the PPB approach. He argued that the explicitly predictive
nature of PPB offers an appropriate formulation for the RP inference,
as the nature of RP is explicitly predictive as well. He also compared
the performance of PP-B for RP with the nonparametric predictive
inference bootstrap (NPI-B) method, which also has a predictive nature
but does not assume a parametric model.

In this study, we compare the reproducibility of four well-known
mean estimators called conventional, ratio, exponential ratio, and re-
gression estimators under RSS employing PPB bootstrapping. Follow-
ing [24], the reproducibility of an estimator is defined as the probabil-
ity that, if the RSS sampling is repeated under the same conditions,
the mean estimates based on the future sample will be similar to
the estimate based on the original sample. Through a comprehensive
simulation study, we investigate the reproducibility of these mean
estimators for different sample sizes and ranking criteria. The purpose
of the study is to contribute to the literature on RSS by examining
the reproducibility of mean estimators under RSS using PPB bootstrap-
ping and identifying potential limitations and advantages. The paper
begins with an overview of the RSS method in Section 2. Section 3
reviews the mean estimators that involve auxiliary information, while
Section 4 explains the concept of statistical reproducibility, highlighting
its definition and importance. Section 5 presents the PPB procedure,
while Section 6 provides integration of PPB with mean estimators under
RSS. In Section 7, a simulation study is conducted to analyze the
RP of the mean estimators under RSS. Section 8 presents an applica-
tion of real-world data, while Section 9 summarizes key findings and
conclusions.

2. The ranked set sampling

This method was introduced by [1] and it select a sample in two
phases. In the first phase, random sets of units are examined, while in
the second phase, a sample of usually small size is selected from the
sets of the first phase for estimation. The process of selecting a sample
of size 𝑚 using RSS involves the following steps:

1. Identification and Assignment: Identify 𝑚2 units from the
population and assign these units to independent 𝑚 sets of size
𝑚.

2. Ranking in Each Set: Rank the units within each set. Use visual
judgments on the study variable or the order of a closely related
auxiliary variable for ranking.

3. Selection of Order Statistics: Select the first order statistic from
the first set. The second order statistic is selected from the second
set. Continue this process until the 𝑚th order statistic is selected
from the 𝑚th set.
2 
his allows us to select a sample of size 𝑚. Repetition of this procedure
times yields a final sample of size 𝑛 = 𝑔𝑚. The selected sample can

e represented as
{

𝑌𝑖(𝑖)𝑗
}

such that 𝑖 = 1,… , 𝑚 and 𝑗 = 1,… , 𝑔. An
stimator of the population mean based on this method was developed
y [2] as

1 = �̄�𝑟𝑠𝑠 =
1
𝑔𝑚

𝑔
∑

𝑗=1

𝑚
∑

𝑖=1
𝑌𝑖(𝑖)𝑗 . (1)

where 𝑌𝑖(𝑖)𝑗 shows the 𝑖th order statistics in the 𝑖th set of the 𝑗th RSS
cycle. The estimator 𝑡1 is called conventional mean estimator under RSS
and it is unbiased while its variance is given by

𝑉 𝑎𝑟
(

𝑡1
)

=
𝜎2𝑦
𝑔𝑚

− 1
𝑔𝑚2

𝑚
∑

𝑖=1
𝛥2
𝑦(𝑖), (2)

where
𝜎2𝑦
𝑔𝑚 is equal to the variance of the mean estimator under SRS

sample of the same size 𝑚, whereas the term 𝛥𝑦(𝑖) = 𝜇𝑦(𝑖) − 𝜇𝑦 shows
deviation of the 𝑖th order statistics mean 𝜇𝑦(𝑖) from the overall popu-
lation mean 𝜇𝑦. Eq. (2) shows that the conventional mean estimator 𝑡1
is more precise than the conventional mean estimator under SRS given
that 𝜇𝑦(𝑖) ≠ 𝜇𝑦.

2.1. The perfect and imperfect ranking

If the ranking is determined solely by the characteristics of the study
variable itself, it is known as perfect ranking. This can be done using the
visual assessments of the surveyor. Though this type of ranking is easy
and inexpensive, one can reasonably assume that it is free from error.
This type of ranking is usually used when there is a natural hierarchy
or order among the sampling units. In situations where perfect ranking
is not possible, [3] proposed an alternative way of ranking the units of
the study variable. He ranked units of the study variable using the order
of a closely related auxiliary variable, assuming that information is
available or can be easily obtained on the auxiliary variable. He termed
this imperfect ranking, and some researchers referred to this ranking
with errors, since it is possible to place a larger unit before any smaller
unit when units are observed. This is expected when the association
between the study variable and the concomitant variable is low. This
type of error generally reduces the efficiency of estimates. In our study,
we consider both types of ranking for estimating the population mean
while comparing the reproducibility of mean estimators under RSS.

3. Mean estimators involving the auxiliary variable

The auxiliary variables play an important role in the estimation
of parameters for the study variables. Information on auxiliary vari-
ables can be used to design more efficient estimators of population
parameters. In this section, we review three commonly discussed mean
estimators in RSS that involve known information on the population
mean of the auxiliary variable. The expressions for bias and MSE of
these estimators are also provided, for which the following notation
and symbols are used:

𝑉𝑦 =
(𝑁 − 𝑛

𝑛

)

𝐶2
𝑦 − 1

𝑔𝑚2𝜇2
𝑦

𝑚
∑

𝑖=1
𝛥2
𝑦(𝑖),

𝑥 =
(𝑁 − 𝑛

𝑛

)

𝐶2
𝑥 − 1

𝑔𝑚2𝜇2
𝑥

𝑚
∑

𝑖=1
𝛥2
𝑥(𝑖),

and

𝑉𝑦𝑥 =
(𝑁 − 𝑛

𝑛

)

𝜌𝐶𝑦𝐶𝑥 −
1

𝑔𝑚2𝜇𝑦𝜇𝑥

𝑚
∑

𝑖=1
𝛥𝑦(𝑖)𝛥𝑥(𝑖),

where 𝑁 and 𝑛 show the population and sample size, respectively. 𝜌
is the correlation coefficient, while 𝐶𝑦 and 𝐶𝑥 show the coefficient of
variation for the study variable and the auxiliary variable, respectively.
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3.1. The regression estimator

The regression estimator under RSS was proposed by [4]. This
estimator combines the information provided by the difference between
the population mean and sample mean of the auxiliary variable along
with the covariance between the study variable and the auxiliary vari-
able, leading to a more precise and unbiased estimate of the population
mean of the study variable. The regression estimator is given by

𝑡2 = �̄�𝑟𝑠𝑠 + 𝛽
(

𝜇𝑥 − �̄�𝑟𝑠𝑠
)

, (3)

where 𝛽 = 𝜎𝑦𝑥
𝜎2𝑥

is population regression coefficient which can be
stimated by 𝛽 = 𝑠𝑦𝑥

𝑠2𝑥
using the sample information. 𝜇𝑥 shows known

opulation mean of the study variable, whereas �̄�𝑟𝑠𝑠 is the mean of
he sample of the auxiliary variable under RSS computed as �̄�𝑟𝑠𝑠 =
1
𝑔𝑚

∑𝑔
𝑗=1

∑𝑚
𝑖=1 𝑋𝑖(𝑖)𝑗 . The MSE of regression estimator is given by

𝑀𝑆𝐸
(

𝑡2
)

= 𝜇2
𝑦𝑉𝑦

(

1 −
𝑉𝑦𝑥
𝑉 2
𝑥

)

. (4)

3.2. The ratio estimator

The ratio estimator under RSS was proposed by [5]. This estimator
utilizes the information obtained from the ratio of the known popu-
lation mean to the sample mean of the auxiliary variable. In order
to develop a more precise estimator, this approach aims to capitalize
on the proportionality between the auxiliary and study variables to
increase the precision of mean estimates for the study variable. The
ratio estimator is given by

𝑡3 = �̄�𝑟𝑠𝑠

(

𝜇𝑥
�̄�𝑟𝑠𝑠

)

(5)

The bias and MSE of the ratio estimator are given by

𝐵𝑖𝑎𝑠
(

𝑡3
)

= 𝜇𝑦
(

𝑉𝑥 − 𝑉𝑦𝑥
)

(6)

and

𝑀𝑆𝐸
(

𝑡3
)

= 𝜇2
𝑦
(

𝑉𝑦 + 𝑉𝑥 − 2𝑉𝑦𝑥
)

(7)

3.3. The exponential ratio estimator

The exponential ratio estimator under RSS was proposed by [6].
This estimator utilizes the information obtained from the exponential
ratio of the known population mean to the sample mean of the auxiliary
variable. To develop a more efficient estimate of the population mean
for the study variable, this approach capitalizes on the exponential
relationship. This method is preferred when the data under study have
potentially extreme values. The exponential ratio estimator is given by

𝑡4 = �̄�𝑟𝑠𝑠 exp
(

𝜇𝑥 − �̄�𝑟𝑠𝑠
𝜇𝑥 + �̄�𝑟𝑠𝑠

)

(8)

he bias and MSE of the exponential ratio estimator are given by

𝑖𝑎𝑠
(

𝑡4
)

= 𝜇𝑦
( 3
8
𝑉𝑥 −

1
2
𝑉𝑦𝑥

)

(9)

and

𝑀𝑆𝐸
(

𝑡4
)

= 𝜇2
𝑦

(

𝑉𝑦 +
1
4
𝑉𝑥 + 𝑉𝑦𝑥

)

(10)

. Statistical reproducibility

Reproducibility refers to the ability of any scientific study or
ethodology to produce findings and conclusions similar to those of
revious studies or experiments. It is considered an important property
f any research and has recently received a great deal of attention
rom researchers. An overview of recent studies on statistical repro-

ucibility can be studied in [25], while a description of many aspects

3 
f reproducibility was provided by [26]. Interestingly, little attention
as been paid to the reproducibility of the outcomes of any statistical
echnique or method, or, generally speaking, the reproducibility of
tatistical inferences, which are frequently an integral component of in-
estigations. Statistical reproducibility can be defined straightforwardly
s if an experiment were repeated under identical conditions, would
t lead to the same findings of the statistical analysis as the findings
ased on the data from the original experiment? Initially, the repro-
ucibility of statistical inferences was studied by [14], who highlighted
widespread misconception about the 𝑝-value in hypothesis testing,

pecifically that a smaller 𝑝-value would indicate strong reproducibility.
oodman referred to this as replicability. [15] endorses the concept
f Goodman that the 𝑝-value and the reproducibility probability are
ifferent measures and that inconsistency can be expected between
he test results of individual studies. However, he highlighted the
ignificance of the 𝑝-value and its relationship with the reproducibility
robability. [27] provide a summary of studies proposing a statistical
eproducibility measure. [20] introduced an interesting idea, utilizing
stimated power as a measure of reproducibility in the event that the
ull hypothesis is rejected. [28,29] used this method on a number of
asic statistical tests. [27] proposed a novel approach to quantifying
tatistical reproducibility, viewing it as a predictive inference problem,
ith the aim of determining whether future experiments would yield

he same results. [30] proposed a Bayesian predictive approach to
ddress reproducibility as a problem in predictive inference.

. The parametric predictive bootstrapping

[22] recently proposed a novel bootstrapping technique designed
rimarily for predictive inference based on parametric models. This
ethod predicts future values based on the assumption that they come

rom data with specific parameters. The method begins by generating a
uture observation from an assumed distribution with estimated param-
ters based on data of sized 𝑚. The data is updated by adding this future
bservation, increasing its size to 𝑚 + 1. Another future observation
s drawn from the assumed distribution with updated estimates of
he parameters. In total, this process is repeated 𝑚 times to draw 𝑚

future observations, such that the drawing of every new observation is
based on the estimated parameters of the updated data. The generated
future observations makes a PPB sample of size 𝑚 observations, which
works well as a method for predictive inference. The steps involved in
the formation of a PPB sample from any original data of size 𝑚 are
described below.

1. Consider a random sample
{

𝑦1,...,𝑦𝑚
}

, and estimated parameter
𝜃.

2. Using the maximum likelihood estimation (MLE) or any other
estimation method, estimate the parameter 𝜃 of the assumed
distribution by �̂�.

3. Randomly draw a future observation 𝑦∗1 from the fitted distribu-
tion 𝐹

(

𝑦; �̂�
)

.
4. Update the data by adding 𝑦∗1 so that

{

𝑦1,...,𝑦𝑚, 𝑦∗1
}

, the sample
size increases to 𝑚 + 1.

5. Considering updated data, repeat steps 2–4 and draw another fu-
ture observation, 𝑦∗2, update the data by adding this observation.

6. In total, steps 2–4 are repeated 𝑚 times to obtain 𝑚 future
observations

{

𝑦∗1,...,𝑦
∗
𝑚
}

. This is called PPB sample of size 𝑚.

This method of drawing future observations leads to greater varia-
tion in the PPB sample compared to other bootstrapping methods,
like those proposed by [31]. This method is similar to nonparametric
predictive inference bootstrapping (NPI-B), except for the fact that the
PPB method assumes that the data comes from a known distribution
with known parameters, while the NPI-B method does not consider
any parametric assumptions for generating future observations. PP-B

bootstrapping samples are not restricted to observed values, unlike
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Efron’s bootstrapping, which restricts future observations to already
observed values. [22] presented the PPB method for the reproducibility
probability (RP) of some parametric tests. He argued that the test repro-
ducibility is naturally predictive inference problem, which is consistent
with the PP-B method. The explicitly predictive nature of PP-B provides
an appropriate formulation for inferring RP, as the nature of RP is
explicitly predictive as well. They compared the performance of PPB
for RP with the NPI-B method, which also has a predictive nature but
does not assume a parametric mode.

6. Reproducibility of mean estimators under RSS

In this section, a mathematical framework for comparing the re-
producibility of mean estimators under RSS in the context of the PPB
method is presented. Following [22], 𝑅𝑃 (𝜀) is the probability that
mean estimates computed from reproduced samples will fall within the
range of 𝜀 deviation from the mean estimates based on the original
sample, given that the sampling procedure is repeated under the same
conditions.

Consider any set of observed values in the setup of RSS method,
where 𝑚 original observations 𝑦𝑖; 𝑖 = 1,… , 𝑛 are independently and
identically distributed. We assume that the distribution 𝐹 (𝑦; 𝜃) of 𝑦𝑖 is
known with parameter 𝜃. Using the steps discussed in Section 5, obtain
a PPB sample of 𝑚 future values and replace it with the original set.
This procedure is repeated for all 𝑚 sets to finally obtain the setup of
PPB-RSS. A reproduced sample of PPB is obtained from the setup of
PPB-RSS, and the future sample mean is estimated using the discussed
mean estimators. Using a similar procedure, we also estimate the future
sample mean for the auxiliary variable. In total, we produce 𝑀 future
samples using PPB, and estimate the mean of the study variable and the
auxiliary variable from them. We also compute the mean of the original
RSS sample.

Let 𝑡𝑂 be the mean estimate of the original sample, whereas 𝑡𝐵
shows mean estimates based on reproduced samples using PPB. Then
the Absolute Average Deviation (AAD) and Mean Square Deviation
(MSD) between the estimates are computed as

𝐴𝐴𝐷 = 1
𝑀

𝑀
∑

𝑖=1

|

|

|

𝑡𝑂 − 𝑡𝐵𝑖
|

|

|

(11)

and

𝑀𝑆𝐷 = 1
𝑀

𝑀
∑

𝑖=1

(

𝑡𝑂 − 𝑡𝐵𝑖

)2
. (12)

To obtain numerous values of AAD and MSD, this entire process is
iterated a large number of times (say, 𝐷). Let 𝜀 be any real valued
positive quantity, then 𝑅𝑃1(𝜀) is the reproducibility probability that
𝐴𝐴𝐷 is equal to or less than 𝜀. Similarly, 𝑅𝑃2(𝜀) is the reproducibility
probability that 𝑀𝑆𝐷 is equal to or less than 𝜀. These probabilities are
mathematically computed as

𝑅𝑃1 (𝜀) = Pr (𝐴𝐴𝐷 ⩽ 𝜀) (13)

and

𝑅𝑃2 (𝜀) = Pr (𝑀𝑆𝐷 ⩽ 𝜀) . (14)

It is worth note that 𝑀 represents the initial layer of simulation for
generating future samples to compute values of 𝐴𝐴𝐷 and 𝑀𝑆𝐷, while

shows the subsequent layer of simulation for repeating the entire
rocess to calculate 𝑅𝑃1 (𝜀) and 𝑅𝑃2 (𝜀) values. When the 𝑅𝑃1 (𝜀) and

𝑅𝑃2 (𝜀) are plotted against a range of 𝜀 values, it provides a visual
summary to compare the reproducibility of different mean estimators.
We call this 𝜀-reproducibility in terms of 𝐴𝐴𝐷 and 𝑀𝑆𝐷 for mean
estimators, where the quantity 𝜀 should be in a closed interval [0,+∞].

The algorithm 1 given below summarizes the steps involved in
computing the 𝜀-reproducibility of mean estimators under RSS using

the PPB approach. e

4 
Algorithm 1 Computing the 𝜀-reproducibility of mean estimators using
PPB approach
Data: The original RSS sample of size 𝑚.
Result: 𝑅𝑃

(

𝜀1
)

, 𝑅𝑃
(

𝜀2
)

Draw a bivariate original sample using procedures of RSS. Calculate
original mean using mean estimators
for each method of RSS do

Apply PPB to generate bootstrapped sets in RSS samples
Replace bootstrapped set with original sets in RSS sample
Draw PPB-RSS samples from bootstrapped data
Compute sample mean using mean estimators based on PPB-RSS
samples.

end
for 𝑖 ← 1 to 𝑀 do

Reiterate Steps 1-8 and compute AAD and MSD using Equation (11)
and (12), respectively.

end
for 𝑗 ← 1 to 𝐷 do

Reiterate Steps 1-11 and compute 𝑅𝑃1 (𝜀) and 𝑅𝑃2 (𝜀) using
Equation (13) and (14), respectively.

nd

7. Simulations

This section presents the simulation procedure and its results for
comparing the 𝜀-reproducibility of mean estimators under RSS using
the PPB approach. Using R software, algorithm 1 is used to compute
the 𝜀-reproducibility, such that, we first generate the population values
or the concomitant variable (say, 𝑋𝑖). We also generate values for the
tandardized normal population 𝑍𝑖, which aids us in establishing the
orrelation between the study variable 𝑌 and the auxiliary variable
. The values of the study variables are generated using the rela-

ionship 𝑌𝑖 = 𝜌𝑋𝑖 + 𝑍𝑖
√

1 − 𝜌2, where 𝜌 is the correlation coefficient
between 𝑌 and 𝑋 and its value is fixed as 0.90 in order to establish
a strong association between 𝑌 and 𝑋. We compare 𝜀-reproducibility
considering two populations, that is, (1) normal population and (2)
exponential population. We also compare 𝜀-reproducibility, assuming
perfect ranking and imperfect ranking. The 𝜀-reproducibility is also
compared for various set sizes, i.e., 𝑚 = 3, 5, 7. In Eqs. (11) and (12),
we use 𝑀 = 1000 to compute 𝐴𝐴𝐷 and 𝑀𝑆𝐷. This whole process
s repeated 𝐷 = 1000 times to compute the respective reproducibility
robabilities 𝑅𝑃1 (𝜀) and 𝑅𝑃2 (𝜀). We use different colors on plots to
how the 𝜀−reproducibility of different mean estimators. Lines in red,
lack, green, and blue indicate the respective 𝜀−reproducibility for
onventional, regression, ratio, and exponential ratio estimators based
n RSS. The 𝑥−axis shows the magnitude of the 𝜀 value, while the
−axis shows the probability of observing it. Results are given below.

Simulation results given in Figs. 1–8 show that the 𝜀−reproducibility
f the regression estimator increases earlier than the 𝜀−reproducibility
f any other mean estimator, indicating that regression is the highest re-
roducible estimator. Similarly, the conventional mean estimator shows
he lowest 𝜀-reproducibility as compared to other mean estimators.
he 𝜀-reproducibility of the ratio and exponential ratio estimators is
uite similar and intermediate between the conventional and regression
stimators. The 𝜀-reproducibility of the exponential ratio estimator is
igher in the case of an exponentially distributed population as com-
ared to a normally distributed population. The plots also show that the
-reproducibility of mean estimators is higher for larger sample sizes
s compared to small sample sizes. Additionally, the 𝜀-reproducibility
s higher in the case of perfect ranking as compared to the case of
mperfect ranking. Generally, the 𝜀-reproducibility of the regression
stimator is higher than other mean estimators, while the conventional

stimator exhibits the lowest 𝜀−reproducibility in all cases.
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Fig. 1. 𝑅𝑃1(𝜀) of estimates for different sample size in case of normal distribution under perfect ranking. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. 𝑅𝑃1(𝜀) of estimates for different sample size in case of normal distribution under imperfect ranking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. 𝑅𝑃2(𝜀) of estimates for different sample size in case of normal distribution under perfect ranking. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4. 𝑅𝑃2(𝜀) of estimates for different sample size in case of normal distribution under imperfect ranking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. 𝑅𝑃1(𝜀) of estimates for different sample size in case of exponential distribution under perfect ranking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. 𝑅𝑃1(𝜀) of estimates for different sample size in case of exponential distribution under imperfect ranking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Franklin Open 8 (2024) 100139 

6 



S.A. Rehman et al. Franklin Open 8 (2024) 100139 
Fig. 7. 𝑅𝑃2(𝜀) of estimates for different sample size in case of exponential distribution under perfect ranking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 8. 𝑅𝑃2(𝜀) of estimates for different sample size in case of exponential distribution under imperfect ranking. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 9. 𝑅𝑃1(𝜀) of estimates under for different sample sizes under perfect ranking in case of real data.
8. Application to real-life data

In this section, we consider the dataset pertaining to the measure-
ments of the physical characteristics of abalone, as initially collected
by [32]. The study variable 𝑌 and the auxiliary variable 𝑋 are taken
as

𝑌 = The whole weight of abalone (in grams)
𝑋 = The length of abalone (in mm), its the longest shell measure-

ment.
7 
We collect the original samples from this data and estimate the
mean using the formulas of the four estimators discussed above. The
remaining simulation procedure is the same as discussed in Algorithm
1, and the simulation results are presented in the graphs 9–12 given
below.

9. Conclusions

Estimation of population parameters based on sample data is an
important technique of statistical inference. Ranked set sampling (RSS)
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Fig. 10. 𝑅𝑃1(𝜀) of estimates under for different sample sizes under imperfect ranking in case of real data.
Fig. 11. 𝑅𝑃2(𝜀) of estimates under for different sample sizes under perfect ranking in case of real data.
Fig. 12. 𝑅𝑃2(𝜀) of estimates under for different sample sizes under imperfect ranking in case of real data.
is an efficient sampling method for collecting sample data. In this
study, we investigated the reproducibility of four well-known mean
estimators, called conventional, ratio, exponential ratio, and regression
estimators under RSS, employing parametric predictive bootstrapping.
Through simulation studies, we evaluated the reproducibility of these
estimators for varying sample sizes in both perfect and imperfect
ranking situations. Data on abalone was considered to provide real-life
applications for this study. The findings indicated that the regression is
the most reproducible estimator, whereas the conventional estimator is
the least reproducible estimator.

Our methodology presented in this paper for computing and com-
paring the reproducibility of mean estimators can be extended to
8 
investigate and compare the reproducibility of other mean estimators
in the existing literature. Additionally, our presented method can serve
as a measure for evaluating newly proposed estimators and compar-
ing them with other existing estimators. Moreover, this study can be
expanded to examine and compare the reproducibility of estimators
for variance and other parameters, providing valuable insights into
statistical estimation.
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