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Abstract

Random Walks in Cooling Random Environments (RWCRE) is a model of random
walks in dynamic random environments where the environment is frozen between
a fixed sequence of times (called the cooling map) where it is resampled. Naturally
the limiting distributions for this model depend both on the structure of the cooling
sequence and on distribution µ from which the environments are sampled. Previous
results have considered the cases where µ is such that the corresponding model of
random walks in a fixed random environment (RWRE) is either (1) recurrent, (2) has a
Gaussian limit with diffusive scaling (the κ > 2 case), or (3) has positive speed and a
stable, non-Gaussian limit (the κ ∈ (1, 2) case).

In this paper we examine the limiting distributions in two other transient regimes:
the sub-ballistic, non-stable regime (i.e., κ ∈ (0, 1)), and the Gaussian regime with non-
diffusive scaling (i.e., κ = 2). In the first case we show that the limiting distributions
are either Gaussian or a mixture of Gaussian and independent sums of Mittag-Leffler
random variables, while in the second case the limiting distributions are always
Gaussian but with a scaling that differs from the standard deviation by factor (which
can oscillate, but which remains confined to some interval [β, 1]) that depends very
delicately on the properties of the cooling map.
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1 Introduction

Random walks in cooling random environments (RWCRE) are a model of random
walks in dynamic random environments introduced by Avena and den Hollander in [6].
This is a model for random motion in an inhomogeneous environment which experiences
“shocks” at certain prescribed times when the entire environment is resampled. By
adjusting the sequence of times when the environment is resampled, the RWCRE model
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interpolates between that of random walk in a random environment (RWRE) where the
environment is “frozen” and never resampled and that of a simple random walk.1 The
adjective “cooling” was attached to the model because if the gaps between successive
resamplings of the environment increases without bound then the environment is be-
coming more and more “frozen” as time goes on, and in this case we might expect the
walk to retain some of the strange asymptotic behaviors of a RWRE.

Naturally, the behavior of a RWCRE depends on both the distribution µ that the
environments are sampled from and the sequence of times τ = {τ(n)}n≥1 (called the
cooling map) at which the environment is resampled. Previous results [4, 5] have shown
that not only can one retain some of the characteristics of a RWRE by choosing a
rapidly growing cooling sequence, but that the model of RWCRE can exhibit new limiting
distributions (such as tempered stable distributions or sums of independent copies of
Kesten-Sinai random variables) which do not occur in either the RWRE model or simple
random walks.

The study of limiting distributions of RWCRE has been divided according to the type
of the limiting distribution for the RWRE model with distribution µ on environments. The
case where the corresponding RWRE model is recurrent was studied in [6] and [4]. The
limiting distributions for transient RWRE are characterized by a parameter κ > 0 which
depends on the distribution µ on environments [20]. The limiting distributions for the
cases κ > 2 (the diffusive, Gaussian regime) and κ ∈ (1, 2) (the ballistic, stable regime)
were studied in [4] and [5], respectively. In the present paper, we give the limiting
distributions for RWCRE in the cases κ ∈ (0, 1) (the sub-ballistic, non-stable regime) and
κ = 2 (the Gaussian, super-diffusive regime). The only remaining case (κ = 1) is left
for a future work. Our main result in the case κ ∈ (0, 1) gives examples of new limiting
distributions (sums of independent Mittag-Leffler distributions), while our results in the
case κ = 2 show that the limiting distribution is always Gaussian but with a non-trivial
scaling factor that depends very delicately on the specifics of the cooling map.

In the remainder of the introduction we will briefly recall the model of one-dimensional
RWRE as well as some of the relevant results that we will use. Then we will introduce
the model of RWCRE and state our main results on the limiting distributions in the cases
κ ∈ (0, 1) and κ = 2. In the process of proving the limiting distributions for the RWCRE
we also obtain some new results for RWRE which may be of independent interest. We
state some of these new RWRE results in the introduction as well.

1.1 RWRE

Here we will give a brief overview of the model of one-dimensional RWRE. The
interested reader can see the lecture notes of Zeitouni [26] or the various references
below for more details.

Throughout the paper we use the notation N0 := N ∪ {0} for the set of non-negative
integers. The classical one-dimensional (static) RWRE model is defined as follows. Let
ω = (ω(x), x ∈ Z) ∈ [0, 1]Z be a one dimensional environment. The random walk in
environment ω starting from z ∈ Z is the probability law Pωz on the space of trajectories
ZN0 which corresponds to the Markov chain Z = (Zn)n∈N0

on Z with initial condition z
and transition probabilities

Pωz (Zn+1 = x+ e | Zn = x) =

{
ω(x) if e = 1,

1− ω(x) if e = −1,
n ∈ N0.

Let G be the sigma algebra on the space of trajectories ZN0 . By the monotone class
theorem, one can verify the measurability of the map ω 7→ Pωz (G) for any G ∈ G and

1if the environment is resampled on each step, then it is easy to see that the annealed distribution of the
RWCRE is the same as that of a simple random walk.
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z ∈ Z. Thus, for any probability measure µ on the space [0, 1]Z of environments we
can define the probability measure Pµx on ZN0 as the semi-direct product Pµx (·) :=

µ n Pωz (·) =
∫
Pωz (·)µ(dω). The stochastic process Z = (Zn)n∈N0

is called a RWRE and
the distributions Pωx (·) and Pµx (·) are referred to as the quenched and annealed laws of
the RWRE, respectively.

A standard assumption on the distribution µ on environments, which we will also
make here, is that the environments are i.i.d. That is,

µ = αZ, (1.1)

for some probability distribution α on [0, 1]. We write 〈·〉 to denote the expectation w.r.t.
α. A crucial quantity to characterize the asymptotic properties of RWRE is the ratio of
the transition probabilities to the left and to the right at the origin ρ0 = 1−ω0

ω0
. For the

remainder of the paper, we assume that

〈log ρ0〉 < 0, (1.2)

which, as shown by Solomon [23], guarantees right transience for the RWRE; that
is, Pµ0 (limn→∞ Zn = ∞) = 1. In addition to (1.1) and (1.2), we will also assume the
conditions on the distribution µ given by the following definition.

Definition 1.1 (κ-regular measures). We say that a measure µ on environments is
κ-regular for some κ > 0 if it satisfies (1.1), (1.2), the distribution of log ρ0 is non-lattice,

〈ρκ0 〉 = 1, (1.3)

and 〈ρκ+ε
0 〉 <∞ for some ε > 0.

Remark 1.2. Since the moment generating function M(t) = 〈et log ρ0〉 = 〈ρt0〉 is convex,
if (1.2) holds then under mild additional assumptions then there is a (unique) κ > 0

such that (1.3) holds. The additional technical condition 〈ρκ+ε
0 〉 < ∞ can be seen as a

sort of mild ellipticity condition. For some results that we will use, such as the limiting
distributions from [20], a weaker ellipticity condition 〈ρκ0 (log ρ0)+〉 < ∞ is sufficient.
However, the stronger ellipticity condition 〈ρκ+ε

0 〉 <∞ is needed for the precise large
deviation results from [9] that will be instrumental in our analysis (see (1.8) below).

The parameter κ given by (1.3) characterizes a number of aspects of the asymptotic
behavior of the RWRE. For instance, since the convexity of t 7→ 〈ρt0〉 implies that κ > 1 if
and only if 〈ρ0〉 < 1, Solomon’s LLN for RWRE in [23] can be written as

lim
n

Zn
n

= v =

{
0 if κ ≤ 1
1−〈ρ0〉
1+〈ρ0〉 if κ > 1,

Pµ0 -a.s. (1.4)

That is, the RWRE is sub-ballistic (v = 0) if κ ∈ (0, 1] and ballistic (v > 0) if κ >

1. The parameter κ also appears in many other results for one-dimensional RWRE,
including the characterization of the limiting distributions for transient RWRE [20]
and identifying the correct sub-exponential rate of decay for certain large deviation
probabilities [11, 15, 14, 1, 9]. In this paper we will be concerned only with the cases
when κ ∈ (0, 1) and κ = 2, so next we will recall some of the limiting distribution and
large deviation results that are known for these cases.

1.1.1 The sub-ballistic, non-stable case: κ ∈ (0, 1)

The following theorem states the limiting distribution proved in [20] for RWRE in the
regime κ ∈ (0, 1). We refer to this as the sub-ballistic, non-stable regime because the
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walk has limiting speed v = 0 by (1.4) and the limiting distribution is non-stable – in
contrast to the case κ = 1 where the walk is sub-ballistic and the limiting distribution is
a 1-stable distribution. We note that here and throughout the paper we will use =⇒ to
denote convergence in distribution.

Theorem 1.3 ([20]). Let (Zn)n∈N0
be a RWRE with distribution µ on environments that

is κ-regular with κ ∈ (0, 1). There is a constant b > 0 such that under the annealed law

Zn
nκ

=⇒
n→∞

Mκ, (1.5)

where Mκ is a non-negative random variable with Laplace transform

E[e−λMκ ] =

∞∑
n=0

(−bλ)n

Γ(1 + κn)
, λ > 0. (1.6)

The characterization of the limiting distribution Mκ in (1.6) is quite different from
what is given in [20]. Indeed, in [20] the limiting distribution is of the form (S)−κ where
S is a κ-stable which has Laplace transform E[e−λS ] = e−cλ

κ

for some c > 0. However, as
can be seen from [13][Section XIII.8] these two characterizations are equivalent. Since
the Laplace transform in (1.6) can be written as Eκ(−bλ) where Eκ(z) =

∑∞
n=0

zn

Γ(1+κn) is
the Mittag-Leffler function with parameter κ, we say that Mκ is a Mittag-Leffler random
variable.

Remark 1.4. There is another family of non-negative random variables which also bear
the name “Mittag-Leffler.” These are non-negative random variables Yκ with cumulative
distribution functions given by P (Yκ ≤ x) = 1 − Eκ(−xκ), for x ≥ 0, and have Laplace
transform E[e−λYκ ] = 1

1+λκ . To distinguish these two families, the random variables Yκ
are said to have Mittag-Leffler distribution of the first kind, whereas Mκ are said to have
Mittag-Leffler distribution of the second kind. Since we will only be concerned with the
Mittag-Leffler distributions of the second kind in this paper, we will omit the descriptor
“of the second kind” when referring to Mκ for the remainder of the paper.

1.1.2 The Gaussian, non-diffusive case: κ = 2

The limiting distribution results in [20] show that RWRE with κ-regular distributions
µ have Gaussian limiting distributions only when the parameter κ ≥ 2. However, the
limiting distribution has diffusive

√
n scaling only when κ > 2 whereas the case κ = 2 has

non-diffusive scaling
√
n log n. The following theorem collects this limiting distribution

result and some large deviation results that we will use in the remainder of the paper.

Theorem 1.5. Let (Zn)n∈N0 be a RWRE with distribution µ on environments that is
κ-regular with κ = 2. Then, the following results hold.

Limiting distribution [20] There is a constant b > 0 such that under the annealed law

Zn − nv
b
√
n log n

=⇒
n→∞

Φ, (1.7)

where Φ is a standard Gaussian random variable.

Large deviations [10] The sequence of random variables {Zn/n}n≥1 satisfies a large
deviation principle with speed n and good, convex rate function Iµ(x) with the
property that Iµ(x) > 0 ⇐⇒ x /∈ [0, v]. In particular, for any ε > 0 there is a
constant Cε > 0 such that

Pµ0 (Zn − nv > εn) ≤ e−Cεn and Pµ0 (Zn < −εn) ≤ e−Cεn,

for all n large enough.
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Moderate and large deviation slowdowns [9] There is a constant K0 > 0 such that

lim
n→∞

sup√
n log3 n≤x≤nv−logn

∣∣∣∣Pµ0 (Zn − nv < −x)

(nv − x)x−2
−K0

∣∣∣∣ = 0. (1.8)

1.2 RWCRE

In recent years there has been an interest in studying random walks in dynamical
random environments; that is, environments which change over time. A number of
results have been able to prove central limit theorems (Gaussian limiting distributions
under diffusive scaling) by assuming either that the environment has fast enough time
dynamics, see for example [3, 7, 8], or by working in a perturbative regime of certain
model parameters where one can prove that the walk moves fast enough to essentially
escape the space time correlations of the environment, see for example [16, 17, 18]. In
contrast, the model of random walks in cooling random environments first introduced in
[6] gives a model of a dynamic environment where the time dynamics of the environment
can be made slow enough to retain some of the interesting effects of the non-Gaussian
limiting distributions that one sees with RWRE.

A random walk in a cooling random environment (RWCRE) is a random walk in a
space-time random environment built by partitioning N0 into a sequence of intervals,
and assigning independently to each interval an environment sampled from µ. Formally,
let (Tk)k∈N be an increment sequence such that Tk ∈ N. We will refer to this sequence as
cooling increment sequence. We denote further by τ(k) :=

∑k
i=1 Ti the k-th cooling

time, i.e. the time at which a new environment is freshly sampled from µ. We will
refer to τ as the cooling map. For convenience of notation we will let τ(0) = 0 so that
Tk = τ(k)− τ(k − 1) for all k ≥ 1.

The RWCRE (Xn)n∈N0 is defined as follows. Let ω̄ = (ω(k))k≥1 =
(
(ω(k)(x))x∈Z

)
k≥1

be an i.i.d. sequence of environments with ω(k) ∼ µ. The RWCRE X then starts at
X0 = 0 and evolves on each interval [τ(k− 1), τ(k)) as a random walk in the environment
ω(k). More precisely, given a sequence of environments ω̄ and the cooling sequence τ
we define the quenched law P ω̄,τ (·) of the RWCRE as that of a (time inhomogeneous)
Markov chain with transition probabilities given by

P ω̄,τ (Xn+1 = x+ e | Xn = x) =

{
ω(k)(x) if e = 1,

1− ω(k)(x) if e = −1,
if τ(k − 1) ≤ n < τ(k).

The annealed law Pµ,τ (·) of the RWRE is then obtained by averaging the quenched law
with respect to the measure µN on the sequence of environments ω̄. That is,

Pµ,τ (·) := µN n P ω̄,τ0 (·) =

∫
P ω̄,τ0 (·) dµN(ω̄),

Because we will always be discussing the RWCRE for a fixed distribution µ and cooling
map τ , in a slight abuse of notation we will simply use P in place of Pµ,τ for the annealed
law of the RWCRE for the remainder of the paper.

Remark 1.6. Throughout the paper, we will use the following representation of the

RWCRE. Let (Z(k))k≥1 =
(

(Z
(k)
n )n≥0

)
k≥1

be a sequence nearest neighbor random walks

that are i.i.d. with distribution Z(k) ∼ Pµ0 ; that is each Z(k) is an independent copy of a
RWRE with distribution µ on the environment. For a fixed n ≥ 1 Let

`n := sup{` : τ(`) ≤ n}
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be the number of resamplings of the environment by time n. With this notation, it is easy
to see that (under the annealed measure P for the RWCRE)

Xn
Law
=

`n∑
k=1

Z
(k)
Tk

+ Z
(`n+1)
n−τ(`n), n ≥ 0. (1.9)

(by convention if `n = 0 then the empty sum on the right side is zero so that Xn
Law
= Z

(1)
n .)

At times it will be convenient to have some notation to rewrite the right side of (1.9) as a
single summation term. To this end, we can write

Xn
Law
=
∑
k

Z
(k)
Tk,n

, where Tk,n =


Tk if k ≤ `n
n− τ(`n) if k = `n + 1

0 if k > `n + 1.

(1.10)

The main results of this paper concern the limiting distributions for the RWCRE.
Naturally the limiting distribution depends both on the distribution µ on environments
and the cooling map τ , but it is natural to separate the analysis according to type of the
limiting distribution for the RWRE with environment distribution µ. In this paper we will
be concerned with the cases where µ is κ-regular with either κ ∈ (0, 1) or κ = 2. Before
stating the results we obtain in these cases, however, we will first review some of the
limiting distributions for RWCRE that have already been obtained for other regimes of
RWRE.
The Sinai regime: “κ = 0”.2 For recurrent RWRE, Sinai proved the limiting distribution
Zn

(logn)2 ⇒ V , where V is a non-Gaussian random variable that can be represented as a
functional of a standard Brownian motion [22]. The limiting distributions for RWCRE
for µ in the Sinai regime were studied first in [6] for a few special cases of cooling
maps and then later in [4] for general cooling maps. The results of [4] showed that all
subsequential limits of Xn−E[Xn]√

Var(Xn)
are either Gaussian, sums of independent copies of the

random variable V , or an independent mixture of Gaussian and sums of independent
copies of V (the limiting distribution can depend both on the cooling map τ and the
subsequence nj → ∞). Functional limit laws for a few special cases of cooling maps
were also obtained in [25].
The diffusive Gaussian regime: κ > 2. When µ is κ-regular with κ > 2 then a CLT-like
limiting distribution holds: Zn−nv

b
√
n
⇒ Φ for some b > 0, where Φ is a standard Gaussian

random variable [20]. For µ in this regime it was shown that for any cooling map τ the
limiting distribution for the RWCRE is Xn−E[Xn]√

Var(Xn)
⇒ Φ.

The ballistic, stable regime: κ ∈ (1, 2). When µ is κ-regular with κ ∈ (1, 2), the
limiting distributions for RWRE are of the form Zn−nv

n1/κ ⇒ Sκ, where Sκ is a κ-stable
that is totally skewed to the left and has mean zero [20]. Limiting distributions for
RWCRE with µ in this regime were studied in [5] where sufficient conditions were given
on the cooling map τ which lead to limiting distributions for the RWCRE which are (1)
Gaussian, (2) κ-stable of the type Sκ, (3) generalized tempered κ-stable, or (4) a mixture
of independent random variables of the first three types.

The main results of the paper concern the limiting distributions of the RWCRE in
the cases where the distribution µ on environments is κ-regular with either κ ∈ (0, 1) or
κ = 2. Since both the results and the methods of proof are very different in these two
cases we will state our results in each case separately.

2Since the parameter κ > 0 characterizes the limiting distributions of transient RWRE, in a slight abuse
of notation we will refer to the recurrent regime for RWRE (i.e., where µ is such that 〈log ρ0〉 = 0) as having
parameter κ = 0.
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1.2.1 Limiting distributions for the case κ ∈ (0, 1)

The decomposition of the RWCRE in (1.10) as a sum of increments of independent copies
of a RWRE, together with the fact that limiting distributions are known for the RWRE,
suggests that one might be able to approximate the distibution of Xn by an appropriate
linear combination of independent copies of the limiting distribution of the RWRE (which
in the case κ ∈ (0, 1) is a Mittag-Leffler random variable Mκ). We will refer to this general
approach to proving a limiting distribution for the RWCRE as the replacement method
approach. Previous results for RWCRE have shown that the replacement method works
sometimes (e.g., for the cases when the RWRE is either recurrent or κ-regular with
κ > 2, [4]) but not always (e.g., when the RWRE is κ-regular with κ ∈ (1, 2), [5]). Our
main result for the case κ ∈ (0, 1) is that the replacement method does indeed work for
this case.

To prepare for the statement of our main results in this case, note that using (1.10)
we can rewrite the normalized RWCRE as

Xn − E[Xn]√
Var(Xn)

Law
=
∑
k

Z
(k)
Tk,n
− Eµ0 [ZTk,n ]√
Var(Xn)

=
∑
k

λτ,n(k)
Z

(k)
Tk,n
− Eµ0 [ZTk,n ]√

Var(ZTk,n)
, (1.11)

where the coefficients in the last line are given by the vector λτ,n = (λτ,n(k))k≥1 with

λτ,n(k) =

√
Var(ZTk,n)

Var(Xn)
. (1.12)

The terms of the vector λτ,n reflect the relative weight that each term in the sum in (1.11)
contributes to the distribution of Xn. If the terms of the vector λτ,n converge to zero
uniformly, then it is natural to expect that the limiting distribution of Xn will be Gaussian.
On the other hand, if some terms of λτ,n remain bounded away from zero then we expect
the Mittag-Leffler random variables Mκ to appear in the limiting distribution. To make
this precise, and state our main results in the case κ ∈ (0, 1) we need to first introduce
some notation.

Let `2 = {x ∈ RN :
∑
k≥1 x(k)2 <∞} be the collection of square summable sequences,

and note that λτ,n ∈ `2 since
∑
k≥1 λτ,n(k)2 = 1. For any non-negative sequence x ∈ `2

there exists a unique non-increasing sequence x↓ ∈ `2 that is a re-ordering of the terms
of x.3 Finally, for any random variable Z with finite variance let Ẑ = Z−E[Z]√

Var(Z)
denote the

normalized version of Z and for any x ∈ `2 let(
Ẑ
)⊗x

=
∑
k≥1

x(k)Ẑk,

where Ẑ1, Ẑ2, . . . are i.i.d. copies of the random variable Ẑ.
Having introduced the necessary notation, we are now ready to state our main result

in the case κ ∈ (0, 1) which says that subsequential limits of RWCRE when κ ∈ (0, 1) are
sums of independent Mittag-Leffler random variables, Gaussian random variables, or a
mixture of the two.

Theorem 1.7. Let Xn be a RWCRE with κ-regular distribution µ with κ ∈ (0, 1) and
cooling map τ . Assume that nj →∞ is a subsequence such that limj→∞ λ↓τ,nj (k) = λ∗(k)

for all k ≥ 1 for some λ∗ ∈ `2. Then,

Xnj − E[Xnj ]√
Var(Xnj )

=⇒
j→∞

(
M̂κ

)⊗λ∗
+ a(λ∗)Φ, (1.13)

3That is x↓ = (x↓(k))k≥1 is the unique element of `2 such that x↓(·) = x(π(·)) for some bijection π : N→ N

and such that x↓(k) ≥ x↓(k + 1) for all k ≥ 1.
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where a(λ∗) :=
(
1−

∑
k λ

2
∗(k)

)1/2 ∈ [0, 1] and Φ is a standard Gaussian random variable

independent from
(
M̂κ

)⊗λ∗
. Moreover, the convergence in law also holds in Lp for all

p > 0.

Remark 1.8. While Theorem 1.7 shows that subsequential limiting distributions can be
mixtures of Mittag-Leffler and Gaussian distributions, only the Gaussian distributions
can arise as limits of the full sequence. To see this, first note that if x,y ∈ `2 and x↓ 6= y↓

then the random variables
(
M̂κ

)⊗x
+ a(x)Φ and

(
M̂κ

)⊗y
+ a(y)Φ are distinct. This can

be seen by examining the Laplace transform of the above random variables see also
the proof of Lemma 1 in [4, §3.2]. Now, since from every sequence (λn, n ∈ N) in `2

one can extract a subsequence nj for which (λ↓nj (k), n ∈ N) converges for all k ∈ N,

it follows from (1.13) that the limit laws of the sequence

(
Xn−E[Xn]√

Var(Xn)
, n ∈ N

)
are in

correspondence with the limit points of the sequence (λ↓τ,n, n ∈ N) given by {λ∗ ∈ `2 :

limn λ
↓
τ,n(k) = λ∗(k) for all k ∈ N}. Moreover, the full sequence

(
Xn−E[Xn]√

Var(Xn)
, n ∈ N

)
converges if and only if the sequence λ↓τ,n admits a unique limit λ∗. This happens if and
only if λ∗(k) = 0 for all k ∈ N (or equivalently limk λτ,τ(k)(k) = 0) since the vector λτ,n
records the proportion of the variance coming from each cooling interval up to time n.

Remark 1.9. Theorem 1.7 shows that any subsequential limit of the RWCRE must be
a random variable of the form in the right side of (1.13) for some λ∗. Indeed, using a
diagonalization argument it is easy to see that for any subsequence there is always a
further subsequence so that λ↓τ,nj (k) converges for all k (and the limiting vector λ∗ must
be in `2 by Fatou’s Lemma). Moreover, we give explicit examples in Section 5 which show
that that the limit can be a pure Gaussian (a(λ∗) = 1), a pure mixture of centered Mittag-
Leffler random variables (a(λ∗) = 0) or a mixture of the two (a(λ∗) ∈ (0, 1)). Finally, it
is a natural question as to whether or not there are restrictions on what mixtures of
Mittag-Leffler and Gaussian random variables one can obtain as subsequential limits of
RWCRE when κ ∈ (0, 1). In Example 5.5 answer this question by giving an algorithm
which shows that for any non-negative λ∗ ∈ `2 with

∑
k λ∗(k)2 ≤ 1 we can construct a

cooling map τ and a subsequence nj such that (1.13) holds.

Theorem 1.7 as stated is quite general. However, to check the convergence of λ↓τ,n
along some subsequence one needs control on the variance of the corresponding RWRE.
The following theorem, which is the key to the proof of Theorem 1.7, also provides the
necessary asymptotics on the variance to be able to identify the (possibly subsequential)
limiting distributions for specific choices of cooling maps τ .

Theorem 1.10 (RWRE Lp Convergence κ ∈ (0, 1)). Let Z = (Zn)n≥0 be a RWRE with
distribution µ on environments that is κ-regular with κ ∈ (0, 1). Then the convergence
in distribution in (1.5) also holds in Lp for all p > 0. In particular Eµ0 [Zn] ∼ µMn

κ and
Var(Zn) ∼ σ2

Mn
2κ as n→∞, where

µM := E[Mκ] =
b

Γ(1 + κ)
and σ2

M := Var(Mκ) = b2
(

2

Γ(1 + 2κ)
− 1

Γ(1 + κ)2

)
.

In the case where Tk → ∞ (that is, the gaps between resampling times of the
environment diverge), Theorem 1.10 implies that

lim
n→∞

Var(Xn)∑
k(Tk,n)2κ

= σ2
M. (1.14)

In fact, the condition (1.14) (which can hold even if Tk 6→ ∞) is sufficient to give
the following more explicit way to check the conditions for the subsequential limiting
distributions in (1.13).
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Corollary 1.11. Let Xn be a RWCRE satisfying the assumptions of Theorem 1.7. If in
addition the cooling map is such that (1.14) holds, then the conclusion of Theorem 1.7
holds true if λτ,n is replaced by the vector λ̃τ,n defined by

λ̃τ,n(k) =
(Tk,n)κ

Vn
, where Vn =

√∑
j

(Tj,n)2κ,

where Tk,n is defined as in (1.10).

Remark 1.12. The condition (1.14) is sufficient but not necessary in order to replace
λτ,n with λ̃τ,n, as can be seen by considering the cooling map with Tk ≡ 1 in which case

λ↓τ,n and λ̃↓τ,n both converge pointwise to 0 ∈ `2.

Remark 1.13. In light of the asymptotics of E[Zn] in Theorem 1.10 we may consider
the need for the centering term in Theorem 1.7. For any random variable Z with finite
variance, let Z̄ = Z√

Var(Z)
denote the non-centered normalized version of Z and for x ∈ `2

let
(
Z̄
)⊗x

=
∑
k≥1 x(k)Z̄k where Z̄1, Z̄2, . . . are i.i.d. copies of the random variable Z̄.

Since

Xnj√
Var(Xnj )

=
Xnj − E[Xnj ]√

Var(Xnj )
+

E[Xnj ]√
Var(Xnj )

it follows from (1.13) that if limj→∞ λ↓τ,nj (k) = λ∗(k) for all k ≥ 1 then
Xnj√

Var(Xnj )
con-

verges to
(
Mκ

)⊗λ∗
+ a(λ∗)Φ if

∑
k λ∗(k) <∞ and

lim
j→∞

E[Xnj ]√
Var(Xnj )

= E

[ (
Mκ

)⊗λ∗ ]
=
µM

σM

(∑
k

λ∗(k)

)
.

1.2.2 Limiting distributions for the case κ = 2

The limiting distribution result for the RWCRE in the case κ = 2 (Theorem 1.16) inherits
some of the properties of both the case κ > 2 and κ ∈ (1, 2). Like the κ > 2 case, the
limit will be Gaussian for any cooling map. On the other hand, like the case κ ∈ (1, 2)

one cannot use the replacement method to prove limiting distributions and determining
the proper scaling for the limiting distribution is a major difficulty.

In order to use the replacement method to prove a limiting distribution for the
RWCRE, one needs to improve the limiting distribution for the RWRE to convergence in
L2 (see the discussion on the replacement method in Section 2.2). The first main result
in this section gives new asymptotics on the variance of the RWRE in the case κ = 2, and
as a consequence shows that one does not have L2 convergence in this case.

Theorem 1.14. Let Z = (Zn)n≥1 be a RWRE with distribution µ on environments that is
κ-regular with κ = 2. Then,

lim
n→∞

Eµ0

[(
Zn − nv√
n log n

)2
]

= b2 +K0v, (1.15)

where v > 0 is the limiting speed as in (1.4) and the constants b and K0 are as in (1.7)
and (1.8), respectively.

While (1.15) shows that the limiting distribution in (1.7) cannot be improved to L2-

convergence, it also implies that
∣∣∣ Zn−nv√

n logn

∣∣∣p is uniformly integrable for any p ∈ (0, 2), and

thus the convergence in distribution in (1.7) can be improved to Lp convergence for all
p ∈ (0, 2). In particular, this implies the following asymptotics for the mean and variance
of the RWRE.
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Corollary 1.15. Under the same assumptions as Theorem 1.14, we have

lim
n→∞

Eµ0 [Zn]− nv√
n log n

= 0, and lim
n→∞

Var(Zn)

n log n
= b2 +K0v. (1.16)

The asymptotics of the mean and variance in Corollary 1.15 imply that we can restate
the limiting distribution in (1.7) as

Zn − Eµ0 [Zn]

β
√

Var(Zn)
=⇒
n→∞

Φ, where β =
b√

b2 +K0v
< 1. (1.17)

Of course the interesting part of the limiting distribution as stated in (1.17) is that the
constant β < 1. The fact that the RWRE must be scaled my a non-trivial multiple of
the standard deviation to get a standard Gaussian limit is then reflected in our main
result for the limiting distributions for RWCRE in the case κ = 2 where the appropriate
multiplicative constant depends very delicately on the cooling map τ and the distribution
µ.

Theorem 1.16. Let Xn be a RWCRE with 2-regular distribution µ and cooling map τ .
There exists a sequence of numbers βn = βn(µ, τ) ∈ [β, 1] for n ≥ 1 such that

Xn − E[Xn]

βn
√

Var(Xn)
⇒ Φ,

where Φ is a standard normal random variable.

Remark 1.17. The formula for the scaling constants βn in terms of the cooling map τ
and the distribution µ is given explicitly in (4.19) below and involves certain truncated
variance terms for the RWRE of the form Var((Zn − Eµ0 [Zn])1|Zn−Eµ0 [Zn]|≤x). As part of
the proof of Theorem 1.16 we will also give precise asymptotics for such truncated
variance terms, and thus one can compute the scaling constants βn for certain specific
choices of cooling maps. In particular, we will give examples in Section 5 which show
that the constants βn can fill the entire range from β to 1 and that the sequence βn can
also oscillate with n.

Remark 1.18. One can sometimes use the asymptotics of the mean and variance of the
corresponding RWRE in Corollary 1.15 to replace the scaling and/or centering terms in
Theorem 1.16 with more explicit expressions. For instance, if limk→∞ Tk =∞ one can
replace

√
Var(Xn) with

√∑
k Tk,n log(Tk,n) and if in addition one has

sup
n

∑`n+1
k=1

√
Tk,n log(Tk,n)√∑`n+1

k=1 Tk,n log(Tk,n)
<∞ (1.18)

then one can also replace the centering term E[Xn] with nv. In fact, it is not hard to see
that (1.18) is equivalent to the slightly easier to check

sup
n

∑n
k=1

√
Tk log(Tk)√∑n

k=1 Tk log(Tk)
<∞, (1.19)

which differs from (1.18) only in that one doesn’t have to consider the partial cooling
interval T`n+1,n = n− τ(`n).

The proof of Theorem 1.16 is the most difficult and innovative part of the paper.
There are two natural ways to try to prove Gaussian limits for the RWCRE, but neither
works for all cooling maps.
Approach 1: The first approach is to try to apply the Lindberg-Feller CLT using the
representation in (1.10) as a sum of independent random variables. This approach
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will work only if the cooling map grows slowly enough so that the triangular array is
uniformly asymptotically negligible, i.e.,

lim
n→∞

max
k≤`n+1

P
(
Z

(k)
Tk,n

> ε
√

Var(Xn)
)

= 0,

see also [2, §7.3, p. 313]. For instance, this approach will work for cooling maps with
Tk ∼ Akα for some A,α > 0 (i.e., polynomial cooling). Even in this case, applying the
Lindeberg-Feller CLT is not always straightforward as one sometimes needs to apply
a truncation step first before applying the CLT for triangular arrays (e.g., polynomial
cooling with α > 1).
Approach 2: If the cooling map grows sufficiently fast, then the distribution of Xn

is essentially controlled by the last few terms of the sum in (1.10). For instance, this
approach will work for cooling maps with Tk ∼ Aeck for some A, c > 0 (i.e., exponential
cooling). The idea with this approach is that one first fixes m, and then notes that
the sum of the largest m terms in (1.10) converges in distribution (after appropriate
centering and scaling) to a Gaussian. Then one argues that for cooling maps growing fast
enough the distribution of the sum of the largest m terms in (1.10) is not very different
from the distribution of Xn if m is large enough.

Since the first approach above only works for cooling maps growing sufficiently
slowly and the second approach only works for cooling maps growing sufficiently fast, it
is not obvious how to prove Gaussian limits for cooling maps which are more irregular. In
our proof of Theorem 1.16 we show how the two approaches can be combined together
to cover general cooling maps. One splits the sum in (1.10) into the terms where Tk is
“large” or “small”, respectively (whether Tk is classified as “large” or “small” depends on
its relative size among all the other terms in the sum) and then simultaneously applies
approach 1 to the “small” terms and approach 2 to the “large” terms. There are two main
difficulties to implementing this approach for general cooling maps. The first difficulty
is finding the appropriate way to divide the “small” and “large” terms so that both
approaches can be applied simultaneously. The second difficulty is that when applying
approach 1 to the “small” terms one still needs to truncate the terms before applying the
Lindeberg-Feller CLT, and it is a very delicate matter to choose a truncation that works.

1.3 Future work

Combined with the previous results in [4] and [5], the results of this paper nearly
complete the analysis of the limiting distributions for one-dimensional RWCRE. The only
remaining case to be studied is when κ = 1 where κ is the parameter defined in (1.3).
We leave that case for consideration in a future work, but for now comment on some of
the unique difficulties in the case κ = 1.

• It does not appear that the replacement method will work in the case κ = 1. Indeed,
as is seen in the proof of Theorem 1.7, the key ingredient needed to implement the
replacement method is for the limiting distribution of the RWRE to be upgraded
to L2 convergence. However, when κ = 1 the limiting distribution of the RWRE is
a 1-stable random variable which doesn’t have finite variance (or mean) and thus
one cannot hope for an L2 convergence result for the RWRE.

• A major difficulty in obtaining the limiting distributions for RWCRE when κ ∈
(1, 2] is determining the correct scaling factor. Unlike in the cases where the
replacement method can be used, the standard deviation

√
Var(Xn) isn’t always

the correct scaling factor for limiting distributions of RWCRE when κ ∈ (1, 2] as
seen by Theorem 1.16 and the results in [5]. In these cases, a key element in
determining the appropriate scaling factor for a limiting distribution of the RWCRE
was in obtaining precise asymptotics for the variance of the corresponding RWRE
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(Corollary 1.15 and [5, Theorem 3.8]). Obtaining precise asymptotics for Var(Zn)

in the case κ = 1 is complicated both by the non-linear centering that is necessary
for the RWRE limiting distribution in this case and the fact that the precise large
deviation estimates from [9] do not include this centering term when κ = 1.

1.4 Notation

Before continuing on with the rest of the paper, we will introduce here some notation
that we will use throughout the remainder of the paper.

In the description of the models above, in order to more clearly articulate the
difference between the models for RWRE and RWCRE we have used the notation Pµ0
for the annealed law of RWRE and P for the annealed law of the RWCRE. However, we
could expand the measure P to include copies of RWRE so that equalities in law such
as (1.9) become almost sure equalities. We will assume throughout the remainder of the
paper that we have done such an expansion of P and will therefore in a slight abuse of
notation also use P in place of Pµ0 for the annealed law of a single RWRE.

Because our main results are stated for the RWCRE centered by its mean, we will
often want to use a centered version of the RWRE. Thus, we will use the notation
Z̃n = Zn − E[Zn].

Our proofs of tail asymptotics of RWRE in Sections 2.1 and 3 will use certain facts
about regeneration times for RWRE. We recall here the definition of regeneration times
for a RWRE as well as some basic facts about regeneration times that we will use in the
proofs. For a transient RWRE {Zn}n≥0, the regeneration times 0 < R1 < R2 < R3 < . . .

are defined by

R1 = inf
{
n > 0: max

m<n
Zm < Zn ≤ min

m>n
Zm
}

and Rk = inf
{
n > Rk−1 : max

m<n
Zm < Zn ≤ min

m>n
Zm
}
, for k > 1.

We collect here a few properties of regeneration times that we will use in our analysis
below. Details of these facts can be found in [24], [5, Appendix B], and the references
therein. To state these facts, for convenience of notation we will let R0 = 0 though this is
a slight abuse of notation because R0 is not necessarily a regeneration time (as reflected
in the first fact below). We will be assuming that the distribution µ on environments is
κ-regular with κ ∈ (0, 2], though most of these properties are true in greater generality.

I.i.d. structure. The sequence of joint random variables {(ZRk−ZRk−1
, Rk−Rk−1)}k≥1

are independent, and for every k ≥ 2 the vector (ZRk − ZRk−1
, Rk −Rk−1) has the

same distribution as (ZR1
, R1) under the measure

P(·) = P( · | Zn ≥ 0,∀n ≥ 0).

Regeneration distances have light tails. There are constants C, c > 0 such that

P(ZR1 > n) ≤ Ce−cn. (1.20)

Note that P(ZR2
− ZR1

> n) = P(ZR1
> n) ≤ P(ZR1

>n)

P(Zn≥0,∀n≥0) , so that ZR2
− ZR1

also
has exponential tails.

Regeneration times have heavy tails. There is a constant C > 0 such that

P(R2 −R1 > n) = P(R1 > n) ∼ Cn−κ. (1.21)

Under the measure P we have the slightly weaker control on the tail of the first
regeneration time: E[Rγ1 ] <∞ for all γ ∈ (0, κ).
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Connection with the limiting speed. If κ > 1 then the limiting speed of the RWRE
as defined in (1.4) is given by

v =
E[ZR2

− ZR1
]

E[R2 −R1]
=
E[ZR1

]

E[R1]
. (1.22)

(Note that (1.22) holds true when κ ∈ (0, 1] as well in the sense that v = 0 and
E[R1] =∞.)

2 RWRE results for the case κ ∈ (0, 1)

In this Section we prove Theorems 1.7 and 1.10. We will first prove Theorem 1.10 as
it is the key element of the proof of Theorem 1.7.

2.1 Proof of Theorem 1.10

By Theorem 4.6.3 in [12], to prove Theorem 1.10 it is enough to prove that {
∣∣Zn
nκ

∣∣p}n≥1

is uniformly integrable for any p <∞, i.e., that

lim
M→∞

lim sup
n→∞

∫ ∞
M

pxp−1P(|Zn| > xnκ) dx = 0.

We will obtain bounds on P(|Zn| > xnκ), the tail probabilities in the integral above by
bounding separately the left tails, P(Zn < −xnκ) and the right tails P(Zn > xnκ).

Left tail bounds. Since P(Zn < −xnκ) = 0 for x ≥ n1−κ we have that∫ ∞
1

pxp−1P(Zn < −xnκ) dx ≤ P(Zn < −nκ)

∫ n1−κ

1

pxp−1 dx

≤ n(1−κ)pP(Zn < −nκ),

and since [14, Theorem 1.4] implies that P(Zn < −nκ) = e−n
κ+o(1)

this upper bound
vanishes as n→∞. This proves the uniform integrability estimates for the left tails.

Right tail bounds. For the right tail bounds we will use regeneration times. Note
that if the (m+ 1)-st regeneration time occurs after time n then Zn ≤ ZRm+1

. Therefore,
for any m ≥ 1 we have that

P(Zn > xnκ) ≤ P(Rm+1 < n) + P(ZRm+1
> xnκ)

≤ P(Rm < n) + P

(
ZR1

>
xnκ

2

)
+ P

(
ZRm >

xnκ

2

)
, (2.1)

where in the last inequality we used that Rm+1 − R1 and ZRm+1 − ZR1 have the same
distribution under P as do Rm and ZRm , respectively, under the measure P. By (1.20),
there are C, c > 0 such that

P

(
ZR1

>
xnκ

2

)
≤ Ce−cxn

κ

≤ Ce−cx. (2.2)

To bound the first and third terms in (2.1) choose m depending on x and n as follows

m = m(x, n) =

⌊
xnκ

4E[ZR1
]

⌋
. (2.3)

For the first probability in (2.1), by the i.i.d structure of {Rk − Rk−1}k≥1 under P, we
obtain that P(Rm < n) ≤ P(R1 < n)m =

(
1− P(R1 ≥ n)

)m
. Now, by (1.21) and (2.3), we

obtain that there is n0 ∈ N and a constant c > 0 such that

P(Rm(x,n) < n) ≤ e−cx for all n > n0, x ≥ 1. (2.4)

EJP 29 (2024), paper 159.
Page 13/38

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1210
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


RWCRE in the sub-ballistic and critical Gaussian regime

For the third probability in (2.1), first we use our choice of m in (2.3) to get that

P
(
ZRm > xnκ

2

)
≤ P

(
ZRm
m > 2E[ZR1

]
)

. Since ZRm is the sum of m i.i.d. random variables

with exponential tails and mean E[ZR1
], by Cramér’s theorem, see [19, Thm 1.4, p 5],

there is a constant c > 0 and n1 ∈ N such that

P

(
ZRm >

xnκ

2

)
≤ P

(
ZRm
m

> 2E[ZR1
]

)
≤ e−cm ≤ e−cxn

κ

≤ e−cx for all n > n1, x ≥ 1.

(2.5)
By (2.2), (2.4), and (2.5) we obtain from (2.1) that there is n2 ∈ N and c > 0 such that
P(Zn > xnκ) ≤ 3e−cx for all n ≥ n2 and x ≥ 1. From this it then follows that

lim
M→∞

lim
n→∞

∫ ∞
M

pxp−1P(Zn > xnκ) dx = 0.

2.2 Proof of Theorem 1.7

To prove of Theorem 1.7 we follow the ideas in [4, Section 3] which we now sketch.
Essentially the idea is to use a threshold J > 0 to distinguish small increments, Tk,n ≤ J ,
from large increments, Tk,n > J , and let this threshold grow after we take n → ∞ to
obtain the limit statement. By the CLT for iid random variables, we may replace the
small terms by independent copies of Mittag-Leffler distributions as both have the same
Gaussian limit. Next by using the convergence of (1.5) which holds in L2 we can show
that there is a coupling of (Z

(k)
m ,M

(k)
κ , k,m ∈ N) for which the difference between the

increments and copies of Mittag-Leffler can be neglected and we are allowed to replace
the left hand side of (1.13) by weighted sums of independent Mittag-Leffler random
variables. More explicitly, recall (1.11) and note that for any J > 0 we have

Xn :=
Xn − E[Xn]√

Var(Xn)

=
∑
k

λτ,n(k)1Tk,n≤J

[
Z

(k)
Tk,n
− E[Z

(k)
Tk,n

]√
Var(Z

(k)
Tk,n

)

]
+
∑
k

λτ,n(k)1Tk,n>J

[
Z

(k)
Tk,n
− E[Z

(k)
Tk,n

]√
Var(Z

(k)
Tk,n

)

]
,

For the small increments, the CLT for iid random variables give us that for any J > 0

and any fixed bounded continuous function f : R→ R

lim
n
E

[
f

(∑
k

λτ,n(k)1Tk,n≤J
[Z(k)

Tk,n
− E[Z

(k)
Tk,n

]√
Var(Z

(k)
Tk,n

)

])]
−E

[
f

(∑
k

λτ,n(k)1Tk,n≤JM̂
(k)
k

)]
= 0.

(2.6)
Now, provided the coupling of the random variables ensures almost sure conver-
gence (1.5), we obtain

lim
J→∞

lim
n→∞

E

[(∑
k

λτ,n(k)1Tk,n>J

[
Z

(k)
Tk,n
− E[Z

(k)
Tk,n

]√
Var(Z

(k)
Tk,n

)
− M̂(k)

κ

])2
]

= 0. (2.7)

A combination of (2.6) and (2.7) allows us claim that
(
Xn, n ∈ N

)
has the same sub-

sequential weak limits as
(
(M̂κ)⊗λn , n ∈ N

)
. The final step in the proof of (1.13) is

to identify the subsequential weak limits of
(
(M̂κ)⊗λn , n ∈ N

)
. For ease of notation,

let λj := λ↓τ,nj , note that (M̂κ)⊗λj
(d)
= (M̂κ)⊗λτ,nj , and recall that we are assuming that

limj→∞ λj(k) = λ∗(k) for all k ≥ 1. Now note that for any K > 0

K∑
k=1

λj(k)M̂(k)
κ =⇒

j→∞

K∑
k=1

λ∗(k)M̂(k)
κ . (2.8)
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By (2.8), we may take Kj →∞ slowly enough such that

Kj∑
k=1

λj(k)M̂(k)
κ =⇒

j→∞

∞∑
k=1

λ∗(k)M̂(k)
κ .

To conclude, we note that we may also take Kj →∞ slowly enough such that

a(λ∗)
2 = 1−

∞∑
k=1

(
λ∗(k)

)2
=

∞∑
k=1

(
λj(k)

)2 − ∞∑
k=1

(
λ∗(k)

)2
= lim

j

∞∑
k=1

(
λj(k)

)2 − Kj∑
k=1

(
λ∗(k)

)2
= lim

j

∞∑
k=1

(
λj(k)

)2 − Kj∑
k=1

(
λj(k)

)2
= lim

j

∞∑
k=Kj+1

(
λj(k)

)2
,

and using the Lindeberg condition for triangular arrays, see Theorem 3.4.10 in [12], we
obtain that

∞∑
k=Kj+1

λj(k)M̂(k)
κ =⇒

j→∞
a(λ∗)Φ,

where Φ0 is a standard Gaussian random variable. By the independence of the sequence
(M

(k)
κ , k ∈ N) we obtain that

∞∑
k=1

λj(k)M̂(k)
κ =

Kj∑
k=1

λj(k)M̂(k)
κ +

∞∑
k=Kj+1

λj(k)M̂(k)
κ =⇒

j→∞

∞∑
k=1

λ∗(k)M̂(k)
κ + a(λ∗)Φ0,

where the two terms on the right are independent. This concludes the proof of (1.13). To
obtain convergence in Lp for all p <∞ it is enough to show that supnE[(Xn)2r] <∞ for
all r ∈ N. This can be proved by representing Xn as in (1.11), using a binomial expansion
of (Xn)2r and using the following facts: (1) the terms in the decomposition in (1.11) are
independent with zero mean, (2) for any ` ≥ 2 we have

∑
k(λτ,n(k))` ≤

∑
k(λτ,n(k))2 = 1,

and (3) Theorem 1.10 implies that supnE[(Zn−E[Zn]√
Var(Zn)

)`] ≤ C` <∞ for all ` <∞.

3 RWRE results for the case κ = 2

In this section we will prove some of the new RWRE results that will be needed for
the analysis of the limiting distributions of RWCRE when the distribution µ is 2-regular.
This will include the proof of Theorem 1.14, but will also include some new large and
moderate deviation tail bounds as well as some asymptotics of truncated moments that
will be crucial later in the proof of Theorem 1.16. Since the moments of the RWRE can
be expressed in terms of the tails of the distribution of the RWRE, we will need good
tail asymptotics of the RWRE to prove Theorem 1.14. We will divide our analysis of the
tails of the RWRE into the right and left tails separately since the asymptotics are very
different in either case.

3.1 Right tail estimates

Our main result in this section is the following Gaussian right tail estimate for the
RWRE.

Lemma 3.1. If the distribution µ is 2-regular, then there exist constants C, c > 0 such
that for all n sufficiently large,

P(Zn − vn ≥ x) ≤ Ce−c
x2

n logn , ∀x > 0. (3.1)
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Proof. First of all, note that it is enough to prove the inequality in (3.1) for x ∈ (0, (1−v)n]

since the probability on the left is zero for x > (1− v)n.
To this end, recall the notation regarding regeneration times introduced in Section 1.4

and for any x ∈ (0, (1− v)n] let m = m(x, n) be defined by

m =

⌊
vn+ x

4

E[ZR1 ]

⌋
. (3.2)

We will use in several places below that this choice of m implies that there is a constant
c1 > 0 such that c1n ≤ m ≤ 1

c1
n for all x ∈ (0, (1− v)n]. For this choice of m we have that

for n sufficiently large

P(Zn − vn ≥ x)

≤ P(ZR1
≥ x/2) + P(ZRm+1

− ZR1
≥ vn+ x/2) + P(Rm+1 −R1 < n)

≤ P (ZR1
≥ x/2) + P

(
ZRm − E[ZRm ] ≥ x/4

)
+ P

(
Rm − E[Rm] < −x/(8v)

)
, (3.3)

where in the last inequality we used (3.2), (1.22), and the i.i.d. structure of regeneration
times. We will bound the three terms in (3.3) separately.

Since ZR1
has exponential tails, see (1.20), the first term in (3.3) can be bounded by

Ce−cx for x > 0. For the second term in (3.3), since under P we have that ZRm is a sum
of m i.i.d. random variables with exponential tails, standard large deviation results (e.g.
[21, Chapter III, Theorem 15]) imply that there exists a constant c > 0 such that

P(ZRm − E[ZRm ] ≥ x/4) ≤ exp

{
−cx2

n

}
, ∀x ∈ (0, (1− v)n].

(Note that here we are using that c1n ≤ m ≤ n/c1 as noted above.) To bound the last
term in (3.3) we will use the fact that Rm − E[Rm] is a sum of m i.i.d. random variables
which have mean zero, are bounded below, and have tails decaying like x−2 to the right.
Thus, applying Corollary A.2 we get for n large enough and x ≤ (1− v)n that

P
(
Rm − E[Rm] < −x/(8v)

)
≤ e−c

x2

m logm ≤ e−c
x2

n logn .

(Note that to apply Corollary A.2 we are using both that x < (1− v)n and that m ≥ c1n,
while for the second inequality above we are using that m ≤ n/c1.)

Putting together the bounds for the three terms in (3.3), we have for n large enough

that P(Zn − vn ≥ x) ≤ Ce−cx + e−c
x2

n + e−c
x2

n logn ≤ Ce−c
x2

n logn for all x ∈ (0, (1− v)n].

An immediate consequence of (3.1) is the following bound on the truncated right tail
Lp norm of Zn − vn.

Corollary 3.2 (Right tail estimates). If the distribution µ is 2-regular, then for any
p > 0

lim
M→∞

lim sup
n→∞

1

(n log n)p/2
E
[
|Zn − vn|p1{Zn−vn≥M√n logn}

]
= 0.

3.2 Left tail estimates

The left tail asymptotics of Zn − vn are much more delicate than the right tail
asymptotics. We can use the annealed large deviation principle to get good bounds on
the left tail probabilities P(Zn − vn ≤ −x), but only when x � nv since the annealed
large devation rate function is zero on [0, v] (see Theorem 1.5 or [10]). On the other
hand, the estimates of Buraczewski and Dyszewski stated in (1.8) allow us to get very
precise estimates for these probabilities, but only covering x ∈ [

√
n log3 n, nv − log n].

The following is a rougher estimate but allows us to give a useful upper bound for any
x ∈ (0, nv/2].
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Proposition 3.3 (General left tail estimates). If the distribution µ is 2-regular, then
there exists a constant C > 0 such that for n large enough we have

P(Zn − vn ≤ −t
√
n log n) ≤ C

t2(log n)
+
C

t4
, for 0 < t ≤ v

2

√
n

log n
. (3.4)

Proof of Proposition 3.3. By taking the constant C > 1, the bound in (3.4) becomes
trivial for t ≤ 1/

√
log n. Thus, for the remainder of the proof we will assume that

1√
logn

≤ t ≤ v
2

√
n

logn . Letting m = m(n, t) = b 1
E[R1]

(n− t
√
n log n)c we have

P
(
Zn − nv ≤ −t

√
n log n

)
≤ P (Rm+1 > n) + P

(
ZRm+1

≤ nv − t
√
n log n

)
≤ P

(
R1 >

t

2

√
n log n

)
+ P

(
Rm > n− t

2

√
n log n

)
+ P

(
ZRm ≤ nv − t

√
n log n

)
≤ P

(
R1 >

t

2

√
n log n

)
+ P

(
Rm − E[Rm] >

t

2

√
n log n

)
(3.5)

+ P

(
ZRm − E[ZRm ] ≤ −

(
1− v

2

)
t
√
n log n

)
. (3.6)

Since E[Rγ1 ] < ∞ for all γ < κ = 2, it follows that the first term in (3.5) is bounded by
2E[R1]

t
√
n logn

≤ vE[R1]
t2 logn for all t ≤ v

2

√
n

logn . For the second term in (3.5), since Rm − E[Rm]

is the sum of i.i.d. terms with tail decay P(R1 > x) ∼ Cx−2 and since m
n = m(n,t)

n is

uniformly bounded away from 0 and ∞ for t ≤ v
2

√
n

logn , by applying Lemma A.3 we

obtain that

P

(
Rm − E[Rm] >

t

2

√
n log n

)
≤ P

(
Rm − E[Rm] > Ct

√
m logm

)
≤ C

t2 log n
+
C

t4
.

Finally, since ZRm − E[ZRm ] is the sum of i.i.d. terms with exponential tails, standard
large deviation estimates (see [21, Theorem III.15]) again imply that for n large enough

and t ≤ v
2

√
n

logn the probability in (3.6) is bounded above by

exp

{
−C t2n log n

m ∨ t
√
n log n

}
≤ exp

{
−Ct2 log n

}
≤ C

t2 log n
.

(We are again using here that m/n is bounded away from 0 and∞.) This completes the
proof of the Proposition.

A consequence of the above left tail estimates for the RWRE is the following lemma
which is the key to the proof of Theorem 1.14.

Lemma 3.4. If the distribution µ is 2-regular, then

lim
M→∞

lim sup
n→∞

∣∣∣∣ 1

n log n
E
[
(Zn − vn)21{Zn−vn≤−M

√
n logn}

]
−K0v

∣∣∣∣ = 0, (3.7)

where K0 is the constant from (1.8) and v is the limiting speed of the RWRE as in (1.4).

Proof. For any fixed M , noting that since |Zn| ≤ n, we have that

1

n log n
E
[
|Zn − vn|21{Zn−vn≤−M

√
n logn}

]
= M2P(Zn − vn ≤ −M

√
n log n) +

1

n log n

∫ (1+v)n

M
√
n logn

2xP(Zn − vn ≤ −x) dx.
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Using Proposition 3.3 we have that M2P(Zn − vn ≤ −M
√
n log n) ≤ C

logn + C
M2 , and

therefore to prove (3.7) it suffices to control the integral term above. Splitting this
integral term into three parts we may write

1

n log n

∫ (1+v)n

M
√
n logn

2xP(Zn − vn ≤ −x) dx

=
1

n log n

{∫ √n log3 n

M
√
n logn

+

∫ vn−logn

√
n log3 n

+

∫ (1+v)n

vn−logn

}
2xP(Zn − vn ≤ −x) dx.

(3.8)

Using the precise tail estimates in (1.8) one can see that the middle term above converges
to K0v as n → ∞, and thus one needs only to show that the first and third integral
terms vanish as n→∞ and then M →∞. This can be verified by using the general tail
bounds in Proposition 3.3 for the probabilities in the first integral and by bounding all
the probabilities in the third integral by P(Zn − vn < −vn+ log n) ≤ 2K0 logn

(nv−logn)2 ≤ C
logn
n2 ,

where the upper bound on these probabilities hold for n large by (1.8).

3.3 Proof of Theorem 1.14 and centered tail estimates

Having obtained the left and right tail estimates in the previous two sections, we are
now ready to give the proof of Theorem 1.14.

Proof of Theorem 1.14. First of all, note that for M fixed we have∣∣∣∣E[(Zn − nv)2]

n log n
− (b2 +K0v)

∣∣∣∣ ≤
∣∣∣∣∣∣
E
[
(Zn − nv)21|Zn−nv|<M

√
n logn

]
n log n

− b2E[Φ21|Φ|<M ]

∣∣∣∣∣∣
+

∣∣∣∣∣E
[
(Zn − nv)21Zn−nv≤−M

√
n logn

]
n log n

−K0v

∣∣∣∣∣
+ b2E[Φ21|Φ|≥M ] +

E
[
(Zn − nv)21Zn−nv≥M

√
n logn

]
n log n

.

It follows from (1.7) and the bounded convergence theorem that the first term on the
right vanishes as n → ∞ for any fixed M . Then, it follows from Corollary 3.2 and
Lemma 3.4 that the last three terms on the right can be made arbitrarily small as n→∞
by fixing M large enough. This completes the proof of the theorem.

The left and right tail asymptotics for the RWRE proved above were for the random
walk centered by its limiting speed. However, since results of Theorem 1.16 are proved
for the RWCRE centered by its mean, we will need some results on the RWRE centered
by its mean as well. Since it follows from Corollary 1.15 that E[Zn] = nv+o(

√
n log n), we

can then easily obtain the following analogs of the above results for the RWRE centered
by its mean (with different constants and sometimes slightly smaller ranges to which the
tail estimates apply).

Corollary 3.5. Let (Zn)n≥0 be a RWRE with a 2-regular distribution µ on environments.
Then the following right and left tail estimates hold for the centered RWRE.

• Right tail estimate: There exist constants C, c such that for n sufficiently large

P(Zn − EZn ≥ x) ≤ Ce−
cx2

n logn , ∀x > 0. (3.9)

• General left tail estimate: There is a constant C such that for n sufficiently large

P(Zn − EZn ≤ −t
√
n log n) ≤ C

t2 log n
+
C

t4
, for 1 ≤ t ≤ v

2

√
n

log n
. (3.10)
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• Precise left tail estimate: With K0 the same constant as in (1.8), we have

lim
n→∞

sup√
n log4 n≤x≤nv−

√
n logn

∣∣∣P(Zn − EZn ≤ −x)

(nv − x)x−2
−K0

∣∣∣ = 0. (3.11)

We close this section with some consequences of the above tail estimates for certain
truncated first and second moments of the RWRE which will be needed for our proof of
Theorem 1.16. For these lemmas (and throughout Section 4), recall from Section 1.4
that Z̃n = Zn − E[Zn] is the notation for the centered version of the RWRE.

Lemma 3.6. There exists a constant C > 0 such that for n sufficiently large and a ≥√
n log4 n,

E
[
|Z̃n|1|Z̃n|>a

]
≤ Cn

a
(3.12)

Proof. First of all, note that since |Z̃n| ≤ 2n the bound holds trivially for a ≥ 2n. On
the other hand, one easily sees that if (3.12) holds for all a ∈ [

√
n log4 n, nv/2] then

by changing the constant C we get that it also holds for a ∈ [nv/2, 2n]. Indeed, if
a ∈ [nv/2, 2n] then

E
[
|Z̃n|1|Z̃n|>a

]
≤ E

[
|Z̃n|1|Z̃n|>nv/2

]
≤ C n

nv/2
≤ (4C/v)n

a
.

Thus, for the remainder of the proof we will assume that
√
n log4 n ≤ a ≤ nv/2.

To bound the expectation in (3.12) we first decompose it as E
[
|Z̃n|1|Z̃n|>a

]
=

E
[
Z̃n1Z̃n>a

]
+ E

[
(−Z̃n)1Z̃n<−a

]
. For the right truncated expectation, using (3.9) we

get that

E
[
Z̃n1Z̃n>a

]
= aP(Z̃n > a) +

∫ ∞
a

P(Z̃n > x) dx

≤ Cae−ca
2/(n logn) + C

n log n

a
e−ca

2/(n logn).

Since a ≥
√
n log4 n implies that e−ca

2/(n logn) ≤ e−c log7 n and since a ≤ nv/2, it follows
that the above bound is less than C′n

a for some C ′ < ∞ for all n sufficiently large and
a ∈ [

√
n log4 n, nv/2]. For the left truncated expectation, using the assumption that√

n log4 n ≤ a ≤ nv/2 and the precise tail bounds in (3.11) we obtain for n sufficiently
large that

E
[
(−Z̃n)1Z̃n<−a

]
= aP(Z̃n < −a) +

∫ 2n

a

P
(
Z̃n < −x

)
dx

≤ aP(Z̃n < −a) +

∫ nv−
√
n logn

a

P
(
Z̃n < −x

)
dx

+ 2nP
(
Z̃n < −(nv −

√
n log n)

)
≤ 2K0vn

a
+

∫ nv−
√
n logn

a

2K0vn

x2
dx+

8K0

√
log n

v2
√
n

≤ 4K0vn

a
+

8K0

√
log n

v2
√
n

.

Finally, note that a ≤ nv/2 implies that
√

logn√
n
≤ n

a for n sufficiently large.
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Lemma 3.7. If
√
n log n ≤ a ≤

√
n log4 n, then

E
[
(Z̃n)21a<|Z̃n|≤√n log4 n

]
≤ Cn log log n+ C

n2 log2 n

a2
.

Proof. We begin by noting that

E
[
(Z̃n)21a<|Z̃n|≤√n log4 n

]
≤ a2P(|Z̃n| > a) +

∫ √n log4 n

a

2xP(|Z̃n| > x) dx. (3.13)

Using (3.9) and (3.10) we can bound the first term on the right in (3.13) by

a2P(|Z̃n| > a) ≤ Ca2e−
ca2

n logn + Cn+ C
n2 log2 n

a2
≤ Cn+ C

n2 log2 n

a2
,

where the last inequality is justified by noting that (by elementary calculus)

a2e−
ca2

n logn =
1

a2

(
a4e−

ca2

n logn

)
≤ 1

a2

(
4

e2c2
n2 log2 n

)
. (3.14)

For the integral term in (3.13), again using (3.9) and (3.10), we obtain that∫ √n log4 n

a

2xP(|Z̃n| > x) dx ≤ C
∫ √n log4 n

a

{
xe−

cx2

n logn +
n

x
+
n2 log2 n

x3

}
dx

≤ C
{
n log n e−

ca2

n logn + n log

(√
n log4 n

a

)
+
n2 log2 n

a2

}
≤ C

{
n log log n+

n2 log2 n

a2

}
,

where in the last inequality we used (3.14) and that a ≥
√
n log n implies log

(√
n log4 n
a

)
≤

7
2 log log n.

Lemma 3.8. If b is the scaling constant from the limiting distribution in (1.7), then

lim
n→∞

Var
(
Z̃n1|Z̃n|≤√n log4 n

)
n log n

= lim
n→∞

E
[
(Z̃n)21|Z̃n|≤√n log4 n

]
n log n

= b2. (3.15)

Proof. First of all, note that∣∣∣Var
(
Z̃n1|Z̃n|≤√n log4 n

)
− E

[
(Z̃n)21|Z̃n|≤√n log4 n

]∣∣∣
= E

[
Z̃n1|Z̃n|≤√n log4 n

]2
= E

[
Z̃n1|Z̃n|>√n log4 n

]2
≤ Cn

log8 n
,

where in the second equality we used that E[Z̃n] = 0 and in the last inequality we used
Lemma 3.6. Since this bound is o(n log n), it is enough to only prove the second equality
in (3.15). To this end, fix M > 1 and note that∣∣∣∣∣∣
E
[
(Z̃n)21|Z̃n|≤√n log4 n

]
n log n

− b2
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
E
[
(Z̃n)21|Z̃n|≤M

√
n logn

]
n log n

− b2E[Φ21|Φ|≤M ]

∣∣∣∣∣∣
+
E
[
(Z̃n)21M√n logn<|Z̃n|≤

√
n log4 n

]
n log n

+ b2E[Φ21|Φ|>M ].

The first term on the right vanishes by the bounded convergence theorem (together
with (1.7) and Corollary 1.15), while the second term on the right can be bounded by
C log logn

logn + C
M2 by Lemma 3.7. Therefore, taking first n→∞ and then M →∞ completes

the proof.
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4 Transient RWCRE when κ = 2: arbitrary cooling

In this section we will give the proof of Theorem 1.16. We will prove that the limiting
distribution is Gaussian by proving that for any subsequence nj →∞ there is a further

subsequence njk along which
Xnjk

−E[Xnjk
]

βnjk
snjk

⇒ Φ. Therefore, at several times throughout

the proof we will be able to assume that some nice additional property holds by passing
to a subsequence along which it is true.

Before starting the proof of Theorem 1.16 we will introduce some notation and give a
brief idea of the proof. Our starting point for the analysis of the distribution of Xn is the
decomposition into sums of increments of independent copies of RWRE as in (1.10). We
will analyze this sum by separating the terms in the sum into the “large” and the “small”
terms. The small terms will be those whose variance makes up a negligible fraction of
the total variance of the sum, and the large terms will be the remaining terms. To be
more precise, let

s2
n = Var(Xn) =

`n+1∑
k=1

σ2
k,n, where σ2

k,n = Var(ZTk,n),

and then for any δ > 0 and n ≥ 1 let

I+
n,δ =

{
k ∈ {1, 2, . . . , `n + 1} : σ2

k,n > δs2
n

}
,

and I−n,δ =
{
k ∈ {1, 2, . . . , `n + 1} : σ2

k,n ≤ δs2
n

}
.

Finally, letting

Z+
n,δ =

∑
k∈I+n,δ

(Z
(k)
Tk,n
− E[ZTk,n ]) and Z−n,δ =

∑
k∈I−n,δ

(Z
(k)
Tk,n
− E[ZTk,n ])

we can rewrite Xn − E[Xn] = Z+
n,δ + Z−n,δ. The main idea is then to show that, after

appropriate scaling, both Z+
n,δ and Z−n,δ are approximately Gaussian (unless the set I+

n,δ

or I−n,δ is empty in which case one only needs that the non-zero term is approximately
Gaussian). Unfortunately, this argument doesn’t quite work for a fixed δ as our analysis
of the small terms will actually require δ to vanish as n→∞. That is, we will show that
there exists a sequence δn → 0 such that both Z+

n,δn
and Z−n,δn converge in distribution

to Gaussians when properly scaled. Since Z+
n,δn

and Z−n,δn are independent this will then
imply that Xn − E[Xn] converges to a Gaussian when properly scaled. Finally, we note
that as part of our proof we will show that the proper scaling ends up differing from
sn =

√
Var(Xn) by a multiplicative factor which asymptotically lies in [β, 1], where the

constant β is defined in (1.17).
Having outlined the general strategy, we will now begin proving some lemmas which

complete the main steps of the proof.
Gaussian convergence for the large parts. The first step is to prove the convergence
of the sums over only the large cooling intervals. We cannot simply claim that Z+

n,δ ⇒ Φ

as n → ∞ since it could be that I+
n,δ = ∅ for infinitely many n. However, the following

lemma show that Z+
n,δ is approximately Gaussian whenever the set I+

n,δ is not empty.

Lemma 4.1. For any δ > 0 and n ≥ 1 let s2
n,δ,+ := Var(Z+

n,δ). If nj →∞ is a subsequence

such that snj ,δ,+ > 0 (or equivalently I+
nj ,δ
6= ∅) for all large j then

Z+
nj ,δ

snj ,δ,+
=⇒
j→∞

βΦ. (4.1)
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Proof. We begin by noting that if snj ,δ,+ > 0 then we can write

Z+
nj ,δ

snj ,δ,+
=

∑
k∈I+nj,δ

σk,nj
snj ,δ,+

Z̃
(k)
Tk,nj

σk,nj
.

Since the set I+
n,δ can contain at most 1

δ elements, by passing to a subsequence if
needed we can assume without loss of generality that there is an integer 1 ≤ m ≤
1
δ such that |I+

nj ,δ
| = m for all j; that is, the sum in the decomposition has exactly

m terms. It then follows from the limiting distribution for the RWRE in (1.17) that
{Z̃(k)

Tk,nj
/σk,nj}k∈I+nj,δ

⇒ {βΦi}1≤i≤m, where the Φi are i.i.d. standard Gaussian random

variables.4 The claimed convergence in (4.1) then follows from this, together with the
observation that

∑
k∈I+nj,δ

(
σk,nj
snj,δ,+

)2 = 1.

Corollary 4.2. There exists a sequence δn → 0 such that either (1) s+
n,δn

= 0 for all n
large, or (2) for any subsequence nj →∞ such that snj ,δnj ,+ > 0 for all but finitely many
j we have

Z+
nj ,δnj

snj ,δnj ,+
=⇒
j→∞

βΦ.

Proof. Let d be a metric on the space of Borel probability measures onR that is consistent
with the topology of weak convergence (e.g., the Levy metric), and in a slight abuse of
notation for random variables X and Y with distributions µX and µY , respectively, we
will use d(X,Y ) in place of d(µX , µY ). With this notation, for any n ≥ 1 and δ > 0 we can
let

εn,δ =

d
(
Z+
n,δ

sn,δ,+
, βΦ

)
if sn,δ,+ > 0

0 if sn,δ,+ = 0.

It follows from Lemma 4.1 that limn→∞ εn,δ = 0, for any fixed δ > 0. Let m0 = 0

and define integers mj for j ≥ 1 inductively as follows. Let mj > mj−1 be such that
εn,1/j < 1/j for all n > mj . Let δn = 1 for n < m1 and if mj ≤ n < mj+1 for some j ≥ 1

then δn = 1/j. For this sequence δn we have limn→∞ εn,δn = 0, and this completes the
proof of the corollary.

Let the sequence δn → 0 be chosen as in Corollary 4.2. In general we would like to
prove that Z−n,δn properly scaled also converges to a centered Gaussian, but in fact this

isn’t necessarily true if Var(Z−n,δn) doesn’t grow to∞. However, the following corollary
shows that in this case we already have the limiting distribution we are after because
only the large parts will be relevant in the limit.

Corollary 4.3. For any δ > 0 let sn,δ,− := Var(Z−n,δ). If δn is the sequence from Corol-

lary 4.2 and nj →∞ is a subsequence such that limj→∞
snj,δnj ,−

snj
= 0, then

Xnj − E[Xnj ]

βsnj
=⇒
j→∞

Φ.

Proof. Since s2
n = s2

n,δn,− + s2
n,δn,+

, the assumption that snj ,δnj ,−/snj → 0 implies that

lim
j→∞

snj ,δnj ,+

snj
= 1. (4.2)

4Note here that we are using that Tk,n is large if k ∈ I+n,δ . Indeed, it follows from Corollary 1.15 and the

definition of I+n,δ that k ∈ I+n,δ implies that Tk,n log(Tk,n) ≥ Cδs2n for some C > 0.
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Next we write the decomposition

Xnj − E[Xnj ]

βsnj
=
Z−nj ,δnj
βsnj

+
Z+
nj ,δnj

βsnj
.

The variance of the first term on the right vanishes as j → ∞ by the assumption on
the subsequence nj in the statement of the corollary, and the second term converges in
distribution to a standard Gaussian by (4.2) and Corollary 4.2.

Gaussian convergence for the small parts. Due to Corollary 4.3, we will only need
to consider the limiting distributions Xn along subsequences nj such that

lim inf
j→∞

snj ,δnj ,−

snj
= θ ∈ (0, 1]. (4.3)

The following lemma shows that under this assumption Z−nj ,δnj converges to a Gaussian,

but determining the proper scaling to get a standard Gaussian limit is quite delicate.

Lemma 4.4. Let δn → 0 and assume that nj is a subsequence such that (4.3) holds.
Then,

Z−nj ,δnj
s̃nj ,δnj

⇒ Φ,

where for any n ≥ 1 and δ > 0

s̃2
n,δ = Var

 ∑
k∈I−n,δ

Z̃
(k)
Tk,n

1Ak,n

 and Ak,n =

{
|Z̃(k)
Tk,n
| ≤ sn√

log sn
∨
√
Tk,n log4 Tk,n

}
.

(4.4)

Proof. For simplicity of notation, we will give the proof under the assumption that (4.3)
holds without taking a subsequence. That is,

lim inf
n→∞

sn,δn,−
sn

= θ ∈ (0, 1]. (4.5)

We begin by decomposing

Z−n,δn
s̃n,δn

=
1

s̃n,δn

∑
k∈I−n,δn

(
Z̃

(k)
Tk,n

1Ak,n − E
[
Z̃

(k)
Tk,n

1Ak,n
])

(4.6)

+
1

s̃n,δn

∑
k∈I−n,δn

(
Z̃

(k)
Tk,n

1Ack,n − E
[
Z̃

(k)
Tk,n

1Ack,n
])
. (4.7)

We will prove that (4.6) converges in distribution to a standard Gaussian while (4.7)
converges in distribution to zero.
Proof that (4.7) is negligible. We will show that (4.7) converges to zero in L1. To this
end, note first of all that

E


∣∣∣∣∣∣∣
∑

k∈I−n,δn

(
Z̃

(k)
Tk,n

1Ack,n − E
[
Z̃

(k)
Tk,n

1Ack,n
])∣∣∣∣∣∣∣
 ≤ 2

∑
k∈I−n,δn

E
[
|Z̃Tk,n |1Ack,n

]
.

Since |Z̃(k)
Tk,n
| ≤ 2Tk,n, the event Ack,n is empty if 2Tk,n <

sn√
log sn

. Therefore, we need only

consider the terms in the sum where Tk,n ≥ sn
2
√

log sn
≥ √sn. For these terms we can use
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Lemma 3.6 to bound the sum by∑
k∈I−n,δn

E
[
|Z̃Tk,n |1Ack,n

]
≤ C

∑
k∈I−n,δn
Tk,n≥

√
sn

Tk,n(
sn√

log sn

)

≤ C
√

log sn
sn

∑
k∈I−n,δn
Tk,n≥

√
sn

σ2
k,n

log Tk,n
≤ C

sn
√

log sn

`n+1∑
k=1

σ2
k,n = C

sn√
log sn

,

where in the second inequality we used that Corollary 1.15 implies that there is a
constant C such that Tk,n log Tk,n ≤ Cσ2

k,n, and in the third inequality we used that
Tk,n ≥

√
sn implies that log Tk,n ≥ (1/2) log sn. Thus, to complete the proof that (4.7)

converges to zero in L1, we need only to show that limn→∞
sn

s̃n,δn
√

log sn
= 0. In fact, we

will show that

lim inf
n→∞

s̃n,δn
sn,δn,−

≥ β, (4.8)

which combined with our assumption (4.5) is enough to show that limn→∞
sn

s̃n,δn
√

log sn
= 0.

To prove (4.8), note first of all that s̃2
n,δn

=
∑
k∈I−n,δn

Var
(
Z̃

(k)
Tk,n

1Ak,n
)

and that s2
n,δn,− =∑

k∈I−n,δn
σ2
k,n so that it is enough to show that

lim inf
n→∞

inf
k∈I−n,δn

Var
(
Z̃

(k)
Tk,n

1Ak,n
)

σ2
k,n

≥ β2. (4.9)

To this end, first note that Var
(
Z̃

(k)
Tk,n

1Ak,n
)

= σ2
k,n if Tk,n ≤

√
sn since as noted above

1Ak,n ≡ 1 in this case. Thus, we need only to get a good bound on Var
(
Z̃

(k)
Tk,n

1Ak,n
)

when

Tk,n ≥
√
sn. For this, note that

Var
(
Z̃

(k)
Tk,n

1Ak,n
)

= E
[
(Z̃

(k)
Tk,n

)21Ak,n
]
− E

[
Z̃

(k)
Tk,n

1Ak,n
]2

= E
[
(Z̃

(k)
Tk,n

)21Ak,n
]
− E

[
Z̃

(k)
Tk,n

1Ack,n
]2

≥ E
[
(Z̃Tk,n)21|Z̃Tk,n |≤

√
Tk,n log4 Tk,n

]
− E

[
|Z̃Tk,n |1|Z̃Tk,n |>

√
Tk log4 Tk,n

]2
≥ E

[
(Z̃Tk,n)21|Z̃Tk,n |≤

√
Tk,n log4 Tk,n

]
− C Tk,n

log8 Tk,n
, (4.10)

where the second equality follows from the fact that E
[
Z̃

(k)
Tk

1Ak,n
]

= −E
[
Z̃

(k)
Tk

1Ack,n
]

since E[Z̃Tk ] = 0, and the last inequality follows from Lemma 3.6. Recall that we only
need to use the lower bound (4.10) when Tk ≥

√
sn and note that (1.16) and Lemma 3.8

imply that

lim
n→∞

E
[
(Z̃n)21|Z̃n|≤√n log4 n

]
Var(Zn)

= β2.

This completes the proof of (4.9) and thus also the proof that (4.7) converges to zero in
L1.
Proof of convergence of (4.6). To prove the convergence of (4.6) to a standard
Gaussian we will use the Lindeberg-Feller CLT. Since the normalization s̃n,δn is chosen
so that (4.6) has variance 1 and since assumption (4.5) together with (4.8) implies that
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s̃n,δn →∞, we need only to check the Lindeberg condition; that is, for any ε > 0

lim
n→∞

1

s̃2
n,δn

∑
k∈I−n,δn

E

[(
Z̃

(k)
Tk,n

1Ak,n − E
[
Z̃

(k)
Tk,n

1Ak,n
])2

1∣∣∣Z̃(k)
Tk,n

1Ak,n−E
[
Z̃

(k)
Tk,n

1Ak,n
]∣∣∣>εs̃n,δn

]
=0.

However, by (4.5) and (4.8) it is enough to prove the above statement with s̃n,δn replaced
by sn. That is, we need to show for any ε > 0 that

lim
n→∞

1

s2
n

∑
k∈I−n,δn

E

[(
Z̃

(k)
Tk,n

1Ak,n − E
[
Z̃

(k)
Tk,n

1Ak,n
])2

1∣∣∣Z̃(k)
Tk,n

1Ak,n−E
[
Z̃

(k)
Tk,n

1Ak,n
]∣∣∣>εsn

]
= 0.

(4.11)
To obtain a simple bound on the expectation above, note that

E
[
(Y − µ)21|Y−µ|>a

]
≤ 2E

[
Y 21|Y |>a/2

]
+ 2µ2, if |µ| < a

2
.

To apply this simple bound to the expectations in (4.11) we need to check that

E
[
Z̃

(k)
Tk,n

1Ak,n
]
≤ εsn

2
, ∀k ∈ I−n,δn . (4.12)

It follows from Lemma 3.6 that E
[
Z̃

(k)
Tk,n

1Ak,n
]
≤ C

Tk,n
sn/
√

log sn
. Also, note that by Corol-

lary 1.15 there is a constant C such that k ∈ I−n,δn implies that Tk,n log Tk,n ≤ Cσ2
k,n ≤

Cδns
2
n, and thus C Tk,n

sn/
√

log sn
≤ εsn

2 for all n large enough and k ∈ I−n,δn . This completes
the verification of (4.12), and thus to check (4.11) it is enough to prove for all ε > 0 that

lim
n→∞

1

s2
n

∑
k∈I−n,δn

{
E

[
(Z̃

(k)
Tk,n

)21
Ak,n∩{|Z̃(k)

Tk,n
|>εsn}

]
+ E

[
Z̃

(k)
Tk,n

1Ak,n
]2}

= 0. (4.13)

For the first expectation inside the sum in (4.13), note that for n sufficiently large (so
that 1/

√
log sn < ε) we have

Ak,n ∩
{
|Z̃(k)
Tk,n
| > εsn

}
=

{
εsn < |Z̃(k)

Tk,n
| ≤ sn√

log sn
∨
√
Tk,n log4 Tk,n

}
=
{
εsn < |Z̃(k)

Tk,n
| ≤

√
Tk,n log4 Tk,n

}
,

and thus

E

[
(Z̃

(k)
Tk,n

)21
Ak,n∩{|Z̃(k)

Tk,n
|>εsn}

]
≤ E

[
Z̃2
Tk,n

1
εsn<|Z̃Tk,n |≤

√
Tk,n log4 Tk,n

]
.

Note that this shows that the expectation above is zero unless
√
Tk,n log4 Tk,n > εsn, and

since for n large enough we have εsn ≥
√
sn log4 sn, we can conclude that the above

expectation is zero unless Tk,n > sn. To bound this truncated second moment in the
case Tk > sn we would like to use Lemma 3.7, but to apply this we need to first check
that that εsn >

√
Tk log Tk. However, it follows from Theorem 1.15 and the definition of

I−n,δn that for n sufficiently large we have Tk,n log Tk,n ≤ Cδns
2
n ≤ ε2s2

n for all k ∈ I−n,δn .

Therefore, we can conclude for n large and k ∈ I−n,δn that

E

[
(Z̃

(k)
Tk,n

)21
Ak,n∩{|Z̃(k)

Tk,n
|>εsn}

]
≤ C

(
Tk,n log log Tk,n +

T 2
k,n log2 Tk,n

ε2s2
n

)
1Tk,n>sn

≤ Cσ2
k,n

(
log log Tk,n

log Tk,n
+
σ2
k,n

εs2
n

)
1Tk,n>sn

≤ Cσ2
k,n

(
log log sn

log sn
+
δn
ε

)
. (4.14)
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For the second expectation in the sum in (4.13), recall that if Tk,n ≤
√
sn then Ack,n = ∅

and thus this expectation is zero. On the other hand, since

|E[Z̃
(k)
Tk,n

1Ak,n ]| = |E[Z̃
(k)
Tk,n

1Ack,n ]| ≤ E[|Z̃Tk,n |1|Z̃Tk,n>
√
Tk,n log4 Tk,n

],

we can also use Lemma 3.6 to obtain the bound

E[Z̃
(k)
Tk,n

1Ak,n ]2 ≤ CTk,n

log8 Tk,n
1Tk,n>√sn ≤

Cσ2
k,n

log9 Tk,n
1Tk,n>√sn ≤

Cσ2
k,n

log9 sn
. (4.15)

Combining the estimates in (4.14) and (4.15) and noting
∑
k∈I−n,δn

σ2
k,n ≤

∑`n+1
k=1 σ2

k,n = s2
n,

one obtains (4.13). This completes the verification of the Lindeberg condition and
completes the proof of the lemma.

Having completed the preparatory steps, we are now ready to give the proof of
Theorem 1.16.

Proof of Theorem 1.16. Let δn → 0 be as in Corollary 4.2 and let

b2n =
β2s2

n,δn,+
+ s̃2

n,δn

s2
n

. (4.16)

Note that since

Var
(
Z̃

(k)
Tk,n

1Ak,n
)
≤ E

[(
Z̃

(k)
Tk,n

)2

1Ak,n

]
≤ E

[(
Z̃

(k)
Tk,n

)2
]

= σ2
k,n,

we have that s̃2
n,δn

≤ s2
n,δn,−, and because s2

n = s2
n,δn,+

+ s2
n,δn,− and β < 1, it then

follows that bn ≤ 1 for all n. Moreover, since we have shown that (4.8) holds whenever
lim infn→∞

sn,δn,−
sn

> 0, we can also conclude that lim infn→∞ bn ≥ β. Therefore, if we can
prove that

Xn − E[Xn]

bnsn
=⇒
n→∞

Φ, (4.17)

then the conclusion of Theorem 1.16 will hold with βn = bn ∨ β.
We will prove (4.17) by proving that every subsequence has a further subsequence

that converges to a standard Gaussian. To this end, let nj →∞ be a fixed subsequence
and consider the following cases.

Case 1: lim infj→∞
snj,δnj ,−

snj
= 0. By passing to a further subsequence we can assume

that limj→∞
snj,δnj ,−

snj
= 0. It then follows from Corollary 4.3 that

Xnj−E[Xnj ]

βsnj
⇒ Φ.

Since s̃n,δn ≤ sn,δn,− always holds, then the definition of bn and the assumption on the

subsequence in this case implies that
bnj snj
βsnj

→ 1 as j →∞, so that
Xnj−E[Xnj ]

bnj snj
⇒ Φ as

j →∞.
Case 2: snj ,δnj ,+ = 0 for infinitely many j ≥ 1. In this case, by passing to a further

subsequence we can assume that snj ,δnj ,+ = 0 for all j, in which case Xnj − E[Xnj ] =

Z−nj ,δnj , snj ,δnj ,− = sn, and bnjsnj = s̃nj ,δnj so that Lemma 4.4 implies that

Xnj − E[Xnj ]

bnjsnj
=
Z−nj ,δnj
s̃nj ,δnj

=⇒
j→∞

Φ.

Case 3: lim infj→∞
snj,δnj ,−

snj
> 0 and snj ,δnj ,+ > 0 for all but finitely many j. Since

snj ,δnj ,+ > 0 for all j large enough we can decompose

Xnj − E[Xnj ]

bnjsnj
=
βsnj ,δnj ,+

bnjsnj

Z+
nj ,δnj

βsnj ,δnj ,+
+
s̃nj ,δnj
bnjsnj

Z−nj ,δnj
s̃nj ,δnj

. (4.18)
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Corollary 4.2 implies that
Z+
nj,δnj

βsnj,δnj ,+
⇒ Φ, and Lemma 4.4 gives that

Z−nj,δnj
s̃nj,δnj

⇒ Φ also.

Also, the two terms on the right side of (4.18) are independent random variables and the
squares of the coefficients of the two terms sum to 1 by the definition of bn. This implies
that the right side of (4.18) converges to Φ in distribution as j →∞.

A disadvantage to the above proof of Theorem 1.16 is that the formula for the scaling
multiple βn depends on the choice of the sequence δn → 0 in Corollary 4.2 which is non-
explicit. The following lemma gives another sequence that is asymptotically equivalent
to the scaling constants used in the proof above, but which has the advantage of not
relying on the choice of δn and thus which can be used to compute the scaling constants
βn for certain choices of cooling maps.

Lemma 4.5. The sequence βn in Theorem 1.16 can be chosen as

βn = b̃n ∨ β, where b̃n =

∑`n+1
k=1 Var

(
Z̃Tk,n1Ak,n

)
s2
n

, (4.19)

and where the set Ak,n is defined as in (4.4).

Proof. Comparing (4.19) with (4.16) and (4.4), we see that it’s enough to prove that

lim
n→∞

sup
k∈I+n,δn

∣∣∣∣∣∣
Var

(
Z̃

(k)
Tk,n

1Ak,n

)
β2σ2

k,n

− 1

∣∣∣∣∣∣ = 0, (4.20)

where again δn is the sequence from Corollary 4.2 (if I+
n,δn

= ∅ then the supremum in the
display above is by convention taken to be zero). Note that we are always free to pick
the sequence δn → 0 slow enough so that δn ≥ 1

log sn
. If this is the case, then for n large

enough and k ∈ I+
n,δn

we have that

sn√
log sn

≤
√
δns2

n ≤ σk,n ≤ C
√
Tk,n log Tk,n ≤

√
Tk,n log4 Tk,n.

Therefore, for n large enough and k ∈ I+
n,δn

we have

Var
(
Z̃

(k)
Tk,n

1Ak,n

)
= Var

(
Z̃

(k)
Tk,n

1|Z̃(k)
Tk,n
|≤
√
Tk,n log4 Tk,n

)
, and Tk,n ≥

s2
n

log5 sn
.

From this, it follows that for n large enough we have

sup
k∈I+n,δn

∣∣∣∣∣∣
Var

(
Z̃

(k)
Tk,n

1Ak,n

)
β2σ2

k,n

− 1

∣∣∣∣∣∣ ≤ sup

m≥ s2n
log5 sn

∣∣∣∣∣∣
Var

(
Z̃m1|Z̃m|≤√m log4m

)
β2 Var(Zm)

− 1

∣∣∣∣∣∣ ,
and then (4.20) follows from this together with Lemma 3.8.

5 Examples

In this section we consider specific cooling maps that display interesting/illustrative
behaviour in the study of the limit distribution of RWCRE in the subbalistic (κ ∈ (0, 1))
and in the Gaussian critical (κ = 2) regime. To explore the features of RWCRE, we
consider both regular cooling maps (maps for which Tk = τk − τk−1 admits an asymptotic
behavior) as well as some cooling maps with more irregular behavior.
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5.1 Sub-balistic regime

For the examples in this subsection we will assume that the distribution µ on environ-
ments is κ-regular with κ ∈ (0, 1).

Example 5.1 (Polynomial cooling when κ ∈ (0, 1)). Let Tk ∼ Akα for some constants
A,α > 0. Since Tk →∞ we can use Corollary 1.11 to determine the limiting distributions.
It is easy to check for this example that maxk λ̃τ,n(k) ≤ C√

`n
→ 0, and thus we can

conclude that Xn−E[Xn]√
Var(Xn)

⇒ Φ. Moreover, we can use Theorem 1.10 to replace the scaling

by the standard deviation of Xn with a more explicit scaling in this case. Indeed, using
Var(Zn) ∼ σMn2κ we have in this case that

Var(Xn) =

`n∑
k=1

Var(Z
(k)
Tk

) + Var(Z
(`n+1)
n−τ(`n)) ∼

σ2
MA

2κ

2ακ+ 1
`2ακ+1
n , as n→∞.

Since `n ∼
(
α+1
A

) 1
α+1 n

1
α+1 we can then conclude that

Xn − E[Xn]

σA,αn
2ακ+1
2(α+1)

=⇒
n→∞

Φ, where σ2
A,α =

σ2
MA

2κ

2ακ+ 1

(
α+ 1

A

) 2ακ+1
α+1

.

Note that the scaling exponent 2ακ+1
2(α+1) converges to 1

2 as α → 0 and to κ as α → ∞ (if

κ = 1/2 then the scaling exponent is always to 1/2 for all α > 0).

Example 5.2 (Exponential cooling when κ ∈ (0, 1)). Let Tk ∼ Ceck for C, c > 0. Again we
can use Corollary 1.11 to determine the limiting distributions. In this case one can only
obtain limiting distributions along certain subsequences, but the limiting distribution
is always a sum of independent (normalized) Mittag-Leffler random variables. For
simplicity we will only describe the limiting distribution along the subsequence nj = τ(j).
For this choice of nj we have

(Vnj )
2 =

j∑
k=1

(Tk)2κ ∼
j∑

k=1

(Ceck)2κ ∼ (Cec)2κ

e2cκ − 1
e2cκj , as j →∞.

Since for k ≥ 1 fixed and j large enough we have that λ̃↓τ,nj (k) =
(Tj−k+1)κ

Vnj
, it follows that

lim
j→∞

λ↓τ,nj (k) = λc,∗(k) :=

√
(θ−2
c − 1) (θc)

k, ∀k ≥ 1, where θc = e−cκ.

Since
∑
k≥1(λc,∗(k))2 = 1 we can conclude from Corollary 1.11 that

Xnj − E[Xnj ]√
Var(Xnj )

=⇒
j→∞

(
M̂κ

)⊗λc,∗
. (5.1)

We can also obtain more explicit centering and scaling terms for this example. Indeed, it
follows from Theorem 1.10 that E[Xnj ] ∼

µM(Cec)κ

ecκ−1 ecκj and
√

Var(Xnj ) ∼
σM(Cec)κ√
e2cκ−1

ecκj ,

and since nj = τ(j) ∼ Cec

ec−1e
cj implies that (Cec)κecκj ∼ (ec − 1)κnκj we can re-write

these asymptotics as E[Xnj ] ∼
µM(ec−1)κ

ecκ−1 nκj and
√

Var(Xnj ) ∼
σM(ec−1)κ√

e2cκ−1
nκj . Since∑

k≥1 λc,∗(k) =
√
e2cκ−1
ecκ−1 , we have by Remark 1.13 that we can remove the centering

terms from both the left and right sides of (5.1). Finally, since
√

Var(Xnj )

nκj
→ σM(ec−1)κ√

e2cκ−1

we obtain the simplified form of the limiting distribution where the scaling is the same
as in the RWRE case

Xnj

nκj
=⇒
j→∞

(ec − 1)κ√
e2cκ − 1

∞∑
k=1

λc,∗(k)M(k)
κ = (ec − 1)κ

∞∑
k=1

e−cκkM(k)
κ .
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Example 5.3 (super exponential cooling when κ ∈ (0, 1)). If log(Tk) ∼ eck for some
c > 0, then all subsequential limits are a linear combination of one or two independent
Mittag-Leffler random variables. To give a specific example consider the cooling map
with τ(j) = 22j for j ≥ 1. Then, fix a parameter θ ≥ 0 and consider the subsequence
nj = b(1 + θ)22jc. Note that for j large enough we have τ(j) ≤ nj < τ(j + 1), so that the

representation in (1.10) becomes Xnj
Law
=
∑j
k=1 Z

(k)
Tj

+Z
(j+1)

bθ22j c
. One can show that only the

last two terms in the sum on the right survive in the limiting distribution. Indeed, since
the variance asymptotics in Theorem 1.10 imply that Var(Xn) ∼ Var(ZTj )+Var(Zbθ22j c) ∼
σ2
M(1 + θ2κ)n2κ

j , we can then apply Corollary 1.11 to get

Xnj − E[Xnj ]√
Var(Xnj )

=⇒
j→∞

1√
1 + θ2κ

(
M

(1)
κ − µM

σM

)
+

θκ√
1 + θ2κ

(
M

(2)
κ − µM

σM

)
.

Finally, since the mean and variance asymptotics in Theorem 1.10 imply that E[Xnj ] ∼
µM(1 + θκ)nκj and

√
Var(Xnj ) ∼ σM

√
1 + θ2κnκj we can rewrite the limiting distribution

above as
Xnj

nκj
=⇒
j→∞

M(1)
κ + θκM(2)

κ .

Example 5.4 (Mixtures of Mittag-Leffler and Gaussian when κ ∈ (0, 1)). The basic idea
to build mixtures of Mittag-Leffler random variables with Gaussian is to build a cooling
map by interweaving a fast growing cooling map where the limiting distribution is a
sum of Mittag-Leffler distributions with a slow growing cooling map where the limiting
distribution is Gaussian. To give a specific example of this, let τ be the cooling map with
cooling intervals given by

T2i =
⌊
2(i−1)/(2κ)

⌋
for i ≥ 1, and Tk = 1 if k /∈ {2i : i ∈ N}.

We will compute the limiting distribution along the subsequence nj = τ(2j). To this end,
first note that from Theorem 1.10 that

Var(Xnj ) =

j∑
i=1

Var
(
Zb2(i−1)/(2κ)c

)
+ (2j − j) Var(Z1)

∼
j∑
i=1

σ2
M2i−1 + 2j Var(Z1) ∼

(
σ2
M + Var(Z1)

)
2j , as j →∞.

Moreover, since the k-th largest cooling interval among the first 2j cooling intervals is
T2j−k+1 = b2(j−k)/(2κ)c we get that for any fixed k ≥ 1,

lim
j→∞

λ↓τ,nj (k) = lim
j→∞

√
Var

(
Zb2(j−k)/(2κ)c

)
Var(Xnj )

=

√
σ2
M

σ2
M + Var(Z1)

2−k/2 =: λ∗(k).

Since a(λ∗) =
(

Var(Z1)
σ2
M+Var(Z1)

)1/2

∈ (0, 1), we get in this case that the limiting distribution

is a mixture of sums of independent Mittag-Leffler random variables and an independent
Gaussian. More precisely,

Xnj − E[Xnj ]√
Var(Xnj )

=⇒
j→∞

(
M̂κ

)⊗λ∗
+

(
Var(Z1)

σ2
M + Var(Z1)

)1/2

Φ.

Example 5.5 (Arbitrary mixtures of Mittag-Leffler and Gaussian when κ ∈ (0, 1)). A
natural question is whether or not given some λ∗ ∈ `2 with

∑
k≥1 λ∗(k)2 ≤ 1 one can find
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a cooling map and a subsequence nj →∞ such that one has a limiting distribution of

the form
(
M̂κ

)⊗λ∗
+ a(λ∗)Φ as in (1.13). In this example we give algorithms showing

how this can indeed be done.
Without loss of generality, we may always assume that λ∗(k) is non-increasing in k.

Our algorithm will be slightly different depending on whether or not λ∗(k) is eventually
zero. In both cases, however, we will use an iterative method to construct a cooling map
τ along with a sequence {Nj}j≥1, and then we will let nj = τ(Nj) for j ≥ 1. The cooling
map will have the property that limk→∞ Tk =∞ so that we may apply Corollary 1.11 to
identify the subsequential limiting distribution.
Case I: λ∗(k) > 0 for all k ≥ 1. We begin by defining the sequence {Nj}j≥1 by letting
N0 = 0 and then letting

Nj = Nj−1 + j +Kj , where Kj =

⌊(
a(λ∗)

λ∗(j)

)2
⌋
, j ≥ 1.

Before constructing the cooling map, we recall the scaling factor Vn defined in Corol-
lary 1.11 and let V0 = 1 and

Vj = Vτ(Nj) =

√∑
k≤Nj

(Tk)2κ, j ≥ 1. (5.2)

We will now define the cooling intervals {Tk}k≥1 as follows. Since each integer k ≥ 1 is
in a unique interval (Nj−1, Nj ] for some j ≥ 1 we let

Tk =


⌈(

Vj−1λ∗(`)
λ∗(j)

)1/κ
⌉

if k = Nj−1 + ` for some ` = 1, 2, . . . j⌈
V

1/κ
j−1

⌉
if Nj−1 + j < k ≤ Nj .

Now, it follows easily from (5.2) and our assumption that λ∗ is non-increasing that for
j ≥ ` ≥ 1 we have maxk≤Nj−1 Tk ≤ V

1/κ
j−1 ≤ TNj−1+j ≤ TNj−1+`, and thus (recalling the

definition of λ̃τ,n in Corollary 1.11) we can conclude that λ̃↓τ,nj (`) = λ̃τ,nj (Nj−1 + `) =
(TNj−1+`)

κ

Vj
for j ≥ `. Using this we can then conclude that for ` ≥ 1 fixed we have that

lim
j→∞

λ̃↓τ,nj (`) = lim
j→∞

⌈(
Vj−1λ∗(`)
λ∗(j)

)1/κ
⌉κ

√
V2
j−1 +

∑
i≤j

⌈(
Vj−1λ∗(i)
λ∗(j)

)1/κ
⌉2κ

+Kj

⌈
V

1/κ
j−1

⌉2κ

= lim
j→∞

λ∗(`)√
λ∗(j)2 +

∑
i≤j λ∗(i)

2 + a(λ∗)2

=
λ∗(`)∑

i≥1 λ∗(i)
2 + a(λ∗)2

= λ∗(`),

where in the last equality we used that a(λ∗)
2 = 1−

∑
i≥1 λ∗(i)

2.
Case II: there is a k0 ≥ 1 such that λ∗(k) > 0 ⇐⇒ k ≤ k0. The algorithm is very
similar in this case, but with the following changes. Now we define the sequence {Nj}j≥1

by

Nj = Nj−1 + k0 +Kj , where Kj =
⌊
(j a(λ∗))

2
⌋
, j ≥ 1,

and for k ∈ (Nj−1, Nj ] we let the cooling interval

Tk =


⌈
(jVj−1λ∗(`))

1/κ
⌉

if k = Nj−1 + ` for some ` = 1, 2, . . . k0⌈
V

1/κ
j−1

⌉
if Nj−1 + k0 < k ≤ Nj .
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Next, since for j ≥ 1/λ∗(k0) we have

max
k≤Nj−1

Tk ≤ V
1/κ
j−1 ≤ (jVj−1λ∗(k0))

1/κ ≤ TNj−1+k0 ≤ TNj−1+`, for 1 ≤ ` ≤ k0, (5.3)

it follows that for any 1 ≤ ` ≤ k0 we have λ̃↓τ,nj (`) = λ̃τ,nj (Nj−1 + `) for all j sufficiently
large and thus

lim
j→∞

λ̃↓τ,nj (`) = lim
j→∞

⌈
(jVj−1λ∗(`))

1/κ
⌉κ

√
V2
j−1 +

∑
i≤k0

⌈
(jVj−1λ∗(i))

1/κ
⌉2κ

+
⌊
(ja(λ∗))

2
⌋ ⌈

V
1/κ
j−1

⌉2κ

= lim
j→∞

λ∗(`)√
1
j2 +

∑
i≤k0 λ∗(i)

2 + a(λ∗)2

= λ∗(`).

Finally, we need to show that limj→∞ λ̃↓τ,nj (k) = 0 for all k > k0. For this it is of course

enough to show that limj→∞ λ̃↓τ,nj (k0 + 1) = 0. To this end, it follows from (5.3) that

λ̃↓τ,nj (k0 + 1) ≤
maxk≤Nj−1(Tk)κ

Vj
≤ Vj−1

Vj
,

and since it is easy to see that Vj ∼ jVj−1 as j →∞ then limj→∞ λ̃↓τ,nj (k0 + 1) = 0.

5.2 Gaussian critical regime

For the examples in this subsection we will assume that the distribution µ on envi-
ronments is 2-regular. The examples below demonstrate the various properties of the
sequence of scaling constants βn in Theorem 1.16 that can be obtained by changing the
cooling map τ . Recall that the scaling constants βn can be given by the formula in (4.19).
However, for this formula to be of practical use one needs some way of approximating
the truncated variance terms involved. To this end, one can use the following result
which follows from the tail bounds for Z̃n in Section 3.3.

Corollary 5.6. Let (Zn)n≥0 be a RWRE with a 2-regular distribution µ on environments.
Then,

lim
n→∞

sup
x≥
√
n log4 n

∣∣∣∣∣∣ Var(Z̃n1|Z̃n|≤x)

b2n log n+ 2K0vn log
(
x∧(nv/2)√

n

) − 1

∣∣∣∣∣∣ = 0.

The proof of Corollary 5.6 is straightforward (using similar methods as in the proofs
of Lemmas 3.7 and 3.8), but is rather tedious. Since Corollary 5.6 is needed only for the
justifying the computations of βn in the examples below, we give its proof in Appendix B.

The first two examples give families of cooling maps which show that we cannot
change the condition in Theorem 1.16 that βn ∈ [β, 1] to a smaller interval.

Example 5.7 (Polynomial cooling when κ = 2). If Tk ∼ Akα for some constants A,α > 0,
we claim that the scaling constants βn can be chosen to be equal to a constant σα ∈ (β, 1]

which depends only on α > 0. More precisely,

Xn − E[Xn]

σα
√

Var(Xn)
=⇒
n→∞

Φ, where σ2
α =

{
1 if α ≤ 1
b2+

K0v
α

b2+K0v
if α > 1.

(5.4)

(Note that σα ∈ (β, 1] for all α > 0 with σα → β as α→∞.) To simplify computations, we
first determine the scaling constants along the subsequence τ(n) of cooling times. It
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follows from the variance asymptotics in Corollary 1.15 that

s2
τ(n) = Var(Xτ(n)) ∼ (b2 +K0v)Aα

n∑
k=1

kα log k ∼ (b2 +K0v)Aα

α+ 1
nα+1 log n. (5.5)

A consequence of this is that maxk≤n
√
Tk log4 Tk ≤

sτ(n)√
log sτ(n)

for n sufficiently large, and

therefore using (4.19) we have that

β2
τ(n) ∼

∑n
k=1 Var

(
Z̃Tk1|Z̃Tk |≤ sn√

log sn

)
(b2+K0v)Aα

α+1 nα+1 log n
.

Since it follows from (5.5) that
sτ(n)√
log sτ(n)

∼ Cn
α+1
2 for some C, we can then use Corol-

lary 5.6 to deduce that

β2
τ(n) ∼

∑n
k=1

{
b2Tk log Tk + 2K0vTk log

(
n(α+1)/2∧Tk√

Tk

)}
(b2+K0v)Aα

α+1 nα+1 log n

∼

∑n
k=1

{
b2αkα log k +K0vk

α log
(
nα+1∧k2α

kα

)}
(b2+K0v)α

α+1 nα+1 log n
−→
n→∞

{
1 if α ≤ 1
b2+

K0v
α

b2+K0v
if α > 1.

(Note that in the second line we are replacing T k by kα instead of Akα inside the
logarithm of the second term since the multiplicative constant A inside the logarithm
doesn’t change the asymptotics.)

Thus, we have justified the formula for the scaling constant σα in (5.4), but only along
the subsequence τ(n). To justify the general limiting distribution, we decompose

Xn − E[Xn]

σα
√

Var(Xn)
=
Xτ(`n) − E[Xτ(`n)]

σα
√

Var(Xn)
+
Z

(`n+1)
n−τ(`n) − E[Zn−τ(`n)]

σα
√

Var(Xn)
.

One can then check that Var(Xn) ∼ Var(Xτ(`n)) and that Var(Zn−τ(`n)) = o(Var(Xn)) so
that the first term on the right converges to a standard Gaussian and the second term
on the right converges to zero in distribution. Finally, note that for this example one

can use Corollary 1.15 to show that Var(Xn) ∼ (b2+K0v)α
α+1 n log n, so that we can write

Xn−E[Xn]

cα
√
n logn

=⇒
n→∞

Φ where cα = σα

√
(b2+K0v)α

α+1 . However, since (1.19) does not hold for

polynomial cooling we cannot use Corollary 1.15 to justify replacing the centering term
E[Xn] by nv.

Example 5.8 (Exponential cooling when κ = 2). Let τ be a cooling map with exponentially
growing cooling intervals Tk ∼ erk for some r > 0. For this example the cooling intervals
grow fast enough that in the decomposition of the variance Var(Xn) =

∑`n+1
k=1 Var(ZTk,n),

only the “large” terms in the sum contribute to the asymptotics of the variance. More

precisely, using the notation from Section 3 we have that limδ→0 lim infn→∞
s2n,δ,+
s2n

= 1, or

equivalently limδ→0 lim supn→∞
s2n,δ,−
s2n

= 0. Then it follows from Corollary 4.3 that for this

example we have Xn−E[Xn]

β
√

Var(Xn)
=⇒
n→∞

Φ. Note that we can simplify the limiting distribution

in this example using the asymptotics of the mean and variance from Corollary 1.15.
Indeed, for exponential cooling it can easily be checked that (1.19) holds and also that∑
k Tk,n log(Tk,n) ∼ n log n, so that we can conclude that

Xn − nv
b
√
n log n

=⇒
n→∞

Φ,

for this example.
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While the above two examples show that one cannot restrict the scaling constants
to an interval smaller than [β, 1], these examples are all regular enough so that the
scaling constant can be a fixed constant and doesn’t need to oscillate with n. The
following gives an explicit example of a cooling map where one cannot obtain a limiting
distribution without letting βn depend on n. One can give somewhat simpler examples
which demonstrate this oscillation of βn, but the example below has lim infn→∞ βn = β

and lim supn→∞ βn = 1.

Example 5.9 (Full oscillation of multiplicative scaling constant βn). For i ≥ 1 let mi = 22i

and ri = imi = i22i . Then, let τ be the cooling map given by

Tri = mi, i ≥ 1, and Tk = 1 if k /∈ {ri : i ≥ 1}.

For a fixed t ≥ 0 we will consider the distribution of the RWCRE along the subsequence
nj = nj(t) = τ (rj + btmj log(mj)c). Note that for j large enough we have τ(rj) ≤ nj(t) <
τ(rj+1), and thus for j large enough we can decompose Xnj(t) − E[Xnj(t)] as

Xnj(t) − E[Xnj(t)] =

j∑
i=1

(
Z(ri)
mi − E[Zmi ]

)
+

∑
k≤rj+btmj log(mj)c

k/∈{ri:i≥1}

(Z
(k)
1 − E[Z1]). (5.6)

As j →∞, the variance of the first term on the right in (5.6) is asymptotic to

(b2 +K0v)

j∑
i=1

mi log(mi) ∼ (b2 +K0v)mj log(mj),

while the variance of the second term on the right is

(rj + btmj log(mj)c − j) Var(Z1) ∼

{
rj Var(Z1) if t = 0

tmj log(mj) Var(Z1) if t > 0.

Since the second term in (5.6) is a sum of i.i.d. random variables, it converges in
distribution to a standard Gaussian when scaled by its standard deviation, while for the
first term in (5.6) we can apply Theorem 1.16 to the cooling map τ ′ with increments
T ′k = mk = 22k to get that this sum converges to a standard Gaussian when scaled by β
times its standard deviation. From this we see that

Xnj(t) − E[Xnj(t)]

αt
√

Var(Xnj(t))
=⇒
j→∞

Φ, where α2
t =

b2 + tVar(Z1)

b2 +K0v + tVar(Z1)
.

Finally, note that α0 = β and αt ↗ 1 as t↗∞. This shows that in applying Theorem 1.16
to the cooling sequence τ in this example, not only does one need to let the scaling
constant βn vary with n, but also that the sequence βn will continue to oscillate through
the entire interval [β, 1].

A Technical results for the tail estimates

In this appendix we collect some results for sums of i.i.d. random variables that are
needed in Section 3. Some of these results may be already known, but we include them
here for completeness.

Lemma A.1. Assume ξ1 has mean zero, is bounded below by −L for some L > 0, and has
right tail decay P (ξ1 > x) = O(x−2). Then, there exists a constant C > 0 that depends
on the distribution of ξ1 such that

E[e−λξ1 ] ≤ eCλ
2| log λ|, for all λ ∈ (0, 1/e).
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Proof. Define ξ̂1 = ξ1 + L so that ξ̂1 is non-negative and E[ξ̂1] = L. We begin by noting
that

e−λLE[e−λξ1 ] = E[e−λξ̂1 ] = 1− λL+ E[e−λξ̂1 − 1 + λξ̂1]

= 1− λL+ λ

∫ ∞
0

(1− e−λx)P (ξ̂1 > x) dx

≤ 1− λL+ λ

∫ ∞
0

min{λx, 1}P (ξ̂1 > x) dx.

Since λ < 1, bounding the probability inside the integral by 1 when x < 1 and by Kx−2

when x ≥ 1 we obtain

e−λLE[e−λξ1 ] ≤ 1− λL+ λ2

∫ 1

0

xdx+Kλ2

∫ λ−1

1

x−1 dx+Kλ

∫ ∞
λ−1

x−2 dx

= 1− λL+
1

2
λ2 +Kλ2| log λ|+Kλ2

≤ exp

{
−λL+

(
2K +

1

2

)
λ2| log λ|

}
,

where in the last inequality we also used that λ ∈ (0, 1/e) implies that | log λ| > 1. Finally,
the proof is completed by multiplying both sides of the above inequality by eλL.

Corollary A.2. Let ξ1, ξ2, . . . be i.i.d. random variables which are bounded below and
have right tail decay P (ξ1 > x) = O(x−2). Then, for any a > 0 there exist constants
c, C ′ > 0 (depending on a) such that

P

(
n∑
i=1

ξi ≤ −x

)
≤ C ′e−c

x2

n logn , ∀x ∈ (0, an].

Proof. First of all, for any λ ∈ (0, 1/e) we have from Lemma A.1 that

P

(
n∑
i=1

ξi ≤ −x

)
≤ e−λx

(
E
[
e−λξ1

])n ≤ exp
{
−λx+ Cnλ2| log λ|

}
.

It is not easy to find a value of λ that minimizes the upper bound on the right, but we
can achieve a nearly optimal upper bound by choosing λ such that λ| log λ| = x

2Cn . Since
the function λ 7→ λ| log λ| achieves its maximum of 1/e at λ = 1/e, we can find such a
λ ∈ (0, 1/e) only if x ≤ 2C

e n. Thus, for now we will restrict ourselves to x < 2C
e n and will

extend our bound to x ≤ an later. With this choice of λ we then have

P

(
n∑
i=1

ξi ≤ −x

)
≤ exp

{
−λ| log λ|x+ Cnλ2| log λ|2

| log λ|

}
= exp

{
−x2

4Cn| log λ|

}
. (A.1)

Next, we claim that our choice of λ above implies that

| log λ| ≤ 2 log

(
2Cn

x

)
. (A.2)

To see this, note that t2| log(t2)| = 2t(t| log t|) < 2
e t < t for all t ∈ (0, 1/e), and applying

this with t = x
2Cn <

1
e yields that

(
x

2Cn

)2 ∣∣∣log
(

x
2Cn

)2∣∣∣ < x
2Cn = λ| log λ|. The monotonicity

of λ| log λ| on (0, 1/e) then implies that 1/e > λ >
(

x
2Cn

)2
which in turn implies the claim

in (A.2). Combining (A.1) and (A.2) we get

P

(
n∑
i=1

ξi ≤ −x

)
≤ exp

{
−x2

4Cn log
(

2Cn
x

)} ≤ exp

{
−x2

4Cn log n

}
, for all 2C ≤ x ≤ 2C

e
n,
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and then by choosing C ′ large enough we get P (
∑n
i=1 ξi ≤ −x) ≤ C ′ exp

{
−x2

8Cn logn

}
for

all x ≤ 2C
e n. Finally, we can extend this bound to x ≤ an by changing the coefficient in

the exponent. Indeed, if 2C
e n < x ≤ an then

P

(
n∑
i=1

ξi ≤ −x

)
≤ P

(
n∑
i=1

ξi ≤ −
2C

e
n

)

≤ C ′ exp

{
−
(

2Cn
e

)2
4Cn log n

}
≤ C ′ exp

{
− C

e2a2

x2

n log n

}
.

This completes the proof of the corollary.

Lemma A.3. Assume that {ξi}i≥1 are i.i.d., zero mean random variables such that
P (|ξi| > x) = O(x−2), and let Sn =

∑n
i=1 ξi. Then, there exists a constant C > 0 such

that

P (|Sn| > t
√
n log n) ≤ C

t2 log n
+
C

t4
∀t ≤

√
n

log n
.

Proof. First of all, note that by choosing C > 0 large enough we can assume that
t > 1/

√
log n. Next, note that

P (|Sn| > t
√
n log n) ≤ nP

(
|ξ1| > t

√
n log n

)
+ P

(∣∣∣∣∣
n∑
i=1

ξi1|ξi|≤t
√
n logn

∣∣∣∣∣ > t
√
n log n

)
.

Since the assumption on the tail of |ξ1| implies that the first term on the right is

O
(

1
t2 logn

)
, it remains only to bound the second probability for 1/

√
log n ≤ t ≤

√
n/ log n.

To this end, first note that∣∣E [ξi1|ξi|≤x]∣∣ =
∣∣E [ξi1|ξi|>x]∣∣ ≤ E [|ξi|1|ξi|>x] = O(x−1),

where the first equality is because E[ξi] = 0 and the last equality follows from the
assumptions on the tails of ξi. Therefore, there exists a constant L > 0 such that∣∣∣∣∣E

[
n∑
i=1

ξi1|ξi|≤t
√
n logn

]∣∣∣∣∣ ≤ n ∣∣∣E [ξi1|ξi|≤t√n logn

]∣∣∣ ≤ t

2

√
n log n for all t > L/

√
log n.

Letting ξ̄i,t,n = ξi1|ξi|≤t
√
n logn−E

[
ξi1|ξi|≤t

√
n logn

]
, we can conclude that for t > L/

√
log n

we have

P

(∣∣∣∣∣
n∑
i=1

ξi1|ξi|≤t
√
n logn

∣∣∣∣∣ > t
√
n log n

)
≤ P

(∣∣∣∣∣
n∑
i=1

ξ̄i,t,n

∣∣∣∣∣ > t
√
n log n

2

)

≤ 4

t4n2(log n)2
E

( n∑
i=1

ξ̄i,t,n

)4


≤ C

t4n2(log n)2

{
nE
[
ξ4
i 1|ξi|≤t

√
n logn

]
+ n2E

[
ξ2
i 1|ξi|≤t

√
n logn

]2}
.

Since the tail decay assumptions imply that E
[
ξ4
i 1|ξi|≤x

]
= O(x2) and E

[
ξ2
i 1|ξi|≤x

]
=

O(log x), we can conclude that for n large enough and t ∈ [1/
√

log n,
√
n/ log n] we have

P

(∣∣∣∣∣
n∑
i=1

ξi1|ξi|≤t
√
n logn

∣∣∣∣∣ > t
√
n log n

)
≤ C

t2 log n
+

C

t4(log n)2
E
[
ξ2
i 1|ξi|≤n

]2
≤ C

t2 log n
+
C

t4
.
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B Precise truncated variance asymptotics

Proof of Corollary 5.6. First of all, we claim that it is enough to prove the claimed
asymptotics for the truncated second moment instead of the truncated variance. That is,
we claim it is enough to prove

lim
n→∞

sup
x≥
√
n log4 n

∣∣∣∣∣∣
E
[
(Z̃n)21|Z̃n|≤x

]
b2n log n+ 2K0vn log

(
x∧(nv/2)√

n

) − 1

∣∣∣∣∣∣ = 0. (B.1)

To see that it is enough to prove (B.1), note that Lemma 3.6 implies for n sufficiently
large and x ≥

√
n log4 n that∣∣∣Var(Z̃n1|Z̃n|≤x)− E

[
(Z̃n)21|Z̃n|≤x

]∣∣∣ = E
[
Z̃n1|Z̃n|≤x

]2
= E

[
Z̃n1|Z̃n|>x

]2
≤ Cn2

x2
.

Using this, the statement of the lemma follows easily from (B.1).
The advantage of (B.1) rather than the original statement in the Lemma is that the

truncated second moment E
[
(Z̃n)21|Z̃n|≤x

]
is monotone in x whereas the truncated

variance is not. In particular, since E
[
(Z̃n)21|Z̃n|≤x

]
≤ Var(Zn) ∼ (b2 + K0v)n log n

then we need only to get good upper bounds on the truncated second moment when
x ∈ [

√
n log4 n, nv/2]. For such x we then have from Lemma 3.7 for M fixed and n

sufficiently large that

E
[
(Z̃n)21|Z̃n|≤x

]
≤ E

[
(Z̃n)21|Z̃n|≤M

√
n logn

]
+ E

[
(Z̃n)21M√n logn<|Z̃n|<

√
n log4 n

]
(B.2)

+ E
[
(Z̃n)21√n log4 n≤|Z̃n|≤x

]
. (B.3)

By Lemma 3.7 we can bound the second expectation in the last line by Cn log log n +
Cn logn
M2 , while the Bounded Convergence Theorem implies the first expectation is asymp-

totic to b2E[Φ21|Φ|≤M ]n log n as n→∞. Thus, by first choosing M large and then n large
enough we get that for any ε > 0 there exists an n0 = n0(ε) such that the two terms on
the right in (B.2) can be bounded above by (1 + 2ε)b2n log n for all n ≥ n0. For the last
term in (B.3), it follows from (3.9) and (3.11) that for any ε > 0 there is an n1 = n1(ε)

such that P(|Z̃n| > t) ≤ (1+ε)K0vn
t2 for all t ∈ [

√
n log4 n, nv/2]. Applying this bound we get

for all n large enough (depending on ε) that

E
[
(Z̃n)21√n log4 n≤|Z̃n|≤x

]
≤ n log8 nP

(
|Z̃n| >

√
n log4 n

)
+

∫ x

√
n log4 n

2tP(|Z̃n| > t) dt

≤ (1 + ε)K0vn+ 2(1 + ε)K0vn log

(
x

√
n log4 n

)
≤ (1 + 2ε)2K0vn log

(
x√
n

)
.

Since ε > 0 is arbitrary this completes the proof of the needed upper bound for
E[(Z̃n)21|Z̃n|≤x].

For the lower bound on E[(Z̃n)21|Z̃n|≤x] we note that this truncated second moment
is non-decreasing in x and so it’s enough to only give the necessary lower bounds for
x ∈ [

√
n log4 n, vn/2]. Using Lemma 3.8 we can bound the truncated second moment

below by E[(Z̃n)21|Z̃n|≤√n log4 n] ≥ (1− 2ε)b2n log n for any ε > 0 and n sufficiently large.

This is a good enough lower bound for x ∈ [
√
n log4 n,

√
ne
√

logn], but it remains to get
a good lower bound for x ∈ [

√
ne
√

logn, vn/2]. For such x we can begin by noting that
Lemma 3.8 implies that for any ε > 0 and n sufficiently large we have

E
[
(Z̃n)21|Z̃n|≤x

]
≥ (1− 2ε)b2n log n+ E

[
(Z̃n)21√n log4 n≤|Z̃n|≤x

]
.
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For the second term on the right, it follows from (3.11) that P(|Z̃n| ≥ t) ≥ P(Z̃n ≤ −t) ≥
(1− ε)K0(nv − t)t−2 for all t ∈ [

√
n log4 n, nv/2] and n sufficiently large. Therefore, for n

sufficiently large we have

E
[
(Z̃n)21√n log4 n≤|Z̃n|≤x

]
≥
∫ x

√
n log4 n

2tP(|Z̃n| > t) dt− x2P(|Z̃n| > x)

≥
∫ x

√
n log4 n

2(1− ε)K0(nv − t)t−1 dt− (1 + ε)K0nv

≥ 2(1− 2ε)K0vn log

(
x√
n

)
,

where in the last inequality we used that x ≥
√
ne
√

logn.
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