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We derive the perturbative expansion of a particular integrated correlator of two superconformal primary
operators in the stress tensor multiplet ofN ¼ 4 supersymmetric SUðNÞ Yang-Mills theory in the presence
of a half-BPS ’t Hooft-line defect. The calculation is based on a recently derived expression for this
physical observable in terms of a two-dimensional lattice sum with manifest automorphic properties under
the electromagnetic duality group. When the gauge group is SUð2Þ, this analysis matches with the
presented supersymmetric localization approach while for higher-rank gauge groups, where no alternative
formulation is available, the methods introduced prove to be crucial in obtaining the perturbative expansion
of integrated correlators for ’t Hooft-line defects.
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Introduction. Four dimensional N ¼ 4 supersymmetric
Yang-Mills (SYM) theory [1] is possibly the most prom-
ising nontrivial quantum field theory for which an exact
solution may be within reach. It is the unique four-dimen-
sional conformal invariant field theory with maximal
supersymmetry, and via the celebrated anti–de Sitter/
conformal field theory (AdS/CFT) correspondence it is
holographically dual to type IIB superstring theory in
AdS5 × S5. Due to its highly symmetric nature, N ¼ 4
SYM is one of the few theories for which many of its
observables can be determined analytically.
A crucial ingredient for this task is electromagnetic

duality, usually called S-duality [2–5], which connects in a
nontrivial way N ¼ 4 SYM at weak coupling with the
strong coupling regime of the same theory. Following usual
conventions, we denote the complex Yang-Mills coupling
constant by

τ ¼ τ1 þ iτ2 ≔
θ

2π
þ i

4π

g2YM
; ð1Þ

with θ the topological theta angle and gYM the Yang-Mills
gauge coupling constant. A fascinating consequence of
S-duality is that different physical observables may be

related to one another upon an SLð2;ZÞ transformation of
the coupling τ via

τ → τ0 ¼ γ · τ ≔
aτ þ b
cτ þ d

; ð2Þ

with γ ¼ ðac bdÞ∈SLð2;ZÞ.
Recent works have shown that S-duality predictions

provide a crucial tool in deriving exact expressions, as
nontrivial functions of the coupling constant τ, for a class of
observables known as integrated correlators. In particular,
starting from a matrix model formulation [6–9] introduced
correlation functions of four superconformal primary oper-
ators in the stress tensor multiplet integrated over some
specific measures for the space-time insertion points. In
many cases, it has been shown that these physical observ-
ables can be expressed in terms of modular forms with
nonholomorphic dependence on the coupling τ, providing
explicit examples of S-duality in N ¼ 4 SYM [8–20].
Importantly, we note that the complete spectrum of the

theory does contain nonlocal defect operators as well.
Correlation functions involving extended operators are
extremely difficult to compute even just semiclassically,
yet they are of crucial importance in understanding the
theory at the nonperturbative level. The best understood
example of nonlocal operators in N ¼ 4 SYM are line
defects, which in the holographic dual type IIB superstring
theory correspond to extended strings.
Of particular significance to this paper are correlation

functions of two superconformal primaries in the stress
tensor multiplet in the presence of a half-BPS line defect,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, L121702 (2024)
Letter

2470-0010=2024=110(12)=L121702(7) L121702-1 Published by the American Physical Society

https://orcid.org/0000-0003-2997-0388
https://ror.org/01v29qb04
https://ror.org/03sry2h30
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.L121702&domain=pdf&date_stamp=2024-12-13
https://doi.org/10.1103/PhysRevD.110.L121702
https://doi.org/10.1103/PhysRevD.110.L121702
https://doi.org/10.1103/PhysRevD.110.L121702
https://doi.org/10.1103/PhysRevD.110.L121702
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


denoted by Lðp;qÞ, in the fundamental representation of the
gauge group SUðNÞ and labeled by electromagnetic
charges ðp; qÞ with p and q coprime integers. The
integrated line defect correlator here considered has been
introduced in [21], and it is schematically given by

IL;Nðp; q; τÞ ¼
Z

hO2ðx1ÞO2ðx2ÞLðp;qÞicdμðxiÞ; ð3Þ

where O2 is the dimension-two half-BPS superconformal
primary operator in the stress tensor multiplet and the
subscript c denotes the connected part of the correlator. The
explicit form of the integration measure dμðxiÞ appearing in
(3) as well as the precise form for the correlator can be
found in [22–24], importantly we stress that this measure is
dictated entirely by supersymmetry.
The Wilson-line defect, denoted as W ¼ Lð1;0Þ, can be

described via a path-ordered exponential of local fields
along the line supporting the defect and amounts to
inserting in the path-integral the world-line of a pointlike
electric particle transforming in the fundamental represen-
tation of the gauge group SUðNÞ. Similarly, the ’t Hooft-
line defect, T ¼ Lð0;1Þ, is an example of a disorder operator
and its path-integral definition [25] involves specifying a
certain singular gauge transformation around a path that
links nontrivially the line supporting the ’t Hooft defect,
thus effectively inserting in the path-integral a magnetic
monopole which creates a magnetic flux tube along the
loop. At large N and fixed τ, these integrated line defects
become crucial [21] in understanding scattering amplitudes
of two gravitons from extended ðp; qÞ-strings in the dual
type IIB superstring theory.
In [21], the half-BPS Wilson-line defect integrated

correlator is obtained indirectly from the well-known
matrix model formulation for the expectation value of
the half-BPS fundamental Wilson loop N ¼ 2� SYM on

S4, denoted by hWiSUðNÞ
N¼2� and determined by Pestun using

supersymmetric localization [26]. N ¼ 2� SYM is a
massive deformation, with mass parameter m, of the
superconformal N ¼ 4 SYM theory and as shown
in [21] the N ¼ 4 SYM Wilson-line defect integrated
correlator IW;NðτÞ introduced in (3) is then related to the
expectation value of the SUðNÞ Wilson-line defect in N ¼
2� SYM as follows,

IW;NðτÞ ¼ ½∂2m loghWiSUðNÞ
N¼2� ðm; τÞ�m¼0: ð4Þ

Under N ¼ 4 electromagnetic duality, line defects do
transform nontrivially: for the theory with coupling con-
stant τ0 ¼ γ · τ given in (2), the line defect Lðp;qÞ is mapped
into a defect with charges ðp0; q0Þ given by

Lðp;qÞ→Lðp0;q0Þ; with ðp0;q0 Þ¼ðp;qÞ
�

a −c
−b d

�
: ð5Þ

This implies that correlation functions in the presence of a
line defect operator such as (3) must obey the following
transformation properties,

IL;Nðp; q; τÞ ¼ IL;Nðp0; q0; τ0Þ; ð6Þ
valid for all γ ∈SLð2;ZÞ when the coupling constant
τ0 ¼ γ · τ and the charges ðp0; q0Þ have been transformed
accordingly to (2) and (5).
Recently [27] combined the explicit matrix model

computation of the Wilson line defect (4) with the trans-
formation property (6) to conjecture the lattice sum integral
representation of IL;Nðp; q; τÞ valid for any N and any
defect-charges ðp; qÞ,

IL;Nðp; q; τÞ ¼
N

L1
N−1ð− π

τ0
2

Þ

×
X

ðn;mÞ∈Z2

Z
∞

0

e−t2π
jnτþmj2

τ2
−t3πτ2 0ðnp−mqÞ2

× B̃N

�
τ2

0

π
; t2; t3

�
d2t; ð7Þ

where we defined τ02 ≔ τ2=jqτ þ pj2 and B̃Nðy; t2; t3Þ is a
function of the three real variables y; t2; t3 satisfying the
inversion transformation and integral identity

B̃Nðy; t2; t3Þ ¼
B̃N

�
y; t2

t2ðt2þt3Þ ;
t3

t2ðt2þt3Þ
�

½t2ðt2 þ t3Þ�32
; ð8Þ

Z
∞

0

t
−1
2

2 B̃Nðy; t2; t3Þd2t ¼ 0; ∀ y > 0: ð9Þ

The overall factor in (7) given in terms of a generalized
Laguerre polynomial, L1

N−1ðxÞ, arises from the normaliza-
tion of the integrated correlator (3) and it is related to the
vacuum expectation value of the line defect operator.
In this work, we focus our attention to the case of the

’t Hooft-line defect integrated correlator and show con-
cretely that the lattice-sum (7), whose analysis in [27] was
solely based on the matrix model formulation for the
Wilson-line defect (4), does in fact capture the ’t Hooft-
line defect. Firstly, similar to the integrated Wilson-line
defect definition (4) we use the matrix model formulation
proposed in [28] for the expectation value of a ’t Hooft-line
defect in N ¼ 2� SYM with gauge group SUð2Þ, to com-
pute the perturbative expansion of the N ¼ 4 ’t Hooft-line
defect integrated correlator as gYM → 0, or equivalently for
τ2 ≫ 1. We show that this calculation matches identically
with the perturbative expansion of the lattice sum (7)
specialized to the case of an ’t Hooft-line defect ðp; qÞ ¼
ð0; 1Þ and N ¼ 2. We repeat our analysis for the case of
higher-rank gauge groups, in particular for SUð3Þ, for
which no alternative method is available to compute the
perturbative expansion of the ’t Hooft-line defect integrated
correlator.
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SUð2Þ matrix model formulation. Thanks to supersym-
metric localization, [28] provided a matrix model integral
representation for the expectation value of a half-BPS
fundamental ’t Hooft-line defect in N ¼ 2� SYM posi-
tioned on the equator of S4 which for the case of an SUð2Þ
gauge group takes the form

hTiSUð2Þ
N¼2� ðm; τÞ

¼ ½Z2ðm; τÞ�−1
Z

∞

−∞
jZclðτ; aÞZpertðm; aÞZinstðτ; m; aÞj2

× Zeqðm; aÞda: ð10Þ
The integral runs over the one-dimensional Cartan sub-
algebra of SUð2Þ parametrized by a and the normalization
factor Z2ðm; τÞ denotes Pestun [26] partition function for
N ¼ 2� SYM on S4 and gauge group SUð2Þ. The classical
action contribution can be written as

jZclðτ; aÞj2 ¼ exp
�
πjτj2
4τ2

− 4πτ2

�
aþ τ1

4τ2

�
2
�
: ð11Þ

The term Zpertðm; aÞ encodes the one-loop determinant
fluctuations while Zinstðτ; m; aÞ is expressible in terms of
Nekrasov partition function [29] and describes the con-
tributions from instantons and anti-instantons localized at
the poles of S4. Since we are interested in the purely
perturbative sector in the limit τ2 ≫ 1 we set
Zinstðτ; m; aÞ → 1 in what follows. Finally, the factor
Zeqðm; aÞ encodes all contributions to the path-integral
which have support precisely on the equator of the S4 where
the ’t Hooft-line defect has been inserted. Besides an
important perturbative part, these equatorial contributions
contain crucial nonperturbative effects due to monopole
bubbling where we need to include in the path-integral
smooth monopoles configurations which screen the mag-
netic charge of the ’t Hooft-line defect. In [28] an exact
expression for the complete Zeqðm; aÞ is provided only
in the case of N ¼ 2� SYM with gauge group SUð2Þ,
which for the present case of the minimal fundamental
’t Hooft-line defect it amounts to

Zeqðm; aÞ ≔ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh½πð2aþmÞ� cosh½πð2a −mÞ�p

coshð2πaÞ : ð12Þ

We now follow the definition (4) and consider the
integrated ’t Hooft-line defect correlator in N ¼ 4 SYM

IT ;2ðτÞ ¼ ½∂2m loghTiSUð2Þ
N¼2� ðm; τÞ�m¼0: ð13Þ

To compute the perturbative sector of (13) as τ2 ≫ 1, we
use the matrix model expression (17) and discard all
exponentially suppressed corrections, thus arriving at

Ipert
T ;2 ðτÞ ¼

hTO2O2ipert − hTihO2O2ipert
hTi : ð14Þ

For the perturbative defect two-point function we have

hTO2O2ipertðτÞ

≔ ½Z2ð0; τÞ�−1
Z

∞

−∞
jZclðτ; aÞj2

× ½2ð∂2mZpertðm; aÞjm¼0 þ c:c:Þ þ ∂
2
mZeqðm; aÞjm¼0�da;

ð15Þ

with c.c. the complex conjugate term, as well as

hO2O2ipertðτÞ ≔ ∂
2
mZ2ðm; τÞjm¼0: ð16Þ

The denominator appearing in (14) is the aforementioned
expectation value of the half-BPS fundamental ’t Hooft-line
defect in N ¼ 4 SYM which is known for general SUðNÞ
gauge group from the Wilson-line result [30],

hTiðτÞ ¼ 1

N
e
N−1
N

πjτj2
2τ2 L1

N−1

�
−
πjτj2
τ2

�
: ð17Þ

The disconnected term in (14) is well understood and it is
essentially the perturbative contribution to the integrated
four-point correlator evaluated in [31]. To compute the
weak coupling expansion of (14) we also need

∂
2
mZpertðm;aÞjm¼0

¼
�
4a2þ1

4

�
×
�
2ψ

�
2iaþ1

2

�
þ4iaψ 0

�
2iaþ1

2

�
þ2γ

�
;

ð18Þ

where the overall factor comes from the SUð2Þ
Vandermonde determinant shifted by the ’t Hooft-line
magnetic charge, ψðxÞ denotes the polygamma function
and γ is the Euler-Mascheroni constant. The integral in (15)
can be easily performed by shifting integration variables
a → ã ¼ aþ τ1=ð4τ2Þ and then expand everything but the
classical action for ã → 0, thus reducing everything to a
collection of Gaussian integrals. Importantly, we notice that
the exponential contribution coming from the classical
action (11) cancels exactly against the same contribution
appearing at denominator and coming from the vacuum
expectation value (17) with N ¼ 2.
We are then left with the perturbative expansion for the

SUð2Þ ’t Hooft-line defect integrated correlator

Ipert
T ;2 ðτÞ ¼

2

L1
1ð− πjτj2

τ2
Þ
X∞
l¼0

clðτ1Þðπτ2Þ1−l; ð19Þ

where at the first few orders we find
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c0ðτ1Þ ¼ −8 logð2Þ þ π2;

c1ðτ1Þ ¼ −16 logð2Þ þ 2π2 þ 24ζð3Þ − π4

2
;

c2ðτ1Þ ¼ 216ζð3Þ − 3π4 − 390ζð5Þ þ π6

2

þ ðπτ1Þ2
�
−8 logð2Þ þ π2 þ 21ζð3Þ − π4

4

�
;

c3ðτ1Þ ¼ −4500ζð5Þ þ 5π6 þ 6300ζð7Þ − 17π8

24

þ ðπτ1Þ2
�
234ζð3Þ − 3π4 − 465ζð5Þ þ π6

2

�
: ð20Þ

We notice that clðτ1Þ is a polynomial of degree bl=2c in τ21,
hence in particular the perturbative expansion of the ’t
Hooft-line defect integrated correlator does in fact depend
from the topological theta angle θ ¼ 2πτ1. This is a
consequence of the Witten effect [3] telling us that a
translation of the θ angle, τ → τ þ n, does in fact induce
a modification of the electric charge p for a line defect Lp;q

with a nonvanishing magnetic charge q ≠ 0, as we can see
directly from the transformation properties (5) and (6).
From a number theoretical point of view the structure of the
coefficients clðτ1Þ is also very interesting: at order l the
numbers appearing in clðτ1Þ have transcendentality
between 2l − 1 and 2lþ 2 where we assign standard
transcendentality ½ζðnÞ� ¼ n, ½logð2Þ� ¼ 1 and ½ðτ1πÞ� ¼ 1
with ½r� ¼ 0 for r∈Q.
We are now going to show that the very same perturba-

tive expansion (19) can be obtained from the lattice sum
representation (7), constructed in [27] by exploiting solely
the matrix model formulation for the Wilson-line defect
integrated correlator (4) and the crucial electromagnetic
duality transformation (6).

Electromagnetic duality predictions. We now consider the
general lattice sum representation (7) specialized to the case
of the SUð2Þ ’t Hooft-line defect integrated correlator thus
taking the form

IT ;2ðτÞ ¼ IL;2ð0; 1; τÞ ¼
2

L1
1

�
− πjτj2

τ2

� ĨT ;2ðτÞ; ð21Þ

where we defined the “reduced” integrated correlator

ĨT ;2ðτÞ¼
X

ðn;mÞ∈Z2

Z
∞

0

e
−t2π

jnτþmj2
τ2

−t3π
τ2
jτj2m

2

B̃2

�
τ2

πjτj2 ;t2;t3
�
d2t:

ð22Þ
The function B̃2ðy; t2; t3Þ has been derived in [27] and takes
the simple form

B̃2ðy; t2; t3Þ ¼
exp

h
− t3

4yðt2þ1Þðt2þt3þ1Þ
i
Pðy; t2; t3Þ

y3ðt2 þ 1Þ112 ðt2 þ t3 þ 1Þ112 ; ð23Þ

with Pðy; t2; t3Þ an unenlightening polynomial in its three
arguments given in Eq. (4.35) of the same reference.
The task at hand is extracting the perturbative expansion

of (22) as τ2 ≫ 1. We proceed by first performing a Poisson
resummation in the variable m → m̂ and then change
integration variables to ðx2; x3Þ ≔ ðt2; ðt2 þ t3Þ−1Þ so that
the domain of integration becomes x2, x3 ≥ 0 with
x2x3 ≤ 1. Note that in the new integration variables the
properties (8) and (9) become

x
−3
2

3 B̃Nðy; x2; x3Þ ¼ x
−3
2

2 B̃Nðy; x3; x2Þ; ð24ÞZ
∞

0

Z 1
x2

0

1ffiffiffiffiffiffiffiffiffi
x2x3

p x
−3
2

3 B̃Nðy; x2; x3Þd2x ¼ 0: ð25Þ

At this point we expand the integral as a power series in
τ1 arriving at

ĨT ;2ðτÞ

¼
X∞
k¼0

ðπτ1Þ2k
X

ðn;m̂Þ∈Z2

Z
∞

0

Z
1
x2

0

y
7
2e−Sypkðy;x2;x3;n;m̂Þ
½ðx2þ1Þðx3þ1Þ�kþ11

2

d2x;

ð26Þ

where y ≔ πτ2 and we have introduced the “action”

S ≔ x2n2 þ
1

4ðx2 þ 1Þ þ x3m̂2 þ 1

4ðx3 þ 1Þ −
1

4
: ð27Þ

The integrand factors pk are simply polynomials in y−1=2

and in the remaining variables, and are symmetric with
respect to ðx2; x3; n; m̂Þ → ðx3; x2; m̂; nÞ as a consequence
of (24). All odd powers in τ1 vanish identically thanks to
the symmetry of (26) under n → −n.
To extract the asymptotic expansion of (26) for y ≫ 1we

must analyze the action (27). We notice that when x3 is
close to the extrema of integration we have S ≥ 1=4 as
x3 → 0 and S ∼ x2n2 þ m̂2=x2 as x3 → 1=x2. We deduce
that the only perturbative contributions at large ymust arise
from the region near x3 ∼ 1=x2 when necessarily either
m̂ ¼ 0 or n ¼ 0 or possibly both.
First, we check by direct computation that the contri-

bution coming from n ¼ m̂ ¼ 0 vanishes order by order in
τ1. This fact had already been appreciated in [27] for the
different case when (7) is specialized to a Wilson-line
defect and the vanishing of the corresponding n ¼ m̂ ¼ 0
term is actually equivalent to the integral identity (25).
However, our analysis shows that the vanishing of the n ¼
m̂ ¼ 0 term holds more in general and in particular it holds
for the present ’t Hooft-line defect case. Given the
symmetry of the integrand and of the domain of integration
under the exchange ðx2; nÞ ↔ ðx3; m̂Þ, we can then simply
consider the case m̂ ¼ 0; n ≠ 0 timed by an additional
factor of 2.
We then perform the integral over x3 in (26) separately

for each τ2k1 power and find
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Ĩpert
T ;2 ðτÞ ¼

X∞
n¼1

Z
∞

0

e−x2n
2y

2
64y

3
2

ffiffiffiffiffi
x2

p
q1ðy; x2Þffiffiffi

π
p ðx2 þ 1Þ5

þ
ye

x2y
4x2þ4q2ðy; xÞerfc

�
1
2

ffiffiffiffiffiffiffiffi
x2y
x2þ1

q �

ðx2 þ 1Þ112

3
75dx2

þOðτ21Þ; ð28Þ
where we discarded exponentially suppressed corrections at
large y and denoted by erfcðxÞ the complementary error
function. In the above equation we defined

q1ðy; xÞ ¼ −28 − 16xþ 16x2 þ 4x3 − 2yð1 − 2xÞ; ð29Þ
q2ðy;xÞ¼ 8−28x−72x2−28x3þ8x4

þyð4þ12x−8x2−16x3Þþy2ðxþ2x2Þ: ð30Þ

and we note that the integral structure in (28) remains
identical for higher τ2k1 corrections (as well as for higher
rank cases N > 2), with the only modification that at
higher-order the analogs of the polynomials q1, q2 are in
general polynomials also in n2.
To extract the large-y expansion of the term proportional

to q1 in (28) we simply need to expand the term in
parenthesis around x2 ¼ 0 and then use

X∞
n¼1

Z
∞

0

e−x2n
2yxs−12 dx2 ¼ y−sζð2sÞΓðsÞ; ð31Þ

valid for Res > 0, so that higher orders in x2 corresponds
automatically to higher perturbative corrections in 1=y. The
large-y expansion of the first term in (28) then yields

X∞
n¼1

Z
∞

0

e−x2n
2y y

3
2

ffiffiffiffiffi
x2

p
q1ðy; x2Þffiffiffi

π
p ðx2 þ 1Þ5 dx2

¼ −yζð3Þ þ
�
−14ζð3Þ þ 9ζð5Þ

2

�
þOðy−1Þ: ð32Þ

For the second term in (28) the situation is a little bit
more complicated. If we perform the same procedure as
described above and expand near x2 ¼ 0 we obtain a power
series in 1=y with coefficients given by convergent infinite
sums over Riemann zeta values, i.e.

X∞
n¼1

Z
∞

0

e−x2n
2y
ye

x2y
4x2þ4q2ðy; xÞerfc

�
1
2

ffiffiffiffiffiffiffiffi
x2y
x2þ1

q �

2ðx2 þ 1Þ112 dx2

¼ y½ζð3Þ þ
X∞
n¼2

ð−1Þn23−nnζðnÞ� þOðy0Þ

¼ yð−8 logð2Þ þ π2 þ ζð3ÞÞ þOðy0Þ: ð33Þ
Curiously, at each order in 1=y we see that the tran-
scendentality of the above expansion coefficients (32)

and (33) exceeds by one unit that of (20), e.g. at order y
we find a ζð3Þ term. However, when we add together the
two separate contributions appearing in (28) we discover
that these unwanted terms magically disappear and the
asymptotic expansion for y ¼ ðπτ2Þ ≫ 1 of (28) reprodu-
ces the supersymmetric localization results (19) and (20).
Thanks to the analysis of [27] we can repeat an

analogous story and derive the perturbative expansion of
the SUð3Þ ’t Hooft-line defect integrated correlator for
which we obtain

Ipert
T ;3 ðτÞ ¼

3

L1
2

�
− πjτj2

τ2

�
�
ðπτ2Þ2ð2π2 − 16 logð2ÞÞ

þ ðπτ2Þ1
�
−96 logð2Þ þ 12π2 þ 72ζð3Þ − 3π4

2

�

þOð1Þ
�
: ð34Þ

Note that when compared to (19) the factor Ĩpert
T ;3 ðτÞ starts at

order Oðτ22Þ, consequence of the fact that the denominator
L1
2ð−yÞ is now a degree 2 polynomial while L1

1ð−yÞ which
appears in (19) has degree one. With our method we can
furthermore compute the τ1 terms appearing in the pertur-
bative expansion of the ’t Hooft-line defect which for
Ĩpert
T ;3 ðτÞ first appear at orderOðy0Þ. We stress that the SUð2Þ

matrix model formulation (15) is not explicitly known for
’t Hooft-line defect correlator with higher-rank gauge
groups due to the complicated nature of monopole bubbling
effects in [28]. Nonetheless, our results provide a concrete
way to access the perturbative expansion of general
integrated ’t Hooft-line defect correlators.
As discussed in [27], a possible method for computing

the integrand B̃N in (7) relies on analysing the instanton
contributions in the matrix model formulation for the
Wilson-line defect (4) and no conceptual hurdle prevents
us from pushing the analysis to higher rank gauge groups.
However, since it becomes rather laborious and technical to
compute the instanton sectors of (4) as we increase the
number of colors N we here present details only for N ¼ 2
and N ¼ 3.

Conclusions. In this paper we have confirmed that the
lattice sum representation (7), constructed in [27] by using
only the automorphic properties under electromagnetic
SLð2;ZÞ duality of the N ¼ 4 SYM integrated Wilson-
line defect operator, does in fact reproduce identically1 the
perturbative expansion of the SUð2Þ integrated ’t Hooft-
line defect correlator derived from the N ¼ 2� SYM
supersymmetric localization results of [28]. Furthermore,

1As a further check beyond perturbation theory, [27] evaluated
numerically the matrix model integral for the SUð2Þ ’t Hooft-line
defect integrated correlator and showed agreement with the lattice
sum formulation within the numerical precision used.
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we have shown how to extract from the proposal of [27] the
perturbative expansion of integrated ’t Hooft-line defect
correlators for higher-rank gauge groups for which no
alternative method is presently available, presenting here
explicitly the SUð3Þ case.
The methods proposed bypass entirely the challenging,

if not impossible task of computing the unintegrated ’t Hooft-
line defect two-point function by expanding the path-integral
around a monopole background and then integrate over the
insertion points as in (3). Very little is known about the
semiclassical expansion of ’t Hooft-line correlation func-
tions, see, e.g., [32], however our perturbative data do

provide for precious checks, via (3), against future unin-
tegrated ’t Hooft line defects results, similar towhat has been
done for the integrated correlators of four superconformal
primaries of the stress tensor multiplet in [33,34].
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