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In this paper, we prove a new nonrenormalization theorem which arises from UV/IR mixing. This
theorem and its corollaries are relevant for all four-dimensional perturbative tachyon-free closed string
theories which can be realized from higher-dimensional theories via geometric compactifications. As such,
our theorem therefore holds regardless of the presence or absence of spacetime supersymmetry and
regardless of the gauge symmetries or matter content involved. This theorem resolves a hidden clash
between modular invariance and the process of decompactification, and enables us to uncover a number of
surprising phenomenological properties of these theories. Chief among these is the fact that certain physical
quantities within such theories cannot exhibit logarithmic or power-law running and instead enter an
effective fixed-point regime above the compactification scale. This cessation of running occurs as the result
of the UV/IR mixing inherent in the theory. These effects apply not only for gauge couplings but also
for the Higgs mass and other quantities of phenomenological interest, thereby eliminating the logarithmic
and/or power-law running that might have otherwise appeared for such quantities. These results illustrate
the power of UV/IR mixing to tame divergences—even without supersymmetry—and reinforce the notion
that UV/IR mixing may play a vital role in resolving hierarchy problems without supersymmetry.
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I. INTRODUCTIONANDOVERVIEWOF RESULTS

Nonrenormalization theorems are powerful tools for the
study of quantum field theories. Historically, the most
famous nonrenormalization theorems are those that arise
within the context of theories with unbroken spacetime
supersymmetry (SUSY). Such supersymmetric nonrenorm-
alization theorems can be understood as the result of
relatively straightforward “level-by-level” pairwise cancel-
lations between states with similar masses, with the
renormalization contributions from each particle in the
spectrum cancelling against the contributions of corre-
sponding superpartners. However, given that unbroken
supersymmetry does not appear to be a feature of the
natural world, such SUSY-based nonrenormalization the-
orems cannot be exact in any phenomenologically viable
model. Historically, another (somewhat related) motivation

for SUSY was to address the hierarchy problems of the
Standard Model, such as the gauge (Higgs) hierarchy and
the cosmological-constant problems. However, given the
collider data that has been collected over the past decade, it
is also becoming increasingly unlikely that electroweak-
scale SUSY plays a significant role in addressing these
hierarchy problems.
Recently, increasing attention has focused on the extent

to which hierarchy problems can be alternatively addressed
through symmetries that involve UV/IR mixing (see, e.g.,
Refs. [1–17]; for recent reviews see Refs. [18,19]). Within
such scenarios, UV physics is directly related to IR physics
as well as to physics at intermediate scales, implying that
potential solutions to hierarchy problems within such
theories might emerge through what might initially appear
to be conspiracies across many or all energy scales.
However, given the ongoing speculation about the possible
existence of such UV/IR-mixed approaches to hierarchy
problems, we are then led to ask the further question as to
whether such UV/IR-mixed symmetries might also give
rise to nonrenormalization theorems. Such nonrenormali-
zation theorems would then emerge not as the consequence
of pairwise level-by-level cancellations (such as those that
arise in theories with unbroken supersymmetry), but
instead as the consequence of symmetries which operate
across all scales simultaneously.
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In this paper, we investigate this issue by focusing on one
of the most important UV/IR-mixed symmetries in string
theory, specifically worldsheet modular invariance.
Worldsheet modular invariance is an exact fundamental
symmetry within perturbative closed string theories, and
remnants of modular invariance even exist for open strings
as well. Within a given string model, modular invariance
governs the string spectrum and its interactions regardless
of the presence or absence of spacetime supersymmetry,
regardless of the gauge group and particle content of the
model, and even regardless of its assumed spacetime
dimensionality. While modular invariance has numerous
implications for the low-energy phenomenologies of such
strings, this paper is devoted to demonstrating that world-
sheet modular invariance has an additional effect which has
not previously been noticed, namely that it also gives rise to
a powerful nonrenormalization theorem.
As we shall find, this theorem emerges within the context

of perturbative four-dimensional tachyon-free closed string
theories which can be realized as geometric compactifica-
tions of higher-dimensional string theories. In other words,
our theorem applies to all perturbative four-dimensional
closed string theories which have self-consistent decom-
pactification limits. This gives our theorem a broad and
nearly universal applicability.
Rigorously stating and proving this theorem is one of the

primary goals of this paper. However, in order to gain a very
rough understanding of the content of our theorem, we shall
here provide an overview of our main results. To do this, let
us begin by recalling that as the spacetime dimensionality
of an ordinary quantum field theory increases, it tends to
become more finite in the IR but more divergent in the UV.
This is the direct result of the different numbers of
momentum components associated with the states propa-
gating in loops. However, in theories with UV/IR mixing, it
turns out that this behavior is generally different. For
example, within closed string theories there is only one
potential divergence for a given one-loop amplitude.
Indeed, by making use of the UV/IR-mixed symmetries
of the theory, one can recast this divergence as either a UV
divergence or an IR divergence [13]. Moreover, as the
dimensionality of such a string theory increases, it turns out
that the theory tends to becomemore finite (or equivalently,
its divergences tend to become less severe). This feature
arises because additional internal cancellations or con-
straints come into play across the string spectrum as the
spacetime dimensionality of our string theory increases—
constraints which soften or eliminate these divergences and
which are thereby ultimately responsible for these addi-
tional finiteness properties [1,2].
This situation becomes particularly interesting for string

theories which have decompactification limits. If a given
string theory has a bona fide decompactification limit, then
its spectrum must satisfy the extra constraints discussed
above in the full decompactification limit at which our

theory becomes higher-dimensional. By contrast, there is
no need for such extra constraints to apply to the compac-
tified theory, since the compactified theory by definition is
lower-dimensional. What we find, however, is that these
extra constraints apply not only to the higher-dimensional
theory that emerges in the full decompactification limit, but
also to the original compactified theory, regardless of the
compactification volume. In particular, stated succinctly, in
this paper we shall prove the following:
Theorem. Any four-dimensional closed string theory

which can be realized as a geometric compactification from
a higher-dimensional string theory will inherit the precise
stricter internal cancellations of the higher-dimensional
theory fromwhich it is obtained despite the compactification.
Thus, as long as our four-dimensional theory has a

decompactification limit, its spectrum must satisfy not only
the constraints that would normally be associated with its
existence in four dimensions, but also the additional
constraints that would be required in higher dimensions.
Indeed, this remains true even if our four-dimensional
theory is nowhere near the decompactification limit and is
thus fully four-dimensional. As we shall demonstrate, this
theorem and the cancellations it requires are realized across
all energy scales at once, and the mechanism by which it
operates has no field-theoretic analog or approximation.
This theorem leads to many surprising phenomenologi-

cal consequences for our original four-dimensional theory.
One of these consequences is that there are new, unex-
pected UV/IR-mixed supertrace constraints which operate
across the entire four-dimensional string spectrum at all
energy scales, similar to those which were originally
obtained in Ref. [2] and more recently generalized in
Refs. [13,17]. Like these previous supertrace constraints,
our new supertrace constraints are the results of an under-
lying so-called “misaligned supersymmetry” [1,2] that
governs the spectra of all tachyon-free modular-invariant
theories—even those that lack spacetime supersymmetry.
We emphasize that these new constraints are completely
unexpected from the perspective of our original four-
dimensional theory. They nevertheless secretly govern
the spectra of such theories at all energy scales.
Another surprising conclusion of our theorem concerns

the effective field theories (EFTs) that are derived from
such string theories. In particular, within such theories we
find that the couplings can at most run only until the
compactification scale is reached. Beyond this point, our
theorem asserts that all running ceases—even if this
compactification scale is much lower than the string scale.
Indeed, the theory necessarily enters a “fixed-point” regime
in which the beta-functions of the gauge couplings vanish.
This too is a result of the extra “hidden” constraints
discussed above. This gives us an important corollary to
our main theorem:
Nonrenormalization corollary. Within any modular-

invariant theory which has δ≡D − 4 large extra dimensions
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opening up at a scale 1=R, misaligned supersymmetry and
UV/IR mixing eliminate all running for μ≳ R−1 regardless
of the value of δ. For μ < R−1, these same phenomena
eliminate all running for δ > 2, and leave atmost logarithmic
running for δ ¼ 2.
The above results arise most naturally within the context

of string theories exhibiting a single decompactification
limit (along with a corresponding T-dual limit). However,
most string theories have multiple distinct decompactifi-
cation limits, and the different higher-dimensional theories
which emerge in these limits may even have different
spacetime dimensionalities. Such cases nevertheless con-
tinue to satisfy our theorem. In particular, we shall find that
four-dimensional theories with multiple decompactification
limits will simultaneously satisfy all of the different
constraints that emerge from each individual decompacti-
fication. Moreover, while our discussion here will focus on
the case of four-dimensional theories, there is nothing
intrinsically special to four dimensions, and similar results
apply for theories in other spacetime dimensions as well, as
long as such theories continue to have their own decom-
pactification limits.
Along the way, we also prove another potentially

important result. Specifically, we prove that the one-loop
contributions to certain string amplitudes have a universal
behavior in the limit of large compactification volume. In
particular, we define a modular-invariant compactification
volume ṼT , and then demonstrate that all such amplitudes
necessarily scale as ðπ=3ÞṼT as ṼT → ∞.
In this Introduction we have merely sought to describe

our theorem and how it operates in a rough intuitive sense.
Needless to say, there are many subtle details which we are
omitting here. These details will be discussed in subsequent
sections. Moreover, as might be imagined, this paper is
somewhat technical and relies on a number of results which
were established in previous papers by the present authors
and others. We have therefore attempted to keep this paper
entirely self-contained by including an initial section in
which we summarize those aspects of previous work which
will ultimately be relevant for proving our theorem.
Accordingly, this paper is organized as follows. First, in

Sec. II, we assemble all of the conceptual and calculational
ingredients that will ultimately be needed for proving our
theorem. Then, in Sec. III, we discuss a fundamental clash
that emerges between modular invariance and the process
of decompactification, and explain how our theorem
automatically resolves this clash. Thus Sec. IV may be
regarded as the central crux of this paper in which we
present our theorem and discuss how it fits into (and
emerges from) the larger theoretical framework. In Sec. IV,
we then proceed to discuss two of the most important
implications of our theorem. These include not only new
supertrace constraints to which our theorem gives rise, but
also tight restrictions on the running of couplings in these
UV/IR-mixed theories. Finally, for the experts, in Sec. V

we provide an explicit example in which all of these results
are illustrated through direct calculation. We then conclude
in Sec. VI with a discussion of some of the additional
consequences of our theorem for low-energy string
phenomenology.

II. ASSEMBLING THE INGREDIENTS

In this section we collect the central ingredients that will
be required in order to formulate, prove, and interpret our
nonrenormalization theorem.

A. Operator insertions

In general, a given perturbative closed string theory
formulated inD uncompactified spacetime dimensions will
have a partition function ZðDÞ which is a function of a
modular parameter τ≡ τ1 þ iτ2 with τi ∈R, and which can
be written as a double power-series expansion in q≡ e2πiτ

and q̄≡ e−2πiτ̄ of the form

ZðDÞðτÞ ¼ τk2
X
m;n

amnq̄mqn: ð2:1Þ

Here the summation is over all right-moving and left-
moving worldsheet energy levels of the string, respectively
denoted ðm; nÞ, and amn is the net (bosonic minus fer-
mionic) number of degrees of freedom in the string
spectrum with worldsheet energies ðm; nÞ. Physical con-
sistency of the partition function requires that it be modular
invariant, i.e., that Zðτ þ 1Þ ¼ Zð−1=τÞ ¼ ZðτÞ. It is the
latter invariance under τ → −1=τ which ties together the
degeneracies of states amn at all energies ðm; nÞ across
the string spectrum, thereby connecting UVand IR physics
in a highly nontrivial way. The quantity k is the modular
weight of the partition function, and for a string theory
formulated in D uncompactified spacetime dimensions
generically has the value

k ¼ 1 −D=2: ð2:2Þ

We thus have k ¼ −1 for D ¼ 4. In general, the space-time
mass M of any state with worldsheet energies ðm; nÞ is
given by

M2 ¼ 1

2
ðM2

R þM2
LÞ ¼

2

α0
ðmþ nÞ; ð2:3Þ

where m ¼ α0M2
R=4, n ¼ α0M2

L=4, and α0 ≡ 1=M2
s , where

Ms is the string scale. The states withm ¼ n are considered
“on-shell” or “physical” and can serve as in- and out-states,
while the “off-shell” states with m ≠ n are intrinsically
stringy or “unphysical” and contribute only in loop
amplitudes. We shall assume throughout this paper that
we are dealing with tachyon-free string theories (i.e.,
theories for which ann ¼ 0 for all n < 0). However, we
shall not make any assumption that our theory exhibits
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spacetime supersymmetry. Thus we will not assume that
ann ¼ 0 for all non-negative values of n, or make any other
similar assumptions regarding the vanishing of the amn
coefficients beyond our tachyon-free requirement that
ann ¼ 0 for all n < 0. In this connection, we note that
no phenomenologically viable model can remain exactly
supersymmetric. By contrast, all string models must main-
tain an exact modular invariance as part of their internal
self-consistency constraints.
In this paper, we consider the corresponding one-loop

amplitudes associated with various physical quantities in
four dimensions. In particular, we focus on amplitudes in
which there are no (or small) external momenta, or
alternatively amplitudes in which such external momenta
can be factored out from the one-loop integration. This is a
large and crucial class of amplitudes, and we shall see
explicit examples below. We shall let ζ generally denote the
phenomenological quantities for which such amplitudes
provide the one-loop contributions.
In general we begin the calculation of such one-loop

amplitudes by calculating the modular-invariant tally of the
contributions to ζ coming from each string state. With the
assumptions described above, this tally will take the form

Zð4Þ
X ¼ τ−12

X
m;n

amnXmnq̄mqn: ð2:4Þ

This clearly resembles the partition function Zð4Þ but also
includes a factor Xmn which denotes the contribution to ζ
from each ðm; nÞ state. The resulting one-loop contribution
ζ is then given by

ζ ≡ hXi ð2:5Þ

where

hXi≡
Z
F

d2τ
τ22

Zð4Þ
X : ð2:6Þ

Here d2τ=τ22 is the standard modular-invariant measure and
F is the fundamental domain of the modular group

F ≡ fτ∶jτ1j ≤ 1=2; jτj ≥ 1; τ2 > 0g ð2:7Þ

with τ1 ≡ Re τ and τ2 ≡ Im τ respectively.
In general, these factors Xmn within Eq. (2.4) are the

eigenvalues of an operator insertion X into the partition
function. In general, there is a different operator insertionX
for each physical quantity ζ. In this paper we concentrate on
operator insertions X which take the form

X ¼ X0 þ τ2X1 þ τ22X2 ð2:8Þ

where each Xl is τ-independent. However it turns out that
the operator insertions for any physical quantity in four

dimensions either take the form in Eq. (2.8) directly or can
be reduced to it. Thus, we may consider the operator-
insertion form in Eq. (2.8) to be completely general.
In general, just like the partition function Zð4Þ itself, the

resulting X -weighted spectral tally Zð4Þ
X must also be

modular invariant. This in turn implies that X must be a
modular-invariant operator insertion, which further implies
that the Xl-coefficients in Eq. (2.8) are tightly linked
together by modular invariance. Thus, knowledge of any
one of these Xl-insertions permits the determination of the
others through a process of modular completion [13]. In all
cases, however, the requirements of modular invariance
ensure that X0 can be at most proportional to the identity
operator 1. Thus the one-loop contribution to ζ from X0

will be proportional to the four-dimensional one-loop
cosmological constant

Λ≡ −
M4

2
h1i ¼ −

M4

2

Z
F

d2τ
τ22

Zð4Þ ð2:9Þ

where M is the reduced string scale Ms=ð2πÞ.
Later in Sec. IV and the Appendix we will extend our

analysis to certain cases in which the Xl can carry a
holomorphic dependence on τ. We shall find, however, that
such cases do not disturb our main results.
As we shall see, our theorem and its proof will not

require any further details regarding these operator inser-
tions Xl. However, it may be useful to recall what these
insertions look like in various phenomenologically relevant
cases. As a first example, we may consider ζ to be the one-
loop contribution to the mass of a scalar Higgs field in an
arbitrary heterotic string model. This calculation is dis-
cussed in detail in Ref. [13], where it shown that the
corresponding operator-insertion coefficientsXl turn out to
be given by

X0 ≡ −
ξM2

8π2

X1 ≡M2

8π
∂
2
ϕM

2
���
ϕ¼0

X2 ≡ −
1

32π2
ð∂ϕM2Þ2

���
ϕ¼0

ð2:10Þ

where MðϕÞ describes the mass of a given string state as a
function of the fluctuation ϕ in the particular Higgs field in
question. Thus, the functions MðϕÞ—and whether they are
zero or not—essentially encode which Higgs field ϕ is
under discussion. The parameter ξ is a function of the shifts
induced on the mass spectrum by the Higgs field.
To make these expressions for Xl more explicit, we may

reexpress them in terms of charge operators Q which fill
out the so-called “charge lattice” associated with the string
spectrum [13]. In general, these charge operators take the
form Q ¼ ðQL;QRÞ where the ‘L’ and ‘R’ components
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correspond to the charges associated with our left-moving
and right-moving worldsheet degrees of freedom. For
perturbative heterotic strings in four spacetime dimensions,
these lattices have maximal dimensionalities (22,10); the
left-moving charge components are generally associated
with the corresponding gauge group while the right-moving
components generally correspond to additional factors
such as spacetime helicities. In general, these charge
lattices are also Lorentzian, meaning that the scalar dot-
product between two charge operators is defined as
Q ·Q0 ≡QLQ0

L −QRQ0
R. In terms of these lattice oper-

ators, the action of a nonzero Higgs VEV ϕ is to induce a
shift in the lattice of Q charges [13]:

Q → Qþ ϕ

Ms
T ·QþOðϕ2Þ ð2:11Þ

where the “response” matrix T can be decomposed in a
left-right block-diagonal fashion as

T ¼
�

T LL T LR

−T t
LR T RR

�
: ð2:12Þ

This then yields alternative expressions for the X1 and X2

operators in Eq. (2.10) as sums over charges:

X1 ¼
M2

2π
ðQ · S ·QÞ

X2 ¼ −M2ðQ · T ·QÞ2 ð2:13Þ
where we have defined

S ¼
�
T LRT t

LR −T LLT LR

T RRT t
LR T t

LRT LR

�
: ð2:14Þ

Meanwhile X0 is given by [13]

ξ≡ 1

2
TrS; ð2:15Þ

whereupon

X0 ≡ −
M2

16π2
TrS: ð2:16Þ

In a similar fashion, we can also consider the case in
which ζ is related to the one-loop contribution to the gauge
coupling gG for any group factor G in a given string model.
This case is discussed in detail in Ref. [17]. To perform this
calculation, we evaluate these couplings gG to one-loop
order and then separate out the tree-level contributions. In
general, these quantities are related through

16π2

g2G

����
total thru
one−loop
order

¼ 16π2

g2G

����
tree

þ ΔG ð2:17Þ

where in string theory we have gGjtree ∼ e−hϕi with hϕi
denoting the VEV of the dilaton ϕ and where ΔG denotes
the one-loop contribution to 16π2=g2G. We may thus now
take ζ to be the one-loop contribution ΔG, whereupon the
corresponding operator insertions are given by [17]

X0 ¼ 0

X1 ≡ ξ

2π

�
Q̄2

H −
Ē2

12

�

X2 ≡ −2
�
Q̄2

H −
Ē2

12

�
Q2

G ð2:18Þ

where Q̄H is the (right-moving) spacetime helicity operator
(a specific component of QR) and where Q2

G is the
quadratic Casimir of G (comprised out of components of
QL). In Eq. (2.18), the quantity Ē2 is the antiholomorphic
Eisenstein function which is defined in Eq. (A3). As
discussed above, this case therefore provides an example
in which the Xl are not τ-independent but rather carry a
holomorphic τ-dependence. Such cases will be considered
in Sec. IV, but we shall find that they will not induce
significant departures from the main results we shall be
presenting.

B. Divergences and regulator function

In general, with operator insertions X of the form in
Eq. (2.8), it is possible that the four-dimensional amplitude
in Eq. (2.6) experiences a logarithmic divergence. Indeed,
such a divergence will arise in four-dimensional theories if

Str
M¼0

X2 ≠ 0 ð2:19Þ

where Str
M¼0

denotes a supertrace over only the massless

states. Given that our operator insertions generally take the
form in Eq. (2.8), this is the most severe divergence that
can arise.
In such cases, we must regulate the amplitude without

disturbing its modular invariance. Following Refs. [13,17]
wewill carry out this procedure bymultiplying the integrand
of Eq. (2.6) by a suitable modular-invariant regulator
function Gða; τÞ where τ is the one-loop modular parameter
and a schematically represents other possible parameters
within this function. In order to serve its purpose as a
regulator, such a function must vanish more rapidly than
logarithmically as τ → i∞. We also demand that G ≈ 1
elsewhere within the fundamental domain, so that this
regulator does not significantly disturb our theory within
regions of integration that do not lead to divergences.
An explicit regulator function satisfying these criteria

was given in Ref. [13]. However, given that the specific
form of this function will not be needed for any of our main
arguments, we shall defer discussion of this function until
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Sec. IV, when we work out a specific example of our
results.
Thus, our procedure for regulating a divergent one-loop

string amplitude amounts to deforming the amplitude
according to our regulator function G:

hXi → hXiG ≡ hXGi: ð2:20Þ

As we shall see, there can also be other reasons for
introducing such a regulator function, even for amplitudes
that are in principle finite.

C. Rankin-Selberg transform and supertraces over
physical string states

In general, for arbitrary insertion X and arbitrary
dimension D, the one-loop amplitude hXi is given by
the D-dimensional version of Eq. (2.6), namely

hXi≡
Z
F

d2τ
τ22

ZðDÞ
X : ð2:21Þ

We thus see that string states with all allowed combinations
of worldsheet energies ðm; nÞ contribute. This is true not
only for the on-shell states withm ¼ n but also the off-shell
states withm ≠ n; indeed, while the former contribute at all
values of τ2 within the fundamental domain in Eq. (2.7), the
latter also contribute, albeit within only the τ2 < 1 region.
These contributions can nevertheless be sizable.
It turns out that this amplitude may be expressed in

another form which depends only on the on-shell states
with m ¼ n. This alternate form will be critical for our
eventual theorem, and exists for all dimensions D and for
all situations in which the amplitude hXi is finite.
Specifically, as long as the amplitude hXi in Eq. (2.21)
is finite and modular invariant, a powerful result in
modular-function theory due to Rankin [20,21] and
Selberg [22] allows us to reexpress this amplitude as

hXi ¼ π

3
Res
s¼1

Z
∞

0

dτ2 τs−22 gðτ2Þ ð2:22Þ

where

gðτ2Þ≡
Z

1=2

−1=2
dτ1Z

ðDÞ
X ðτÞ

≡ τk2

Z
1=2

−1=2
dτ1
X
m;n

amnXmnq̄mqn

¼ τk2
X
n

annXnne−πα
0M2

nτ2 ð2:23Þ

with α0M2
n ¼ 4n, as in Eq. (2.3). This tells us that the

original string amplitude hXi is nothing but the Mellin
transform of gðτ2Þ=τ2. This in turn allows us to write gðτ2Þ

directly as the inverse Mellin transform of the amplitude,
which yields the alternative result [23,24]

hXi ¼ π

3
lim
τ2→0

gðτ2Þ; ð2:24Þ

where gðτ2Þ continues to be given by Eq. (2.23). This result
is equivalent to that in Eq. (2.22), but has the primary
advantage that we can now evaluate hXi simply by taking
the τ2 → 0 limit of gðτ2Þ rather than by evaluating the
residue of the τ2-integral of gðτ2Þ. Indeed, inserting
Eq. (2.23) into Eq. (2.24) yields

hXi ¼ π

3
lim
τ2→0

τk2
X
n

annXnne−πα
0M2

nτ2 : ð2:25Þ

This, then, expresses the amplitude hXi in terms of the
degeneracies ann of only the physical string states.
The issue then boils down to the evaluation of the right

side of Eq. (2.25). Following Ref. [17], we shall do this by
first defining the sum

SðDÞðτ2Þ≡ τ−k2 gðτ2Þ ¼
X
n

annXnne−πα
0M2

nτ2 : ð2:26Þ

Thus SðDÞ encapsulates only that part of the τ2-dependence
of gðτ2Þ that comes from the X -weighted sums over the
string states. We can then expand SðDÞðτ2Þ as a power series
in τ2, i.e.,

SðDÞðτ2Þ ∼
X
j

Cjτ
j
2 as τ2 → 0: ð2:27Þ

Note that for complete generality we will not assume that
only integer values of j contribute in Eq. (2.27); indeed
subleading contributions can generically also have frac-
tional j. Inserting Eq. (2.27) into Eq. (2.24), we thus have

hXi ¼ π

3
lim
τ2→0

X
j

Cjτ
jþk
2 : ð2:28Þ

It is not difficult to determine the values of the
C-coefficients for integer j. Indeed, following Ref. [2],
we may “invert” Eq. (2.27) by taking τ2-derivatives of both
sides. In this way we find

C0 ¼ lim
τ2→0

�X
n

annXnne−πα
0M2

nτ2

�
ð2:29Þ

and
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C1 ¼ lim
τ2→0

�X
n

ann

�
d
dτ2

Xnn

�
e−πα

0M2
nτ2

�

− lim
τ2→0

�X
n

annXnnðπα0M2
nÞe−πα0M2

nτ2

�

¼ lim
τ2→0

�X
n

ann

�
d
dτ2

− πα0M2
n

�
Xnne−πα

0M2
nτ2

�

¼ lim
τ2→0

�X
n

annðDτ2XnnÞe−πα0M2
nτ2

�
ð2:30Þ

where Dτ2 is the modular-covariant derivative

Dτ2 ≡
d
dτ2

− πα0M2

¼ d
dτ2

−
M2

4πM2
: ð2:31Þ

Coefficients Cj with integer j ≥ 2 can be calculated in a
similar fashion by taking additional τ2-derivatives, yielding
the general result

Cj ¼
1

j!
lim
τ2→0

�X
n

annðDj
τ2XnnÞe−πα0M2

nτ2

�
: ð2:32Þ

These results may be further simplified by defining the
regulated supertrace [2]

StrA≡ lim
τ2→0

X
n

annAnne−πα
0M2

nτ2 : ð2:33Þ

Given that the ann coefficients tally the net number of
bosonic minus fermionic degrees of freedom with left- and
right-moving worldsheet energies n, such supertraces are
completely analogous to the standard spectral supertraces
StrA≡Pnð−1ÞFAn that we would have in ordinary
quantum field theory except that they yield finite results
even for UV/IR-mixed theories which contain infinite
towers of states [2]. Indeed, even in such cases the
summation in Eq. (2.33) is finite thanks to the exponential
damping factor e−πα

0M2
nτ2, and remains finite even as τ2 → 0

and this damping factor is removed. We shall therefore
adopt this supertrace definition in what follows. Expressed
in terms of these supertraces, we then find that our
Cj-coefficients with integer j all take the relatively simple
form

Cj ¼
1

j!
StrDj

τ2X for all j ≥ 0: ð2:34Þ

Before proceeding further, we emphasize that the above
derivation leading to the supertrace expression for the
C-coefficients in Eq. (2.34) implicitly rested on an under-
standing that StrA ¼ 0 if A itself contains an uncancelled

positive power of τ2. This follows formally from the fact
that the definition of the supertrace in Eq. (2.33) includes a
limit taking τ2 → 0. It may indeed seem somewhat unor-
thodox to have τ2 appear not only within the argument of
the supertrace but also as the supertrace regulator, but
expressions such as that in Eq. (2.34) have a clear opera-
tional definition and will cause no difficulty. Thus, for
example, if X takes the form in Eq. (2.8) with τ2-
independent coefficients Xl, then

StrX ¼ StrX0

Str
d
dτ2

X ¼ StrX1

Str
d2

dτ22
X ¼ 2StrX2: ð2:35Þ

The result in Eq. (2.28) enables us to express our string
amplitude hXi in terms of the C-coefficients. For example,
taking k ¼ −1 (as appropriate for string theories in four
dimensions) and recalling that hXi is finite, we find

hXi ¼ π

3
C1: ð2:36Þ

However, this result assumes that we have also imposed the
auxiliary conditions

Cj ¼ 0 for all j < 1: ð2:37Þ

In particular, from this we learn that

C0 ¼ 0: ð2:38Þ

The result in Eq. (2.36) allows us to express our string
amplitude hXi in terms of supertraces over only the
physical string states. Indeed, combining Eqs. (2.30) and
(2.36) we have

hXi ¼ π

3
Str

�
d
dτ2

X
�
−
π

3
Str½Xðπα0M2Þ�

¼ π

3
StrðDτ2XÞ: ð2:39Þ

Likewise, our auxiliary condition in Eq. (2.38) now takes
the form

StrX ¼ 0: ð2:40Þ

Note that these results apply for any modular-invariant
operator insertion X in four dimensions so long as this
insertion results in a finite amplitude hXi.
Finally, we note that we may occasionally be required

to evaluate supertraces of quantities—such as the Xl in
Eq. (2.18)—which involve the Eisenstein function E2ðτÞ
defined in Eq. (A3). The presence of such a function
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introduces a number of subtleties into the procedure for
evaluating supertraces. These subtleties are fully described
in Ref. [17] and summarized in the Appendix, with the end
result that the usual notion of supertrace is generalized in a
straightforward manner.
The results in Eqs. (2.36) and (2.38) were derived for

k ¼ −1, as appropriate for four-dimensional theories.
However, these results can be easily generalized to higher
dimensions D. Indeed, given the relation in Eq. (2.2), we
obtain

D ¼ 6∶
�

C0 ¼ C1 ¼ 0

hXi ¼ π
3
C2

D ¼ 8∶
�

C0 ¼ C1 ¼ C2 ¼ 0

hXi ¼ π
3
C3

D ¼ 10∶
�

C0 ¼ C1 ¼ C2 ¼ C3 ¼ 0

hXi ¼ π
3
C4:

ð2:41Þ

We thus observe, as discussed in the Introduction, that
theories in higher dimensions exhibit more internal can-
cellation constraints than do theories in lower dimensions.
Note that for convenience we shall restrict our attention

in this paper to spacetime dimensionalities which are even,
with D∈ 2Z. These are the dimensionalities for which the
modular weight k is an integer, and in which chiral theories
can exist. Similar results also arise for odd D, but with
additional complications that obscure the underlying phys-
ics. We shall therefore focus on theories with even D in
what follows.

III. THE THEOREM

Having assembled the ingredients that will be needed for
our theorem, we now turn our attention to the theorem
itself. Our theorem ultimately rests on modular invariance
and misaligned supersymmetry, as do most of the results
quoted in Sec. II. As we shall see, there is a deep clash
between modular invariance and the process of decom-
pactification. This clash is intrinsic to the UV/IR mixing
inherent in string theory, and does not exist in ordinary
quantum field theory. Our theorem emerges as the result of
this clash, and ultimately provides the means by which
these two features can be reconciled.

A. Fundamental clash between decompactification
and modular invariance

Let us begin by examining the properties of modular-
invariant four-dimensional theories in the presence of a large-
volume δ-dimensional compactification. In other words,
we shall consider a (4þ δ)-dimensional modular-invariant
theory compactified on a manifold of the form M4 ×Kδ

whereM4 is ordinary uncompactifiedMinkowski space and
where Kδ is our compactified δ-dimensional space whose
characteristic dimensionswe shall consider to be large,with a

corresponding δ-dimensional volume Vδ ≫ M−δ
s where Ms

is the string scale. Our goal is to study how the resulting
theory evolves as we take Vδ → ∞.
For simplicity, we shall start by considering untwisted

compactifications, temporarily deferring our analysis of
situations with twisted compactifications (such as arise in
orbifold compactifications) to Sec. III F. We also remark
that in the case of four-dimensional closed strings, we
would generally be compactifying from ten dimensions to
four dimensions. There are therefore a total of six com-
pactified dimensions, and we choose δ to represent the
number of such dimensions whose characteristic sizes we
wish to consider growing increasingly large. Thus
0 < δ ≤ 6. Moreover, in keeping with the observation at
the end of the previous section, we shall focus on the cases
with δ∈ 2Z > 0.
Within such modular-invariant theories, we shall con-

centrate on physical quantities ζ for which the correspond-
ing one-loop contributions hXi are finite for all Vδ. In four
spacetime dimensions, hXi can generally have at most a
logarithmic divergence. From direct inspection of Eq. (2.6),
and as noted in Eq. (2.19), we see that such a logarithmic
divergence is proportional to Str

M¼0
X2 where the supertrace is

restricted to the massless X2-charged states in the string
spectrum. Thus, until further notice, we shall concentrate
on quantities ζ for which

Str
M¼0

X2 ¼ 0: ð3:1Þ

We emphasize that for our purposes this constraint is not
exceedingly restrictive, since our primary interest in this
paper is in the effects of decompactifications, and as we
shall see this question turns out to be largely independent of
whether the amplitudes are finite or infinite. Therefore, for
simplicity and concreteness, we shall focus on amplitudes
which are finite, and hence satisfy the constraint in
Eq. (3.1). Likewise, in most phenomenologically interest-
ing string models, it can be difficult to produce a massless
X2-charged state, since the same worldsheet excitations
that produce a nonzero X2 charge will also render the
corresponding state massive. We shall therefore assume
that Eq. (3.1) holds for the rest of this section. Of course,
for physical quantities ζ for which this condition is not
satisfied, it would be necessary to introduce a regulator
function G, as described in Sec. II B. This would introduce
several subtleties into the proof of our main theorem but
will not alter the main result. Such situations will be
discussed later in this paper.
Given that we are temporarily focusing on untwisted

compactifications, the X -inserted partition function Zð4Þ
X of

our compactified four-dimensional theory can be factor-
ized, i.e.,

Zð4Þ
X ¼ ZðbaseÞ

X · ZKK=winding; ð3:2Þ
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where ZKK=winding is the trace over all of the Kaluza-Klein
(KK) and winding modes associated with the δ large
compactified extra dimensions and where the “base”

partition function ZðbaseÞ
X can be written as

ZðbaseÞ
X ¼ τ−12

X0

mn

amnXmnq̄mqn ð3:3Þ

where
P0

mn indicates a sum over the states excluding the
KK and winding modes associated with the δ large
dimensions. In other words, our original theory can be
viewed as a “base” theory tensored with a cloud of
KK/winding states stemming from the compactification,
with each state in the base theory accruing the same set of
KK/winding excitations.
In general, ZðbaseÞ

X contains the information regarding our
specific theory independently of the compactification. This
is thus the portion of the original X -inserted partition
function that depends on the particular operator insertion X
but which is independent of the compactification volume
Vδ. By contrast, ZKK=winding contains the information
regarding the specific geometry associated with the
large compactified dimensions. As such, ZKK=winding is
independent of X but depends on Vδ. For example, if
we specialize to δ ¼ 1 and define the dimensionless radius
R̃≡MsR ¼ R=

ffiffiffiffi
α0

p
, we have

ZKK=winding ¼
X
m̃;ñ

q̄ðm̃=R̃−ñ R̃Þ2=4qðm̃=R̃þñ R̃Þ2=4

¼
X
m̃;ñ

e−πτ2ðm̃2=R̃2þñ2R̃2Þe2πiτ1m̃ ñ

¼ Zcirc=
ffiffiffiffi
τ2

p ð3:4Þ

where m̃ and ñ respectively index the KK (momentum) and
winding modes associated with this large extra dimension
and where Zcirc is the modular-invariant circle partition
function

ZcircðR̃; τÞ≡ ffiffiffiffi
τ2

p X
m̃;ñ∈Z

q̄ðm̃=R̃−ñ R̃Þ2=4qðm̃ R̃þñ=R̃Þ2=4: ð3:5Þ

In this case we thus see from the middle line of Eq. (3.4)
that ZKK=winding traces over KK/winding states with masses

M2
m̃;ñ ¼

m̃2

R2
þ ñ2M4

sR2; ð3:6Þ

as required. Likewise, for a δ-dimensional (square) toroidal
compactification we may take ZKK=winding ¼ ðZcirc=

ffiffiffiffi
τ2

p Þδ.
Even though the masses of the KK states in Eq. (3.6) are

the same as we would expect for a five-dimensional field
theory compactified on a circle, this summation also
includes the contributions from winding modes and is
thereby modular invariant, so that the full X -inserted

partition function Zð4Þ
X in Eq. (3.2) is modular invariant.

Indeed, even though the individual factors in Eq. (3.2) are
not separately modular invariant, we may reshuffle factors
of τ2 in order to write

Zð4Þ
X ¼ ðτ−δ=22 ZðbaseÞ

X Þ · ðτδ=22 ZKK=windingÞ; ð3:7Þ
where now each factor is individually modular invariant.
For compactifications of the sort we are discussing, a
modular-invariant reshuffling such as that in Eq. (3.7) is
completely general, independent of the spacetime geom-
etry. Indeed, for a square δ-dimensional toroidal compac-
tification, the final factor is nothing but the modular-
invariant sum ðZcircÞδ.
Let us now ask what happens as Vδ → ∞. It is once

again easiest to focus on the case of square toroidal
compactifications as a guide and ask what happens when
the radius associated with these δ dimensions becomes
large, with R−1 ≪ Ms or equivalently R̃ ≫ 1. In the
MsR → ∞ limit we can disregard all excited winding-
mode states with ñ ≠ 0, as these states become infinitely
massive. Likewise, the KK masses become essentially
continuous. In this limit we can then evaluate ZKK=winding,
obtaining

ZKK=winding ≈
X
m̃

e−πτ2m̃
2=R̃2

¼ MsRffiffiffiffi
τ2

p
X
l∈Z

e−πl
2ðMsRÞ2=τ2

≈
MsRffiffiffiffi
τ2

p : ð3:8Þ

Note that in passing from the first line of Eq. (3.8) we have
employed an exact Poisson resummation, while the passage
to the third line then follows by taking the R → ∞ limit. Of
course, we could have obtained the same results by
approximating the sum in the first line as an integral,
which would have led to the third line directly.
Likewise, for δ orthogonal dimensions of radius R, we

obtain

ZKK=winding ≈
Mδ

sRδ

τδ=22

¼ MδVδ

τδ=22

ð3:9Þ

whereM≡Ms=ð2πÞ is the reduced string scale and where
Vδ ¼ ð2πRÞδ is the compactification volume. Once again,
we note that the final expression in Eq. (3.9) is completely
general, holding independently of the (factorized) com-
pactification geometry.
However, partition functions of compactified string

theories in different spacetime dimensions are generally
related via

ZðDþδÞ ≡ lim
Vδ→∞

�
1

MδVδ
ZðDÞ

�
ð3:10Þ
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where the theory corresponding to ZðDÞ has δ large
compactification radii with compactification volume Vδ.
Indeed, as Vδ → ∞, the partition function ZðDÞ develops a
divergence which scales as the volume Vδ of compactifi-
cation; dividing out by this volume as in Eq. (3.10) then
yields the finite higher-dimensional partition function
ZðDþδÞ. Putting the pieces together, we therefore find that

Zð4þδÞ
X ¼ lim

Vδ→∞

�
1

MδVδ
Zð4Þ
X

�
¼ τ−δ=22 ZðbaseÞ

X ð3:11Þ

where ZðbaseÞ
X is given in Eq. (3.3). This observation allows

us to identify the “base” factor within our four-dimensional
theory in terms of the higher-dimensional theory:

ZðbaseÞ
X ¼ τδ=22 Zð4þδÞ

X : ð3:12Þ

Note that both sides of this relation are indeed
Vδ-independent.
As we have seen, Eq. (3.10) relates modular-invariant

theories in different dimensions. We shall refer to this
equation as a “smoothness” constraint because it ensures
that the four-dimensional partition function smoothly
becomes a (4þ δ)-dimensional partition function in the
Vδ → ∞ limit. In this context, we note that Eq. (3.10)
directly implies a similar smoothness relation for the
corresponding one-loop amplitudes. Indeed, defining

hXið4þδÞ ≡
Z
F

d2τ
τ22

Zð4þδÞ
X ; ð3:13Þ

we have

hXið4þδÞ ¼ lim
Vδ→∞

1

MδVδ
hXið4Þ: ð3:14Þ

However, while Eq. (3.10) implies Eq. (3.14), the converse
is not true. Indeed, while two equal partition functions lead
to identical amplitudes, identical amplitudes only imply
equality of the corresponding partition functions modulo
functions fðτ; τ̄Þ whose F -integrals vanish. Indeed, many
such nonzero functions fðτ; τ̄Þ with vanishing F -integrals
are known to exist [25–27]. We also note that hXið4Þ scales
as the compactification volume Vδ as Vδ → ∞; dividing out
by Vδ as in Eq. (3.14) then leads to a finite higher-
dimensional amplitude hXið4þδÞ. In this connection we
note that this divergence of hXið4Þ as Vδ → ∞ is associated
with a mere overall multiplicative factor. In particular, it is
not associated with the modular integration of Zð4Þ over the
fundamental domain F (such as might arise due to certain
massless or tachyonic states).
The (re)emergence of a higher-dimensional theory in the

large-volume limit is certainly not a surprise. Indeed,
geometric decompactification is an intrinsically smooth

and continuous process. However, the extra factor τ−δ=22

which appears in Eq. (3.11) is of critical importance.

This extra factor indicates that if ZðbaseÞ
X has a τ2-dependent

prefactor τ−12 , as appropriate for a four-dimensional

theory, then Zð4þδÞ
X has a τ2-dependent prefactor τk2 where

k ¼ 1 −D=2 with D ¼ 4þ δ. The appearance of the new
factor τ−δ=22 in Eq. (3.11) thus reflects the change in
dimensionality of any modular-invariant theory when an
extra uncompactified spacetime dimension comes into
existence.
It is here that we witness the fundamental clash between

the smoothness of the decompactification process and the
discrete integer nature of the number of uncompactified
spacetime dimensions (or equivalently the half-integer
nature of the modular weight k∈Z=2). Indeed, while
the Vδ → ∞ limit is essentially a smooth one as far as
the resulting physics is concerned, the powers of τ2 change
in this limit in what is ultimately a discontinuous way
according to Eq. (2.2).
It is important to properly understand the nature of this

discontinuity. Toward this end, let us revisit Eq. (2.1). We
may regard the form of this expression as the “canonical”
form for a partition function. Indeed, this form consists of a
discrete double power series in q and q̄, where q≡ e2πiτ,
along with an overall factor of τ2 raised to a certain power k.
The canonical form of the partition function is of utmost
importance because it is only in this form that one can read
off a value of k which can be interpreted as a modular
weight—indeed, the same modular weight k which appears
throughout the Rankin-Selberg procedure. In other words,
it is only when we cast our partition function into the
canonical form that we expose the true modular weight k of
our theory.
Such a partition function can also depend on a compac-

tification radius R, which is a continuous variable. As we
have stated above, the underlying physics of our theory
must have a smooth R → ∞ limit. Indeed, for every value
of R (including infinity), it is possible to recast our partition
function into the canonical form in Eq. (2.1); moreover, for
every finite value of R, the value of k that appears in the
canonical form remains the same (equalling −1 for four-
dimensional theories). However, in the R → ∞ limit, the
value of k that appears in the canonical form jumps to a new
value. For example, in the case of a four-dimensional
theory with a single extra dimension, we now have k ¼
−3=2 in the R → ∞ limit, consistent with Eq. (2.2). This is
the “discontinuity” to which we are referring.
We stress that the underlying physics is not discontinu-

ous in this limit; it is merely the passage to the canonical
form comprising a discrete double power series that
becomes discontinuous. Indeed, this discontinuity arises
from the fact that in the infinite-radius limit ZKK=winding can
no longer be written in the same canonical form as for finite
radius. Instead, what happens at infinite radius is that our
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discrete spectrum becomes continuous. As a result, in this
limit, ZKK=winding takes the form of a divergent volume
factor multiplying a volume-independent expression.
However, this volume-independent expression is in the
canonical form, but now with a different value of k. The
passage to the higher-dimensional theory as in Eq. (3.10)
then eliminates this volume factor, but leaves us with a new
canonical form with a new value of k.
This, then, is the fundamental clash between modular

invariance and the process of decompactification. We know
that the process of decompactification must ultimately be
smooth, even in the decompactification limit. On the other
hand, the value of k within the canonical form changes in a
discontinuous way in the decompactification limit—with
an extra factor of τ−δ=22 appearing in Eq. (3.11)—and we
know that k is a quantity which is absolutely fundamental
in describing the modular properties of our theory. How
then can these two features be reconciled?
Before proceeding further, we note that this is not the first

time such clashes have arisen within string theory, or even
simply within conformal field theory. For example, let us
consider the case of a boson compactified on a circle of
radius R, as discussed in Ref. [28]. If R is rational, it can be
expressed in lowest form as p=q for some integers ðp; qÞ,
and the resulting decomposition of the partition function into
left- and right-moving CFT characters depends critically on
the values of p and q. Thus, as we sweep through rational
values of R, it would seem that the corresponding partition
functions—and therefore the properties of the resulting
CFTs—will vary hugely and discontinuously. The existence
of irrationals amongst the rationals only introduces further
potential discontinuities into the mix. Yet we know that the
physics must ultimately be smooth as we vary R.
How can this clash be resolved? In Ref. [28], it was

shown that modular invariance—specifically the relevant
GSO projections between the left- and right-moving sectors
of the theory—must always connect the different CFTs in a
way that is responsible for restoring continuity to all
physical amplitudes as a function of R. In our case, by
contrast, we are dealing with a clash between modular
invariance (specifically a discontinuous change in the
modular weight) and the process of decompactification.
What then is the analogous resolution to this puzzle?

B. Sharpening the clash

In order to address this issue, let us first sharpen this
question still further. We shall do this by examining the
consequences of this extra factor of τ−δ=22 in Eq. (3.11).
Although there are several ways in which we might
incorporate this factor into our analysis, the most straight-
forward way is to bundle it with the leading prefactor τ−12 in
Eq. (3.11). As noted above, this then produces the net
prefactor τ1−D=2

2 that we expect of a fully D-dimensional
theory, with D ¼ 4þ δ.

However, what is perhaps less obvious is how this new
factor of τ−δ=22 affects our results for the amplitude hXi. To
see this, let us now proceed to apply the Rankin-Selberg
procedure in order to analyze the one-loop amplitudes

hXið4Þ and hXið4þδÞ that correspond to Zð4Þ
X and Zð4þδÞ

X in
Eqs. (3.2) and (3.11) respectively. The corresponding
g-functions gðτ2Þ≡ R 1=2−1=2 dτ1Zðτ; τ̄Þ can then be written

as gð4Þ ¼ τ−12 Sð4Þ and gð4þδÞ ¼ τ−1−δ=22 Sð4þδÞ where

Sð4Þ ≡
Z

1=2

−1=2
dτ1

��X0

mn

amnXmnq̄mqn
�
ZKK=winding

�

Sð4þδÞ ≡X0

n

annXnnðq̄qÞn ð3:15Þ

and where we remind the reader that the primes on the
summations

P0
mn, just as in Eq. (3.3), indicate sums over

the states excluding the KK and winding modes associated
with the δ large dimensions. Indeed, we shall generally use
primes to indicate quantities uniquely associated with the
“base” theory in Eq. (3.3) rather than the full theory which
also includes the compactification factor ZKK=winding.
Following Eq. (2.27), we can then expand Sð4Þ and Sð4þδÞ

in powers of τ2 as τ2 → 0, i.e.,

Sð4Þ ∼
X
j

Cjτ
j
2

Sð4þδÞ ∼
X
j

C0
jτ

j
2; ð3:16Þ

where the C and C0 coefficients correspond to Sð4Þ and
Sð4þδÞ respectively. Indeed, given the expression for Sð4þδÞ
in Eq. (3.15), we immediately have

C0
0 ¼ Str0X

C0
1 ¼ Str0

dX
dτ2

− πα0Str0ðXM2Þ

C0
2 ¼

1

2
Str0

d2X
dτ22

− πα0Str0
�
dX
dτ2

M2

�
þ 1

2
π2ðα0Þ2Str0ðXM4Þ

..

.

C0
n ¼

1

n!
Str0Dn

τ2X ð3:17Þ

where Dτ2 is defined in Eq. (2.31) and where the primes on
the supertraces in Eq. (3.17) continue to indicate that the
KK and winding states associated with the δ large dimen-
sions are excluded.
Given the C- and C0-coefficients, the Rankin-Selberg

procedure outlined in Sec. II C then tells us that
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hXið4Þ ¼ π

3
lim
τ2→0

τ−12 Sð4Þ

hXið4þδÞ ¼ π

3
lim
τ2→0

τ−1−δ=22 Sð4þδÞ: ð3:18Þ

The presumed finiteness of hXið4Þ then allows us to
conclude that the C-coefficients satisfy�

C0 ¼ 0

hXið4Þ ¼ π
3
C1;

ð3:19Þ

as expected for any four-dimensional theory. Likewise, for
the C0-coefficients, the corresponding finiteness of hXið4þδÞ
allows us to obtain results which depend critically on δ:

δ ¼ 2∶
� C0

0 ¼ C0
1 ¼ 0

hXið6Þ ¼ π
3
C0
2

δ ¼ 4∶
� C0

0 ¼ C0
1 ¼ C0

2 ¼ 0

hXið8Þ ¼ π
3
C0
3

δ ¼ 6∶
� C0

0 ¼ C0
1 ¼ C0

2 ¼ C0
3 ¼ 0

hXið10Þ ¼ π
3
C0
4:

ð3:20Þ

Indeed, these results are all manifestations of the mis-
aligned supersymmetry that governs the spectra of modu-
lar-invariant string theories in different dimensions, even
without spacetime supersymmetry. Moreover, these results
provide a direct illustration of our earlier assertion that the
spectra of modular-invariant string theories exhibit increas-
ingly many internal cancellations as the spacetime dimen-
sion increases.
These results allow us to rephrase and sharpen the

“discontinuity” that occurs for our compactified string
theory as Vδ → ∞. To see this, let us recall, as in
Eq. (3.2), that our compactified string theory consists of
two components tensored together: a “base” theory and a
“cloud” of KK/winding-mode excitations. We have also
seen in Eq. (3.12) that the base theory is nothing but the
higher-dimensional theory prior to compactification.
Finally, we have been assuming that the overall physical
amplitude hXi associated with our theory remains finite for
all Vδ. Given these assumptions, we can ask what con-
straints must be satisfied by our theory as a function of Vδ.
In general, there are two classes of constraints:

(i) C-constraints that govern the entire spectrum of the
four-dimensional string model; and

(ii) C0-constraints that govern that portion of the spec-
trum associated with the “base” theory alone.

For any finite Vδ, the finiteness of our overall amplitude
hXi (i.e., the finiteness of hXið4Þ) requires—at a bare
minimum—that

�
• C0 ¼ 0

• C0
j arbitrary:

ð3:21Þ

However, let us now consider what happens as Vδ → ∞. In
this limit, the overall amplitude hXið4Þ technically accrues a
“spurious” divergence due to the infinite volume factor in
Eq. (3.14). However, as Vδ → ∞, our theory is now in
higher dimensions. This means, according to Eq. (3.14),
that we should divide out by this volume in order to
continue to obtain the corresponding amplitude hXi.
Indeed, the resulting amplitude is now nothing but
hXið4þδÞ. Thus, as Vδ → ∞, the continued finiteness of
our overall amplitude hXi now translates to the finiteness of
hXið4þδÞ, which in turn requires

f • C0
0 ¼ C0

1 ¼ … ¼ C0
δ=2 ¼ 0: ð3:22Þ

This sudden shift in the constraints on our string model as
Vδ → ∞ is the manifestation of the discontinuity we have
been discussing all along, namely the clash between the
decompactification limit and the requirements of modular
invariance.
It is easy to understand how and why these different sets

of constraints arise. In the discussion above, we have let
hXi represent the physical amplitude of our theory. When
Vδ is finite, this quantity is nothing other than hXið4Þ.
However, when Vδ is infinite, this quantity is nothing other
than hXið4þδÞ. What we are demanding is simply that this
transition as Vδ → ∞ be a smooth one, with no disconti-
nuity in the physical amplitude hXi. If hXi is finite for all
Vδ [where we have already compensated for the spurious
volume divergence via Eq. (3.14)], then we are saying that
our theory has no choice but to satisfy the constraints in
Eq. (3.21) for all finite Vδ and to satisfy the constraints in
Eq. (3.22) for infinite Vδ. This sudden shift in the
constraints on our string model as Vδ → ∞ is the mani-
festation of the apparent discontinuity we are seeking to
resolve.

C. Resolving the clash: Our fundamental theorem

Ultimately, there is only one way in which the constraints
in Eq. (3.21) for finite Vδ can be smoothly reconciled with
those in Eq. (3.22) for infinite Vδ: our string theory must
actually satisfy the more stringent constraints

�
• C0 ¼ 0

• C0
0 ¼ C0

1 ¼ … ¼ C0
δ=2 ¼ 0

ð3:23Þ

for all compactification volumes Vδ, finite or infinite.
Indeed, this is tantamount to demanding that the extra
constraints C0

j ¼ 0 for all 0 ≤ j ≤ δ=2 apply not only in the
Vδ → ∞ limit, but rather for all Vδ. Note that in making
this demand we are not introducing a new set of constraints
for string models with decompactification limits. Instead,
we are simply asserting that such string models must
already have been satisfying these constraints, even if
these constraints had not been explicitly noticed before.
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Indeed, it is these properties that allow the decompacti-
fication limits to exist.
This assertion represents the content of our theorem.

Specifically, we have the following:
Theorem. Any four-dimensional closed string theory

which can be realized as a geometric compactification
from a higher-dimensional string theory will inherit the
precise stricter internal cancellations of the higher-dimen-
sional theory despite the compactification.
We shall prove this theorem in Sec. III D. In this

connection, we remind the reader that we have been
limiting our discussion here to theories whose partition
functions can be factored as in Eq. (3.2)—i.e., theories
whose compactifications are untwisted. However, as we
shall soon discuss, the above theorem can actually be
trivially generalized to apply to any compactification,
twisted or untwisted.
In Sec. IV, we shall see why we may regard this as a

nonrenormalization theorem. For now, however, we simply
note that this theorem may also conversely be viewed as
providing an important constraint on the construction of
compactified string models. Indeed, as already noted, our
compactified string theory consists of a “base” theory
tensored with a cloud of KK/winding states. We might
then ask whether we can tensor such a cloud of KK/
winding states to any base theory. In a field-theoretic
context, the answer is yes. However, in string theory, the
requirements of modular invariance imply that we cannot
do this unless certain (primed) supertraces in the base
theory vanish. These are the primed supertraces associated
with the C0

j-coefficients for 0 ≤ j ≤ δ=2. Indeed this is the
only way in which we can smoothly and self-consistently
absorb the extra powers of τ2 which arise in the decom-
pactification limit.
We conclude this discussion of our theorem with one

final comment. In general, while the Cj-coefficients are are
messy functions of compactification radius and geometry,
the C0

j-coefficients are by definition independent of any
details of compactification. For example, a six-dimensional
theory compactified on a two-torus and the same six-
dimensional theory compactified on a two-sphere will give
rise to distinct four-dimensional theories. However, these
four-dimensional theories will nevertheless share the
same C0

j-coefficients because they flow to the same six-
dimensional theory as the volume Vδ becomes large. Thus,
the space of compactified four-dimensional theories can be
separated into different equivalence classes based on their
internal C0-constraints—i.e., equivalence classes which
depend on the higher-dimensional theories to which they
flow at large volume.

D. Proving the theorem

To prove our theorem, we shall begin by proving that any
four-dimensional closed string theory which can be realized
as a geometric compactification from a (4þ δ)-dimensional

string theory with arbitrary compactification volume Vδ

satisfies the constraints given in Eq. (3.23) rather than those
given in Eq. (3.21). To do this, let us study the relationship
between the Cj-coefficients and the C0

j-coefficients.
Given that these coefficients respectively describe our

original four-dimensional theory and the “base” of that
theory, and given that this base is nothing but the original
(4þ δ)-dimensional theory, any relationship between these
two sets of coefficients must stem from a relationship
between the compactified and uncompactified theories.
However, we have already seen such a relationship: this is
our “smoothness” constraint in Eqs. (3.14). Performing
a τ1-integration of both sides of this relation over
−1=2 < τ1 ≤ 1=2, inserting the expansions in Eq. (3.16),
and matching terms with equal powers of τ2 then yields the
relation

C0
j ¼ lim

Vδ→∞

1

MδVδ
Cj−δ=2 for all j: ð3:24Þ

As discussed above, the shifting of the j-index reflects the
extra powers of τ2 that emerge upon the decompactification
of the large spacetime dimensions. Indeed, this index
shifting is required by modular invariance and our smooth-
ness requirement.
We have seen that our smoothness constraint on the

partition functions in Eq. (3.10) leads directly to the
smoothness constraint in Eq. (3.14) on the corresponding
amplitudes hXið4Þ and hXið4þδÞ. Indeed, it is the finiteness
of hXið4Þ that implies the auxiliary condition that Cj ¼ 0

for all j < 1, which includes the constraint C0 ¼ 0. From
the relation in Eq. (3.24) we then find

C0
j ¼ 0 for all j < 1þ δ=2: ð3:25Þ

This result is consistent with the results quoted in
Eq. (3.20), and is tantamount to the assertion that if
hXið4Þ is finite (after dividing out, of course, the overall
volume factor which diverges in the Vδ → ∞ limit), then
hXið4þδÞ is also finite. In other words, the X -amplitude of
our four-dimensional compactified theory cannot suddenly
grow a new divergence in the Vδ → ∞ limit. This then
completes the proof of our theorem.
In fact, we can even push things one step further. Thus

far, we have seen that we have two kinds of constraints: our
C-constraints which govern the entire four-dimensional
theory and our C0-constraints which govern the “base”
portion of that theory (or equivalently which govern its
higher-dimensional decompactification limit). However,
we shall now demonstrate that there is in fact a universal
relation between these two groups of constraints. Indeed,
this relation will apply to any theory that has a decom-
pactification limit regardless of the degree to which its
partition function factorizes.
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To proceed let us begin with two fundamental
observations:

(i) The result in Eq. (3.24) does not depend on the
compactification geometry. All that is assumed is
that the partition function of any string theory in D
spacetime dimensions has a leading prefactor of τk2
where k ¼ 1 −D=2 ¼ −1 − δ=2 where δ ¼ D − 4.
This is a general result for any compactification.
This also does not assume an untwisted compacti-
fication (i.e., it does not assume that the four-
dimensional partition function Zð4Þ factorizes), for
the same reason. Indeed, the C-expansion in
Eq. (3.16) is completely general regardless of the
precise form of the quantity Sð4Þ in Eq. (3.15) as long
as Sð4Þ corresponds to a four-dimensional theory, so
that gð4Þðτ2Þ ¼ τ−12 Sð4Þ.

(ii) The results in Eqs. (3.19) and (3.20) are also
completely general, following from the same feature
as described above.

Given these observations, our task is now to relate the
Cj-constraints from the C0

j-constraints—not just at infinite
volume but even at finite volume.
The easiest way to proceed is to consider the difference

between our partition functions

ΔZX ≡ Zð4þδÞ
X −

1

MδVδ
Zð4Þ
X : ð3:26Þ

Note that in constructing this difference we are not taking
the Vδ → ∞ limit; thus this difference is a function of Vδ.
By considering only the difference in this way we avoid
making any assumptions about the behavior of hXið4Þ at
finite Vδ. In this connection we note that the difference of
two partition functions is not necessarily itself the partition
function of any self-consistent string model (see, e.g.,
Refs. [26,27]). However, such a property is not required
for our proof.
Given this definition for ΔZX , we can then define the

corresponding amplitude

hΔXi ¼
Z

d2τ
τ22

ΔZX ; ð3:27Þ

the corresponding g-function

gΔX ≡
Z

dτ1 ZΔX ; ð3:28Þ

and the corresponding sum

SΔX ≡ τ2 gΔX : ð3:29Þ

We can also consider expanding SΔX in powers of τ2 in the
τ2 → 0 limit, i.e.,

SΔX ¼ τ−δ=22

X
j

C00
j τ

j
2 as τ2 → 0; ð3:30Þ

thereby defining a new set of C00
j -coefficients.

Let us now discuss the finiteness of ΔZ. Of course, we
learn from Eq. (3.10) that ΔZX → 0 as Vδ → ∞. However,
in order for this limit to exist, we also learn that ΔZX must
be finite for large Vδ (i.e., for MδVδ ≫ 1). Thus, we see
that gΔX → 0 as Vδ → ∞ and that gΔX remains finite for
MδVδ ≫ 1. Indeed, these latter assertions follow because
the τ1-integration in Eq. (3.28) is incapable of producing a
new divergence, given that this integration merely selects
the zero mode of the partition-function Fourier series.
Likewise, we find that SΔX →0 as Vδ→∞ and that SΔX
remains finite for MδVδ ≫ 1.
Because these quantities are all finite, the expression for

ΔZ in terms of the difference between Zð4þδÞ and Zð4Þ
allows us to write gΔX and SΔX as analogous differences,
and thereby ultimately express C00

j in terms of Cj and C0
j.

Following this chain of steps, we thus have

C00
j ¼ C0

j −
1

MδVδ
Cj−δ=2: ð3:31Þ

Once again we stress that the C00
j coefficients are generally

functions of Vδ, with these relations holding for all
MδVδ ≫ 1. Likewise, these relations hold as functions
of τ2 for all τ2.
The final step of our analysis rests on the properties of

hΔXi. As discussed below Eq. (3.22), the smoothness of
the Vδ → ∞ limit requires that hΔXi be finite for large Vδ.
Thus, we can take the Rankin-Selberg transform of the
finite amplitude hΔXi, i.e.,

hΔXi ¼ π

3
lim
τ2→0

½τ−12 SΔX ðτ2Þ� ð3:32Þ

to find that

C00
j ¼ 0 for all j < 1þ δ=2: ð3:33Þ

Indeed, it is the fact that our relations hold for all τ2 which
enables us to take the τ2 → 0 limit without difficulty. It then
follows that

C0
j ¼

1

MδVδ
Cj−δ=2 for all j < 1þ δ=2: ð3:34Þ

This is the result we have been seeking. It provides a
direct relationship between the Cj and C0

j coefficients for
j < 1þ δ=2 and thereby relates our different sets of
constraints to each other. It is important to note that
Eq. (3.34) is different from Eq. (3.24) because it holds
regardless of the compactification volume Vδ. On the other
hand, it holds only for j < 1þ δ=2.
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Given the result in Eq. (3.34), we see that

C0
δ=2 ¼ 0 ⇒ C0 ¼ 0; ð3:35Þ

withCj for all j<0 vanishing as well. This also implies that

hΔXi ¼ hXið4þδÞ −
1

MδVδ
hXið4Þ; ð3:36Þ

Indeed, although the left side of this equation is finite, any
divergences that appear within the expressions on the right
side must be identical so that they cancel in the difference.
Note that Eq. (3.35) holds for all volumes Vδ. Indeed,

there is only one possible exception to this conclusion. In
particular, as Vδ becomes smaller, it is possible that a
physical, on-shell tachyon might appear. However, the
appearance of such a tachyon would signify a breakdown
of our compactified theory and automatically result in
divergent one-loop amplitudes in any case. This would
therefore correspond to taking our theory to a point at
which it becomes ill-defined. Thus, we conclude that these
results hold for all volumes Vδ which correspond to
tachyon-free compactifications.
These results provide an additional perspective on our

theorem. As we have seen, our theorem states that any four-
dimensional string model with a bona fide decompactifi-
cation limit satisfies not only a C-constraint C0 ¼ 0 but
also a set of additional new C0-constraints. However,
we now see that this C-constraint can be replaced by
the C0-constraints without any loss of generality. Thus the
C0 constraints are not only necessary (as implied by our
theorem) but also sufficient. Indeed, any model which
satisfies our new C0-constraints will already satisfy our
C0 ¼ 0 constraint.
Of course, the C0-constraints that we have discovered

here go beyond the C-constraint that was already known in
Ref. [2]. Indeed, as originally discussed in Ref. [2], all four-
dimensional closed string theories must satisfy the C0 ¼ 0
constraint of Eq. (3.19) as long as they are finite (i.e., free of
on-shell physical tachyons). However, what we are now
learning from our theorem is that if we additionally demand
that our four-dimensional theory also have a self-consistent
decompactication limit, then this theory must additionally
satisfy the C0-constraints which not only are more powerful
than the original C0 ¼ 0 constraint but even subsume it.

E. T-volume scaling rule

We shall now present another result which we call the
T-volume scaling rule. This result follows from our
previous results but now focuses on the first nonzero
coefficients C1 and C0

1þδ=2.
From Eq. (3.36) we find that our original four-dimen-

sional amplitude hXið4Þ is given by

hXið4Þ ¼ MδVδ½hXið4þδÞ − hΔXi�: ð3:37Þ

In principle, this represents a complicated volume depend-
ence for hXið4Þ because hΔXi is itself Vδ-dependent even
though hXið4þδÞ is not. However we know that hΔXi → 0
at large volume. We therefore expect that

hXið4Þ ≈MδVδhXið4þδÞ for MδVδ ≫ 1: ð3:38Þ

In other words, for large volumes, we expect that our
amplitude hXið4Þ scales as the volume itself. Indeed, this is
nothing but the volume divergence discussed earlier. We
also see that the coefficient of this scaling is given by the
full amplitude of the original higher-dimensional theory.
As expressed above, however, this result is not consis-

tent with T-duality. Indeed, from T-duality considerations
we know that our four-dimensional amplitude should
scale as the compactification volume not only for very
large compactification volumes but also for very small
ones. Toward this end, we seek to define a new kind of
(dimensionless) volume—a so-called T-volume ṼT—
which is consistent not only with modular invariance but
also with T-duality. One natural proposal for such a
quantity would be

ṼT ≡? 3

π

Z
F

d2τ
τ22

τδ=22 ZKK=winding: ð3:39Þ

This definition has the advantage that it results from a
modular-invariant integral and also depends directly on the
T-duality-invariant ZKK=winding partition-function factor.
Indeed, if we were to naïvely apply the Rankin-Selberg
procedure to this integral, we would find

ṼT ≡ 3

π
lim
τ2→0

gKK=winding ð3:40Þ

where

gKK=winding ≡
Z

1=2

−1=2
dτ1τ

δ=2
2 ZKK=winding: ð3:41Þ

However, we can immediately see that the expression in
Eq. (3.39) is actually divergent for all δ ≥ 2. Given that
ZKK=winding has a ðq; q̄Þ expansion that necessarily begins
with a nonzero constant term, this divergence arises in the
τ2 → ∞ region due to the extra power τδ=22 that was needed
for modular invariance. This divergence invalidates the
Rankin-Selberg procedure that leads to Eq. (3.40). Indeed,
this failure of the Rankin-Selberg procedure can be seen
from the fact that Eq. (3.39) is finite only for δ < 2 while
Eq. (3.40) is finite for all δ.
Given that Eq. (3.40) is finite for all δ, we shall therefore

define ṼT to be given by Eq. (3.40) rather than by
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Eq. (3.39). As we shall see below, this ensures a finite value
of ṼT for all δ. Moreover, we shall find that it is this
definition that leads to meaningful results, and indeed this
is all we shall ever need.
This definition for ṼT in Eq. (3.40) provides us with a

dimensionless compactification volume which respects T-
duality for the factorized compactifications which have
been our focus thus far. The quantity ṼT thereby substitutes
for the quantityMδVδ that we have been writing until now.
Furthermore, the overall normalization factor 3=π in
Eqs. (3.39) and (3.40) ensures that ṼT ¼ 1 for the trivial
δ ¼ 0 case in which τδ=22 ZKK=winding → 1. Of course, in the
special case with δ ¼ 1, we find that ṼT is also given by
Eq. (3.39). Indeed, for the simple case of compactification
on a circle of (dimensionless) radius R̃≡MsR ¼ R=

ffiffiffiffi
α0

p
,

as in Eq. (3.4), we find

ṼT ¼ R̃þ 1

R̃
: ð3:42Þ

We thus see that ṼT → ∞ both at large radius and at small
radius, and thereby subsumes both cases in a T-duality-
invariant manner.
Proceeding with this definition of ṼT , we will now show

that the coefficient C1 is indeed given in terms of ṼT by

C1 ≈ ṼTC0
1þδ=2 for ṼT ≫ 1; ð3:43Þ

or equivalently

hXið4Þ ≈ ṼThXið4þδÞ for ṼT ≫ 1: ð3:44Þ

We thus have the following:
T-volume scaling rule. Within any four-dimensional

modular-invariant closed string theory which can be real-
ized as a geometric compactification from a higher-
dimensional string theory, the one-loop amplitude hXið4Þ
in the limit of large compactification volume is given by the
product of the dimensionless T-volume of compactification
and the corresponding amplitude of the original higher-
dimensional theory.
While our proof of this result will hold for untwisted

compactifications, we shall see that it can be easily gener-
alized in order to hold for twisted compactifications as well.
To prove this result, let us recall from Eq. (3.18) that

hXið4Þ is given as

hXið4Þ ¼ π

3
lim
τ2→0

gð4Þðτ2Þ ð3:45Þ

where

gð4Þðτ2Þ ¼
Z

1=2

−1=2
dτ1 Z

ðbaseÞ
X ZKK=winding: ð3:46Þ

In general, both ZðbaseÞ
X and ZKK=winding are double power

series in q and q̄. Indeed, the latter power series depends on
the particular compactification geometry, with an example
given in Eq. (3.4) for the case of a one-dimensional
compactification on a circle. It is for this reason that
hXið4Þ generally depends in a highly nontrivial way on
the compactification geometry. Indeed, according to
Eq. (3.46) we would need to multiply these two power
series together, thereby producing a new power series for
the product, whereupon the τ1-integration would project us
down to terms with equal coefficients of q and q̄ in the
product. However, because of the fact that our integrand is a
product of two independent power series, the terms that
have equal powers of q and q̄ in the product need not
themselves have equal powers of q and q̄ for each factor
individually. Phrased somewhat differently, if we follow
Eq. (3.7) and define

gbase ≡
Z

1=2

−1=2
dτ1 τ

−δ=2
2 ZðbaseÞ

X ð3:47Þ

along with the definition of gKK=winding in Eq. (3.41), we
see that

gð4Þ ≠ gbase · gKK=winding: ð3:48Þ
Indeed, gbase and gKK=winding are nontrivially entwined in
forming gð4Þ. This phenomenon was discussed in detail
in Ref. [17].
To proceed, let us therefore write

gð4Þ ¼ gbase · gKK=winding þ gentwined ð3:49Þ
where gentwined represents the “error” term that prevents us
from performing a full factorization of gð4Þ. Recalling the
definition of ṼT in Eq. (3.40), we then find from Eq. (3.45)
that

hXið4Þ ¼ π

3
lim
τ2→0

½gbase · gKK=winding þ gentwined�

¼ π

3
ṼT lim

τ2→0
gbase þ

π

3
lim
τ2→0

gentwined

¼ ṼThXið4þδÞ þ π

3
lim
τ2→0

gentwined; ð3:50Þ

where we have used Eqs. (3.12) and (3.13) in passing to the
final line. Moreover, as promised earlier, we see from the
final line of Eq. (3.50) that ṼT—as defined in Eq. (3.40)—
is indeed finite because it serves as the proportionality
constant between the finite quantities hXið4Þ and hXið4þδÞ.
Comparison with Eq. (3.37) and replacing MδVδ → ṼT
then allows us to identify

hΔXi ¼ −
π

3

1

ṼT
lim
τ2→0

gentwined: ð3:51Þ
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Thus we see that hΔXi encapsulates the entwinement
between gbase and gKK=winding in the contribution to
hXið4Þ. Indeed, contributions from such entwined terms
are generally exponentially suppressed relative to those that
are unentwined.
We have therefore proven the T-volume scaling rule, as

expressed in Eq. (3.44), with “error” terms that become
increasingly small (indeed, exponentially suppressed) as
ṼT → ∞.

F. General applicability: Twisted compactifications
and multiple constraints

As we have repeatedly stressed, our theorem in Sec. III C
has been derived within the context of factorized theories
[i.e., theories with factorized partition functions, as in
Eq. (3.2)] for which one factor ZKK=winding completely
describes the compactification geometry. This generally
corresponds to untwisted compactifications.
However, there also exist twisted compactifications

for which this sort of factorization does not arise. These
include compactifications on orbifolds; coordinate-dependent
Scherk-Schwarz compactifications of the kind discussed in
Ref. [29]; and also compactifications involving Wilson-line
breaking of gauge symmetries. Likewise, there exist
theories (such as Type I strings, or nonperturbative closed
strings involvingD-branes) which have some sectors which
are modular invariant as well as other sectors which are not
modular invariant. It therefore remains to determine the
extent to which our theorem applies to such theories
as well.
As we shall demonstrate, our theorem does apply to such

theories. In particular, our theorem will apply to any
modular-invariant portion of any four-dimensional theory
which itself becomes a (4þ δ)-dimensional theory as a
corresponding compactification modulus becomes large.
The issue as to whether or not the partition function of

the compactified theory factorizes is not merely an alge-
braic distinction. Instead, it reflects the manner in which
compactification deforms the theory. For an untwisted
compactification, the partition function factorizes because
the precise KK/winding spectra are the same for each state
in the underlying “base” theory. These KK/winding spectra
are thus independent of the quantum numbers associated
with the states in the base theory. However, for a twisted
theory this is no longer true: while one portion of the
original base theory is tensored with one set of KK and
winding states, another portion of the base theory is
tensored with a different set of KK and winding states.
In other words, the compactification comes with a “twist”
that correlates the quantum numbers of the base theory
with the quantum numbers associated with the compacti-
fication. It is this feature that breaks the factorizability of
the partition functions of such theories.
As a result of these observations, it follows that the

algebraic structure of the partition function of the resulting

compactified theory depends critically on the numbers and
types of twists involved in the compactification. Indeed,
one generally obtains a partition function which can be
written schematically as the sum of contributions from
different sectors, i.e.,

Zð4Þ
X ¼

X
sectors s

ZðbaseÞ
s · ZðsÞ

KK=winding ð3:52Þ

where each sector s is associated with its own X -dependent

“base function” ZðbaseÞ
s and its own set of KK/winding states

associated with ZðsÞ
KK=winding.

In order to understand how our theorem can apply in
such situations, it will prove simplest to analyze a particular
example. Accordingly, for simplicity, we shall consider the
case in which our four-dimensional theory is realized as a
one-dimensional compactification of a five-dimensional
theory, taking our compactification geometry to be that
of a circle modded out by a single Z2 twist. In this case, we
find that the resulting four-dimensional theory has a
partition function of the form in Eq. (3.52) with only four
sectors, i.e., s ¼ 1;…; 4.
For this scenario, it is not difficult to identify the resulting

ZðbaseÞ
s and ZðsÞ

KK=winding factors. Following Ref. [30] while
adopting the conventions in Ref. [29], we may take the

ZðsÞ
KK=winding functions to be none other than E0;1=2=

ffiffiffiffi
τ2

p
and

O0;1=2=
ffiffiffiffi
τ2

p
, where these functions are defined to be the same

as Zcirc in Eq. (3.5) except that their summation variables are
restricted and shifted as follows:

E0 ¼ fm̃∈Z; ñ eveng

E1=2 ¼
�
m̃∈Zþ 1

2
; ñ even

�
O0 ¼ fm̃∈Z; ñ oddg

O1=2 ¼
�
m̃∈Zþ 1

2
; ñ odd

�
: ð3:53Þ

The half-integer modings for m̃ and the even/odd sensitivity
for ñ are both related to the Z2 nature of the orbifold twist.
Likewise, the corresponding base functions ZðbaseÞ

s in
each sector consist of those parts of the original base theory
which are either even (untwisted) or odd (twisted) under the
action of the orbifold. Specifically, using standard notation,
we may identify Zþ

þ as the partition function of the original
base theory prior to compactification, Zþ

− as that of its
projection sector, Z−þ as that of the corresponding twisted
sector, and Z−

− as that of the projection sector of the twisted
sector. Note that according to the standard conventions for
such orbifold-sector partition functions Z�

� in four dimen-
sions (see, e.g., Ref. [29]) such factors already include
factors of τ−3=22 . We can then identify
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ZðbaseÞ
1 ¼ 1

2

ffiffiffiffi
τ2

p ðZþ
þ þ Z−þÞ

ZðbaseÞ
2 ¼ 1

2

ffiffiffiffi
τ2

p ðZþ
− þ Z−

−Þ

ZðbaseÞ
3 ¼ 1

2

ffiffiffiffi
τ2

p ðZþ
þ − Z−þÞ

ZðbaseÞ
4 ¼ 1

2

ffiffiffiffi
τ2

p ðZþ
− − Z−

−Þ: ð3:54Þ

Given these identifications, our final orbifolded theory
then has a modular-invariant partition function of the form

Zð4Þ
X ¼ 1ffiffiffiffi

τ2
p

h
ZðbaseÞ
1 E0 þ ZðbaseÞ

2 E1=2

þ ZðbaseÞ
3 O0 þ ZðbaseÞ

4 O1=2

i
ð3:55Þ

where the ZðbaseÞ
1;…;4 functions continue to have the X -inser-

tions. In writing Eq. (3.55) we recall that the E,O functions

have leading
ffiffiffiffi
τ2

p
factors while the ZðbaseÞ

i functions have
leading factors τ−12 in four dimensions. Our final result for

Zð4Þ
X thus has a leading τ−12 factor, as expected.
What will be important for us are the limits of these

geometric functions E0;1=2 and O0;1=2 as their radii R̃≡
MsR ¼ R=

ffiffiffiffi
α0

p
are taken to be extremely large or small.

These can be determined by explicit calculation, yielding

R̃ → ∞∶ E0; E1=2 → R̃; O0;O1=2 → 0

R̃ → 0∶ E0;O0 →
1

2R̃
; E1=2;O1=2 → 0: ð3:56Þ

From Eq. (3.55) it therefore follows that

R̃ → ∞∶ Zð4Þ
X →

R̃ffiffiffiffi
τ2

p


ZðbaseÞ
1 þ ZðbaseÞ

2

�

R̃ → 0∶ Zð4Þ
X →

1

2
ffiffiffiffi
τ2

p
R̃



ZðbaseÞ
1 þ ZðbaseÞ

3

�
: ð3:57Þ

We thus see that our original four-dimensional theory with

partition function Zð4Þ
X flows to different theories in the

R̃ → ∞ and R̃ → 0 limits. Indeed, from Eq. (3.11) and
identifying M1=2V1=2 as R̃=2, we find

R̃ → ∞∶ Zð5Þ
X ¼ 2ffiffiffiffi

τ2
p ðZðbaseÞ

1 þ ZðbaseÞ
2 Þ

¼ Zþ
þ þ Zþ

− þ Z−þ þ Z−
−

R̃ → 0∶ Zð5Þ
X ¼ 2ffiffiffiffi

τ2
p ðZðbaseÞ

1 þ ZðbaseÞ
3 Þ

¼ Zþ
þ: ð3:58Þ

We thus see that Zð4Þ
X flows to the original five-dimensional

untwisted theory in the R̃ → ∞ limit, while it flows to the
five-dimensional twisted theory in the R̃ → 0 limit. In other
words, our four-dimensional theory can be viewed as
interpolating between two different five-dimensional the-
ories. This kind of interpolation between different decom-
pactified theories is completely standard, and the breaking
of T-duality in this case is the effect of the twist in the
compactification.
Our discussion thus far has centered around theories

with one large extra dimension compactified on S1=Z2.
However, similar treatments will also apply to more
complicated compactifications from higher dimensions.
For example, it is possible to consider the compactification
of a six-dimensional theory on a two-dimensional com-
pactification geometry. In order to exploit the above results,
we can consider this compactification geometry to be
ðS1=Z2ÞR̃5

⊗ ðS1=Z2ÞR̃6
where R̃5;6 are the dimensionless

radii associated with the fifth and sixth dimensions respec-
tively. Our four-dimensional partition function will then
have sixteen sectors and takes the form

Zð4Þ
X ¼

X4
p¼1

X4
q¼1

ZðbaseÞ
pq ZðpqÞ

KK=winding ð3:59Þ

where p and q respectively correspond to the fifth and sixth
dimensions and where

Zð1;1Þ
KK=winding ¼ τ−12 E0 · E0

Zð1;2Þ
KK=winding ¼ τ−12 E0 · E1=2

..

.

Zð4;4Þ
KK=winding ¼ τ−12 O1=2 ·O1=2: ð3:60Þ

Defining

g0pqðτ2Þ≡
Z

1=2

−1=2
dτ1Z

ðbaseÞ
pq ð3:61Þ

and further defining S0pqðτ2Þ ¼ τ2gpqðτ2Þ, we may expand

S0pqðτ2Þ ∼
X
j

C0ðpqÞ
j τj2 as τ2 → 0: ð3:62Þ

These C0ðpqÞ
j -coefficients thus correspond to the C0

j coeffi-
cients of the simpler untwisted compactification, except that

we now have a different set of C0ðpqÞ
j -coefficients for each

base theory in Eq. (3.59), i.e., for each value of p and q.
For such a four-dimensional theory, there will now be

four ways of decompactifying in order to produce a six-
dimensional theory. These correspond to taking R̃5 → 0;∞
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and R̃6 → 0;∞, each in principle yielding a different six-
dimensional theory. The partition functions of these six-
dimensional theories will be different combinations of our

sixteen underlying ZðbaseÞ
pq functions in Eq. (3.59). However,

we observe (just as in the five-dimensional case) that no

single base function ZðbaseÞ
i by itself corresponds to a

decompactified theory. Indeed, this only happens when
there is a single sector—i.e., an untwisted compactification.
We shall assume, as stated above, that each decompacti-

fication limit leads to a finite one-loop amplitude. Following
our previous discussions for the untwisted case, this means
that each limit must independently satisfy the same smooth-
ness constraint that we imposed in the case of an untwisted
compactification. Thus, for the six-dimensional twisted
compactification we have been considering here, there are
now four independent smoothness constraints that must
hold. These limits represent the four different ways in which
we might obtain a six-dimensional theory.
To formulate these constraints, we can follow our

previous analysis in Eq. (3.15) and establish four distinct
sums corresponding to these different decompactification
limits:

Sð6ÞQ ¼ τ22

Z
∞

0

dτ1
h
lim
Q

Zð4Þ
X

i
ð3:63Þ

where Zð4Þ
X is given in Eq. (3.59), whereQ ¼ 1;…; 4 ranges

over the different decompactification limits ðR̃5; R̃6Þ →
ð∞;∞Þ, ð∞; 0Þ, ð0;∞Þ, and (0,0) respectively. Each limit
will have its own τ2-expansion. To avoid confusion
(assuming the reader is not already sufficiently confused),
we shall letD0 denote the coefficients of such an expansion:

Sð6ÞQ ∼
X
j

D0ðQÞ
j τj2 as τ2 → 0: ð3:64Þ

In general, these four sets of D0
j coefficients (one for each

Q) will be distinct from each other, with each correspond-
ing to a distinct fully modular-invariant six-dimensional
theory.
Given these coefficients, and given our previous dis-

cussion, there will be new constraints on each set of
coefficients that corresponds to a decompactification limit
yielding a finite higher-dimensional amplitude. For exam-
ple, if the R̃5 → ∞; R̃6 → ∞ limit produces a finite string
amplitude, then we learn that

D0ð1Þ
0 ¼ 0; D0ð1Þ

1 ¼ 0: ð3:65Þ

Likewise, if the R̃5 → ∞; R̃6 → 0 limit also produces a
finite string amplitude, then we also have

D0ð2Þ
0 ¼ 0; D0ð2Þ

1 ¼ 0; ð3:66Þ

and so forth. Such results are the twisted analogs of our
theorem in Sec. III C, and the proof of these assertions
follows directly from the Rankin-Selberg procedure.
Our goal, of course, is to express these D0ðQÞ-constraints

in terms of the C0ðpqÞ
j -coefficients corresponding to our

original four-dimensional partition function in Eq. (3.59).

These C0ðpqÞ
j -coefficients are defined in Eq. (3.62).

However, using Eq. (3.56), we may immediately relate
these two sets of coefficients. For example, we find

D0ð1Þ
j ¼ C0ð1;1Þ

j þ C0ð1;2Þ
j þ C0ð2;1Þ

j þ C0ð2;2Þ
j

D0ð2Þ
j ¼ C0ð1;1Þ

j þ C0ð1;3Þ
j þ C0ð3;1Þ

j þ C0ð3;3Þ
j ; ð3:67Þ

and so forth. We thus find that our complete set of
constraints becomes

C0ð1;1Þ
j þ C0ð1;2Þ

j þ C0ð2;1Þ
j þ C0ð2;2Þ

j ¼ 0

C0ð1;1Þ
j þ C0ð1;3Þ

j þ C0ð2;1Þ
j þ C0ð2;3Þ

j ¼ 0

C0ð1;1Þ
j þ C0ð1;2Þ

j þ C0ð3;1Þ
j þ C0ð3;2Þ

j ¼ 0

C0ð1;1Þ
j þ C0ð1;3Þ

j þ C0ð3;1Þ
j þ C0ð3;3Þ

j ¼ 0 ð3:68Þ

for all j ≤ 1.
In the analogous case of an untwisted compactification,

we obtained constraints on the C0
j-coefficients correspond-

ing to the base theory. By contrast, for a twisted compac-
tification, we see our theorem now yields multiple
constraint equations. However, each of these constrains
only a linear combination of the coefficients corresponding
to different base theories. Moreover, as indicated above,
each of these constraint equations holds not only for j ¼ 0
but also for j ¼ 1. As discussed in Sec. III C, the latter
reflects the emergence of the extra dimensions and is
required for the consistency with our lower-dimensional
theory upon decompactification.
Of course, the constraints in Eq. (3.68) allow us to obtain

results such as

C0ð1;2Þ
j þ C0ð2;2Þ

j ¼ C0ð1;3Þ
j þ C0ð2;3Þ

j ð3:69Þ

which do not correspond to any single decompactification
limit. Moreover, our four-dimensional theory may also have
other internal symmetries that are reflected in constraints on

theseC0ðpqÞ
j -coefficients. For example, if ZðbaseÞ

pq ¼ ZðbaseÞ
qp (as

might occur for theories with a permutation symmetry
between the fifth and sixth dimensions), it then follows that

C0ðpqÞ
j ¼ C0ðqpÞ

j for all j. In such cases, there are effectively
fewer base partition functions and potentially fewer distinct
decompactifications as well.
In general, there can also be decompactification limits

which are tachyonic. For example, a four-dimensional
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theory might be finite (tachyon-free) for compactification
volumes within a certain limited range, yet encounter a
tachyon as the compactification volume passes beyond this
range. Well-known examples of this occur for the thermal
analogs of various one-dimensional compactifications,
where we identify the compactification radius as an inverse
temperature. Indeed, such theories are finite (or even
supersymmetric) at zero temperature, and remain finite
as the temperature increases within a limited range, but may
ultimately become tachyonic once the temperature exceeds
a critical value. Indeed, this is the physics that underlies the
so-called Hagedorn transition [31–33], which clearly leads
to divergences in the one-loop amplitude. As a result, the
C0-constraints that emerge from this decompactification are
valid only within the range of radii in which such tachyons
do not appear.
There can also be situations in which no tachyon appears

at any compactification radius, but in which certain massive
states in the string spectrum become massless at specific
compactification radii before becoming massive again (see,
e.g., Ref. [33]). The sudden appearance of such massless
states will generally induce higher-order Hagedorn-like
phase transitions [33] which represent discontinuities that
also violate our “smoothness” assumptions. However, even
though our theorem will not apply at or beyond such radii,
the constraints emerging from our theorem will continue to
apply before these states are reached.
Finally, it is interesting to note that our compactification

functions E0;1=2 and O0;1=2—like any compactification
functions—have certain properties which guarantee that
we can continue to use the Rankin-Selberg mapping. In
particular, a priori, one might have worried that additional
C-constraints could appear upon compactification. It is
easy to see how such extra constraints might have arisen.
For this purpose, it is perhaps easiest to start with the
compactified theory with the partition function given in
Eq. (3.55) and ask what happens for large but finite R. In
this regime the terms involving E-functions dominate—
terms which we can rewrite in the form

Zð4Þ
X ≈

1

2
τ−1=22

h
ðZðbaseÞ

1 þ ZðbaseÞ
2 ÞðE0 þ E1=2Þ

þ ðZðbaseÞ
1 − ZðbaseÞ

2 ÞðE0 − E1=2Þ
i
: ð3:70Þ

The top line, of course, is entirely expected and does not
yield any constraints beyond those we have already

considered. Indeed, ZðbaseÞ
1 þ ZðbaseÞ

2 is the R → ∞ limit
that we have already considered, and whose properties as
τ2 → 0 have allowed us to formulate our existing con-
straints. However, in principle, there is the possibility that
the second line of Eq. (3.70) might to lead to additional
constraints. Indeed, such additional constraints could have
arisen if E0 − E1=2 were for example to behave as τ2=R as
τ2 → 0 at finite R. In such cases, one could take R → ∞

prior to taking τ2 and thereby conclude that no new
constraint comes from such a difference. However, we
could alternatively take the τ2 → 0 limit first, leaving us
with a dangerous 1=R dependence whose cancellation
would require an additional constraint.
However, it is straightforward to verify that this does

not happen. Indeed, direct calculation for our specific
E-functions tells us that

E0ðR̃Þ − E1=2ðR̃Þ ≈ ðR̃4=τ2Þe−πR̃2=τ2 : ð3:71Þ

Thus the difference between the E functions decreases faster
than any power of τ2 as τ2 → 0. In otherwords, the difference
E0 − E1=2 has an essential singularity at τ2 ¼ 0. As a matter
of principle this will be true for any compactification
functions whose large-volume limits produce valid higher-
dimensional theories. Thus our theorem remains intact.
The discussion in this section has been somewhat

technical. However, the main idea is simple and can be
summarized as follows. For an untwisted compactification,
there is generally only one decompactification limit. This
then leads to a single extra C0-constraint, namely C0

j ¼ 0
for j < 1þ δ=2, which must be adjoined onto our original
C-constraint C0 ¼ 0. However, for a twisted compactifi-
cation, there are generally multiple decompactification
limits, each involving a different subset of the sectors in
our theory. Our theorem nevertheless applies exactly as
before, with each decompactification leading to its own
new C0-constraint, as illustrated above. As a result, our
original four-dimensional theory must satisfy not only the
original constraint C0 ¼ 0 but also all of the individual
C0-constraints that emerge from each different decompac-
tification limit. Indeed, all of these extra C0-constraints
must be satisfied simultaneously within the original four-
dimensional theory because this theory simultaneously
contains within itself all of these different possibilities
for a self-consistent decompactification.
We close with a final comment. As discussed in Sec. III D

for the case of an untwisted compactification, we have seen
that the single extra constraint C0

j ¼ 0 for j < 1þ δ=2
actually implied our originalC-constraintC0 ¼ 0. The same
will be true for twisted compactifications. In particular,
even though each different decompactification leads to an
independent C0-constraint, these C0-constraints collectively
imply that C0 ¼ 0 as well.

IV. IMPLICATIONS OF THE THEOREM

As discussed in Sec. III, our theorem is completely
general, providing us with new constraints on the
C0
j-coefficients for any string model meeting the conditions

outlined at the beginning of Sec. III A and for any operator
insertion X for which the corresponding physical quantity
ζ ∼ hXið4Þ within that model is finite. In this section we
now proceed to consider two important implications of
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these new C0-constraints. For concreteness and simplicity,
we shall focus in this section on the case of untwisted
compactifications. As discussed in Sec. III, the situation
with twisted compactifications is similar and proceeds in an
analogous way.

A. New supertrace identities

Just as the C-coefficients can be expressed as supertraces

over the states within the full partition function Zð4Þ
X , as in

Eq. (2.34), the C0-coefficients can likewise be expressed as

supertraces of the states that contribute to Zð4Þ
X without

including the KK and winding states associated with the
compactification under study. Indeed, these are the states that

reside within the base theory and contribute to ZðbaseÞ
X alone.

Given this observation, our new constraints on the
C0
j-coefficients immediately yield new constraints for the

supertraces over the states contributing solely to ZðbaseÞ
X . In

particular, the vanishing of the C0
j-coefficients for all

j < 1þ δ=2—as required by our theorem—thus gives rise
to the new supertrace identities

Str0Dj
τ2X ¼ 0 for all 0 ≤ j ≤ δ=2 ð4:1Þ

where the prime on the supertrace indicates that only the

states contributing to ZðbaseÞ
X are included and where Dτ2 is

the derivative defined in Eq. (2.31). Likewise, as the
compactification T-volume ṼT becomes large, a similar
supertrace formulation applies to the amplitude hXið4Þ. We
know, of course, that hXið4Þ is given by ðπ=3ÞC1 for all
compactification volumes. Indeed, C1 is generally a com-
plicated function of the compactification volume. However,
for ṼT ≫ 1, we have seen that our T-volume scaling rule

allows us to pull out the compactification volume as a
single overall factor, leaving us with

hXið4Þ ≈ π

3
ṼTC0

1þδ=2: ð4:2Þ

Thus, for ṼT ≫ 1, we have

hXið4Þ ≈ π

3

1

ð1þ δ=2Þ! ṼTStr0D
1þδ=2
τ2 X ; ð4:3Þ

thereby once again yielding results depending on a primed
supertrace.
The general results in Eqs. (4.1) and (4.3) yield a host of

new supertrace constraints on the spectrum of the base
theory. In general, the supertrace relations that emerge
depend on the number δ of extra spacetime dimensions
which are associated with our decompactification limits.
Indeed, taking X of the form in Eq. (2.8), we may extract
these new identities directly from Eq. (3.17).
Our results are as follows. Defining

M̃2 ≡ M2

4πM2
ð4:4Þ

and recalling Eq. (2.35), we see that our usual four-
dimensional constraints C0 ¼ 0 and hXið4Þ ¼ ðπ=3ÞC1

now take the form

�
StrX0 ¼ 0

hXið4Þ ¼ π
3
½StrX1 − StrðX0M̃2Þ�. ð4:5Þ

However, our theorem now tells us that for each decom-
pactification limit we have the additional constraints

δ ¼ 2∶

8>><
>>:

Str0X0 ¼ 0

Str0X1 − Str0ðX0M̃2Þ ¼ 0

hXið4Þ ≈ π
3
ṼT

h
Str0X2 − Str0ðX1M̃2Þ þ 1

2
Str0ðX0M̃4Þ

i

δ ¼ 4∶

8>>>>><
>>>>>:

Str0X0 ¼ 0

Str0X1 − Str0ðX0M̃2Þ ¼ 0

Str0X2 − Str0ðX1M̃2Þ þ 1
2
Str0ðX0M̃4Þ ¼ 0

hXið4Þ ≈ π
3
ṼT

h
−Str0ðX2M̃2Þ þ 1

2
Str0ðX1M̃4Þ − 1

6
Str0ðX0M̃6Þ

i

δ ¼ 6∶

8>>>>>>>><
>>>>>>>>:

Str0X0 ¼ 0

Str0X1 − Str0ðX0M̃2Þ ¼ 0

Str0X2 − Str0ðX1M̃2Þ þ 1
2
Str0ðX0M̃4Þ ¼ 0

Str0ðX2M̃2Þ − 1
2
Str0ðX1M̃4Þ þ 1

6
Str0ðX0M̃6Þ ¼ 0

hXið4Þ ≈ π
6
ṼT

h
Str0ðX2M̃6Þ − 1

3
Str0ðX1M̃6Þ þ 1

12
Str0ðX0M̃8Þ

i
;

ð4:6Þ
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where our expressions for hXið4Þ in each case are appro-
priate for ṼT ≫ 1. Indeed, given these results, we may
regard the results in Eq. (4.5) as “δ ¼ 0” constraints, with
the understanding that Str0 → Str in this case. We shall
continue to refer to our original four-dimensional results as
δ ¼ 0 results in the following.
As we shall discuss below, the supertrace identities in

Eq. (4.6) for each value of δ hold exactly regardless of
whether Eq. (3.1) is satisfied. By contrast, our expressions
for the amplitude hXið4Þ hold only when Eq. (3.1) is
satisfied. However, even when Eq. (3.1) is not satisfied, we
will find that these expressions for hXið4Þ continue to hold
except that an additional term is added in each case.
Note that the exact value for hXið4Þ for any compacti-

fication volume is given in Eq. (4.5). The correctness of this
result does not change even as the compactification volume
becomes large. However, the behavior of this amplitude for
large compactification volume is not readily apparent from
the expression in Eq. (4.5). By contrast, in Eq. (4.6), we
have provided expressions for hXið4Þ which approximate
this true value for ṼT ≫ 1 and in which the compactifi-
cation T-volume ṼT emerges simply as an overall multi-
plicative factor.
These results are completely general, written in terms of

the arbitrary Xl insertions. However, using Eqs. (2.10)
and (2.18), we can write these expressions directly in terms
of the operators relevant for the Higgs mass, as in Ref. [13],
or the one-loop gauge coupling, as in Ref. [17].
In the case of the Higgs mass, there is actually an

important short-cut that we may exploit. As shown in
Ref. [13], one can write the one-loop Higgs mass as

m2
ϕ ¼

�
∂
2
ϕ þ

ξ

4π2

�
ΛðϕÞ

����
ϕ¼0

ð4:7Þ

where ϕ denotes a fluctuation of the Higgs field relative to
its VEV within the Higgsed phase of any string model,
where ξ is a model-dependent numerical parameter defined
in Eq. (2.15), and where ΛðϕÞ is the amplitude correspond-
ing to the trivial insertions

X0 ¼ −
1

2
M4; X1 ¼ X2 ¼ 0 ð4:8Þ

where the masses of the states in the string spectrum are
generally treated as functions of ϕ. It is the choice of
such functions which specifies the particular scalar field
whose mass is being calculated. Indeed, thinking of Λ as a
kind of ϕ-dependent Coleman-Weinberg potential, we
thus see from Eq. (4.7) that the Higgs mass is essentially
given by the curvature of ΛðϕÞ around its minimum,
augmented [13] by a stringy gravitational backreaction

parametrized by ξ. Indeed, Λ≡ ΛðϕÞjϕ¼0 is nothing but the
one-loop cosmological constant.
Thus, first performing our analysis for ΛðϕÞ, we find that

the constraints in Eq. (4.1) now take the simple form [2]

StrM2kðϕÞ ¼ 0 for all k ≤ δ=2: ð4:9Þ

Likewise Eq. (4.2) yields

ΛðϕÞ ≈M−δṼTΛð4þδÞðϕÞ ð4:10Þ

where the higher-dimensional cosmological constant
Λð4þδÞ follows from Eq. (4.3) and is given by [2]

Λð4þδÞðϕÞ ¼ π

3

M4þδ

2

ð−1Þδ=2
ð1þ δ=2Þ! Str

0½ðM̃2Þ1þδ=2� ð4:11Þ

where we also regard M̃2 as a ϕ-dependent quantity. We
observe, in this context, that the k ¼ 0 equation within
Eq. (4.9) is nothing but the constraint [2]

Str1 ¼ 0: ð4:12Þ

This result, which actually applies to all finite four-
dimensional theories regardless of whether they have
decompactification limits, implies that all such theories
have equal numbers of bosonic and fermionic degrees of
freedom when summed across the entire string spectrum.
Indeed, this observation holds even through there is no
boson/fermion pairing, and is a nontrivial result of the UV/
IR mixing inherent in such theories in which any surpluses
of bosonic or fermionic degrees of freedom of a given mass
are balanced against opposite surpluses at other masses
throughout the string spectrum. Likewise, the exact
result for the cosmological constant in four dimensions,
specifically [2]

Λ ¼ 1

24
M2StrM2; ð4:13Þ

is equally surprising, telling us that the full one-loop zero-
point amplitude in such theories is given simply as a
supertrace of the squared masses of the string states across
the string spectrum, with the regulator within the definition
of the supertrace in Eq. (2.33) ensuring a finite result.
Given these results for ΛðϕÞ, we can now apply the result

in Eq. (4.7) in order to obtain our corresponding results for
the Higgs mass m2

ϕ. In particular, for δ ¼ 0 and δ ¼ 2 we
obtain
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δ ¼ 0∶

(
Str1 ¼ 0

m2
ϕ ¼ M2

24

h
Strð∂2ϕM2Þ þ ξ

4π2M2 StrM2
i���

ϕ¼0

δ ¼ 2∶

8>><
>>:

Str01 ¼ 0

Str0∂2ϕM
2 ¼ 0

m2
ϕ ≈ − 1

48π ṼT

h
Str0ð∂2ϕM4Þ þ ξ

4π2M2 Str0M4
i���

ϕ¼0
;

ð4:14Þ

and so forth for higher δ. In this connection, we note that
the second constraint equation for δ ¼ 2 actually takes the
full form

Str0ð∂2ϕM2Þ þ ξ

4π2
Str0M2 ¼ 0: ð4:15Þ

However, we see from Eq. (4.9) that the second term
actually vanishes, thus leaving us with the simpler con-
straint equation in Eq. (4.14). Similar cancellations would
likewise occur for δ > 2 involving StrM2k for k > 1.
Likewise, we emphasize that the constraint equations in
Eq. (4.14) actually hold for all ϕ, whereas our expressions
for m2

ϕ hold by definition only for ϕ ¼ 0. Finally, we note
that the results in Eq. (4.14)—or more specifically, their
truncations to ϕ ¼ 0—could have been obtained directly
using the operator insertions in Eq. (2.10). This provides an
important cross-check on our calculations.
Before proceeding, we note that the constraint equations

in Eq. (4.9) are highly nontrivial. When truncated to ϕ ¼ 0,
these results provide tight constraints on the masses of all of
the states in our theory. Indeed, for δ ¼ 6, we learn that the
states throughout the string spectrum must, through UV/IR

mixing, arrange themselves so as to simultaneously cancel
not only Str1, as in Eq. (4.12), but also Str0M2, Str0M4, and
Str0M6. However, Eq. (4.9) actually holds as a function of ϕ
for all ϕ. Therefore these equations also constrain how ϕ
couples to all of the states in the string spectrum (and not
just the massless states): ϕ can only couple in a way that
maintains these cancellations as ϕ varies. This thereby
restricts which kinds of Higgs fields are ultimately allowed
in the theory. Likewise, for any Higgs field, we may also
view this as providing a significant constraint on the kinds
of fluctuations which are ultimately permitted by the
modular invariance of the underlying theory.
Let us now turn to the case of the one-loop contributions

to the gauge couplings. As in Ref. [17], these one-loop
contributions to the quantity 16π2=g2G will be denoted ΔG
where G is the corresponding gauge group. Note in this
context that ΔG is the full one-loop contribution to
16π2=g2G, and not merely the contribution from the infinite
towers of massive states.
Once again, just as with the Higgs mass, we may

consider the cases with δ ¼ 0, δ ¼ 2, and δ ¼ 4.
Recalling that X0 ¼ 0 for this calculation, we find

δ ¼ 0∶ ΔG ¼ ξ

6

�
StrQ̄2

H −
1

12
StrE1

�

δ ¼ 2∶

(
Str0Q̄2

H − 1
12
StrE01 ¼ 0

ΔG ≈ π
3
ṼT

h
−2Str0ðQ2

GQ̄
2
HÞ þ 1

6
StrE0Q2

G − ξ
2π Str

0ðQ̄2
HM̃

2Þ þ ξ
24π StrE

0M̃2
i

δ ¼ 4∶

8>>><
>>>:

Str0Q̄2
H − 1

12
StrE01 ¼ 0

−2Str0ðQ2
GQ̄

2
HÞ þ 1

6
StrE0Q2

G − ξ
2π Str

0ðQ̄2
HM̃

2Þ þ ξ
24π StrE

0M̃2 ¼ 0

ΔG ≈ π
3
ṼT

h
2Str0ðQ̄2

HQ
2
GM̃

2Þ − 1
6
Str0EðQ2

GM̃
2Þ þ ξ

4π Str
0ðQ̄2

HM̃
4Þ − ξ

48π Str
0
EM̃

4
i
:

ð4:16Þ

We again emphasize that these supertrace identities
involve the full infinite towers of states in our theories.
In general, these identities are not satisfied level-by-level,
but rather represent conspiracies across the infinite string
spectrum at all energy scales. Indeed, these identities are
satisfied through the hidden so-called “misaligned super-
symmetry” that remains in the string spectrum even after

spacetime supersymmetry is broken in any modular-invari-
ant tachyon-free string theory [1,2].
We note that we have now collected several combina-

tions of supertraces that have to vanish exactly. One might
imagine that these particular linear sums of supertraces
could cancel between themselves in unique modular-
invariant combinations. However any modular-invariant

NEW NONRENORMALIZATION THEOREM FROM UV-IR MIXING PHYS. REV. D 110, 126021 (2024)

126021-23



integral that we can construct which we know to be finite
provides its own vanishing supertrace constraint. Thus we
are at liberty to consider constraints from additional
integrals that we also know to be finite even if they do
not correspond to any physical process. In Ref. [34] we
play this game and derive even stronger sets of supertrace
constraints.

B. Implications for one-loop running: IR limit

Our theorem also has ramifications for the effective field
theories (EFTs) that might be associated with our string
theories, and in particular the manner in which these EFTs
evolve as we change the relevant energy scale μ at which
they are probed.
To study this, let us first briefly recall how one can

extract an EFT from a given string theory in a manner that
is consistent with modular invariance and which naturally
takes the full spectrum of the string theory into account.
Certain aspects of this procedure were discussed previously
in Refs. [13,17], where more details can be found.
First, for any four-dimensional amplitude hXið4Þ, we

introduce a regulator. Then, just as for ordinary EFTs, we
identify the regulator parameter with a running physical
scale μ. To carry out this procedure we will adopt the same
regulator function G≡ Gρða; τÞ (previously denoted

Ĝρða; τÞ) utilized in Refs. [13,17], namely

Gρða; τÞ ¼
a2

1þ ρa2
ρ

ρ − 1

∂

∂a
½ZcircðρaÞ − ZcircðaÞ� ð4:17Þ

where Zcirc is the circle-compactification partition function
in Eq. (3.5) and where ρ is a constant which in effect plays
the role of an RG scheme. It then follows that our regulated

amplitude, which we shall denote hXið4ÞG , is given by

hXið4ÞG ¼ a2

1þ ρa2
ρ

ρ − 1

∂

∂a
½PðρaÞ − PðaÞ� ð4:18Þ

where the “reduced” amplitude PðaÞ is given by

PðaÞ ¼ �XZcircða; τÞ


: ð4:19Þ

Having adopted this convention, we shall then make the
identification [13,17]

α0μ2 ≡ ρa2: ð4:20Þ

It then follows that our regulated physical quantities such as

hXið4ÞG are functions of μ.
In general, this choice of regulator function Gρða; τÞ

vanishes exponentially quickly as τ2 → ∞ (thereby ensur-
ing the effectiveness of this function as an IR regulator) but
otherwise asymptotes to 1 as τ2 → 1 (thereby preserving
the original theory in this regime). Indeed, a rough measure

of the transition between these two behaviors occurs at
τ2 ≈ ðρa2Þ−1. Thus ρa2 sets the “scale” at which a given
state with mass M is either included amongst or excluded
from (or“integrated out” from) the dynamical degrees of
freedom in our analysis. This allows us to make the
identification in Eq. (4.20). We also point out that while
this identification procedure for μ is, strictly speaking, valid
only for μ ≪ Ms, we shall treat this as a definition of μ
within the entire range 0 ≤ μ ≤ Ms.
In the following, without loss of generality, we shall

adopt the choice ρ ¼ 2. Given these conventions, our goal
is to understand how our theorem affects the running of

hXið4ÞG ðμÞ for arbitrary insertionX—i.e., affects the manner

in which hXið4ÞG varies with μ. Our goal is also to under-
stand the corresponding beta-function

βXðμÞ≡ ∂hXið4ÞG

∂ log μ
: ð4:21Þ

In general, the result for hXið4ÞG ðμÞ for arbitrary X and
arbitrary μ was derived in Refs. [13,17]. This result will
also be quoted in Sec. V, where explicit examples will be
considered. However, schematically, in cases for which
Str
M¼0

X2 ¼ 0 this result takes the form [17]

hXið4ÞG ðμÞ ¼ hXið4Þ þ
X
i

ciKðMi=μÞ ð4:22Þ

where
P

i denotes a sum over the on-shell states in the
theory and where KðxÞ schematically denotes a generic
combination of Bessel functions. Although a slight gener-
alization of Eq. (4.22) applies when Str

M¼0
X2 ≠ 0, as dis-

cussed in Refs. [13,17], we shall continue to assume that
Str
M¼0

X2 ¼ 0 throughout this discussion.

Let us begin by studying the behavior of hXið4ÞG for
extreme values of μ, i.e., for μ ¼ 0 as well as μ ¼ Ms.

Having fixed the behavior of hXið4ÞG at these extreme
endpoints, we shall then investigate the implications of
our theorem for the intermediate values 0 < μ < Ms.
We first discuss the IR behavior of hXið4ÞG ðμÞ, i.e., the

behavior of this amplitude as μ → 0. This behavior can be
extracted [17] from the asymptotic properties of the Bessel
function combinations K, yielding

hXið4ÞG ðμÞ≈hXið4Þþ
X

0<M≤μ
bM log

�
1ffiffiffi
2

p e−ðγEþ1Þ μ
M

�
; ð4:23Þ

where

bM ≡ −2 Str
mass¼M

X2; ð4:24Þ
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and where γE ≈ 0.57721 is the Euler-Mascheroni constant.
Note that the supertrace in Eq. (4.24) is over only those
string states whose masses are equal to M.
Having introduced the regulator, we are now able to relax

the condition in Eq. (3.1) and also consider the additional
contributions from massless X2-charged states, i.e., the
additional contributions that would arise if Str

M¼0
X2 ≠ 0.

Following the algebraic steps in Ref. [13], it turns out
that our result in Eq. (4.23) would accrue the additional
term

bG log

�
e−1

2
ffiffiffi
2

p μ

Ms

�
ð4:25Þ

where

bG ≡ −2 Str
M¼0

X2: ð4:26Þ

Note that while the expression in Eq. (4.23) depends on the
logarithm of μ=M, the expression in Eq. (4.25) depends on
the logarithm of μ=Ms. This difference has an important
effect. Within Eq. (4.23) we are instructed to consider only
those values of μ which exceed M. Thus this contribution
remains finite for all μ, given that M > 0. However, within
Eq. (4.25), we are permitted to consider values of μ into the
deep IR. In such cases the logarithm within Eq. (4.25)
diverges. However, this divergence is expected, as this is
nothing but the divergence that is caused by having
Str
M¼0

X2 ≠ 0.

C. Generalized T-volume scaling rule

The use of our regulator also allows us to generalize the
T-volume scaling rule in Eq. (4.2) which states that
hXið4Þ ≈ ðπ=3ÞṼTC0

1þδ=2 for large compactification vol-
ume. Of course, this result also assumed that bG ¼ 0.
However, when bG ≠ 0, we may easily derive a more
general result. To do this, we begin with our regulated
amplitude in Eq. (2.20), specifically

hXið4Þ ¼
Z
F

d2τ
τ22

ZðbaseÞ
X ZKK=windingGρða; τÞ

¼
Z
F

d2τ
τ22

½τ−δ=22 ZðbaseÞ
X �½τδ=22 ZKK=winding�

× Gρða; τÞ ð4:27Þ

where as in Eq. (3.7) we have reshuffled the factors into
modular-invariant blocks, and where for generality we
have kept δ arbitrary. In order to separate out the massless
X2-charged contribution from such an expression we need
only realize that Str

M¼0
X2 is itself a modular-invariant

quantity. This follows from the fact that in the absence
of a regular this quantity serves as the coefficient of

the logarithmic divergence. We may therefore rewrite
Eq. (4.27) in the form

hXið4Þ ¼
Z
F

d2τ
τ22

½τ−δ=22 ZðbaseÞ
X − bG�½τδ=22 ZKK=winding�Gρða; τÞ

þ bG

Z
F

d2τ
τ22

½τδ=22 ZKK=winding�Gρða; τÞ: ð4:28Þ

Both of these integrals are now explicitly finite and also
modular invariant. Moreover, the first of these integrals
would have been finite (because we have subtracted bG
within the first integrand) even if we were to neglect
the regulator entirely. Stated differently, the quantity

τ−δ=22 ZðbaseÞ
X − bG rapidly decays as τ2 → ∞, and thus

receives the bulk of its support from values of τ2 at which
the regulator Gρða; τÞ is close to unity, by construction.
We can therefore disregard the appearance of Gρða; τÞ
within the first integrand, whereupon the previous analysis
in Sec. III E allows us to write the first integral as
ðπ=3ÞṼTðC0

1þδ=2 − bGÞ. We thus obtain the result

hXið4Þ ≈ π

3
ṼTðC0

1þδ=2 − bGÞ

þ bG

Z
F

d2τ
τ22

τδ=22 ZKK=windingGρða; τÞ ð4:29Þ

which generalizes our original T-volume scaling rule to
cases in which bG ≠ 0. Here C0

1þδ=2 is the supertrace over

the entire spectrum of the base theory, and ṼT continues to
be given in Eq. (3.39). This result thus allows us to extract
the IR behavior of our string-theoretic amplitude.

D. Implications for one-loop running:
UV limit and scale duality

Next, we discuss the behavior which arises in the extreme
UV limit as μ ≈Ms. As discussed in Refs. [13,17], our result

for hXið4ÞG ðμÞ generally exhibits a scale-duality symmetry

under which hXið4ÞG ðμÞ is invariant under

μ →
M2

s

μ
: ð4:30Þ

Indeed, this symmetry applies to all such amplitudes regard-
less of the particular operator insertion X . However, due to

this symmetry and the fact that hXið4ÞG ðμÞ is a smooth
function of μ, we learn that

dhXið4ÞG ðμÞ
dμ

����
μ¼Ms

¼ 0: ð4:31Þ
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In other words, the corresponding β-function βX ðμÞ actually
vanishes at the string scale, implying that there is an apparent
UV fixed-point regime around μ ¼ Ms. As might be
expected, this is a purely stringy effect which cannot be
captured through an EFT-based analysis.

E. Absence of power-law running

Having discussed the behavior of hXið4ÞG ðμÞ for μ ≈ 0 and
μ ≈Ms, we now investigate the behavior of the running
between these two endpoints. It is here that our theorem
leads to some additional surprising effects, connecting
the two extremes μ → 0 and μ ≈Ms in sometimes unex-
pected ways.
In general, for large-volume compactifications, it is a

natural (ultimately field-theoretic) expectation that at
energy scales exceeding the compactification scale, the
accumulation of contributions from increasing numbers of
Kaluza-Klein states running in loops will slowly deform an
expected four-dimensional logarithmic running for a given
amplitude into a power-law running, as consistent with the
emergence of extra spacetime dimensions (or equivalently
an increase in the effective dimensionality of the theory)
in this limit [35,36]. More specifically, in the case of the
one-loop inverse gauge couplings ΔGðμÞ, and at scales
μ≳ R−1 where R is a large compactification radius,
one generally expects the logarithmic running we observe
in Eq. (4.23) to follow a power law instead, with
ΔGðμÞ ∼ ðμRÞδ. Indeed, in such situations the volume of
the compactification manifold can be taken as Vδ ∼ ð2πRÞδ.
Note that we are here referring to Vδ as our compactifi-
cation volume rather than ṼT because we are discussing our
field-theoretic expectations.
It is easy to see how such a result might arise from the

logarithmic term within our result in Eq. (4.23), specifically
the term

ΔGðμÞ ⊃ 4 Str
0<M≲μ

�
Q̄2

H −
1

12

�
Q2

G log

�
1ffiffiffi
2

p e−ðγEþ1Þ μ
M

�
:

ð4:32Þ

To keep the discussion simple, we shall focus on the most
straightforward case in which our compactification is
untwisted, so that each state in the theory with a given
value of Q̄2

H and Q2
G has an infinite spectrum of KK copies

with higher masses but the same values of Q̄2
H and Q2

G. Of
course, at any energy scale μ, the supertrace is over all
states in the theory with masses 0 < M ≲ μ. Thus, given
this KK structure, our supertrace factorizes, i.e.,

Str
0<M≲μ ¼ Str0

0<M≲μ · Tr
0<M≲μ

ðKKÞ; ð4:33Þ

where Str0
0<M≲μ is a supertrace over the different states in the

theory excluding the excited KK modes associated with the

large dimensions—indeed, the states in this sum may be
regarded as the corresponding KK zero modes—and
Tr

0<M≲μ
ðKKÞ is a trace over the excited KK modes associated

with the large compactified dimensions. Since these excited
KK states necessarily have the same spins as their corre-
sponding zero modes, the latter is a trace rather than a
supertrace. In other words, the ð−1ÞF factor has already
been absorbed into the primed supertrace rather than the
KK trace. We further note that we do not consider the
effects of any winding modes, since this is meant to be a
purely field-theoretic analysis.
Given the factorization in Eq. (4.33), we can rewrite

Eq. (4.32) as

ΔGðμÞ ⊃ 4 Str0
0<M≲μ

�
Q̄2

H −
1

12

�
Q2

G

× Tr
0<M≲μ

ðKKÞ log
�
1ffiffiffi
2

p e−ðγEþ1Þ μ
M

�
: ð4:34Þ

Let us now focus for simplicity on the δ ¼ 1 case in which
our theory is compactified on an untwisted circle of radius
R. In such a case, our excited KK spectrum consists of
states with masses Mm̃ ≡ m̃=R, with m̃ ¼ �1;�2;�3;….
For μR ≫ 1, we then find that the final line of Eq. (4.34)
becomes [35,36]

2
XμR
m̃¼1

log

�
1ffiffiffi
2

p e−ðγEþ1Þ μR
m̃

�

¼ 2μR log

�
1ffiffiffi
2

p e−ðγEþ1ÞμR
�
− 2 logðμRÞ!

≈ 2

�
1þ log

�
1ffiffiffi
2

p e−ðγEþ1Þ
��

μR ð4:35Þ

wherewe used Stirling’s approximation logN!≈N logN−N
for N ≫ 1 in passing to the final line. We thus see that
the sum over the KK modes associated with a single
compactified extra dimension has changed our logarithmic
running to a running which is linear in μ. This process
easily generalizes to the KK excitations associated with
δ-dimensional compactification manifolds with δ > 1,
yielding power-law running with correspondingly higher
powers ΔGðμÞ ∼ ðμRÞδ.
This phenomenon whereby a sum over KK states deforms

a running from logarithmic to power-law is well known from
phenomenological studies of theories with large extra
dimensions [35,36]. Indeed, it played a crucial role in
realizing low-scale gauge-coupling unification [35,36]. As
mentioned above, this result can ultimately be understood
from the observation that a large compactification radius R
effectively increases the overall spacetime dimensionality of
the theory for all energy scales μ≳ R−1, thereby shifting the
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mass dimensions of the gauge couplings and consequently
shifting their corresponding runnings.
Before going further, several remarks are in order.

First, the above discussion has assumed an untwisted
compactification—this is what enabled the complete fac-
torization of the supertraces in Eq. (4.33). However, even for
twisted compactifications in which such a complete fac-
torization does not apply, the theory can be separated into
individual sectors, and such factorizations are valid within
each sector. One then obtains the same power-law results
sector by sector. Second, the discussion above has neglected
the contributions of winding modes. However, this would
appear to be justified because we are performing a field-
theoretic analysis, and also because we are restricting our
attention to cases with μ ≪ Ms andR−1 ≪ μ. In general, for
large string compactifications with R−1 ≪ μ, the corre-
sponding winding modes will have masses ≫ μ. Thus—
from a field-theoretic perspective—such states will not
directly affect the running at the scale μ. Finally, we have
taken all of our KK masses asM ¼ m̃=R. Of course, this is
correct for the KK excitations of only the massless states
within the primed supertrace. However, for μ < Ms, this is a
valid assumption because we are assuming that the KK
modes associated with any large dimensions are already part
of the KK trace, because the winding states have masses
above Ms, and because the only other states—the string
excitations—have masses which are at (or heavier than) the
string scale. Thus the only states which contribute to the
primed supertrace are indeed those which are massless.
There is, however, one important shortcoming to the

above treatment: we did not handle the spacetime com-
pactification in a fully modular-invariant manner. Indeed,
we simply split our supertrace into separate pieces without
considering the deeper aspects of the effects of the
compactification on the underlying partition function.
However, it is at the level of the partition function that
modular invariance must be maintained. Although the
above treatment captures the expected higher-dimensional
power-law running—and would thus be sufficient for a
field-theoretic analysis, as in Refs. [35,36]—it misses the
critical fact that a fully modular-invariant theory in higher
dimensions D > 4 has more internal cancellations within
its spectrum than does a four-dimensional theory. As we
have seen, these extra internal cancellations are required by
modular invariance, and in particular can be attributed to
various supertrace identities, such as Str1 ¼ 0, that result
from UV/IR mixing and misaligned supersymmetry.
Indeed the higher the spacetime dimensionality of a
modular-invariant theory, the more internal cancellations
of this sort exist within the spectrum.
As we shall now demonstrate, our theorem implies that

these cancellations ultimately have the effect of eliminating
the above power-law running. This is a remarkable result,
implying that there is actually no running at all above the
compactification scale.

To understand this, let us begin by recalling that our
running four-dimensional amplitude hXið4Þ is given by

hXið4ÞðμÞ ¼
Z
F

d2τ
τ22

ZðbaseÞ
X ZKK=windingGðμ; τÞ: ð4:36Þ

Here Gðμ; τÞ is the “regulator” function whose purpose is
not to regulate this amplitude (since the amplitude is
already presumed finite), but rather to introduce the running
scale μ. For example, as we have seen, we may identify
Gðμ; τÞ ¼ Gρða; τÞ where Gρða; τÞ is defined in Eq. (4.17)
and where the scale μ is defined in terms of ρ and a in
Eq. (4.20). Ultimately, our claim is that hXið4Þ does not run
as a power-law function of μ. However, it turns out that this
absence of power-law running is wholly independent of the
specific form of Gðμ; τÞ, and instead relies on deeper, more
universal features associated with the modular invariance of

the partition function ZðbaseÞ
X .

This can most easily be understood by recasting the
above string-theoretic expression into its field-theory ana-
log. This will ultimately enable us to make a direct
comparison between the two, and thereby uncover the
reason for the absence of power-law running in field-theory
language. The field-theory analog of the expression in
Eq. (4.36) is given by the Schwinger representation of the
analogous field-theory amplitude, and takes the form

hXið4ÞFT ðμÞ ¼
Z

∞

Λ−2

dt
t
ZðbaseÞ
X ZKKGðμ; tÞ: ð4:37Þ

Here t is the Schwinger proper time (with a field-theoretic
measure dt=t), while Λ is an arbitrary cutoff on the
Schwinger integral and ZKK denotes a trace over only
the KK modes associated with our δ extra dimensions
(since the winding modes are intrinsically stringy).

Likewise, ZðbaseÞ
X as before tallies the contributions of the

physical states in our theory with the above KK states
excluded. Of course, in field theory we also now have a UV
divergence. We have therefore introduced a UV cutoff Λ in
Eq. (4.37). Finally, in this field-theory expression we are
also introducing the running scale μ just as we would in
string theory, through the introduction of a G-function
Gðμ; τÞ which suppresses the contributions to the integral
from the region of integration with t≳ μ−2. Once again, as
for the string-theory amplitude, the absence of running for
this field-theory amplitude will be insensitive to the details
of this regulator function. We can therefore choose to
model this function in the most simple way possible,
namely as providing a hard step-function cutoff:

Gðμ; tÞ ¼ Θðμ−2 − tÞ: ð4:38Þ
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We then have

hXið4ÞFT ðμÞ ¼
Z

μ−2

Λ−2

dt
t
ZðbaseÞ
X ZKK: ð4:39Þ

The next step, as in string theory, will be to expand both

ZðbaseÞ
X and the product ZðbaseÞ

X · ZKK in powers of t as t → 0.
In analogy with our string-theory results, we have

ZðbaseÞ
X ¼ 1

t2
ðC0

0 þ C0
1tþ C0

2t
2 þ…Þ

ZðbaseÞ
X · ZKK ¼ 1

t2
ðC0 þ C1tþ C2t2 þ…Þ ð4:40Þ

as t → 0. Note that in the string-theory calculation we
would be instead τ2-expanding the gðτ2Þ functions asso-
ciated with our partition functions, not the partition
functions directly. However, in this analogous field-theory
system our Schwinger time t is the analog of τ2; in
particular, we lack an analog of τ1. Thus, whereas in string
theory we had both a partition function Z and a corre-
sponding g-function, the former involving both physical
and unphysical states and the latter involving only physical
states, in our field-theory calculation our partition function
is already restricted to physical states. Thus both Z and
gðτ2Þ have the same field-theory analog, which we may
simply regard as Z itself.
It is important to properly interpret the C- and

C0-coefficients in Eq. (4.40). If we were to take X ¼ 1
as an example, C0 becomes the coefficient of the leading
divergence, corresponding to the power of 1=t3 that would
appear in a calculation of the standard Coleman-Weinberg
(CW) potential. Indeed, this would correspond to the
quartic Λ4 divergence of the CW potential. Likewise, C1

would correspond to the quadratic divergence of the CW
potential, and so forth.
For this discussion, however, we are interested in

situations in which we have δ large extra dimensions of

radius R. Our field-theory expectation is that hXið4ÞFT ðμÞ
in Eq. (4.39) will experience log μ running for μ≲ R−1, but
that for μ ≫ R−1 this logarithmic running is promoted to
power-law running ∼ðμRÞδ due to the presence of ZKK.
It is easy to see how these expectations arise. For

μ≲ R−1, we know that this integral must have at most a
logarithmic dependence on μ. We also know that for μ ≲
R−1 only the zero modes of ZKK contribute, so that we can
approximate ZKK ¼ 1. It then follows that C0

0 ¼ C0
1 ¼ 0,

and hence

ZðbaseÞ
X ¼ 1

t2
ðC0

2t
2 þ…Þ as t → 0: ð4:41Þ

At such energy scales μ≲ R−1 we thus find

hXið4ÞFT ðμÞ ¼ C0
2 logðΛ2=μ2Þ þ const: ð4:42Þ

This confirms that for μ ≲ R−1 we indeed obtain the
expected logarithmic running. Moreover, we also see that
C0
2 can be identified as the beta-function coefficient for this

logarithmic running.
By contrast, let us now consider scales far above the KK

scale, i.e., μ ≫ R−1. In this case we may sum over all of the
KK states which are lighter than μ. This is the same
calculation as in Eq. (3.8), whereupon we find

hXið4ÞFT ðμÞ ¼ πδ=2Rδ

Z
μ−2

Λ−2

dt

t1þδ=2 Z
ðbaseÞ
X : ð4:43Þ

Thus we identify Cj−δ=2 ¼ πδ=2RδC0
j, just as we found for

string theory in Eq. (3.34), modulo constants pertaining
to the different definitions of the compactification volume.
Moreover, evaluating our field-theory amplitude, we
then find

hXið4ÞFT ðμÞ ¼
2

δ
πδ=2RδC0

2ðΛδ − μδÞ; ð4:44Þ

as expected. This then reproduces the expected power-law
running, with C0

2 now serving as the beta-function coef-
ficient for this running. Indeed,C0

2 plays this role regardless
of δ—i.e., regardless of the number of compactified extra
dimensions which decompactify in the large-volume limit.
This much is field-theoretic. However, for δ > 2, we

have learned from our theorem [see Eq. (3.25)] that
modular invariance and misaligned supersymmetry actually
force C0

2 ¼ 0. Indeed, this result applies for all δ > 2

(although not δ ¼ 2 itself). This, then, kills not only the
power-law running in Eq. (4.44) in cases with δ > 2, but
also even the logarithmic running in Eq. (4.42) coming
from those sectors. We thus conclude that in any modular-
invariant theory which has a decompactification limit in
which δ > 2 extra spacetime dimensions appear, there is no
running at all from those sectors which are involved in the
decompactification process. The contributions from such
sectors are therefore completely scale-invariant.
The fact that this running is eliminated ultimately rests

on the UV/IR mixing inherent in modular invariance and
misaligned supersymmetry. Essentially, for theories with
δ > 2 decompactification limits, our “base” theory (i.e., our
theory without the KK/winding excitations) has a nontrivial
cancellation purely amongst the zero-mode fields at all
mass levels, and it is this cancellation that eliminates the
power-law running that would have arisen from the KK
excitations of such fields. By the same token, this can-
cellation also eliminates the running contributions that
would have arisen from the winding modes as well.
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The case δ ¼ 2 is somewhat special because we can no
longer claim that C0

2 ¼ 0. Thus, for δ ¼ 2 we can indeed
have logarithmic running for μ < R−1. However, as we
shall now demonstrate, all power-law running for μ > R−1

is eliminated even in this case.
To see this, let us begin by noting that for δ ¼ 2 we have

C1 ¼ πR2C0
2. Thus, just as for Eq. (4.44), in field theory we

would expect a term of the form

hXið4ÞFT ðμÞ ¼ πR2C0
2ðΛ2 − μ2Þ ð4:45Þ

where Λ is, as above, a fixed arbitrary cutoff on the
Schwinger integral. Unfortunately, such a result is incon-
sistent with the scale-duality symmetry in Eq. (4.30). Thus,
in string theory, the result in Eq. (4.45) must somehow be
“completed” to form a scale-duality-invariant quantity.
However, as we shall now demonstrate, any such com-
pletion will leave us with a fully scale-invariant quantity—
i.e., one which has no dependence on μ at all. Thus, in this
instance, scale duality actually requires scale invariance
above the compactification scale.
It is relatively straightforward to construct a scale-

duality-invariant “completion” of the expression in
Eq. (4.45). Bearing in mind that Λ is an arbitrary but
unknown UV cutoff which we expect to naturally be
replaced by Ms within our analysis, we can immediately
write a duality-invariant completion of Eq. (4.45) in the
form

hXið4ÞðμÞ ¼ −πR2C0
2M

2
s

×
�
hðμ2=M2

sÞ
μ2

M2
s
þ hðM2

s=μ2Þ
M2

s

μ2

�
ð4:46Þ

where hðxÞ is an unknown function. However, we can
immediately list a number of conditions that this h-function
must satisfy the following:

(i) First, we must demand that the μ → 0 limit of
Eq. (4.46) reproduce Eq. (4.45). Specifically, as
x → 0, this requires that

xhðxÞ þ x−1hð1=xÞ ≈ a0 þ a1x; ð4:47Þ

where a0 and a1 are arbitrary constants and where
we are identifying x≡ μ2=M2

s .
(ii) Second, because we are restricting our attention to

the situation in which only two extra dimensions
open up in the decompactification limit, the running
of hXið4ÞðμÞ cannot involve terms μp for any p > 2.

Our claim, then, is that any h-function satisfying these two
conditions must actually have a1 ¼ 0. For a function that
simply terminates at x, this indeed follows trivially from the
two assumptions above. The fact that the left side of
Eq. (4.47) is invariant under x → 1=x in turn implies that
a0 þ a1x ¼ a0 þ a1=x, which in turn implies a1 ¼ 0.

Of course one may attempt to propose functions for the
right side of Eq. (4.47) that behave correctly as x → 0 but
which would appear to allow a nontrivial dependence on x
in the x → 0 limit. For example, one can consider the
choice

hðxÞ ¼ a0
x
þ a1Θð1 − xÞ ð4:48Þ

which, as x → 0, yields

xhðxÞ þ x−1hð1=xÞ
¼ a0 þ a1xΘð1 − xÞ þ a1x−1Θð1 − x−1Þ: ð4:49Þ

If we further assume that the function hðxÞ should be
differentiable, we can alternatively model the Heaviside
Θ-function as a sigmoid:

Θð1 − xÞ → 1þ e−1

1þ ex
n−1 ð4:50Þ

for any given n > 0. We then find that expanding around
x ¼ 0 yields xnþ1 terms as well as x terms. However,
because we are considering the δ ¼ 2 case (with only two
extra dimensions opening up), we do not expect any
physical power-law running beyond quadratic. If we wish
to restrict the running to quadratic this in turn restricts us to
n ¼ 0, which renders the expression in Eq. (4.50) equal to a
constant.
One can investigate alternative functions but one

always runs into similar problems. Essentially, the under-
lying issue is that the scale-duality symmetry requires that
any quadratic running automatically come along with
running that has even higher powers. Indeed, if we have
any power-law running at all, then the required “turn-over”
of this running near the self-dual point μ ≈Ms (as required
by scale duality) will itself require power-law running
involving even higher powers. However, we know from
our analysis of the complete amplitude and our result that
C0
2 ¼ 0 for δ > 0 that such higher powers are unphysical.

Thus, the theory ensures its own self-consistency by
avoiding all power-law running altogether. This argument
is, of course, ultimately a consequence of the UV/IR
mixing inherent in the scale-duality symmetry. As such,
this absence of running—like the scale-duality symmetry
itself—is intrinsically a string-theoretic phenomenon.
The end result, then, is that the one-loop running of

physical quantities hXið4ÞðμÞ in such theories can at most
exhibit the behaviors shown in Fig. 1, where we assume for
simplicity that all directions of our compactification tori
have equal radii R. In particular, for δ ¼ 2 (top panel), the
physical quantities in our theory can exhibit at most
logarithmic running, and this is limited to the μ≲ R−1

regime. By contrast, for δ > 2 (bottom panel), these
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quantities cannot even exhibit logarithmic running at any
scale, and our quantities remain scale-invariant at all scales.
Thus, to summarize the results of this section, we arrive

at the following corollary of our theorem:
Nonrenormalization corollary. Within any modular-

invariant theory which has δ≡D − 4 large extra dimen-
sions opening up at a scale 1=R, misaligned supersymmetry
and UV/IR mixing eliminate all running for μ≳ R−1

regardless of the value of δ. For μ < R−1, these same
phenomena eliminate all running for δ > 2, and leave at
most logarithmic running for δ ¼ 2.

It is important to understand how this running is
eliminated at the level of the actual string spectrum.
Precisely what states are cancelling against what other
states, as far as their contributions to the overall running are
concerned?
The answer depends crucially on the value of δ. For all

δ > 2, as we have seen, the power-law running is cancelled
as a result of the vanishing of C0

2, or equivalently as the
result of a vanishing supertrace over the states in the
corresponding base theory. This means that there is a
cancellation between different species A and B of particles
in the base theory (or between different collections A and B
of species in the base theory). Of course, viewed from the
perspective of our compactification, the base theory con-
tains only the KK and winding zero modes. However, any
cancellation between the zero modes of A and B particles
also naturally extends to the KK/winding excitations
associated with these particles as well. Thus, for δ > 2,
we find that the KKmodes associated with species A cancel
against those associated with species B, while the winding
modes associated with species A cancel against those
associated with species B.
This situation is quite different when δ ¼ 2. In this case,

we do not find that C0
2 ¼ 0. However, our arguments based

on scale-duality invariance tell us that the μ-dependence of
the power-law running must nevertheless cancel, leaving
behind at most a constant. Because C0

2 ≠ 0, this is not a
cancellation within the base theory, but rather a cancellation
within its spectrum of KK and winding excitations. In fact,
we can be more precise: since the A and B zero modes are
not cancelling against each other, the KK modes associated
with A are not cancelling with the KK modes associated
with B, nor are the winding modes associated with A
cancelling against the winding modes associated with B.
Instead, what we have is a cancellation of the KK modes of
A against the winding modes of A, and a cancellation of the
KK modes of B against the winding modes of B.
It may seem strange that a KK contribution can ever

cancel against a winding contribution, specially since these
contributions will generally have very different scales.
However, in a UV/IR-mixed context such as we have here,
all of our states—both KK and winding—give rise to
effects that are simultaneously felt at all energy scales in the
theory.
We also hasten to add that the cancellations we have been

discussing here concern the contributions to the overall
running of ΔGðμÞ. In particular, these are not cancellations
of the total contributions to ΔGðμÞ from these states. For
example, if the KK states make a contribution of the
schematic form fðμ2=M2

sÞ to ΔGðμÞ within a certain range
of energy scales μ, then our assertion is that the corre-
sponding winding states will make a contribution of the
schematic form C − fðμ2=M2

sÞ to ΔGðμÞ within that same
range, where C > fðμ2=M2

sÞ. Both contributions have
the same overall sign (since the KK and winding states

FIG. 1. Sketches of the generic one-loop running behavior for
physical quantities that would otherwise run logarithmically in
four-dimensional field theory, but now considered within the
context ofUV/IR-mixed closed string theories inwhich δ ¼ D − 4

extra spacetime dimensions open up at a common scale R−1. For
δ ¼ 2 (top panel), the expected field-theoretic logarithmic running
exists only at scales μ ≳ R−1 but (after a string-theoretic transient
“pulse” around the scale μ ∼ 1=R) is killed beyond this scale and
reemerges only for μ≳M2

sR, as mandated by the string-theoretic
scale-duality symmetry under μ → M2

s=μ. By contrast, for δ > 2
(bottom panel), theUV/IRmixing is sufficient to kill the running at
all scales, including the logarithmic running that would have
existed at scales μ≲ R−1. It may seem strange that the emergence
of extra spacetime dimensions at a given scale μ� can kill the
running at scales below μ�, but this is the direct consequence of the
UV/IR mixing and misaligned supersymmetry which connects
physics at all scales simultaneously.
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necessarily have the same spin-statistics), and thus together
they produce a total contribution which is nonzero.
However, it is the running that cancels within this total
contribution, leaving ΔGðμÞ entirely μ-independent.
This can also be understood at an algebraic level from the

results we have outlined above. Recall that our general
contributions for δ ¼ 2 take the form in Eq. (4.45). Within
this expression, we may identify the μ2 contribution as
arising from KK states and the Λ2 contribution (which we
may associate with a fundamental high scale such asMs) as
arising from winding states. However what the field-
theoretic expression in Eq. (4.45) neglects is the fact that
this term can itself carry μ-dependence. Our argument
concerning scale duality then guarantees the cancellation of
the μ2 contributions coming from these two terms. In other
words, a dominant (leading) piece coming from the KK
contribution is cancelling against a subdominant piece
coming from the winding contribution. This argument is
based on the assumption that μ < Ms. For μ > Ms, by
contrast, the roles of KK and winding states are reversed: it
is the KK states which give rise to the Λ2 contribution, and
it is therefore the subleading KK contributions which
cancel against the leading winding contributions.
Thus far, our discussion has focused on factorizable

compactifications in which each of the δ different com-
pactifications share a common compactification scale
μ ∼ R−1. However, just as with our previous results, these
results can be extended to more general situations. These
include situations in which the compactification does not
have degenerate radii (or more generally compactifications
that do not involve a square torus), and also compactifi-
cations that are not factorizable.
In the first of these cases the compactification introdu-

ces more than one KK scale into the theory. A typical
example is a δ-dimensional compactification on a δ-torus
with radii Ri, i ¼ 1; 2;…; δ. Each of these radii is asso-
ciated with a different KK scale Mi ∼ R−1

i . If the compac-
tification is still factorizable, then our previous discussion
still applies. Specifically, at low energies, a state can
contribute logarithmic running as usual in four dimensions.
However as soon as μ reaches the lowest KK scale, all
contributions to the running must cancel as embodied in
our supertrace identities. Therefore there is no running
beyond this point, and indeed all running ceases within the
window

min
i
ðMiÞ ≪ μ ≪ max

i
ðM2

s=MiÞ: ð4:51Þ

We will see a simple example of this situation in Sec. V,
where we consider the case of compactification on a
nondegenerate (and nonsquare) two-torus. Of course, for
tori with nontrivial shape (complex-structure) moduli as
well as nontrivial Kähler moduli, the relevant scales within
Eq. (4.51) are simply those associated with the lightest KK

mode and the heaviest winding mode, respectively. In
general these can be complicated functions of the radii Ri
due to the nontrivial Kähler moduli.
As indicated above, our primary assertion is that there is

no running within the window in Eq. (4.51). That said,
there can (and usually will) be string-theoretic transient
effects which do not represent true running but which
nevertheless lead to localized changes in the values of the
relevant amplitudes as we transition between different
physical regions. This is the “pulse” phenomenon shown
in Fig. 1, and we will see explicit examples of such pulses
in Sec. V. However, our primary assertion stands: beyond
the existence of such pulses, all running ceases above the
lightest KK scale.
In the second of these cases, that of nonfactorizable

compactifications, we have seen that our theorem applies
individually for each of the independent base theories

ZðbaseÞ
s . Thus the states in each base theory will either

contribute or not contribute to the overall running depend-
ing on the physics associated with that sector alone.
We close with a final comment concerning the implica-

tions of these results for cases in which the radii R−1 are
close to (or even equal to) the string scale. Thus far in this
paper, we have been implicitly assuming R−1 ≪ Ms—in
other words, that we are dealing with large-radius com-
pactifications. However, the results we have obtained are
independent of the radii R, and thus our results will
continue to hold even as the KK scales R−1 approach
Ms. This then has some very important implications.
For example, let us consider purely toroidal (untwisted)

compactifications of ten-dimensional strings down to four
dimensions. The resulting four-dimensional strings clearly
have a “decompactification” limit with δ ¼ 6. For such an
untwisted compactification, this implies that our four-
dimensional theory cannot exhibit any running—neither
logarithmic nor power-law—for μ < R−1, or equivalently
for the entire range 0 ≤ μ ≤ Ms. Of course, if our ten-
dimensional theory is supersymmetric, then our resulting
four-dimensional theory has N ¼ 4 supersymmetry. In
such a case, our result that this four-dimensional theory
exhibits no running is not a surprise and is consistent with
existing supersymmetric nonrenormalization theorems.
However, let us now instead imagine that we are toroidally
compactifying the ten-dimensional non-supersymmetric
tachyon-free SOð16Þ × SOð16Þ string. In this case, the
resulting four-dimensional theory will also be nonsuper-
symmetric. However, our theorem tells us that this theory
will also fail to exhibit any running. Indeed, in this case the
UV/IR mixing inherent in misaligned supersymmetry and
modular invariance have accomplished what supersym-
metry is no longer available to accomplish, namely to
suppress the running in the same way as in the super-
symmetric case, only now through nontrivial conspiracies
across all of the states in the string spectrum rather than
through boson/fermion pairings.
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Of course, this result applies only for untwisted com-
pactifications. For twisted compactifications, the situation
described in Sec. III F implies that certain contributions to
the running will also be eliminated. These are the con-
tributions from the sectors that are involved in decom-
pactification limits with δ > 2. However, according to our
theorem, logarithmic running may yet emerge from the
sectors with δ ¼ 2. This feature is also reminiscent of what
occurs in supersymmetric contexts. However, once again,
we are finding that this also holds in non-supersymmetric
contexts, purely as a result of UV/IR mixing.
We consider this observation to be quite general. It is

well known that various supersymmetric theories are
governed by nonrenormalization theorems. What we are
finding, however, is that analogous nonsupersymmetric
theories also seem to be governed by the same sorts of
nonrenormalization theorems. Thus UV/IR mixing appears
to play many of the same roles as supersymmetry.

V. EXPLICIT EXAMPLE: GAUGE COUPLINGS
IN T 2 STRING COMPACTIFICATIONS

The discussion in the previous sections was completely
general, and is thus applicable to all tachyon-free closed
string theories. However, it is instructive to revisit a well-
known example and perform an explicit calculation within
the framework of that example in order to see how the
results of our theorem are realized in practice, and how the
cancellation of power-law running actually occurs. Along
these lines, this will also allow us to understand the critical
role played by UV/IR mixing, and in particular by our
insistence on maintaining worldsheet modular invariance
throughout our calculation.

A. Modular-invariant calculation
versus traditional calculation

For this purpose, we shall focus on a calculation which
was historically at the center of an early triumph in string
phenomenology, namely the first calculations of gauge
threshold contributions within an N ¼ 1 supersymmetric
heterotic string model which is compactified from ten
dimensions to four dimensions on an orbifolded six-
dimensional torus. This calculation was first performed
in Ref. [37] using the formalism established in Ref. [38].
The results of this analysis were subsequently developed in
many later works and proved highly influential. However,
as we shall discuss, the analysis in Refs. [37,38] did not
respect the full (worldsheet) modular invariance of the
theory. As a result, this calculation did not capture all of the
features which we are analyzing in this paper. By redoing
this calculation within our fully modular-invariant frame-
work, our goal is to see how the new features we have been
discussing arise. This includes the running of the gauge
couplings, and the absence thereof beyond the appropriate

KK scales. For this reason, this calculation will prove to be
a useful testing ground for our work.
As in Ref. [37], we shall consider the special case in

which the six-dimensional torus can be factorized into a
four-dimensional torus T 4 and a two-dimensional torus T 2.
With certain further assumptions outlined in Ref. [37], we
may disregard the physics associated with the T 4 compac-
tification. This problem then reduces to a study of the two-
dimensional compactification of anN ¼ 1 six-dimensional
closed heterotic string to four dimensions on an orbifolded
two-torus T 2.
Finally, since our goal will be to compare our results with

those of Ref. [37], we stress that we will actually be
calculating a quantity which is distinct from that calculated
in Ref. [37]. It will therefore be important to understand the
difference between these quantities when attempting to
make comparisons.
In general, our goal is to calculate ΔG, i.e., the one-loop

contribution to 16π2=g2G. Here G is any of the unbroken
gauge-group factors within the string model in question, gG
is the corresponding gauge coupling, and ΔG is defined in
Eq. (2.17). Moreover, we recall that prior to the introduc-
tion of a regulator we can identify ΔG ¼ hXi where X is
given in Eq. (2.8) with the operator insertions Xl given in
Eq. (2.18). The quantity ΔG will be finite if there are no
massless X2-charged states in the string spectrum [i.e.,
assuming that Eq. (3.1) continues to hold].
For this calculation, however, such states generically do

appear. Thus Eq. (3.1) will no longer be valid, and a
regulator will be needed. As discussed in Sec. IV B, we
shall adopt the modular-invariant regulator function
Gρða; τÞ described in Sec. II B. We therefore seek to
calculate the finite quantity

ΔG ≡
Z
F

d2τ
τ22

ZXGρða; τÞ ð5:1Þ

whereX¼τ2X1þτ22X2 [with theXl defined in Eq. (2.18)].
Moreover, through the identification in Eq. (4.20), we may
also view this as a scale-dependent quantity ΔGðμÞ.
In Ref. [37], by contrast, a somewhat different quantity

ΔðDKLÞ
G is calculated. For each gauge group G, the quantity

ΔðDKLÞ
G represents a threshold correction for the running of

the corresponding gauge coupling 16π2=g2G—a correction
which arises due to the infinite towers of massive states in

the string spectrum. As such, ΔðDKLÞ
G tallies the contribu-

tions to the running of 16π2=g2G from only the massive
states in the theory. As explained in Ref. [38], this quantity
is defined as

ΔðDKLÞ
G ≡

Z
F

d2τ
τ22

ðZX 0 − τ2bGÞ ð5:2Þ
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where X 0 ≡ τ22X2 and where bG is given in Eq. (4.26). The
subtraction of τ2bG within the integrand of Eq. (5.2) reflects

the idea that ΔðDKLÞ
G includes the contributions of only the

massive states in the theory. However, as we have described
above, this subtraction also has the further benefit of

rendering ΔðDKLÞ
G finite. Indeed, given the form of X2,

we see that bG is nothing but the one-loop beta-function
coefficient for G.
We thus see that there are three important differences

between our expression for ΔG and the corresponding

expression ΔðDKLÞ
G that is calculated in Ref. [37]. First, we

see that the operator insertion within ΔðDKLÞ
G is truncated,

including only the X2 term but disregarding the X1 term.
Second, we see that these expressions utilize different
methods of ensuring a finite result: our expression in
Eq. (5.1) utilizes a smooth, modular-invariant regulator
function Gρða; τÞ that suppresses the potentially divergent
contributions from the large-τ2 region of integration, while
the expression in Eq. (5.2) utilizes a sharp, brute-force
subtraction of the otherwise divergent contribution from the

massive X2-charged states. Finally, ΔðDKLÞ
G has no energy

scale associated with it, but is simply a threshold that must
be matched to an effective theory. By contrast, our ΔG is
calculated within the complete theory, with the regulator
itself defining the energy scale.
As a result of these differences, ΔG is modular invariant

while ΔðDKLÞ
G is not. Indeed, ΔG includes the operator

insertion X1, and X1 is the modular completion of X2, as
discussed in Ref. [17]. Likewise, the regulator function
Gρða; τÞ within ΔG eliminates the divergences that would
have arisen if bG ≠ 0, but does so in a fully modular-
invariant way. By contrast, the brute-force subtraction of

massless contributions within ΔðDKLÞ
G breaks modular

invariance, since the UV/IR mixing within modular invari-
ance generally causes the massless states to mix non-
trivially with all of the other states in the theory, thereby
rendering such a targeted subtraction impossible.
At first glance, it may seem surprising that ΔðDKLÞ

G is not
modular invariant. After all, the well-known expression for
this quantity that is ultimately derived in Ref. [37] (and
which we shall also obtain below) turns out to be a modular
function of the compactification moduli. However, as
described above, we are calculating these quantities within
the framework of a six-dimensional theory which is
toroidally compactified to four dimensions. There are
therefore two distinct modular symmetries that we expect
to play a role in this calculation—not only the usual
worldsheet modular invariance that must be unbroken
for all perturbative closed string theories, but also the
spacetime modular invariance associated with such a two-
dimensional T2 toroidal compactification. Indeed, while

ΔðDKLÞ
G respects the spacetime modular invariance, it lacks

the worldsheet modular invariance that is our main interest

in this paper. As such, it does not respect the stringy UV/IR
mixing that drives our theorem and its consequences. By
contrast, ΔG preserves both modular symmetries simulta-
neously, as it must. It is therefore only within the calcu-
lation of the properly defined ΔG that we expect the
consequences of our theorem to become manifest.

B. General setup

We begin our evaluation of Eq. (5.1) by recalling the
physical setup. As discussed above, we assume a six-
dimensional heterotic string with N ¼ 1 spacetime super-
symmetry compactified on a two-torus T 2. Our goal is to
calculate the amplitude ΔG ≡ hXið4Þ. To do this, we shall
work within the approximation that our compactification
volume is large. This will not affect our final results but will
allow us to make contact with the calculation in Ref. [37].
Within this approximation, we can then utilize the result for
hXið4Þ given in Eq. (4.29) for δ ¼ 2, specifically

hXið4Þ ≈ π

3
ṼTðC0

2 − bGÞ

þ bG

Z
F

d2τ
τ22

τ2ZKK=windingGρða; τÞ; ð5:3Þ

where in the present case we have from Eqs. (2.18) and
(A9) the coefficient

C0
2 ¼ −2Str0ðQ2

GQ̄
2
HÞ þ

1

6
Str0EQ

2
G

−
ξ

2π
Str0ðQ̄2

HM̃
2Þ þ ξ

24π
Str0EM̃

2: ð5:4Þ

Before proceeding further, several comments are in
order. First, we note that the terms in the second line
of Eq. (5.4) correspond to the so-called “Y-terms” in
Refs. [37,38]. Historically these terms tended to be dis-
regarded because they are universal (i.e., independent of the
gauge group in any given string model) and therefore play
no role in gauge coupling unification (which is sensitive to
only the differences of gauge couplings). Moreover, these
terms receive contributions from only the massive string
states in the base theory and are thus insensitive to any
potential running of the gauge couplings at scales below
Ms. However, as we have seen, these terms are part of the
full modular-invariant calculation and we shall therefore
retain these terms within C0

2.
Second, we also note that the contributions from the

massless states within Eq. (5.4) are nothing but the
corresponding beta-function coefficient:

C0
2jM¼0 ¼ bG ≡ −2 Str

M¼0

�
Q̄2

H −
1

12

�
Q2

G: ð5:5Þ

Indeed, these terms are nothing other than the divergent
contribution Str

M¼0
X2.
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Of course, for our purposes our main interest in this
section is in the second line of Eq. (5.3) because this is the
term that pertains to ΔðDKLÞ

G . This is therefore the term
which will allow us to compare our results with those of
Ref. [37]. Moreover, the first line of Eq. (5.3) has no
dependence on the regulator and therefore will ultimately
have no μ-dependence. This is therefore a μ-independent
constant. We shall therefore henceforth focus on the
expression

IG ≡ bG

Z
F

d2τ
τ22

τ2ZKK=windingGρða; τÞ; ð5:6Þ

so that the total one-loop contribution ΔG to the inverse
coupling gG is given by

ΔG ¼ hXið4Þ ¼ π

3
ṼTðC0

2 − bGÞ þ IG: ð5:7Þ

Our goal, then, is to evaluate IG for compactifications on
a two-torus. To do this, we must know the physical
spectrum of our theory. We will therefore follow standard
conventions by taking the general moduli for the two-torus
to be written as T ¼ T1 þ iT2 and U ¼ U1 þ iU2, where
for reference the metric and B-field are defined in terms of
the moduli as

Gij ¼
T2

U2

�
1 U1

U1 jUj2
�
; Bij ¼ T1

�
0 1

−1 0

�
: ð5:8Þ

Note that for T1 ¼ U1 ¼ 0 (corresponding to rectangular
tori without a Kalb-Ramond B-field), we can identify

T2 ¼ M2
sR1R2 and U2 ¼

R2

R1

: ð5:9Þ

Although it will sometimes be useful for pedagogical
purposes to think in terms of such rectangular tori with
radii R1 and R2, in the following we shall nevertheless let
all four moduli be nonzero. However, without loss of
generality, we shall adopt the convention that U2 > 1.
Given this, the δ ¼ 2 KK/winding factor ZKK=winding in

Eq. (5.6) is simply given by ZT2, where

ZT2ðτÞ ¼
X

k⃗; l
!

∈Z2

e−πτ2α
0M2

T2e2πiτðk2l1−k1l2Þ ð5:10Þ

and where the squared-mass contribution coming from KK/
winding states with KK/winding numbers k1; k2;l1;l2 ∈Z
is given by

α0M2
T2 ¼ jk1 þUk2 þ Tl1 þ TUl2j2

U2T2

: ð5:11Þ

Before we present the fully modular-invariant expression
for the gauge-coupling contribution, it is useful to recall for

comparison the result of Ref. [37] which was derived by
computing the integral in Eq. (5.2). This gives

ΔðDKLÞ
G ¼ bG

Z
F

d2τ
τ22

ðτ2ZT2ðτÞ− τ2Þ

¼−bG log
�
8πe1−γE

3
ffiffiffi
3

p T2U2jηðTÞj4jηðUÞj4
�
; ð5:12Þ

wherebG is given by the coefficient inEq. (5.5) andwhere γE
is the Euler-Mascheroni constant. We emphasize again that
this τ2 subtraction, which is done to regulate the integral by
removing the logarithmic divergence coming from the
massless states, breaks worldsheet modular invariance.
Therefore this result does not reflect theworldsheet modular
invariance of the full theory fromwhich it came.However, as
this τ2-subtraction is independent of T and U, this integral
correctly reflects the spacetime modular symmetry associ-
ated with the spacetime toroidal compactification. This
spacetime modular symmetry is manifest in the U- and
T-dependence of the one-loop gauge-coupling correction,
and is inherited from the worldsheet modular symmetry.
Our objective, of course, is to obtain an expression for

the equivalent term in ΔG (namely IG) which preserves not
only spacetime modular invariance but also worldsheet
modular invariance. It is to this task that we now turn.

C. Summary of results

Before plunging into our analysis, it may help to provide
a bird’s-eye view by summarizing our eventual results.
Our main result, of course, is the evaluation of the full

modular-invariant integral in Eq. (5.6). We shall find that
this is highly nontrivial but eventually yields the expression

IG¼
−bG

1þa2ρ

�
logðcT2U2jηðTÞηðUÞj4Þþ2 log

ffiffiffi
ρ

p
a

þ 8

ρ−1

X
γ;γ0∈Γ∞nΓ

�
K̃ð0;1Þ

0

�
2π

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðγ ·T2Þðγ0 ·U2Þ

p �

−
1

ρ
K̃ð1;2Þ

1

�
2π

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðγ ·T2Þðγ0 ·U2Þ

p ���
ð5:13Þ

where we have adopted the shorthand notation
γ · T2 ≡ Imðγ · TÞ, where we have defined

c≡ 16π2ρ−
ρþ1
ρ−1e−2ðγEþ1Þ; ð5:14Þ

and where we have defined the Bessel-function
combinations [13]

K̃ðn;pÞ
ν ðz;ρÞ≡X∞

k;r¼1

ðkrzÞn
h
Kνðkrz=ρÞ−ρpKνðkrzÞ

i
: ð5:15Þ

Here KνðzÞ are modified Bessel functions of the second
kind, and γ and γ0 are the spacetime modular
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transformations acting in the respective spacetime modular
groups associated with T and U. Likewise, Γ∞nΓ is the set
of modular transformations which collectively “unfold” the
fundamental domain of the full modular group Γ into the
“strip” with jτ2j ≤ 1=2 and τ1 > 0. Indeed, this strip is
nothing but the fundamental domain of the modular
subgroup Γ∞ which is generated only by the transformation
τ → τ þ 1 and which therefore leaves the cusp at τ ¼ i∞
invariant.
As we see, the first line of the expression for IG in

Eq. (5.13) clearly contains the classic moduli-dependent
pieces of Eq. (5.12). However, we now see that this result
also comes with the additional terms on the second and
third lines of Eq. (5.13). These extra terms not only
maintain the spacetime modular invariance that already
existed in the first line, but also restore worldsheet modular
invariance for the entire amplitude, as required.
It is not difficult to recover the result for ΔðDKLÞ

G in
Eq. (5.12) from the full expression for IG in Eq. (5.13).
To see this, we note that within the result of Eq. (5.13) the
quantities ðρ; aÞ parametrize the regulator function Gρða; τÞ
which appears in Eq. (5.6). ThereforeΔðDKLÞ

G is equivalent to
IG with the logarithmic piece log

ffiffiffi
ρ

p
a subtracted by hand

and with a sent to zero. In this limit the Bessel functions all
vanish, and the remaining difference between the threshold
of Eq. (5.12) and the a → 0 limit of Eq. (5.13) with
subtracted log

ffiffiffi
ρ

p
a amounts to a difference in renormaliza-

tion scheme. This scheme-dependence is encapsulated
within the parameter c. Indeed, by numerically equating
the remaining terms we find that equivalent schemes would
correspond to ρ ≈ 22.
Given the result in Eq. (5.13), and following the

procedures outlined at the beginning of Sec. IV B, we
can also analyze how IG and thus the full ΔG runs in the
modular invariant theory. Identifying the physical mass
scale μ as in Eq. (4.20), we find that the running behavior
for IG can most easily be described by partitioning the full
range of μ into five different regimes. For presentational
purposes, we shall assume that our δ ¼ 2 compactification
geometry consists of a rectangular two-torus with radii R1

and R2 with R2 ≫ R1 and with no Kalb-Ramond field.
We then find that our five separate regions of interest are
given by

Region I∶ μ ≪ 1=R2;

Region II∶ 1=R2 ≪ μ ≪ 1=R1;

Region III∶ 1=R1 ≪ μ ≪ M2
sR1;

Region IV∶ M2
sR1 ≪ μ ≪ M2

sR2;

Region V∶ μ ≫ M2
sR2: ð5:16Þ

Within each of these regions and far from the boundaries
between these regimes, we can then evaluate the

approximate leading behaviors for IG. As we shall see,
this ultimately yields the results

Region I∶

IG≈
π

3

�
M2

sR1R2þ
R2

R1

�
−2 logðμR2Þ;

Region II∶

IG≈
π

3

�
M2

sR1R2þ
R2

R1

�
;

Region III∶

IG≈
π

3
M2

sR1R2;

Region IV∶

IG≈
π

3

�
M2

sR1R2þ
R2

R1

�
;

Region V∶

IG≈
π

3

�
M2

sR1R2þ
R2

R1

�
−2 log

�
M2

sR2

μ

�
: ð5:17Þ

These results provide confirmation of many of our
previous assertions. For example, within Regions II
through IV, we see that there is no logarithmic or
power-law running at all. By contrast, within Region I
we have at most a logarithmic running which essentially
ceases as we cross from Region I to Region II and
encounter the lightest KK states. Moreover, as expected,
we observe that Regions IV and V are directly related to
Regions II and I respectively under the scale-duality
transformation in Eq. (4.30), while Region III is self-dual.
Thus the absence of running that we observed in Regions II
and III extends into Region IV, with logarithmic running
reappearing only in Region V.
Two further comments are in order. First, while the above

results indicate the leading behaviors for our overall
amplitudes IGðμÞ, the results for Regions II and IVactually
contain an overall coefficient which is weakly μ-dependent.
This is the overall coefficient in Eq. (4.17), or equivalently
the coefficient 1=ð1þa2ρÞ¼1=ð1þμ2=M2

sÞ in Eq. (5.13).
However, this dependence is not a true running, but simply
represents a residual μ-dependence which is subleading
within these regions. By contrast, for Region III, this
residual μ-dependence is exactly cancelled within our
result for Region III. Thus, within Region III, our result
is fully μ-independent, exhibiting no running at all and
remaining truly constant.
Second, we observe that we have limited our analysis to

the behaviors of IGðμÞ within the interiors of each region in
Eq. (5.16). However, interesting behavior can also be found
at the boundaries between these different regions. In
particular, we shall find that between Regions II and III,
and also between Regions III and IV, we have a transient
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“pulse.” This is not a pure “running,” but rather a
completely stringy phenomenon which serves to connect
the constant value of IG which emerges on one side of each
of these boundaries with the different constant value of ΔG
which emerges on the other.
For the record, we emphasize that the above behavior is

fairly generic for δ ¼ 2, which has the potential for two
different compactification radii R1 and R2. Of course, for
δ > 2, we have the potential for additional distinct regions
opening up due to the possible appearance of additional KK
scales. Indeed, the behavior within all of these regions would
continue to be arranged in amanner consistentwith the scale-
duality symmetry. However, aswe have explained in Sec. IV
B, we would find that IG is a constant in each region.
This concludes the summary of our main results. Much

of the rest of this section is devoted to explaining how these
results can be extracted from our general result in
Eq. (5.13). However, it turns out that this extraction will
entail a number of interesting subtleties and technical
maneuvers, some of which revolve around writing our
general result in Eq. (5.13) in a series of different but
equivalent ways. For this reason, the reader who does not
wish to delve into those details and who is willing to accept
the above results can skip directly to Sec. V G.

D. Evaluating the one-loop contribution to the
modular-invariant gauge coupling

Let us start by explicitly deriving the fully modular-
invariant result of Eq. (5.13). Our derivation proceeds by
evaluating the integral in Eq. (5.6), where for convenience
we will henceforth set bG ¼ 1, since bG merely provides an
overall factor.
In order to perform this calculation we first need to fully

specify the physical spectrum over which we will even-
tually be taking supertraces. In general, the states appearing
in Eq. (5.11) are not level-matched. Therefore we must first
determine the spectrum of physical states. Given the
expression in Eq. (5.10), these are the states which satisfy
the level-matching constraint

k2l1 − k1l2 ¼ 0: ð5:18Þ

This condition straightforwardly yields two sets of sol-
utions for the physical spectrum:

ðk1; k2;l1;l2Þ∈A ∪ B ð5:19Þ

where

A≡
n
ðk1; k2; 0; 0Þjðk1; k2Þ∈Z2

o
;

B≡
n
ðck̃1; ck̃2; dk̃1; dk̃2Þjðk̃1; k̃2Þ∈Z2;

gcdðk̃1; k̃2Þ ¼ 1; ðc; dÞ∈Z2; d ≥ 1
o
: ð5:20Þ

As described in Sec. IV B, knowledge of this spectrum
then allows us to determine the fully modular-invariant
term IGðμÞ. As shown in Eq. (4.18), this contribution to the
amplitude can naturally be expressed in terms of a
“reduced” amplitude PðaÞ, which from Eq. (4.19) now
takes the form

PðaÞ ¼
Z
F

d2τ
τ22

τ2ZT2ðτÞZcircða; τÞ ð5:21Þ

where Zcirc is defined in Eq. (3.5). Following the methods
outlined in Ref. [13], we shall evaluate PðaÞ by writing

PðaÞ ¼ P0
1ðaÞ þ P0

2ðaÞ ð5:22Þ

where

P0
1ðaÞ ¼

1

a

Z
F

d2τ
τ22

τ2ZT2ðτÞ − 1

a

Z
∞

t

dτ2
τ2

P0
2ðaÞ ¼ P2ðaÞ þ

1

a

Z
∞

t

dτ2
τ2

ð5:23Þ

with

P2ðaÞ ¼
2

a

Z
∞

0

dτ2
τ22

gX ðτ2Þ
X∞
l¼1

e−πl
2=ða2τ2Þ: ð5:24Þ

Note that in Eq. (5.23), the final terms for P0
1ðaÞ and P0

2ðaÞ
cancel in the sum PðaÞ. However, the reason for introduc-
ing these terms is that they allow us to shuffle logarithmic
divergences between P0

1ðaÞ and P0
2ðaÞ, with the arbitrary

finite parameter t allowing these two quantities to be
independently convergent. It will be an important self-
consistency check on our calculation that all dependence on
t will naturally drop out of the sum PðaÞ. As discussed in
Ref. [13], this reshuffling does not have to preserve
modular invariance in the individual terms because modular
invariance is ultimately restored in the sum.
Note that we can identify P0

1ðaÞ as the “traditional” non-
modular-invariant minimally subtracted integral in
Eq. (5.12). The remaining quantity P0

2ðaÞ thus contributes
all the “extra” terms in Eq. (5.13) which render our
effective cutoffs smooth and moreover restores worldsheet
modular invariance to our calculation.
As discussed in Ref. [13], the integral for P0

1 can be
performed using the Rankin-Selberg-Zagier techniques
[20–22] which, upon adapting the results of Ref. [39]
and performing the sum over the physical spectrum in
Eq. (5.20), gives

P0
1ðaÞ ¼ −

1

a
log ð4πT2U2jηðTÞηðUÞj4Þ þ 1

a
logðeγEtÞ:

ð5:25Þ
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To complete the calculation for PðaÞ—and indeed to
restore the worldsheet modular invariance—we must add
the P0

2ðaÞ integral to this result. Following Ref. [13] and
utilizing the same “unfolding” techniques as above, this
integral can also be expressed as a sum over the physical
spectrum in Eqs. (5.11) and (5.20). This then yields a total
expression for PðaÞ:

PðaÞ ¼ −
1

a
log


4πT2U2jηðTÞηðUÞj4

�

þ 8

a

X∞
k;r¼1

X
γ;γ0 ∈Γ∞nΓ

K0

�
2π

a
rkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðγ · T2Þðγ0 ·U2Þ

p �

−
1

a
logð4πa2e−2γEÞ ð5:26Þ

where we have adopted the same conventions and notations
as described below Eq. (5.15). As required, this result is
now invariant under worldsheet modular symmetries. It is
also finite for every a > 0; it is independent of t, as
required; and it also exhibits spacetime modular invariance
for the compactification moduli T and U.
Note that for practical purposes the sums over r, k can be

combined with the sums over the coset to yield the result

PðaÞ ¼ −
1

a
logð4πT2U2jηðTÞηðUÞj4Þ

þ 8

a

X
c;d;c0;d0

K0

�
2π

a
jcT þ djjc0U þ d0jffiffiffiffiffiffiffiffiffiffiffi

T2U2

p
�

−
1

a
logð4πa2e−2γEÞ ð5:27Þ

where ðc; dÞ∈Z2nfð0; 0Þg and ðc0; d0Þ∈Z2nfð0; 0Þg.
Having determined the reduced amplitude PðaÞ, all that

remains is to insert this into Eq. (4.18), whereupon the full
IG given in Eq. (5.13) is obtained.

E. Running gauge couplings

Thus far we have calculated the one-loop contribution to
the gauge coupling as a fixed quantity, much as was
originally done in Ref. [37] except that we have done this
in a manner that fully respects worldsheet modular invari-
ance. However, as we have discussed above and in
Refs. [13,17], we may now go one step further and proceed
to interpret our regulator variables ρ and a as defining a
running scale μ through the identification μ≡ ffiffiffi

ρ
p

aMs. In
this way we can then interpret our results as yielding a
running coupling in the low-energy effective field theory
derived from the string. To map out the behavior of this
running, in this section we will analyze the result in
Eq. (5.13) in various limits and in various energy windows.
In order to derive the behavior of IG in various limits and

regions, as in Eq. (5.17), it will prove convenient to work
with the reduced amplitude PðaÞ of Eq. (5.26) rather than

the full IG of Eq. (5.13), as the former is far simpler to
analyze. However it is important to appreciate that the
identification made in Eq. (4.20) of the energy scale μ withffiffiffi
ρ

p
aMs is a crucial physical step in going from PðaÞ to

ΔGðμÞ, as discussed at length in Ref. [13]. Indeed due to the
scale-duality symmetry in Eq. (4.30), the alternative iden-
tification μ≡Ms=ð ffiffiffi

ρ
p

aÞ would be an equally valid choice.
Making this choice is tantamount to choosing which
direction of our worldsheet theory should be identified
as UV versus IR physics in spacetime. As discussed in
Ref. [13], it is inevitable that such a choice must be made in
order to extract an EFT from our underlying UV/IR-mixed
string theory.
We shall now proceed to evaluate PðaÞ—and ultimately

IGðμÞ—within the different regions outlined in Eq. (5.16).
To do this, in each case we shall find an approximation for
PðaÞ that is valid within the appropriate region, and thereby
deduce the leading running that emerges within that region.
This requires some care, as the approximations that are
appropriate in each case are very different from each other.
We shall therefore be relatively explicit in how these
approximations are made in each case.

1. Region I: Field-theory limit

Having chosen to identify μ ¼ ffiffiffi
ρ

p
aMs, let us now as a

first step examine the low-energy behavior of Region I
which extends to μ → 0, or equivalently to

ffiffiffi
ρ

p
a ≪ 1. Here

we expect that Eq. (5.13) yields the effective four-dimen-
sional field-theoretic behavior together with finite gauge
thresholds. Indeed, we know that in this limit the regulator
should “turn off” entirely, i.e., Gρða; τÞ → 1, whereupon the
original unregulated integral should be restored. Of course
the unregulated integral had a logarithmic divergence that
emerges because bG ≡ Str

M¼0
X2 ≠ 0. Thus we expect that in

this limit Eq. (5.13) gives the threshold correction result
in Eq. (5.12) plus a term that diverges logarithmically
as μ → 0.
This is indeed what happens. Recognizing the Bessel-

function asymptotic behavior KνðzÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2zÞp

e−z as
z → ∞, we see that the terms involving Bessel functions
do not survive in this limit. We then find by direct analysis
of Eq. (5.13) that the only remaining terms are

IGðμÞ ≈ − logðcT2U2jηðTÞηðUÞj4Þ − 2 log

�
μ

Ms

�
ð5:28Þ

as μ → 0. Assuming T2 ≫ 1 and recalling that ηðizÞ ∼
e−πz=12 for z ≫ 1, we can extract the leading volume
dependence of IGðμÞ. Up to additional terms of order
unity, we obtain

IGðμÞ ≈
π

3
ðT2 þ U2Þ − log

�
μ2

M2
s
T2U2

�
ð5:29Þ
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as μ → 0. This approximation is in accord with the
T-volume scaling relation in Eq. (5.6), and is valid in
the region a ≪ 1=

ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
or equivalently μ ≪ 1=R2 for the

rectangular torus, yielding the Region I behavior described
in Eq. (5.17). Note that this is the energy scale below which
Kaluza-Klein modes are effectively inactive and may be
considered to have been integrated out.
It is important to understand the differences between our

modular-invariant result IGðμÞ in Eq. (5.28) and the tradi-
tional result ΔðDKLÞ of Eq. (5.12). Indeed, explicitly
restoring the factors of bG, we see that the two are related
for μ ≪ Ms via

IGðμÞ¼−bG log
μ2

M2
s
−bG log

�
3
ffiffiffi
3

p
c

8πe1−γE

�
þΔðDKLÞ: ð5:30Þ

Thus, while IGðμÞ is a contribution to the amplitude that is a
function of a running mass scale μ, we see that ΔðDKLÞ is a
scale-independent threshold correction. Of course, as we

have repeatedly stressed, ΔðDKLÞ
G is not a modular-invariant

quantity. It is only the full expression IGðμÞ which respects
the full modular invariance of the theory.
We thus see that our modular-invariant calculation not

only keeps track of the running, but also keeps track of the
natural degrees of freedom that are dynamical in the EFT
associated with the scale μ. As explained in more detail in
Refs. [13] and [17], for any scale μ our regulator implicitly
keeps track of which states can be classified as either
“light” (with masses M ≲ μ) or “heavy” (with masses
M ≳ μ): the contributions from the heavy states are sup-
pressed by our regulator and have thus effectively been
integrated out, while the contributions from the light states
are retained. Indeed, this establishes μ as a floating mass
scale, which in turn enables us to take μ toMs and beyond.

2. Region V: Ultrahigh energies

Let us now consider what happens in the μ → ∞ limit. In
order to do this we note that, as discussed in Ref. [13], the
scale-duality symmetry μ → M2

s=μ requires that the
reduced amplitude PðaÞ have an a → 1=a symmetry,
and this is in turn ensured by the explicit a → 1=a
symmetry of ZcircðaÞ. Thus in order to study the a → ∞
limit we can simply replace a → 1=a in Eq. (5.26), yielding
a dual PðaÞ of the form

PðaÞ ¼ −a logð4πT2U2jηðTÞηðUÞj4Þ − a log

�
4πe−2γE

a2

�
ð5:31Þ

up to Bessel-function terms which are exponentially sup-
pressed as a → ∞. This then yields

IG ≈ − logðcT2U2jηðTÞηðUÞj4Þ þ 2 log

�
μ

Ms

�
ð5:32Þ

as μ → ∞. Thus for T2 ≫ 1 the leading volume depend-
ence up to additional terms of order unity becomes

IGðμÞ≈
π

3
ðT2þU2Þþ log

�
μ2

M2
s
T2U2

�
as μ→∞: ð5:33Þ

Indeed, for the rectangular torus this approximation is valid
for a ≳ ffiffiffiffiffiffiffiffiffiffiffi

T2U2

p
, or equivalently for

μ≳ R2M2
s ; ð5:34Þ

yielding the Region V behavior of Eq. (5.17).

3. Regions II, III, and IV: Stringy energies

Since both the μ → 0 and μ → ∞ limits display only
logarithmic behavior, one might then suspect that power-
law running behavior is present near the self-dual point
a ¼ 1. Indeed, motivated by the field-theoretic result in
Eq. (4.45), one may even suspect that in this region the
contribution from P0

2 cancels that from P0
1 so as to give

IG → 0 at the self-dual point.
To investigate this, let us focus more closely on the a ≈ 1

region by writing P0
2 in the alternative form

P0
2ðaÞ¼

1

a
log


4πT2U2jηðTÞj4jηðUÞj4

�
−
1

a
logðeγE tÞ

−
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
log
���η
ia ffiffiffiffiffiffiffiffiffiffiffiffiffi

T2=U2

p �
η


ia−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p ����4
−4

X
γ≠1

γ∈Γ∞nΓ

X∞
k¼1

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2ðγ ·U2Þ

p
log

 
1−e

−2πak
ffiffiffiffiffi
T2
γ·U2

q !

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2ðγ ·T2Þ

p
log

 
1−e

−2πak
ffiffiffiffiffi
U2
γ·T2

q !)

þ 8

a

X
γ≠1

γ∈Γ∞nΓ

X∞
k;r¼1

K0

�
2π

a
rkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðγ ·T2Þðγ0 ·U2Þ

p �
: ð5:35Þ

Note that in writing Eq. (5.35) we have neglected terms that
vanish in the derivative definition of IGðμÞ in Eq. (4.18).
Rendering the sums explicitly, we then find that this becomes

P0
2ðaÞ ¼

1

a
log


4πT2U2jηðTÞj4jηðUÞj4

�
−
1

a
logðeγE tÞ

−
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
log
���η
ia ffiffiffiffiffiffiffiffiffiffiffiffiffi

T2=U2

p �
η


ia−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p ����4
−4
X
c≠0
c;d

� ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
jcUþdj log



1− e−2πajcUþdj

ffiffiffiffiffiffiffiffiffiffi
T2=U2
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þ
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T2U2

p
jcTþdj log



1− e−2πajcTþdj
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þ 8

a

X
c;d;c0 ;d0
c;c0≠0

K0

�
2π

a
jcTþdjjc0Uþd0jffiffiffiffiffiffiffiffiffiffiffi

T2U2

p
�
; ð5:36Þ

where as before c; d; c0; d0 ∈Z.
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Before proceeding further, we observe that the calcu-
lation that leads to this result requires considerable care. In
particular, we must regulate all of the terms using methods
similar to those in Ref. [37]. The steps in this calculation
are as follows. First one splits the spectrum of M2

T2 in
Eq. (5.11) into three sets: the first has l1 ¼ l2 ¼ 0 and
coincides with the A set in Eq. (5.20); the second has
k2 ¼ l2 ¼ 0; and the third has l2 ≠ 0. In performing the
calculation for the first two sets we Poisson-resum ðk1; k2Þ
and ðl1; k1Þ respectively. Then, performing a partial sum
over the greatest common divisors of ðk1; k2Þ and ðl1; k1Þ
and subtracting the double-counted contribution from the
states with l1 ¼ l2 ¼ k2 ¼ 0 gives the first four lines of
Eq. (5.35). Finally, the contribution from the third set of
states is computed directly without any Poisson resumma-
tion, and yields the Bessel functions on the final line. These
simply resemble the equivalent terms appearing in the
previous incarnation of P0

2 in Eq. (5.26).
The expression in Eq. (5.36) is most useful for consid-

ering P0
2 near μ ≈Ms. Moreover, the first line of Eq. (5.36)

precisely cancels P0
1 in Eq. (5.25). Thus, at first sight it

seems that the one-loop contribution to the gauge-coupling
could indeed cancel in this region in a manner that
mimics Eq. (4.45).
However, this is not the case. To see this, let us consider

the window

1ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p ≪ a ≪
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
: ð5:37Þ

For rectangular tori this corresponds to

1=R2 ≪ μ ≪ M2
sR2; ð5:38Þ

which may be taken as defining an “extended stringy
regime” that encapsulates Regions II, III, and IV. By
inspection we find that within this window the terms in
the third through fifth lines of Eq. (5.35) are all exponen-
tially suppressed. Therefore, neglecting these exponentially
suppressed terms and adding P0

2 to P0
1 in Eq. (5.25) we

obtain a very compact approximation for PðaÞ in this
region:

PðaÞ ≈ −
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
log

�����η
 
ia

ffiffiffiffiffiffi
T2

U2

s !
η

 
ia−1

ffiffiffiffiffiffi
T2

U2

s !�����
4

:

ð5:39Þ

Defining for convenience a dimensionless energy scale
μ̂≡ μ=Ms, we find that Eq. (4.18) near μ̂ ≈ 1 gives

IG ≈
π

3
T2

E2



i
μ̂

ffiffiffiffiffiffi
T2

ρU2

q �
ð1 − ρÞð1þ μ̂2Þ þ ρ →

1

ρ

þ μ̂ →
1

μ̂
þ ðρ; μ̂Þ →

�
1

ρ
;
1

μ̂

�
ð5:40Þ

where E2 is the Eisenstein function defined in Eq. (A3) and
where each substitution within the right side of Eq. (5.40) is
meant to operate purely on the first term (thereby leaving us
with a total of only four terms on the right side of this
equation). Given the definition of the Eisenstein function,
we see that for large T2 all the E2 factors are unity up to
terms that are exponentially suppressed as long as
Ms

ffiffiffiffiffiffiffiffiffiffiffiffiffi
U2=T2

p
≪ μ ≪ Ms

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p
. Of course, this is noth-

ing but Region III. Thus, within Region III we find that
Eq. (5.40) is exponentially well approximated by

IGðμÞ ≈
π

3
T2 for μ ≈Ms: ð5:41Þ

Recalling that T2 is the T-volume ṼT , we thus verify, as
anticipated, that there is no quadratic μ-dependence—or
indeed running of any kind—within this energy-scale
window. Indeed, within this region, IGðμÞ is exponentially
well approximated by a constant.
Finally, going beyond this region, we see that

Eqs. (5.29), (5.33), and (5.41) together imply that IGðaÞ ≈
ðπ=3ÞT2 everywhere. Indeed, this holds regardless of the
energy scale μ so long as U2 ≈ 1.
The full analytical expression within Eq. (5.40) can also

be evaluated numerically. In Fig. 2 we plot an example of
the resulting running behavior for ΔGðμÞ that emerges in
the case of a square torus with T2 ¼ 100 andU2 ¼ 1within
the extended stringy regime of Eq. (5.38) (blue curve).
The fact that this torus is square implies that our two KK
scales 1=R1 and 1=R2 collapse to become the same scale,
thereby rendering Regions II and IV nonexistent. We also
plot the corresponding beta function (red curve). We
observe, as promised, that there is essentially no running

FIG. 2. The precise one-loop contribution to 16π2=g2 (blue) in
Eq. (5.40), along with the corresponding beta function (red) in
Eq. (4.21), plotted as functions of the energy scale μ within the
extended stringy regime of Eq. (5.38) for a toroidal T2 compac-
tification with compactification moduli T2 ¼ 100 and U2 ¼ 1.
These curves are evaluated using the full expression in Eq. (5.39),
and provide an explicit example of the behavior anticipated in
Fig. 1. Note that we are actually plotting IGðμÞ rather thanΔGðμÞ,
but these quantities differ by a scale-independent constant given
by Eq. (5.7) which is irrelevant for our purposes.
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within this regime; for example, within the range
j logðμ=MsÞj ≲ 0.7 our blue curve is completely flat.
However, for j logðμ=MsÞj ≳ 0.7 we see that there exists
a small transient “pulse” as the theory crosses the KK
thresholds on either side of this regime, in accord with the
behavior anticipated in Fig. 1. We also observe that the
string-scale value of IG differs from the low-energy value
near μ ≈ 0 by a term that grows with volume only as logT2

rather than as the total number of Kaluza-Klein modes with
masses below the string scale. Indeed, the latter behavior
would have been expected if there had been a dominant
region of power-law running between the low scale andMs.
This behavior changes if our compactification torus is

not square. As an example, let us consider the case in which
our compactification torus is rectangular, with U2 ≫ 1 but
a purely imaginary shape modulus. In this case Regions II
and IV open up and become part of our extended stringy
regime, potentially inducing an arbitrarily large splitting of
the KK scales associated with each of the two dimensions
of the torus. In such cases, Regions II, III, and IV become
separated within the extended stringy regime. Within this
extended regime there is suppressed running of IGðμÞ with
transient behavior localized near the boundaries. Once
again, field-theoretic running ceases as soon as the first
KK states are encountered, as described in Sec. IV.
We can learn more about the nature of this transient

“pulse” by concentrating on Regions II and IV. Recall that
our expressions for PðaÞ and IGðμÞ in Eqs. (5.39) and
(5.40) respectively were valid across the entire extended
stringy regime in Eq. (5.38) consisting of Regions II, III,
and IV. By contrast, the approximate result in Eq. (5.41)
was valid only within Region III. Indeed, within Region II
the argument appearing in ηðia ffiffiffiffiffiffiffiffiffiffiffiffiffi

T2=U2

p Þ is no longer
large. However, within this window we may modular-
transform the first Dedekind eta function of Eq. (5.39) to
find yet another form for PðaÞ given by:

PðaÞ ≈ −
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
log

�����η
 
ia−1

ffiffiffiffiffiffi
U2

T2

s !
η

 
ia−1

ffiffiffiffiffiffi
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s !�����
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−
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
log

�
a2

U2

T2

�
: ð5:42Þ

Neglecting constant terms that vanish under the derivative
definition of ΔG in Eq. (4.18), this then becomes

PðaÞ ≈ π

3

1

a
ðT2 þ U2Þ − 2

ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
loga: ð5:43Þ

Given the log a term within Eq. (5.43), it may at first
sight seem that we have discovered linear power-law
running within Region II. Indeed the individual terms in
Eq. (4.18) are proportional to a2∂aPðaÞ ¼ a, which, when
multiplied by the prefactor

ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p ≡MsR2, would imply
linear contributions to IG that are proportional to μR2.

As we have discussed above, this would appear to make
sense because Region II is an approximately five-dimen-
sional regime, with 1=R2 ≪ μ ≪ 1=R1. However, what
actually appears in the definition of IG in Eq. (4.18) is not a
single PðaÞ but rather the combination PðρaÞ − PðaÞ, and
within this difference these logarithm terms cancel. Indeed,
simple logðaÞ terms within PðaÞ do not make contributions
to IG. This is not a coincidence, since the appearance of the
combination PðρaÞ − PðaÞ is ultimately dictated by the
scale-duality symmetry. We therefore conclude that we do
not have any running in Region II. Needless to say, the
same conclusion also applies to the dual Region IV.

F. Putting it all together

Pulling together all of our previous results, we may
summarize our expressions for PðaÞ within each of the five
regions corresponding to Eq. (5.16) as follows:

Region I∶ a ≪ 1=
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
PðaÞ ≈ π

3

1

a
ðT2 þ U2Þ −

1

a
logð16π2e−2γEa2T2U2Þ;

Region II∶ 1=
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
≪ a ≪ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p
PðaÞ ≈ π

3

1

a
ðT2 þ U2Þ;

Region III∶ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p
≪ a ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p
PðaÞ ≈ π

3

�
aþ 1

a

�
T2;

Region IV∶
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=U2

p
≪ a ≪

ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
PðaÞ ≈ π

3
aðT2 þ U2Þ;

Region V∶ a ≫
ffiffiffiffiffiffiffiffiffiffiffi
T2U2

p
PðaÞ ≈ π

3
aðT2 þ U2Þ − a logð16π2e−2γEa−2T2U2Þ:

ð5:44Þ

Note that within these expressions we have omitted terms
which do not yield any contributions to the corresponding
IG. These include not only constant terms but also terms
scaling as log a, as discussed above.
These expressions generate the suite of behaviors that

were summarised in Eq. (5.17). Moreover, given our
expressions for IGðμÞ, we find that the same running
applies to ΔGðμÞ since these two quantities differ only
by a scale-independent constant, as shown in Eq. (5.7).
Thus, proceeding upwards in energy scale, we find the
following:

(i) At the lowest energy scales (Region I), we find that
ΔGðμÞ evolves as log μ. This behavior assumes that
our underlying theory has Str

M¼0
X2 ≠ 0; otherwise this

logarithmic running is absent.
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(ii) Next, after crossing the lowest KK threshold
(Region II), we find that ΔGðμÞ flattens out and
becomes μ-independent.

(iii) Next, as we approach the second KK threshold,
ΔGðμÞ experiences a “pulse” and then enters Region
III. Within Region III, ΔGðμÞ is again flat, but with a
different constant value. In general, this pulse is a
genuinely transient effect that appears when we flow
between (rather than within) our asymptotic regions.
The size of this pulse depends on the shape modulus
associated with this toroidal compactification; for
a square (or rectangular) torus this magnitude is
approximately πU2=3.

(iv) The above behavior persists all the way to the string
scale μ ¼ Ms. Beyond this scale, the behavior of
ΔGðμÞ is fixed by scale-inversion duality, with
ΔGðμÞ ¼ ΔGðM2

s=μÞ.
This running is shown in Fig. 3, along with two other

runnings: the minimally subtracted EFT result in which the
four-dimensional coupling runs purely logarithmically

across all energy scales and is simply matched to ΔðDKLÞ
G

at the scale μ ¼ Ms, and the traditional field-theoretic
power-law running that is expected from the accumulated
effects of the KK modes beyond the first KK threshold at
μ ¼ R−1

2 . For this example we have chosen values of
T2 ¼ 104 and U2 ¼ 100 (on a rectangular torus) in order
to make the different behaviors in Regions I, II, and III all
evident.
As evident from Fig. 3, all of these different runnings

share a common feature, specifically a logarithmic running
at extremely low energies μ ≪ Ms within Region I.
However, once we cross the first KK threshold at
μ ¼ 1=R2, the behaviors diverge. The four-dimensional
EFT approach is of course completely insensitive to these
thresholds that correspond to heavy modes because this
approach is tantamount to a simple matching procedure. As
such, it is incapable of capturing any physics at energy
scales that exceed the lowest KK scale. Meanwhile the
traditional approach which involves summing the contri-
bution of the KK states experiences a strong power-law

FIG. 3. Comparison of the results of three different running calculations. The first (faint dotted red line) is the minimally subtracted
EFT result in which the four-dimensional coupling runs purely logarithmically across all energy scales and is simply matched to ΔðDKLÞ

G
at the scale μ ¼ Ms. The second (dotted red curve) indicates the traditional field-theoretic power-law running that is expected from the
accumulated effects of the KK modes beyond the first KK threshold at μ ¼ R−1

2 , with our theory becoming effectively five-dimensional
in Region II and eventually six-dimensional in Region III. By contrast, the third (solid blue curve) shows what actually emerges when
the full worldsheet modular invariance of our theory is taken into account, including the use of a fully modular-invariant regulator (in this
case, Gρ with ρ ¼ 2). As indicated, all running ceases beyond the first KK threshold, except for the appearance of a transient “pulse”
localized between Regions II and III. All three plots correspond to choosing a rectangular compactification torus with T2 ¼ 10000 and
U2 ¼ 100. Despite the fact that all three runnings exhibit logarithmic behavior at low scales μ ≪ 1=R2, we see that they diverge
significantly at higher energies, with the fully modular-invariant result ultimately leading to a fixed-point regime at μ ≈Ms and a dual
regime beyond Ms. This result also automatically avoids the Landau pole that might otherwise appear below Ms. Once again, as in
Fig. 2, we are actually plotting IGðμÞ rather than ΔGðμÞ, but these quantities differ by a scale-independent constant in Eq. (5.7) which is
irrelevant for our purposes.
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running above the lowest KK scale. Indeed, in the example
shown in Fig. 3, this running even leads to a Landau pole
below the string scale. The existence of such a Landau pole
would signal a fundamental inconsistency, indicating that
our theory becomes nonperturbative at such energy scales.
If this were true, a one-loop perturbative approach would
no longer be consistent.
Fortunately, our fully modular-invariant calculation leads

to an entirely different behavior. Indeed, we see from Fig. 3
that all running ceases above μ ¼ 1=R2. As a result, ΔGðμÞ
becomes flat. In Fig. 3 this flat behavior is evident within
the lower portion of Region II. However, we see from Fig. 3
that this flat behavior soon gives way to our transient
“pulse” near the second threshold at μ ¼ 1=R1. This pulse
is an entirely “stringy” phenomenon which smoothly
connects the flat behavior in Region II to the flat behavior
in Region III, causing a sudden drop in the value of ΔGðμÞ.
Despite appearances, we emphasize that this drop in the
value of ΔGðμÞ is relatively small (a mere 1% effect) in the
example shown. Moreover, this pulse is only a transient
effect in the sense that its duration does not grow into the
asymptotic regions, but instead is localized to the boundary
between Regions II and III. Finally, upon entering Region
III, the running then remains flat all the way to the string
scale Ms. Beyond this, the running is governed by the
entrance into a dual phase of the theory beyond Ms.
The properties shown in Fig. 3 have two important

implications. First, the existence of the scale duality
between the μ < Ms and μ > Ms regions indicates that
there is a fundamental limit on the degree to which our
theory can exhibit such field-theoretic UV behavior. This is
extensively discussed in Refs. [13,17], and will be dis-
cussed further in the Conclusions.
Second, the cessation of running beyond the lightest KK

scale serves to protect our theory from the possible
appearance of Landau poles. In fact, the scale-duality
symmetry even potentially keeps our couplings perturba-
tive over the entire range from the deep IR up to Ms and
beyond. This therefore gives our perturbative calculations
an intrinsic self-consistency over the entire range of μ.

G. Interplay of KK and winding states

We conclude this section with one final comment
concerning the roles of Kaluza-Klein states and winding
states in our analysis.
As we have seen, there is no logarithmic or power-law

running for ΔGðμÞ within Regions II, III, and IV. Indeed,
within Region III, it is an exact result that ΔGðμÞ contains
no μ-dependence at all. Moreover, as we explained below
Fig. 1 (at the very end of Sec. IV B), the cessation of
running in this δ ¼ 2 case arises because the contributions
from Kaluza-Klein states are ultimately cancelling against
those of winding states. While Kaluza-Klein states begin to
appear as we cross from Region I to Region II, at first
glance it might appear that winding states would not appear

until the crossing from Region III into Region IV. However,
in a UV/IR-mixed theory, this conclusion is too narrow—
indeed, the effects of both Kaluza-Klein and winding states
are felt throughout the string spectrum. Indeed, it is
precisely because of this mixing that the cancellation of
running occurs at all, and that it persists throughout the
entire extended stringy regime stretching from Region II
through Region IV.
Given our previous results, this can also be understood at

an algebraic level. Indeed, the two factors within the
logarithm that appears in Eq. (5.39) can be identified
with Kaluza-Klein and winding modes respectively.
Accordingly, within Region III, the KK modes make a
contribution to the gauge coupling correction of

ΔGðμÞ
���
KK

¼ π

3

μ2=M2
s

1þ μ2=M2
s
R1R2: ð5:45Þ

This quantity is proportional to the number of “active” KK
modes at the scale μ (i.e., the number of KK modes with
masses less than μ), as one would expect from power-law
running in a two-dimensional compactification. However,
the corresponding winding-mode contribution is given by

ΔGðμÞ
���
winding

¼ π

3

1

1þ μ2=M2
s
R1R2: ð5:46Þ

We thus see that the overall μ-dependence cancels in the
sum, leading to the μ-independent quantity quoted for
Region III in Eq. (5.17).
Interestingly, for μ < Ms, the power-law running con-

tribution to ΔG in Eq. (5.45) does not dominate; rather, it is
the corresponding winding-mode contribution in Eq. (5.46)
which dominates. By contrast, for μ > Ms, these roles are
exchanged: the Kaluza-Klein modes dominate, and it is the
winding modes that contribute the subdominant piece.

VI. CONCLUSIONS, DISCUSSION,
AND FUTURE DIRECTIONS

In this paper we have derived a new renormalization
theorem for theories that exhibit UV/IR mixing. The natural
setting for our theorem, namely theories exhibiting modular
invariance, includes all perturbative closed string theories.
It has been known for a long time that in four dimensions
all such tachyon-free theories satisfy a remarkable super-
trace constraint [2]

Str 1 ¼ 0 ð6:1Þ

where the supertrace—as suitable for theories with infinite
towers of states—has the regulated definition given in
Eq. (2.33). Of course, if the theory in question exhibits
spacetime supersymmetry, this identity is satisfied level-by-
level, with the contribution from each state cancelling in
pairwise fashion against that of its superpartner. However,
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even if the theory in question lacks spacetime supersym-
metry, Eq. (6.1) continues to hold exactly as a consequence
of a hidden misaligned supersymmetry [1–3] that exists
within the spectrum of all tachyon-free modular-invariant
string theories. This misaligned supersymmetry is the
manifestation of the underlying UV/IR mixing inherent
in modular invariance. Moreover, in the absence of space-
time supersymmetry, the constraint in Eq. (6.1) is not
satisfied through pairwise cancellations; indeed, no such
pairwise cancellations are possible. Instead, in such cases
Eq. (6.1) holds as the result of a nontrivial cancellation
amongst the contributions from all of the states across the
entire spectrum of the theory—exactly as one would expect
in a UV/IR-mixed theory.
In complete analogy with the constraint in Eq. (6.1),

another similar “core” constraint relates the one-loop cos-
mological constant (or more precisely, the zero-point one-
loop amplitude) Λ of any tachyon-free modular-invariant
theory to a supertrace over its physical mass spectrum [2]:

Λ ¼ 1

24
M2StrM2; ð6:2Þ

where M is the reduced string scale Ms=ð2πÞ. Indeed, this
constraint holds for all of the theories in which Eq. (6.1)
holds, with both constraints ultimately emerging together
within the same analysis [2].
As we have seen, the constraints in Eqs. (6.1) and (6.2)

have important physical ramifications. It turns out that the
first of these constraints can actually be regarded as a
constraint on the zero-point one-loop amplitude Λ. Indeed,
within a purely field-theoretic context, this identity tells
us that the one-loop quartic divergence that would ordi-
narily have arisen for the one-loop cosmological constant
is “magically” cancelled—indeed, cancelled exactly.
However, within a string-theory context, Eq. (6.1) is
actually sufficient to kill all of the divergences of Λ, not
only the quartic divergence that might have been expected
in field theory. Because of this, the value of Λ in string
theory is actually finite, and this finite value is then given
in Eq. (6.2).
This cancellation and the results in Eqs. (6.1) and (6.2)

arise regardless of the particular phenomenology that the
string might exhibit (such as its gauge symmetry or particle
content) [2]. These constraints are even preserved in the
face of radiative corrections or if the theory passes through
phase transitions in which the fundamental degrees of
freedom change, so long as modular invariance is pre-
served. Indeed, these results require only the preservation
of modular invariance and the absence of physical tachy-
ons, or equivalently the existence a misaligned supersym-
metry in the string spectrum. As such, we regard these
constraints as a core part of the UV-completeness of the
theory.
At first glance, it might appear that these constraints hold

only at one-loop order. However, this guess would not be

correct. To understand this, we must first realize that
modular invariance itself is an all-orders symmetry. This
point might seem somewhat counter-intuitive, since modu-
lar invariance is motivated by the requirement that one-loop
amplitudes be consistent with worldsheet reparametrization
invariance. Indeed, modular invariance is the symmetry
that ensures that reparametrization invariance continue to
hold for genus-one diagrams—and not only genus-zero
diagrams—despite the extra “large” transformations that
are possible around the noncontractible cycles of the
torus. For this reason this symmetry is sometimes called
“one-loop” modular invariance. However, the important
point is that this symmetry—regardless of its motivations—
is an exact symmetry which must be enforced exactly
within any string theory. Indeed, if it were not enforced,
one-loop diagrams would not be consistent. Of course, the
requirement that the two-loop amplitudes also be consistent
with reparametrization invariance might provide additional
constraints on our theory. However, such constraints would
merely augment the one-loop constraints. They would not
replace the constraints from modular invariance any more
than the constraints of modular invariance replace those of
reparametrization invariance at tree level.
Given this, one might wonder what masses appear within

the supertrace in Eq. (6.2). The answer is relatively simple.
To any order in perturbation theory, our theory will have a
spectrum of (potentially radiatively corrected) masses and a
(potentially radiatively corrected) gravitational back-
ground. Within this background, there will likewise be a
corresponding (potentially corrected) value of the zero-
point genus-one amplitude Λ. Our claim, then, is that these
new masses and this new value for Λ will continue to be
exactly related by Eq. (6.2), and that Eq. (6.1) will continue
to hold as well. Indeed, this is why we regard these two
constraints as fundamental universal truths: their validity
holds regardless of the order at which we are performing
our calculations, and stems directly from modular invari-
ance in any tachyon-free theory.
In this paper, we have presented a new theorem which

likewise governs the spectra of a certain class of four-
dimensional tachyon-free modular-invariant theories—
those that have decompactification limits. Like the above
constraints, this theorem is also completely general, hold-
ing regardless of the particle content and gauge symmetries
of the underlying theory, and like the above constraints it
also ultimately arises because of the nontrivial cancellations
inherent in misaligned supersymmetry. Moreover, as we
have demonstrated, this theorem also yields many addi-
tional spectral constraints which are cousins of those in
Eqs. (6.1) and (6.2).
This theorem holds for modular-invariant tachyon-free

theories in which there is at least one decompactification
limit, i.e., a limit in which a geometric compactification
volume can be taken to infinity, resulting in a higher-
dimensional theory. Such four-dimensional theories can
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therefore be viewed as geometric compactifications of
higher-dimensional theories. As we have described in
Sec. III A, our theorem rests on the observation that there
is a subtle mathematical clash that arises within the modular
structure of such theories as the volume of compactification
of the four-dimensional theory is taken to infinity.
Resolving this clash implies that the original four-dimen-
sional theory must satisfy not only the universal constraint
in Eqs. (6.1)—a constraint which is appropriate for four
dimensions—but also certain additional constraints that
are appropriate for the higher-dimensional theory. These
additional constraints further restrict the properties of
the theory, and likewise affect many more amplitudes
than just the cosmological constant. Moreover, these
additional conditions are independent of the radius of
compactification.
Even more interestingly, we found that these additional

constraints immediately lead to a new nonrenormalization
theorem for our four-dimensional theory. This theorem also
applies for all compactification radii, and holds even
without spacetime supersymmetry. Like its antecedents,
this theorem also holds for large classes of physical
quantities, including (but not limited to) the case of gauge
couplings.
The implications of this nonrenormalization theorem are

different for each possible decompactification limit expe-
rienced by our four-dimensional theory. This is ultimately
the case because (as we have discussed in Sec. IV B) each
decompactification limit contributes its own constraints
that must hold in the original four-dimensional theory.
For limits involving decompactifications in which δ > 2

new dimensions open up, our theorem implies that there is
no running at all from the states involved in the sectors
producing that limit. In other words, the states which
survive the limit do not collectively yield any running at
all, regardless of the compactification radius associated
with that limit.
By contrast, for limits involving decompactifications in

which only δ ¼ 2 new dimensions open up, the implica-
tions of our theorem are more nuanced. In this case, the
states from such sectors can give rise to at most a
logarithmic running, but this can exist only at scales below
the lightest of the KK thresholds associated with that limit.
Beyond this critical scale, we once again find that there are
no collective contributions to the running.
For a given string model involving combinations of

decompactification limits, these results generally imply that
there is never any running at all beyond the lightest of the
relevant KK scales. Indeed, the only changes in the value of
the relevant amplitude beyond the lightest of the KK scales
are those which arise as the result of our string-theoretic
“pulse.”This effect is transient and highly localized to certain
KK thresholds. As such, this pulse is not a true running.
Along with our nonrenormalization theorem, in this

paper we have also proven two “T-volume scaling” rules

which apply when the compactified volume is large but not
infinite. The first of these rules applies to finite amplitudes
and asserts that the amplitudes in this regime are always
proportional to the product of the decompactified (4þ δ)-
dimensional amplitude and a so-called “T-duality-invariant
compactification volume” ṼT . This result is given in
Eq. (3.44), with ṼT defined in Eq. (3.40). Although a
similar phenomenon has previously been observed in the
literature for certain calculations pertaining to certain string
models, in this paper we have formulated an appropriate
definition for ṼT which respects the full symmetries of the
theory (such as modular invariance and T-duality), and then
proceeded to prove the resulting scaling rule in full
generality. Indeed, our proof holds even in cases without
supersymmetry and regardless of the spacetime back-
ground, and assumes only that our amplitudes are finite.
Our second T-volume scaling rule, by contrast, generalizes
the first T-volume scaling rule to cases in which our theory
contains certain massless states that cause our overall
amplitude to have a logarithmic divergence. We never-
theless see that similar results apply.
Even beyond their phenomenological implications, the

new supertrace constraints we have found could have far-
reaching implications pertaining to the possible structure of
string theory itself. Indeed one might reasonably ask if
these constraints are so tight that the only solution is that all
of the supertraces vanish level-by-level in a pairwise
fashion. This would then be a cancellation between the
contribution from a given state and that from a correspond-
ing partner of opposite spin—i.e., a cancellation between
states and their superpartners. This would then imply that
the only consistent four-dimensional theories are those that
can decompactify exclusively to higher-dimensional theo-
ries which are supersymmetric. Moreover, if the relevant
compactification is untwisted, this would in turn imply that
the original four-dimensional theory would have to be
supersymmetric as well.
However, it is not true that the only way to solve these

constraints is through boson/fermion pairings. Indeed, there
exists an entire landscape of tachyon-free nonsupersym-
metric heterotic string models [40,41], and each of these
furnishes us with an explicit example of a modular-
invariant spectrum within which such constraints are
satisfied without boson/fermion pairings. It is not difficult
to understand why such solutions exist. Within any of these
string models the spectrum exhibits exponentially growing
degeneracies of states. Moreover, each of these states has its
own helicity and gauge charges. As a result, even within the
bounds of modular invariance, the spectrum has far more
ways of arranging itself and its charges than there are
constraints on it. Indeed, the existence of an entire land-
scape of such strings provides direct verification of this
fact. Of course, a separate question concerns the stability of
such tachyon-free nonsupersymmetric strings. Addressing
this question is beyond the scope of this work, although we
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note that there exist nonsupersymmetric tachyon-free string
models in four dimensions in which various instabilities
can be exponentially suppressed [29].
We close with six important remarks. The first of these

concerns the generality of our results with respect to our
choice of regulator. By implicitly distinguishing which
states are to be considered dynamical and which are to be
considered heavy and therefore “integrated out,” the regu-
lator helps to establish an appropriate energy scale μ for an
effective field theory derived from the string. However, as
we have stated throughout this paper, our conclusions are
independent of the specific form of the regulator GρðaÞ.
This is ultimately due to the fact that our results stem
directly from the modular invariance of the regulator, and
any suitable regulator must be modular invariant. Indeed,
the precise definition of energy scale cannot affect the
constraints that must be satisfied in order to cancel the
accumulated contributions from the infinite towers of string
states. Likewise, our T-volume defined in Eq. (3.40) and
the scaling rules which result from this definition are
independent of the regulator as well.
Second, we note that the new constraints that we have

found are also independent of the compactification radius.
This in turn implies that the states which collectively
correspond to a δ > 2 decompactification direction can
never contribute to running, regardless of the size of the
compactification volume. This remains the case even when
the compactification volumes are of order the string scale,
provided that the theory does not develop a tachyon at some
radius. Indeed, so long as the theory is merely capable
having a large-volume decompactification, the constraints
that correspond to every possible decompactification direc-
tion must all simultaneously apply in the four-dimensional
theory. As a result, our nonrenormalization theorems hold
even beyond the framework of large-volume compactifi-
cations, and have a generality that matches that of their
supersymmetric counterparts. Indeed, as discussed at the
end of Sec. IV B, our results suggest that nonsupersym-
metric theories seem to be governed by the same sorts of
nonrenormalization theorems as apply to supersymmetric
theories, and that UV/IR mixing appears to play many of
the same roles as supersymmetry. This observation is
worthy of further exploration.
Third, we note that our conclusion that the running of

gauge couplings exhibits a fixed-point behavior at high
scales bears a superficial similarity to the results of
Ref. [42]. In Ref. [42], a purely field-theoretic analysis
was performed—based on the results of Refs. [35,36]—in
which it was shown that although the accumulating effects
of Kaluza-Klein states would generically convert a four-
dimensional logarithmic gauge-coupling running into a
higher-dimensional power-law running, this power-law
growth could occasionally be cancelled in certain theories
by the effects of switching from the true four-dimensional
gauge coupling to an effective loop expansion parameter

which is sensitive to the number of Kaluza-Klein levels that
have been crossed at a given scale μ. This would then result
in an apparent UV fixed point for the higher-dimensional
theory. However, despite this similarity, there is ultimately
no connection between these results: in this paper we are
considering the actual gauge couplings, not the effective
loop-expansion parameter; we are not performing a field-
theoretic analysis involving only Kaluza-Klein states but
rather a fully modular-invariant analysis involving not only
Kaluza-Klein states but also winding states; and our non-
renormalization theorem is completely general, serving as a
core feature of all tachyon-free modular-invariant theories
and emerging directly from the UV/IR-mixed modular
invariance of the theory. Thus, despite these superficial
similarities, the underlying physics is completely different.
Fourth, and somewhat connected to the previous point,

we note that it is important to carefully consider the
physical meaning of renormalization in the ultraenergetic
regime with energies exceeding the string scale Ms. In
particular the existence of an invariance under the scale-
duality transformation μ → M2

s=μ and the corresponding
“dual” behavior that we have described for μ > Ms may
seem paradoxical. Indeed, in the common “textbook”
definition of renormalization, the energy scale μ corre-
sponds in some sense to the deep-Euclidean momenta of
asymptotic states that are taking part in a scattering
experiment. However, the very notion of preparing such
highly energetic states as the momenta approach the Planck
scale is fraught with difficulty due to gravitational back-
reaction. By contrast, in this paper, our modular-invariant
prescription for renormalization has allowed us to find
well-behaved dual perturbative behavior at energy
scales μ ≫ Ms.
To understand the meaning of this alternative behavior,

we first note that below the scale Ms our definition of
renormalization gives behavior that is broadly aligned with
the conventional one (and with that of the several other
definitions of renormalization that one could use). In other
words, in both definitions of renormalization, one can think
of energy scales as below Ms as corresponding to the
momenta of scattering momentum modes. It is only above
Ms that the two renormalization prescriptions appear to
diverge. This apparently discrepant behavior arises because
above the scale Ms the scaling behavior of effective
couplings can be very different in different processes, such
that there is no universal definition of renormalization. This
difference between the two definitions of renormalization
in the energy regime beyond Ms arises because the energy
scales are effectively for asymptotic scattering states that
are in fact not the same. The energy scale in the textbook
definition of renormalization implies that one is always
scattering ultrahigh momentum modes. By contrast in the
present paper the energy scales beyond Ms correspond to
processes that involve the scattering of ultramassive dual
winding modes. This is unavoidably the case because the
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modular-invariant prescription of renormalization that we
have been using implies that only these particular processes
enjoy a dual perturbative description with dual energy
scales μ < Ms. This discrepancy between renormalization
definitions implies that great care is required when invok-
ing the concept of renormalization at scales above Ms,
since our entirely perturbative modular-invariant descrip-
tion of renormalization effectively works to automatically
exclude this region by instead mapping ultrahigh stringy
energies to a dual regime. Indeed, this situation is analo-
gous to what happens in the case of T-duality, wherein one
must be careful to distinguish between the different dual
pictures when attempting to make any measurement of
compactification volume [43]. Thus it would be very
interesting to further explore definitions of scaling and
renormalization in the region above Ms.
Fifth, throughout this paper, we have stressed that our

results apply only to modular-invariant theories. Certainly
perturbative Type II and heterotic strings fall into this class.
However, as the string coupling increases, we know that
these theories cease to be perturbative and become more
accurately described in terms of dual theories such as
M-theory or theories of Type I strings. However, M-theory
is not governed by modular invariance. Likewise, although
Type I strings have closed-string sectors (corresponding to
the torus amplitudes) in which modular invariance continues
to apply, such strings also contain twisted and open-string
sectors (corresponding to the Klein-bottle, cylinder, and
Möbius-strip amplitudes) in which modular invariance no
longer strictly applies and in which only certain orientifold
projections ofmodular invariance continue to apply. It would
therefore be interesting to understand how the nonrenorm-
alization theorem and supertrace identities we have derived
in this paper are deformed or “loosened” as the string
coupling grows beyond the perturbative regime. In this
context, we remark that many of the properties that come
from modular invariance (such as misaligned supersym-
metry) apparently nevertheless have echoes within Type I
strings [44–46]. It would be interesting to examine whether
this is true for our nonrenormalization theorem as well.
Finally, we note that our work may have important

connections to the recent swampland program which seeks
to ascertain the limits of viability of four-dimensional
theories as low-energy approximations to UV-complete
theories of quantum gravity [47,48]. In particular, decom-
pactification limits have played a central role in swampland
discussions of the so-called “distance conjecture” (see, e.g.,
Refs. [48–74]). Our theorem clearly has relevance to this
question. Indeed, while previous work in this area has
mostly developed along generic lines, utilizing traditional
concepts of energy scales, mass splittings, and relations to
the cosmological constant, it is clear from our discussion
that these concepts and relations may be highly modified
when UV/IR mixing is properly taken into account. Indeed,
as we have seen, a generic theory will not be able to

accommodate a decompactification limit unless it already
possesses some very special and nongeneric properties. The
ramifications of these ideas for the distance conjecture and
for the swampland program as a whole will be discussed in
future work.
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APPENDIX: AMPLITUDES WITH Ē2 FACTORS

In this appendix we provide a prescription for evaluating
the supertraces of operators whose definitions include
factors of the Eisenstein function Ē2. The details behind
this prescription are given in Ref. [17].
Toward this end, let us assume that we have an operator

of the form

X ¼ Aþ Ē2B ðA1Þ

where A and B are functions of τ2. Let us also assume that
A and B have separate τ2-expansions of their own:

A ¼ A0 þ τ2A1 þ τ22A2

B ¼ B0 þ τ2B1 þ τ22B2: ðA2Þ

Our goal is to evaluate StrX , or more general expressions
such as Str½XfðMÞ� where fðMÞ is some function of the
mass M of the states across the string spectrum.
To do this, let us recall that E2ðτÞ has its own

q-expansion

E2ðτÞ ¼
X∞
r¼0

χrqr ðA3Þ

where the coefficients are given by

χr ¼
�

1 r ¼ 0

−24σðrÞ r > 0
ðA4Þ

with σðrÞ denoting the sum-of-divisors function
σðrÞ≡Pdjr d. For example, we find σðrÞ ¼ 1; 3; 4; 7;…
for r ¼ 1; 2; 3; 4;….
Given this definition for the coefficients χr, we now

define what we shall call an “E-entwined” supertrace, to be
denoted StrE. This is given in terms of the χr-coefficients as
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StrEX ≡X∞
r¼0

χrStrðrÞX ðA5Þ

where StrðrÞX denotes the shifted supertrace over all
the states in the theory that are “level-mismatched” by
r units:

StrðrÞX ≡ lim
τ2→0

X
n

an−r;nXn−r;ne−πα
0M2

Lτ2 : ðA6Þ

In Eq. (A6), as in Eq. (2.3), the quantity ML denotes the
left-moving contribution to the total mass of the state, i.e.,
α0M2

L ¼ 4n, while an−r;n is the net number of (bosonic
minus fermionic) states which have

α0ðM2
L −M2

RÞ ¼ 4r: ðA7Þ

Our claim, then, is that Str½XfðMÞ� can be evaluated by
formally replacing [17]

Str½XfðMÞ� ⟶ Str½AfðMÞ� þ StrE½BfðMLÞ�: ðA8Þ

Equivalently, for each component Xl, we may replace

Str½XlfðMÞ� ⟶ Str½AifðMÞ� þ StrE½BifðMLÞ�: ðA9Þ

This procedure applies to all of our expressions in
Eq. (2.39).
With these replacements, our theorem then continues to

apply exactly as described in the main text.
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