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ABSTRACT

We investigate the redshift evolution of the concentration—mass relationship of dark matter haloes in state-of-the-art cosmological
hydrodynamic simulations and their dark-matter-only (DMO) counterparts. By combining the IlustrisTNG suite and the
novel MillenniumTNG simulation, our analysis encompasses a wide range of box size (50—740 cMpc) and mass resolution
(8.5 x 10*=3.1 x 10" M, per baryonic mass element). This enables us to study the impact of baryons on the concentration—
mass relationship in the redshift interval 0 < z < 7 over an unprecedented halo mass range, extending from dwarf galaxies
to superclusters (~ 10°3—10'3> Mg). We find that the presence of baryons increases the steepness of the concentration—mass
relationship at higher redshift, and demonstrate that this is driven by adiabatic contraction of the profile, due to gas accretion
at early times, which promotes star formation in the inner regions of haloes. At lower redshift, when the effects of feedback
start to become important, baryons decrease the concentration of haloes below the mass scale ~ 10'!> M. Through a rigorous
information criterion test, we show that broken power-law models accurately represent the redshift evolution of the concentration—
mass relationship, and of the relative difference in the total mass of haloes induced by the presence of baryons. We provide
the best-fitting parameters of our empirical formulae, enabling their application to models that mimic baryonic effects in DMO
simulations over six decades in halo mass in the redshift range 0 < z < 7.

Key words: methods: numerical — galaxies: evolution— galaxies: formation— galaxies: fundamental parameters—galaxies:
structure — dark matter.

backbone within which galaxies form, understanding their internal

1 INTRODUCTION .
structure represents a stepping stone towards a complete theory for

Understanding how galaxy formation unfolds throughout the history
of the Universe is a fundamental question that lies at the crossroads of
galactic astrophysics and cosmology. The two key elements shaping
the buildup of galaxies in a cosmological context are the hierarchical
structure formation of dark matter (DM) haloes, and the astrophysical
processes that shape star formation and the gaseous environment of
galaxies.

The former question is well understood within the standard
Lambda cold dark matter (ACDM) paradigm, thanks to early
analytical models for the formation of DM haloes via hierarchical
merging (Lacey & Cole 1993), and N-body cosmological simulations
following the evolution of self-gravitating DM particles (Springel
et al. 2005; Klypin, Trujillo-Gomez & Primack 2011; Angulo et al.
2012; Fosalba et al. 2015). Given that DM haloes constitute the
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cosmological galaxy formation.

A key result from early N-body simulations is that the spherically
averaged DM density distribution, p(r), within galactic haloes can be
universally described by the so-called Navarro-Frenk—White (NFW)
profile (Navarro, Frenk & White 1997):

P _ A
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o - r

where p. is the critical density of the Universe. The ‘scale radius’
rs is a free parameter representing how concentrated the matter
distribution is towards the centre of the halo. In fact, equation (1)
is often written in terms of the ‘concentration’ parameter, defined
as 00 = Ta00¢/ s, Where ragoc 1s the halocentric distance enclosing
a total mass density equal to 200 times the critical density of the
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Universe, and is usually adopted as a proxy for the virial radius:
p(r) A

o 2
C r r
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The parameter A, then regulates the normalization of the profile such
that its integral over the volume of the halo matches the virial mass.
It follows that A. depends on the concentration, which is thus the
only free parameter of the NFW profile.

Later studies suggested that the DM density distribution within
haloes can be better characterized by incorporating an extra ‘shape’
parameter (Navarro et al. 2010), which appears in other frequently
employed models, such as the Einasto profile (Einasto 1965; Merritt
et al. 2006). But regardless of the specific functional form, DM
density profiles still display a certain level of universality within
N-body simulations, and the concentration remains a key parameter
in the description of the halo structure. If the relationship between
concentration and total mass of haloes is known, then the DM density
profile of any halo of a given mass can be straightforwardly predicted.
Thus, several cosmological N-body simulations tested the validity of
the NFW or Einasto profile and investigated the concentration—mass
relationship (Bullock et al. 2001; Maccio et al. 2007; Neto et al.
2007; Duffy et al. 2008; Maccio, Dutton & van den Bosch 2008;
Bhattacharya et al. 2013; Dutton & Maccio 2014; Ludlow et al.
2014; Klypin et al. 2016), either within the ACDM model or beyond
(e.g. Bose et al. 2016; Ruan et al. 2024). The halo mass and redshift
range probed were progressively expanded with the advancement of
numerical techniques and computational facilities.

For instance, using a set of nested zoom-in N-body simulations,
Wang et al. (2020) obtained the present-day concentration—mass
relationship over 20 orders of magnitude in the halo mass range
(107°—10'" M), hence verifying the robustness of the Einasto
profile as a model for the DM distribution within collapsed struc-
tures. More recently, Ishiyama et al. (2021) utilized the large-
volume (2.0h~'Gpc) and high-resolution (8.97 x 10°A~! M)
Uchuu and Shin-Uchuu cosmological N-body simulations to probe
the NFW concentration—mass relationship in the halo mass range
10°—10" My, studying its evolution in the redshift range 0 < z < 7.
All works consistently confirmed a decreasing concentration—-mass
relationship at lower redshift, proposing either a power-law fitting
function (e.g. Dutton & Maccio 2014; Schaller et al. 2015), or more
complex, physically motivated analytical models (e.g. Ludlow et al.
2013, 2014, 2016; Diemer & Joyce 2019) following the evolution of
collapsed structures. Other studies sought to directly connect the DM
density profiles of haloes to large-scale structure statistics such as
the power spectrum of density perturbations (Diemer & Joyce 2019;
Brown et al. 2020, 2022).

The near universality of the DM density profiles in N-body
simulations (at least in relaxed haloes; see e.g. discussion in
Diemer & Joyce 2019) descends from the scale-free behaviour
induced by gravity. However, this does not hold true once baryons
are included, as baryon-driven astrophysical processes introduce new
characteristic scales that break the self-similarity of the DM density
profiles. For example, gas cooling and dissipation (White & Rees
1978; White & Frenk 1991), combined with the subsequent star
formation, can alter the structure of the halo. The early adiabatic
contraction model suggested that baryon collapse would increase
the density of haloes in their central region (Blumenthal et al.
1986). However, this model was found to overpredict the increase
of DM density in hydrodynamic cosmological simulations (Gnedin
et al. 2004; Gustafsson, Fairbairn & Sommer-Larsen 2006). Ide-
alized simulations including a simplified outflow model reached
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qualitatively different conclusions, generating haloes with a central
core (Navarro, Eke & Frenk 1996). While several cosmological
simulations confirmed this result (Dehnen 2005; Read & Gilmore
2005; Mashchenko, Couchman & Wadsley 2006; Governato et al.
2010; Pontzen & Governato 2012; Martizzi, Teyssier & Moore 2013;
Teyssier et al. 2013), others highlighted that the formation of cores
in dwarf galaxies is either not ubiquitous (Ofiorbe et al. 2015) or
outright absent (Bose et al. 2019).

The development of more sophisticated cosmological hydrody-
namic simulations, following the co-evolution of several species of
baryonic matter, such as gas, stars, and black holes (e.g. Dolag et al.
2009; Schaye et al. 2010; Dubois et al. 2014; Vogelsberger et al.
2014; Luki¢ et al. 2015; Schaye et al. 2015, 2023; Davé et al. 2019),
expanded the scope of the inquiry. Indeed, different simulations rely
on a variety of numerical prescriptions for sub-grid processes such
as outflows driven by stars or active galactic nuclei (AGN; see e.g.
Somerville & Davé 2015 for a review). This prompts the question
of how individual stellar and AGN feedback models, and not only
the mere presence of baryons, affect the properties of galaxies and
their host DM haloes. In this respect, understanding the impact of
baryonic physics on the matter content and distribution within haloes
remains a central question.

Schaller et al. (2015) showed that the spherically averaged DM
density distribution within haloes is well represented by an NFW
profile both in the EAGLE hydrodynamic cosmological simulation
(Schaye et al. 2015) and in its dark-matter-only (DMO) counterpart.
The average concentration—mass relationship at z = 0 was fit with a
power law in both runs, and the hydrodynamic version exhibited a
larger normalization and gentler slope than the DMO variant. Using
the same simulations, but applying different analysis techniques,
Beltz-Mohrmann & Berlind (2021) reached similar conclusions
regarding the slope (but not the normalization) of the relationship.
The same work additionally considered the Illustris (Vogelsberger
et al. 2014) and IllustrisTNG (Pillepich et al. 2018) hydrodynamic
simulations. The former produced a steeper concentration—mass
relationship with respect to its DMO variant, while the latter
exhibited the opposite trend. Other studies focused on modelling
the redshift evolution of the concentration—mass relationship in
hydrodynamic simulations, rather than making comparisons with
DMO runs (Shirasaki, Lau & Nagai 2018; Ragagnin et al. 2019,
2021), showing that the concentration of haloes of a fixed mass
increases at later times. More recently, Shao, Anbajagane & Chang
(2023) used the CAMELS suite of simulations (Villaescusa-Navarro
et al. 2021) to show that the concentration—mass relationship in
IustrisTNG-type models of galaxy formation (Weinberger et al.
2017; Pillepich et al. 2018) exhibits a plateau in the mass range
101" —10""> M,,. Instead, such a feature is absent in CAMELS
boxes incorporating prescriptions based on the Simba (Davé et al.
2019) cosmological simulations (see also Shao & Anbajagane 2024).
Thus, all aforementioned works confirm that the concentration—
mass relationship can change both qualitatively and quantitatively
depending on the galaxy formation model embedded in cosmological
simulations.

A challenge in any analysis involving hydrodynamic simulations
is the heavy computational cost, which imposes a trade-off between
box size and mass resolution. Such numerical constraints translate
into upper and lower limits on the halo mass range that can be probed.
Combining three variants of the IllustrisTNG simulations with box
size ranging from approximately 50 to 300 Mpc, and mass resolution
as good as ~ 4.5 x 10° My, Anbajagane, Evrard & Farahi (2022)
managed to study the present-day concentration—mass relationship
for halo masses between ~ 10° and 10'“> M. This constitutes an
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improvement of at least one order of magnitude with respect to the
previously mentioned studies with hydrodynamic simulations.

In this work, we extend the halo mass range by a further order
of magnitude, hence probing objects ranging from dwarf galaxies
to superclusters. This is made possible by combining the three
IustrisTNG realizations with the newer MillenniumTNG cosmo-
logical hydrodynamic simulations. The methodology and first results
of the MillenniumTNG project have been presented in a series of
works focusing on different subjects: galaxy clusters (Pakmor et al.
2023), high-redshift galaxies (Kannan et al. 2023), the halo model
(Hadzhiyska et al. 2023a, b), galaxy clustering and halo statistics
(Bose et al. 2023; Contreras et al. 2023; Herndndez-Aguayo et al.
2023), the impact of baryons and massive neutrinos on weak lensing
(Ferlito et al. 2023), the intrinsic alignments of galaxies and haloes
(Delgado et al. 2023), and the refinement of semi-analytic models of
galaxy formation (Barrera et al. 2023).

The MillenniumTNG run follows essentially the same galaxy
formation model as its predecessor IllustriSTNG (hereafter, the “TNG
galaxy formation model’), but it comprises a much larger volume
(~ 740 Mpc)?, and a mass resolution of ~ 3 x 10" M, per baryonic
mass element. We consider both the fully hydrodynamic runs and
the DMO variants of all simulations. The combination of all runs
enables us to study the impact of baryonic physics on the mass
content and on the concentration—mass relationship of haloes in the
mass range 10°3—10'3° My, and redshift interval 0 < z < 7. To
the best of our knowledge, this is the largest total halo mass and
redshift range considered for this kind of study with cosmological
hydrodynamic simulations. We test several empirical and physically
motivated models for the concentration—mass relationship at different
redshifts through a rigorous information criterion, and provide the
best-fitting parameters. The interested reader can thus readily use
our tabulated results to model the DM density profiles with the TNG
cosmology and galaxy formation model.

This paper is organized as follows. In Section 2, we summarize
the main characteristics of the IllustrisTNG and MillenniumTNG
simulations. In Section 3, we show how the halo mass of individual
objects varies upon adding baryons in the simulations. We also show
the concentration—mass relationship given by all runs considered,
providing suitable analytic fitting formulae. In Section 4, we discuss
the astrophysical implementation of our results, and compare them
to previous similar work. We present our conclusions in Section 5.

Throughout this paper, unless otherwise stated, we indicate co-
moving units with a ‘c’ prefix (e.g. ckpc, cMpc, etc.).

2 SIMULATIONS

In this work, we combine the publicly available suite of cosmological
hydrodynamic simulations IllustrisTNG (Pillepich et al. 2018, 2019;
Nelson et al. 2019) with its successor MillenniumTNG. For all
simulations, we consider both the full-physics hydrodynamic runs
and their DMO variants. Both IllustrisTNG and MillenniumTNG
have been extensively described in the literature, therefore we will
only briefly summarize the features that are most relevant for our
work.

All simulations considered treat DM as self-gravitating La-
grangian particles within a fully Newtonian scheme with periodic
boundary conditions, whereby the expansion of space—time follows
from the general-relativistic Friedman—Lemaitre—Robertson—Walker
equations with null curvature. In the IllustrisTNG simulations,
gravitational forces are calculated with a Tree-Particle-Mesh (Tree-
PM) scheme (following Xu 1995; Bode, Ostriker & Xu 2000; Bagla
2002), whereby the gravitational potential is divided in Fourier
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space into long-range and short-range components. The short-range
interactions are computed through a hierarchical multipole expansion
utilizing an oct-tree structure (Barnes & Hut 1986; Hernquist &
Katz 1989), which is adjusted by a short-range cut-off factor. Long-
range interactions are derived from the potential achieved using the
Fast Fourier Transformation mesh method, employing cloud-in-cell
deposition to establish the mass density field on a uniform Cartesian
grid. In the MillenniumTNG simulation, the same Tree-PM scheme
is incorporated within an adjusted version of the GADGET-4 code
(Springel et al. 2021).

In all simulations, gas mass elements are hydrodynamically
evolved on an unstructured Voronoi tessellation following the AREPO
moving-mesh code (Springel 2010). The underlying physical frame-
work is the IllustrisTNG galaxy formation model, which has been
shown to effectively simulate a realistic galaxy population in a
cosmological context (see e.g. Weinberger et al. 2017; Pillepich et al.
2018). This model encompasses primordial and metal-line cooling
processes (Vogelsberger et al. 2013), a sub-grid approach for the
interstellar medium and star formation (Springel & Hernquist 2003),
the recycling of mass and metals into the interstellar medium by
AGB stars and Type Ia and II supernovae, a robust model for galactic
outflows (Pillepich et al. 2018), and a comprehensive mechanism
for the growth of supermassive black holes and feedback from AGN
(Weinberger et al. 2017).

The MustrisTNG simulation employs a full magnetohydrody-
namical scheme, whereas magnetic fields were not followed in
the MillenniumTNG simulation due to memory constraints. Other
adjustments were introduced to address minor shortcomings in the
[ustrisTNG simulation that were discovered after it had been run
(Nelson et al. 2019), but the modifications are not expected to sig-
nificantly affect the resulting galaxy formation history (see Pakmor
et al. 2023 for details). Thus, the IllustrisTNG and MillenniumTNG
galaxy formation schemes are effectively very similar, and that is
why we simply refer to the “TNG galaxy formation model’ in this
paper.

All simulations identify structures and substructures on the fly.
In the IlustrisTNG runs, this is accomplished via the friends-of-
friends (FoF) and SUBFIND algorithms for haloes and subhaloes,
respectively (Springel et al. 2005; Dolag et al. 2009). In the case of
MillenniumTNG, subhaloes are identified with an adaptation of the
more recent, GADGET-4-native SUBFIND-HBT algorithm into the
AREPO moving-mesh code.

The Planck-2016 cosmology (Planck Collaboration XIII 2016)
is adopted in all simulations: 2y = 0.3089, 2, = 0.0486, Q, =
0.6911, og = 0.8159, ny = 0.9667, and h = 0.6774, with the usual
definitions of the cosmological parameters. In the llustrisTNG suite,
initial conditions (ICs) at the starting redshift z = 127 are generated
via the N-GENIC code (Springel et al. 2005). The ICs descend
from the Zel’dovich approximation, applied to a particle distribution
sampled from the linearly evolved matter power spectrum produced
by the CAMB software (Lewis, Challinor & Lasenby 2000; Lewis &
Challinor 2011). For the MillenniumTNG runs, the ICs are pro-
duced following second-order Lagrangian perturbation theory with
GADGET-4 at the initial redshift z = 63. Following the fixed-and-
paired variance suppression technique by Angulo & Pontzen (2016),
two realizations of the initial DM particle distribution are generated,
each with the same mode amplitudes but opposite phases. The two
realizations are designated as the ‘A’ and ‘B’ series (see Hernandez-
Aguayo et al. 2023 for details).

‘We summarize the main characteristics of the simulations utilized
in this work in Table 1, together with the labels that we will use to refer
to them in this paper. Throughout our analysis, we utilize all publicly
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Table 1. Properties of the simulations utilized for the primary analysis in this work.

Type Project Name Box size Npm Ngas mpMm Mgas EDM,* £gas, min
(cMpc) Mp) Mop) (kpc) (pc)
Hydrodynamic MillenniumTNG MTNG-740 740 4320°  4320° 1.65x108 2.95 x 107 37 370
MTNG-185 185 1080° 10803 1.65 x 108 2.95 x 107 3.7 370
MTNG-93 93 5403 5403 1.65 x 108 2.95 x 107 3.7 370
IlustrisTNG TNG-300 302.6 2500° 25003 5.9 x 107 1.1 x 107 1.48 185
TNG-300-2 302.6 1250 12503 4.7 x 108 8.8 x 107 2.96 375
TNG-300-3 302.6 6253 6253 3.8 x 10° 7.0 x 108 6.05 757
TNG-100 110.7 1820 18203 7.5 x 108 1.4 x 108 0.74 92.5
TNG-100-2 110.7 9103 9103 6.0 x 107 1.1 x 107 1.48 185
TNG-100-3 110.7 4553 4553 4.8 x 108 9.0 x 107 2.96 370
TNG-50 51.7 2160° 21603 4.5 x 105 8.5 x 104 0.29 36.3
TNG-50-2 51.7 1080° 10803 3.6 x 10° 6.8 x 10° 0.58 72.5
TNG-50-3 51.7 5403 5403 2.9 x 107 5.4 x 10° 1.16 145
Dark MillenniumTNG ~ MTNG-740-Dark 740 4320° - 1.95 x 108 - 37 -
MTNG-185-Dark 185 10803 - 1.95 x 108 - 3.7 -
MTNG-93-Dark 93 5403 - 1.95 x 108 - 3.7 -
IlustrisTNG TNG-300-Dark 302.6 25003 - 5.9 x 107 - 1.48 -
TNG-300-2-Dark 302.6 12503 - 4.7 x 108 - 1.48 -
TNG-300-3-Dark 302.6 6253 - 3.8 x 10° - 1.48 -
TNG-100-Dark 110.7 18203 - 7.5 x 108 - 0.74 -
TNG-100-2-Dark 110.7 9103 - 6.0 x 107 - 0.74 -
TNG-100-3-Dark 110.7 4553 - 4.8 x 108 - 0.74 -
TNG-50-Dark 51.7 21603 - 6.5 x 10° - 0.29 -
TNG-50-2-Dark 51.7 10803 - 5.2 x 10° - 0.29 -
TNG-50-3-Dark 51.7 5403 - 4.2 x 107 - 0.29 -

Notes. From left to right, the columns report: the type of simulation (hydrodynamic/DMO); the parent project (IllustrisTNG/MillenniumTNG); the
simulation label; the box size; the number of DM particles; the number of initial gas elements; the mass of each DM particle; the average mass of the
initial gas elements; the gravitational softening length for DM and (for the hydrodynamic simulations) stars; and the minimum gravitational softening
length for gas elements. The runs utilized for the main analysis are indicated in boldface. All other runs are reserved exclusively for convergence tests (see

Appendix A).

available volumes of the IllustrisTNG, and the flagship Millenni-
umTNG run. We thus span a wide range of box sizes (50—740 cMpc),
which enables us to probe structures from dwarf galaxies to su-
perclusters. For every run, we utilize the highest mass resolution
available for the main analysis (highlighted in boldface type in
Table 1), and reserve some lower resolution variants for testing the
robustness of our conclusions with appropriate convergence tests. We
consider snapshots at redshift z =0, 0.5, 1, 1.5, 2, 3, 4, 5, and 7.
For the MillenniumTNG runs, we use only boxes from the ‘A’ series.

3 RESULTS

In this section, we will present our findings on the impact of
baryons on the total mass and on the DM density profiles within
haloes. Throughout our analysis, we match haloes within the DMO
runs of the MillenniumTNG simulation with their analogues in the
corresponding hydrodynamic runs. This is possible because every
DMO-hydrodynamic pair of simulations shares the same ICs for the
DM particles. We can therefore extract the unique identifiers of the
16 most gravitationally bound particles within every halo of a given
DMO run, and then find the halo sharing the largest fraction of those
same particles in the corresponding hydrodynamic run. The shared
fraction is determined by giving a higher weight to the particles that
are more gravitationally bound, following the same method utilized to
construct merger trees in GADGET-4 (see section 7.4 in Springel et al.
2021, for further details). Thus, every halo in the hydrodynamic run
hosting at least one of the particles in the halo originally considered
in the DMO run is assigned a score based on the weighted number
of particles shared. The halo with the highest score becomes the

candidate to be matched with the original halo in the DMO run. In
order to validate a link between two haloes, we repeat the procedure
by swapping the hydrodynamic and DMO run, and retain only the
bijective matches. This ensures that we do not inadvertently include
spurious matches in our analysis that may arise from numerical
artefacts connected to the halo finder (see e.g. the discussion in
section 4.2 of Sorini et al. 2022). In practice, less than 0.5 per cent
of the haloes in the mass and redshift range considered in this work
are discarded for not establishing a match. The matching technique
described above is the same applied by Nelson et al. (2019) to the
IustrisTNG simulations. We therefore use their publicly released
catalogues of matched haloes when analysing properties of haloes
drawn from the IlustrisTNG runs.

We show the results of the matching procedure for four haloes
of different mass in Fig. 1 as an example. The upper panels show
the 2D-projected DM mass density in the DMO variants of all
simulations considered, as indicated in the top part of the figure.
From the left to right panels, we show haloes of increasing mass,
as reported within the corresponding panel. Throughout the paper,
we define the halo mass as My, i.e. the total mass delimited by
the spherically symmetric boundary ryy., centred at the minimum
of the gravitational potential, enclosing a matter mass density equal
to 200 times the critical density of the Universe. The extent of each
image is the same in units of 0., which we will adopt as the proxy
for the virial radius in this work. We include the value of rygy. within
every panel for the reader’s convenience.

The colour map in the upper panels of Fig. 1 shows the highest
density regions as white, and gradually switches to shades of blue in
regions with less DM. Black areas are devoid of matter completely.
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Figure 1. Projected density maps of haloes with different masses in the IllustrisTNG and MillenniumTNG hydrodynamic simulations (top panels), and of
their counterparts in the DMO variants of the same simulations (see Section 3 for details on the halo matching technique across the different runs). The upper
panels show the DM density distribution, with lighter shades corresponding to regions with higher density. The lower panels overlay the projection of DM
and gas density, represented with blue and purple-red—yellow colour maps, respectively. Also for the gas, lighter colours correspond to higher densities. This
figure showcases the level of detail that can be achieved over an expansive dynamic range in total halo mass by combining simulations with different box sizes

and mass resolutions (see Table 1).

The lower panels represent the matched counterparts of the haloes
in the upper panels. In this case, the haloes are taken from the
hydrodynamic simulations, thus they contain both DM and baryonic
mass elements. We therefore overlay the 2D-projected DM and gas
density maps. For the DM, we adopt the same colour coding as in
the upper panels. The gas maps transition from bright yellow in the
higher density regions to shades of red and eventually purple as the
density diminishes.

The gas density is broadly a smoother version of the underlying
DM field, filling more uniformly the regions in between substruc-
tures. However, it also exhibits unique features, such as the spiral-
shaped filaments that appear within 0.25 ry. in the 10'> Mg halo
shown in Fig. 1. These are presumably tracers of star-forming regions
within the central galaxy of the halo. Feedback processes cause a
diffuse distribution of gas, which contrasts with the more clumpy
structure of DM. It is remarkable that such particulars are easily
visible. Thanks to the different mass resolutions of the simulations
considered, we are able to maintain a high level of detail for
the matter density distribution over an expansive range of scales,
ranging from dwarf galaxies (Mago. < 1019 Mg) to superclusters
(Msge = 105 My,). This will ensure the robustness of our results, as

~

we will demonstrate later in this section.

3.1 Impact of baryons on the total halo mass

To begin with, we focus on the impact of baryons on the total halo
mass. To ensure that our results are converged, we restrict our analysis

MNRAS 536, 728751 (2025)

to haloes containing at least 3000 particles in all primary DMO runs
(see Appendix A for details). For every snapshot, we bin all haloes
according to their total mass, M,g.. The bins are constructed by
taking the minimum and maximum halo masses in the snapshot
considered, and dividing this range in logarithmic intervals with
the same width of 0.2 dex. If the highest mass bin contains fewer
than five haloes, we merge it with the second-highest mass bin, and
reiterate the procedure until this condition is met. This ensures that
the bin at the highest mass end does not suffer from low-number
statistics due to cosmic variance. We then match the haloes within
each resulting mass bin with their analogues in the hydrodynamic
run, following the matching technique described earlier. At this point,
for every halo pair, we calculate the M. (total mass) ratio between
the hydrodynamic and DMO runs.

We show the results of our analysis in Fig. 2. The x-axis represents
the halo mass in the DMO run, and the y-axis the hydrodynamic-to-
DMO mass ratio. The circles show the average ratio in each mass
bin, estimated with the geometric rather than arithmetic mean. The
advantage of such choice is that it can be straightforwardly inverted:
The average DMO-to-hydrodynamic mass ratio is simply the inverse
of the average hydrodynamic-to-DMO mass ratio. The points are
colour coded according to the redshift of the snapshot to which
they refer, as indicated in the colour bar. The error bars represent
the statistical error on the geometric mean within each mass bin.
Exploiting the fact that the geometric mean of a measurable quantity
X is the exponential of the arithmetic mean of In(X), and applying
the usual error propagation rules, the error on the geometric mean is
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Figure 2. Ratio of the total mass (DM and baryons) of haloes in the
hydrodynamic runs with respect to their matched counterparts in the DMO
simulations, in the redshift range 0 < z < 7. The circles correspond to the
geometric mean of the ratio taken within equally extended logarithmic bins
of the total halo mass in the DMO runs. The error bars indicate the statistical
error on the geometric mean. The data points are colour coded according to
the redshift of the snapshot to which they refer, as indicated in the colour
bar. The thin solid lines plotted on top of the data sets represent the best-
fitting multiply broken power laws to the data (see Section 3.1 for details,
and Table 2 for a list of the best-fitting parameters at each redshift). The
horizontal black dotted line marks a mass ratio of unity, to guide the eye.
Two breaks of the power law are clearly identifiable around mass scales of
~ 10"3 and ~ 1013 Mg. Above Mpyc 2 1014 Mg, the total halo masses in
the hydrodynamic and DMO runs are equal within 1-2 per cent.

given by
s[In(MR)]
N
where (MR) is the geometric mean of the mass ratios MR of the
N halo pairs within the mass bin considered, and s[In(MR)] is the
sample standard deviation of the natural logarithm of the mass ratios.
We note that at high redshift (z > 5), the mass ratio is statistically
within unity at a mass scale of Mg 2 10! M. At lower masses,
the ratio decreases, reaching ~ 0.8 at the lowest mass end of
10°* Mg. This drop in the halo mass following the inclusion of
baryons in a cosmological simulation has been observed in previous
work (e.g. Sawala et al. 2013), and is connected to stellar feedback
processes pushing gas elements well beyond the virial radius (Sorini
et al. 2022; Ayromlou, Nelson & Pillepich 2023). As one considers
haloes of higher mass, the momentum imparted by stellar-driven
outflows (Pillepich et al. 2018) becomes progressively ineffective
at overcoming the deeper gravitational potential well. This would
explain the rise in the hydrodynamic-to-dark halo mass ratio up until
M. ~ 103 M, (Springel et al. 2018). At lower redshifts, the peak
observed at this mass scale falls below unity by a only a few per cent
Haloes above Mjy. = 10''3 M exhibit a significant mass-loss
when baryons are included in the simulations. The decreasing trend
continues until Mg &~ 1013 Mg. This is again consistent with
previous numerical works (e.g. Vogelsberger et al. 2014; Schaller
et al. 2015; Springel et al. 2018), as AGN-driven winds and jets are
effective at displacing baryons from haloes, and preventing further
gas accretion and star formation due to kinetic and thermal feedback
(Sorini et al. 2022; Ayromlou et al. 2023).
Above M. &~ 1013 Mg, the halo mass ratio increases again, sat-
urating to unity (within a few per cent) at My > 10'* M. Whereas
AGN feedback is still active in these haloes, the gravitational

O(MR) = (MR) 3)
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potential is stronger due to the larger mass. Therefore, it becomes
progressively harder for feedback processes to remove baryons from
haloes, which approach the ‘closed-box’ approximation (Angelinelli
et al. 2022, 2023).

Our results at z = 0 extend the analogous studies by based on the
TNG-100 and TNG-300 simulations and their DMO counterparts
(Lovell et al. 2018; Springel et al. 2018). We find the same qualitative
trend for the hydrodynamic-to-DMO mass ratio, with transition
points occurring at the same mass scales. Compared with the Illustris
simulation, the TNG galaxy formation model is more efficient at
decreasing M. at the lower mass end, while it exhibits a weaker
imprint at the higher mass-end. This confirms the findings in Lovell
et al. (2018) and Springel et al. (2018), and reflects the differences
in the underlying stellar and AGN feedback models, respectively,
between the Illustris and IllustrisTNG/MillenniumTNG simulations.

We additionally verified that if we consider the ratio between
the DM mass enclosed within 0. of haloes in the hydrodynamic
simulations and their DMO counterparts (properly corrected by a
1 + f, factor), the resulting trend with MIMC is qualitatively similar
to the one obtained in Fig. 2 for the total halo mass ratio. However,
when considering the DM component only, the maximum relative
difference is reduced to ~ 10 per cent. This suggests that the shape
of the total mass ratio as a function of Maw© and redshift is primarily
driven by the presence of baryons, and is not merely a consequence
of the redistribution of the DM component, which could alter g,
and hence Mjg.. Thus, an analytical approximation of the numerical
results would serve as a useful tool to imprint the effect of the TNG
galaxy formation model on the total halo mass obtained from cheaper
DMO simulations. We therefore provide empirical fitting formulae
to our numerical results for the hydrodynamic-to-DMO mass ratio
R, as a function of the halo mass in the DMO runs, MRno.

At any fixed redshift, we adopt a broken power law, defined as
follows:

MDMO N\

R(MMOY = ¢ (%30 ) for M;_; < MDNMO < M;, )
where M; refers to the mass scale corresponding to the ith break
of the power law. For a power law with N, breaks, the index i
runs from i =1 to Ny + 1, so that My and My, 4, refer to the
minimum and maximum halo mass in the entire range considered,
respectively. With our indexing convention, it follows that «; is the
slope of the power law in the range M;_; < MPNC < M;. The C
parameter simply regulates the normalization of the power law and,
by definition, corresponds to the value of the mass ratio at the break
point MO = M.

As discussed earlier in this section, the mass ratio exhibits between
one and three mass scales causing a change in the slope, depending
on redshift. To rigorously determine how many breaks to include in
equation (4), we first perform a minimum- x 2 fit to the numerical data
at each redshift with a smoothed broken power law with one, two
and three breaks. In the last case, we consider two variants, where
the slope of the power law in the highest mass interval is either a free
parameter or fixed to zero. This is motivated by the plateau that we
observe at M. = 10" Mg at 7 < 2.

We then select the best-fitting function by applying Akaike’s
information criterion (AIC; Akaike 1974). This criterion provides
a hierarchy of the quality of different models in representing a given
data set, by minimizing the loss of information without overfitting.
If Z is the maximized value of the likelihood for a given model, and
k the number of free parameters, the corresponding AIC value is

2k(k + 1)

AIC =2k —2InL+ 217
n +n—k—l

(&)
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Figure 3. Relative AIC value (equation 5) for each broken power-law model
used to represent the numerical data obtained for the hydrodynamic-to-DMO
mass ratio (Fig. 2), with respect to the best-fitting model (see Section 3.1).
Every line refers to a different fitting function, as indicated in the legend.
The ancillary y-axis reports the factor by which every model is less likely
to minimize the information loss, with respect to the best-fitting model. At
lower redshift (z < 2), it is necessary to consider power laws with three
breaks, while at higher redshifts simpler models are preferred by the AIC.

where the last term introduces a correction for data samples of small
size n. The best model is the one that minimizes the AIC value. If the
minimum value among the models considered is AIC,, then each
model is a factor of exp[(AIC — AICy,)/2]less likely to minimize
the information loss with respect to the best model.

To calculate the maximum likelihood of each model given our
data sets at any fixed redshift, we assume statistical independence of
the data points. The expectation values are estimated by applying
the fitting function to the mean halo mass in each bin, and the
variances are given by the statistical error on the geometric mean of
the hydrodynamic-to-DMO mass ratio. We then insert the maximum
of the likelihood in equation (5). The resulting AIC values relative
to the best-fitting model at each redshift are reported in Fig. 3. The
horizontal black line marks the zero value, to guide the eye. A model
lying on this line is the best model according to AIC. The ancillary
y-axis shows how much less likely a given model is at minimizing
the loss of information, with respect to the best-fitting model.

At higher redshifts, the simplest fitting function with one break
only is preferred by the AIC. This is not surprising, because, down

to redshift z = 5, the halo mass range probed by the simulations
encompasses only the smallest critical mass corresponding to a
break in the hydrodynamic-to-DMO mass ratio (Mag. 2~ 10! Mo).
At redshift 2 < z < 4, the second turnaround in the mass ratio
corresponding to Myg. ~ 10'3 M, starts becoming visible (Fig. 2),
and the AIC favours a broken power law with two break points.
However, at z = 3, a power law with a single critical mass scale is
marginally preferred. For z < 2, the AIC selects a power law with
three breaks, reflecting the higher complexity of the dependence of
the mass ratio on MEMO over a wider mass range. We report the
best-fitting parameters of the fitting function preferred by the AIC in
Table 2.

Our fitting formulae are a useful analytical model that can be
applied on to a DMO simulation to mimic the effect of the TNG
galaxy formation model on the mass content of galactic haloes.
We stress, however, that our model is purely empirical. Ideally, it
would be preferable to fit a physically motivated function for the
hydrodynamic-to-DMO mass ratio to the numerical data. This goes
beyond the scope of this paper, and will instead be the subject of a
future investigation.

3.2 Impact of baryons on density profiles

The analysis undertaken in the previous section, while informative, is
agnostic to the detailed spatial distribution of DM within haloes. To
gain further insight on this subject, we now analyse the DM density
profiles as a function of halo mass and redshift in the hydrodynamic
and DMO runs.

We first select all haloes containing at least 5000 particles in the
DMO simulations. This selection criterion is more restrictive than the
3000 particles threshold that we adopted in Section 3.1 to analyse the
hydrodynamic-to-DMO halo mass ratio. The reason is that we need
to ensure that there are enough DM particles in any radial bin that we
will be considering, in order to obtain a numerically reliable density
profile. The choice of 5000 particles as the minimum requirement for
haloes to be included in our analysis follows from previous similar
works (Schaller et al. 2015).

From the resulting sample, we then select only relaxed haloes. We
do this because we are primarily interested in the DM density profiles
to study the effect of baryons on the concentration of DM haloes, and
it is well known that haloes that recently underwent major mergers
exhibit profiles that deviate more markedly from an NFW functional
shape. Different criteria have been proposed in the literature to
identify relaxed haloes, based on energetic considerations and the

Table 2. Parameters of the broken power laws fitting the hydrodynamic-to-DMO halo mass ratio in Fig. 2. See equation (4) and Section 3.1 for the
definition of the parameters. If all haloes in the sample considered are below the mass threshold of ~ 10'> M, then the hydrodynamic-to-DMO halo mass
ratio is accurately described by the single-broken power law defined by the parameters C, M, and «; reported in the table below.

z C log(M;/Mp) log(M2/Mp) log(M3/Mp) ay a a3 ay
0 0.96 +0.01 11.26 +0.01 13.03 +0.01 13.86 +0.01 0.04 £0.01 —0.032 £ 0.004 0.086 4+ 0.008 0.02 +£0.02
0.5 0.96 £+ 0.01 11.4+£0.3 13.10 £ 0.01 13.85 +0.01 0.04 £0.02 —0.024 £ 0.003 0.08 £0.01 0.01 £0.02
1.0* 0.965 + 0.009 11.3£0.3 13.19 +0.01 13.88 +0.01 0.04 £0.02 —0.014 £+ 0.003 0.06 £0.01 0
1.52 0.963 + 0.008 11.3+£0.3 13.28 +0.01 13.85 +0.01 0.04 £0.02 —0.007 £ 0.003 0.05 £0.02 0
2.0 0.966 + 0.007 11.2+0.3 13.37 £ 0.01 - 0.05 £0.02 —0.004 £ 0.003 0.04 £0.03 -
3.0 0.974 + 0.003 11.2 £ 0.01 - - 0.044 £ 0.006 0.000 £ 0.002 - -
4.0 0.981 + 0.003 11.38 +0.09 12.00 +0.01 - 0.046 + 0.003 0.000 + 0.003 0.010 £+ 0.003 -
5.0 0.979 + 0.002 11.24 £ 0.06 - - 0.034 £ 0.001 0.005 £ 0.001 - -
7.0 0.995 + 0.007 11.26 +0.09 - - 0.040 £ 0.01 0.000 + 0.005 - -

2At these redshifts, the best-fitting model is the flattened triple-broken power law. Thus, the parameter a4 is fixed to zero, as explained in Section 3.1.
Notes. The only exception is z = 4, where one would need haloes with Msgq. below ~ 1012 Mg in order to apply a single-broken power law.
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Table 3. Percentage of relaxed haloes in the DMO runs containing at least 5000 particles, and for which a bijective link
with a halo in the corresponding hydrodynamic runs is established (see Section 3).

Simulation log(Mcui/Mg) z

0 1 3 7
TNG-50-Dark 9.5 66 per cent 47 per cent 17 per cent 10 per cent
TNG-100-Dark 10.6 55 per cent 34 per cent 14 per cent 12 per cent
TNG-300-Dark 11.5 43 per cent 25 per cent 14 per cent 11 per cent
MTNG-740-Dark 12.0 40 per cent 22 per cent 12 per cent 9.3 per cent

Notes. From the left to right panels, the columns show the name of the simulation; the mass cut corresponding to 5000
DM particles, so that the haloes selected have a total mass Magoc > Mcye; and the redshifts of the snapshots considered.

distribution of the DM halo mass across its substructures (e.g. Neto
etal.2007). Schaller et al. (2015) verified that requiring the separation
between the centre of mass of the halo and the centre of the minimum
of the gravitational potential to be smaller than 7 per cent of its virial
radius constitutes the most restrictive criterion for classifying a halo
as ‘relaxed’. We therefore adhere to the same convention, adopting
7200c as a proxy for the virial radius. The fraction of relaxed haloes
in the DMO simulations with at least 5000 particles, and for which a
match with a halo in the corresponding hydrodynamic run has been
established, is reported in Table 3 for a few representative redshifts.
For a given simulation, the fraction of relaxed haloes increases at
lower redshift, since, on average, more time has passed since the last
major halo merger. At a fixed redshift, larger boxes contain a smaller
fraction of relaxed haloes. This happens because the halo mass range
probed by our larger volume simulations is shifted towards higher
masses, and more massive haloes tend to form later, hence having
fewer time to reach dynamical relaxation.

For each relaxed halo, we define 20 radial bins as follows: the first
bin spans the interval 0 < r/ryp. < 0.01, where r denotes the 3D
distance from the minimum of the gravitational potential of the halo;
the remaining 19 bins span the range 0.01 < r/ryp. < 5 with equal
width in logarithmic space. The DM density within each radial bin
is then straightforwardly computed as the ratio of the total mass of
all DM particles falling within said bin (not only those belonging
to the FoF group), and the volume enclosed between the spherical
shells defined by the boundaries of the bin. We then compute the
DM density profiles with the same technique for the haloes in the
hydrodynamic runs that match the relaxed haloes in the DMO runs
as described in the beginning of Section 3.

We take a first look at the evolution of the DM density profiles
across redshift and as a function of the total halo mass in Fig. 4.
For a given snapshot, we first combine the density profiles extracted
from the DMO variants of all simulations, and organize them in mass
bins, as annotated in the figure. We then select the density profiles
from the matched haloes within the hydrodynamic runs. Since the
matching technique is based on the unique IDs of the most tightly
bound DM particles, the total mass of some of the matched haloes
may in principle fall outside the boundaries of the DMO mass bin
originally considered. However, in Fig. 4, we still associate them
with the same mass bin defined for the DMO run, to guarantee a
fair comparison between the hydrodynamic and DMO simulations.
For all haloes at the selected redshift and DMO halo mass range, we
then take the arithmetic mean of the co-moving DM density in each
radial bin. The resulting average co-moving DM density profiles are
represented in Fig. 4 (bigger panels) with black squares and teal
diamonds for the DMO and hydrodynamic simulations, respectively.
The density profiles in the DMO run are corrected by a (1 + f,)
factor, where f; is the cosmic baryon fraction, for a fair comparison
with the results of the hydrodynamic simulations. The error bars

show the 16th—84th percentile of the DM density distribution across
all haloes in any given radial bin. We follow the established practice
of normalizing the density profiles by the critical density of the
Universe p., and multiplying them by the square of the halocentric
radial distance in units of ry. (see e.g. Schaller et al. 2015); this
makes it easier to infer the halo concentration, as we will explain
later. However, for the sake of simplicity, we will refer to both p(r)
and r2p(r), properly normalized, as ‘density profile’ throughout this
paper.

In the smaller panels of Fig. 4, we plot the ratios between the DM
density profile given by the DMO runs and the hydrodynamic simu-
lations (dot—dashed grey line). We see that the relative difference is
generally contained within 10 per cent. At z = 0, the discrepancy can
reach ~ 20 per cent around the virial radius. For Mag. =~ 101> Mg
and M ~ 103 Mg, the density profiles in the hydrodynamic runs
deviate by more than 20 per cent from their DMO counterparts in
the innermost regions of the haloes (r < 0.05 ryc), even at higher
redshift. However, such differences are primarily driven by numerical
artefacts rather than physical reasons. It is well known that the finite
mass resolution of N-body simulations can introduce spurious effects
on the density profiles in the central regions of haloes. With a suite of
simulations of individual Milky Way-mass haloes, Power et al. (2003)
found that numerical convergence is achieved at radii that contain
enough particles such that the local two-body relaxation time-scale is
on par with or longer than a Hubble time. This condition defines the
so-called ‘convergence radius’, which can be more easily estimated
from the box size and number of DM particles in a simulation thanks
to the formula introduced by Ludlow, Schaye & Bower (2019). Using
their equations (17)—(18), we verified that in our sample of haloes the
convergence radius is of the order of 5 percent of the virial radius.
For this reason, we exclude data points in the region r < 0.05 rypgc
from any further analysis. Since we focus on the distribution of DM
within the halo only, we ignore all particles outside the virial radius
of the halo.

We thus fit every mean density profile shown in Fig. 4 with an
NFW profile, over the range 0.05 < r/ryp0. < 1. The best-fitting
parameters in equation (2) are determined via x> minimization. For
the concentration parameter, we adopt the definition cygoc = F200¢/7ss
where 7, is the scale radius of the NFW profile. The scale radius in
the DMO and hydrodynamic simulations, normalized by the mean
200c in the halo mass bin considered, is shown in Fig. 4 with vertical
dotted black and teal line, respectively. The corresponding NFW fits
to the density profiles are plotted with the solid lines following the
same colour coding. It can be seen that the scale radius corresponds
to the maximum of 72 p(r). This follows directly from the definition
of the y-axis, and represents the main advantage of plotting 2 p(r)
rather than the bare density profile.

We plot the ratio of the numerical density profiles with respect
to the best-fitting NFW profile in the smaller panels of Fig. 4. The
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Figure 4. Redshift evolution of the DM density profiles within haloes of different mass within the DMO and hydrodynamic simulations considered in this
study. Every row corresponds to a different redshift, as reported in each panel, and every column refers to a different halo mass bin, as indicated in the upper
part of the figure. For a given redshift and halo mass bin, the upper panels show the average DM density profiles of haloes taken from the DMO runs (black
squares), and their matched counterparts in the hydrodynamic runs (teal diamonds). The density profiles are normalized by the critical density of the Universe,
and multiplied by the square of the halocentric distance, in units of rpooc. The error bars represent the 16th—18th percentile distribution of the density profile
within each radial bin, across all haloes considered in the stack. To aid the readability of the figure, we omitted the lower error bar if the 16th percentile falls
below the lower limit of the y-axis. The thin black and teal solid lines represent, respectively, the best-fitting NFW profile (Navarro et al. 1997) to the average
DM density profile in the DMO and hydrodynamic runs. The vertical dashed lines mark the NFW scale radius resulting from the fit, following the same colour
coding. Data points in the grey-shaded area were excluded from the fit (see Section 3.2 for details). The lower panels show the ratio between the profiles in the
hydrodynamic and DMO simulations (grey dash—dotted lines), as well as the ratio between the profiles taken from the simulations and the best-fitting NFW
profiles (black and teal data points). Within the region where the fit was performed, the relative differences between simulation data and NFW fit remain within
10 per cent, regardless of halo mass and redshift. The NFW-fitting functions accurately represent the density profiles in both the hydrodynamic and DMO runs.
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relative differences are always within 10 per cent, meaning that the
NFW profile describes the data within this level of accuracy. For
any fixed halo mass, the normalized scale radius moves to larger
values at lower redshift. This happens more rapidly for haloes in the
hydrodynamic simulations. Such haloes are more concentrated than
their DMO counterparts at high redshift for My < 10 Mg. At
lower redshift, the difference in concentration becomes smaller, and
haloes in the smallest mass bin are less concentrated in the hydrody-
namic runs than in the DMO variants at z = 0. Instead, haloes from
both type of simulations appear to have similar concentrations in the
highest mass bin.

The density increase that we observe beyond ryp. in all panels
appears because the density profiles in Fig. 4 are computed from
all particles within a given halocentric distance, and not only those
included in the FoF group. The upturn at large radii is therefore
induced by the two-halo term, representing the contribution due to
matter external to haloes. However, in the remainder of this work,
we only focus on the impact of baryons on the internal structure
of DM haloes, i.e. within 7,9, focusing on the dependence of the
concentration on halo mass and redshift. A rigorous analysis in this
sense will be the subject of the next section.

3.3 Impact of baryons on the concentration—-mass relationship

3.3.1 Present-day concentration—mass relationship

We now analyse the concentration—mass relationship in the DMO
and hydrodynamical simulations, for all snapshots considered. This
will provide us with useful insights on the impact of baryons on the
concentration of DM haloes.

To begin with, we focus on the DMO runs at z = 0. For each
simulation, we select well resolved, relaxed haloes as explained in
Section 3.2. We then construct mass bins with equal logarithmic
width of 0.2 dex, starting from the minimum mass in the sample.
If the highest mass bin contains fewer than five haloes, we merge it
with the previous bin. We then construct the DM density profile of all
haloes falling in each bin, and compute the average profile, exactly
as we did for Fig. 4 (see Section 3.2).

In the upper panel of Fig. 5, we plot the concentration—mass
relationship of the mean density profiles given by every DMO
simulation with data points of different colours. The horizontal error
bars represent the width of the mass bins. We also show the 2D
histograms of the concentration—mass relationship resulting from
fitting the density profiles of individual haloes with an NFW function.
The histograms are represented with maps following the same colour
coding as the data points, and are overlaid to simultaneously display
the spread around the average concentration—mass relationship in the
different simulations.

We then match all haloes from each simulation to their hydrody-
namic counterparts, as explained in Section 3, and bin the haloes
according to their total mass in the hydrodynamic run, following the
same procedure adopted for the DMO runs. The concentration—mass
relationship for the hydrodynamic simulations is then obtained with
the same analysis described earlier for the DMO runs, and the results
are shown in the lower panel of Fig. 5, following the same colour
coding as in the upper panel. We reiterate that, following the method
just described, only the mean density profile of the haloes within a
given bin is used to estimate the concentration at the corresponding
halo mass. We fit the profiles of individual haloes only to assess
the spread around the concentration—mass relationship, as shown in
Fig. 5.
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The data from different simulations are consistent with one another
in the regions of the plot where they overlap. This suggests that the
results are robust under different box sizes and mass resolutions,
for all runs considered. We will further quantify the degree of
numerical convergence across the different runs in Section 3.3.2
and in Appendix A. But Fig. 5 already indicates that we can trust the
concentration—mass relationship over a halo mass range of six orders
of magnitude.

The most obvious trend is that the concentration—mass relationship
in the DMO simulations is monotonically decreasing with mass. This
is a feature that has been repeatedly observed in N-body simulations
(e.g. Navarro et al. 1997; Dutton & Maccido 2014; Schaller et al.
2015; Beltz-Mohrmann & Berlind 2021). The spread around the
average relationship is larger at the lower mass end. This is not
surprising either, since lower mass haloes typically reside in more
diverse environments than higher mass haloes, which leads to a
spread in the formation time (Harker et al. 2006). Furthermore, due
to purely statistical reasons, lower mass haloes are more likely to
populate the tails of the distribution of the concentration, since they
are present in greater abundance. Indeed, even at the higher mass
end, the range of observed concentration values is larger once we
increase the box size, due to the larger number of massive haloes.
This can clearly be seen from the results of the TNG-300-Dark and
MTNG-740-Dark simulations at M»g. =~ 10'4 Mg.

Similar considerations regarding the average trend and scatter
apply to the hydrodynamic simulations as well. However, the slope
of the relationship varies more strongly with mass. For Mg, <
10> Mg, the average concentration-mass relationship is almost
flat, and certainly less steep than in the DMO case. Above such a
mass threshold, the concentration declines more rapidly with mass,
until Myg. ~ 10'3—10'33 M. For higher masses, the slope becomes
once again more gentle. As expected, the aforementioned mass scales
roughly correspond to the breaks in the hydrodynamic-to-DMO halo
mass ratio (Fig. 2). This is consistent with the fact that the impact
of baryons on the mass content of haloes and their concentration are
interconnected.

In the remainder of the section, we will focus on the modelling of
the concentration—mass relationship, and we will discuss the possible
physical origins of any departure between the hydrodynamic and
DMO results in Section 4.

3.3.2 Modelling the concentration—-mass relationship

The concentration—mass relationship is such a crucial quantity in
the context of cosmological structure and galaxy formation that
numerous modelling attempts have appeared in the literature. These
include empirical or first-principles analytical models, as well as
semi-analytical or fully numerical methods (e.g. Bullock et al. 2001;
Gao et al. 2008; Zhao et al. 2009; Prada et al. 2012; Ludlow
et al. 2013; Dutton & Maccio 2014; Ludlow et al. 2014; Beltz-
Mohrmann & Berlind 2021; Shao et al. 2023; Shao & Anbajagane
2024). In this section, we will therefore assess the success of
different functional shapes at capturing the behaviour of the average
concentration—mass relationship in our simulations.

Before testing any model for the concentration—mass relationship,
we need to assess the statistical error in our data. We do so using
three different methods. To begin with, the x 2-minimization method
for determining the best NFW fit to the mean density profile within
each mass bin provides us with an estimate of both the mean and
standard deviation of the concentration. However, such a standard
deviation might be underestimating the statistical error on the average
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Figure S. Concentration—mass relationship at z = 0 for relaxed haloes in the DMO and hydrodynamic simulations (top and bottom panels, respectively). The
overlapping colour maps represent the probability density function of the concentration of haloes within a fixed total halo mass bin. The data points represent
the geometric mean of the halo mass in each bin. Each colour refers to haloes taken from a different simulation; from the smallest to the largest volumes, they
are represented with shades of green, blue, orange and purple, respectively. The data points refer to the concentration of the mean density profile of the haloes
within the mass bin delimited by the horizontal error bars. Points with different colours refer to different simulations, as indicated in the legend. The extended
mass range in our work shows that the inclusion of baryons suppresses the concentration of haloes for Mapo. < 10'!> M. The concentration—mass relationship
in the hydrodynamic runs and, to a lesser extent, in the DMO runs, deviate from a pure power law.

concentration in the mass bins that contain fewer haloes, where the
PDF of the concentration may be deviating more strongly from a
Gaussian distribution. As a second estimate, we therefore compute
the standard deviation of the concentration by bootstrapping the
density profiles in each mass bin. We consider 1000 samples with
size equal to the number of haloes, allowing for repetitions; such
procedure was verified to guarantee an accurate estimate of the
sample variance in a previous similar work (Brown et al. 2022).
Finally, as our third estimate, we compute the cosmic variance on the
concentration parameter in each mass bin by jackknife resampling
of the haloes in a given mass bin upon dividing the simulation box
in eight octants.

In Fig. 6, we report the average concentration—mass relationships
already shown in Fig. 5. The vertical error bars represent the

MNRAS 536, 728751 (2025)

statistical error on the concentration arising from the NFW fit,
i.e. following the first method described above. The shaded areas
show the maximum between the bootstrap and cosmic variance
errors, which we nevertheless verified to be of the same order of
magnitude for all mass bins. As expected, the error from the NFW fit
underestimates the spread of the average concentration in the mass
bins with fewer haloes, i.e. at the higher mass end. On the contrary,
the error from the fit dominates at the lower mass end. We make the
conservative choice of considering the statistical error on the average
concentration in each mass bin to be the maximum amongst the error
from the fit, the bootstrap error, and cosmic variance.

At this point, we are able to determine the best-fitting parameters
of different models for the concentration—mass relationship via 2
minimization. The first model that we consider is a power law, which
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Figure 6. Concentration—mass relationship at z = 0 for relaxed haloes in the DMO and hydrodynamic simulations (top and bottom panels, respectively). Data
points represent the concentration of stacked density profiles within halo mas bins delimited with the horizontal error bars. The data point is plotted at the median
halo mass within each bin. The vertical error bars represent the statistical error on the concentration deriving from the NFW fit. The shaded areas following
the same colour coding as the data points show the statistical error due to cosmic variance or bootstrap re-sampling of the haloes, whichever is the largest (see
Section 3.3.2 for details). Different best-fitting models to the data are plotted with different colours and line styles, as indicated in the legend. The first-principles
model of Ludlow et al. (2016) provides a good match to the DMO concentration—mass relationship, but broken power-law fits are best at representing the data
in both the DMO and hydrodynamic simulations. A pure power law is still an acceptable fit for the DMO runs, but fails at reproducing the data once baryons
are included.
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Table 4. Results of the AIC test on the models considered as possible fits
to the concentration—mass relationship at z = 0.

DMO simulations

Model AAIC PAIC
Power law -16.6 2.52x 1074
Broken power law 0 -
Smoothly broken power law —1.63 0.443
Ludlow et al. (2016) —62.5 2.67 x 10714
Hydrodynamic simulations

Model AAIC PAIC
Power law —483 1.57 x 107105
Broken power law 1 -
Smoothly broken power law —3.88 0.144

Notes. The columns show, starting from the left: the name of the model as
mentioned in the text; the relative AIC value with respect to the best model
according to the criterion; and the corresponding probability of minimizing
the loss of information, with respect to the best model; the reduced Xz.

serves as a useful baseline due to its mathematical simplicity and
widespread usage in the literature (Dutton & Maccio 2014; Schaller
et al. 2015; Ragagnin et al. 2019; Beltz-Mohrmann & Berlind 2021;
Ragagnin et al. 2021). While this model appears to adequately
represent the data in the DMO case, it is clearly oversimplified for the
hydrodynamic simulations. We therefore introduce a broken power
law, which yields an excellent agreement with the DMO data, and
also allows us to capture the flattening of the concentration—mass
relationship for Mg, < 10'5 My observed in the hydrodynamic
runs. We also consider a smooth variant of this model, which provides
a continuous transition between the two power-law regimes across
the mass scale, offering a more realistic representation of the gradual
changes observed in the simulations.

On top of the three empirical functions described above, we
consider the physically motivated analytical model by Ludlow
et al. (2016). The model predicts the redshift evolution of the
concentration—mass relationship from the collapsed mass histories
of DM haloes. The formalism uses the Extended Press—Schechter
theory and assumes that the characteristic density of DM haloes is
proportional to the critical density of the Universe at a given collapse
redshift. The proportionality constant is the only free parameter of the
model, and needs to be calibrated with N-body simulations. We thus
re-calibrate such constant so that we obtain the best-fitting Ludlow
et al. (2016) model to the data of our DMO simulations. As we
can see in the upper panel of Fig. 6, the recalibrated Ludlow et al.
(2016) model provides an excellent match to the data, within the
statistical errors. However, we cannot apply the Ludlow et al. (2016)
to the hydrodynamic runs, since the underlying formalism ignores
the effects of baryons.

To summarize, all models considered provide a reasonable descrip-
tion of the concentration—mass relationship in the DMO simulations.
To rigorously determine which function best captures the information
embedded in the data without overfitting, we apply again the AIC,
as we did for the hydrodynamic-to-DMO mass ratio in Section 3.1.
The results of the AIC test at z = 0 are shown in Table 4. The broken
power law is the model favoured by the AIC in both the DMO and
hydrodynamic simulations. These models are significantly preferred
with respect to the simple power law even in the DMO run. The
Ludlow et al. (2016) model is ranked lowest according to the AIC.
The worse AIC score is mainly driven by the higher discrepancy with
the data at the higher mass end, compared to the broken power law.
However, this does not mean that it is an inaccurate representation
of the data. Indeed, we reiterate that the AIC assesses the relative
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Figure7. Relative AIC value (equation 5) for each model (equation 4) used to
represent the numerical data obtained for the concentration—mass relationship,
with respect to the best-fitting model, as a function of redshift. Every marker
style refers to a different fitting function, as indicated in the legend. Black
and teal points represent the results from the DMO and hydrodynamic runs,
respectively. The ancillary y-axis reports the factor by which every model is
less likely to minimize the information loss, with respect to the best-fitting
model. The broken power law is the preferred model for most redshifts. The
best-fitting parameters for each redshift are reported in Table 5.

performance of different models to match a given data set, and not
the absolute goodness of fit. In our case, the all power-law models are
empirical fits to best reproduce the data. On the contrary, the Ludlow
et al. (2016) model descends from first-principles considerations on
the mass collapse history of DM haloes. While we do tune its only free
parameter to best describe our data, the model itself is not designed to
specifically reproduce the concentration—mass relationship in a given
N-body simulation. In fact, it is remarkable that a semi-analytical
model relying on a single free parameter still provides an accurate
description of the numerical results over six orders of magnitude in
the halo mass.

We repeat our AIC analysis for all snapshots considered in this
work. The results can be seen in Fig. 7. Clearly, the broken power
law is the most favoured model at most redshifts, both in the DMO
and hydrodynamic simulations. For some snapshots, a pure power
law is preferred. The smoothly broken power law is never the
best model according to the AIC, meaning that adding one extra
parameter to smooth the transition between the two legs of the
relationship does not add any meaningful information, and is thus
better avoided. We exclude the Ludlow et al. (2016) model from
Fig. 7 because it performs consistently worse than the other fitting
functions considered, and showing its considerably higher AIC score
would compromise the legibility of the plot.

We report the best-fitting parameters for the model selected by the
AIC at each redshift in Table 5. The parameters of the broken power
law are defined as follows:

A (m)a if Maooe < Mier

Mier -

) Q)

c200c(M2ooc) =

A(25) i Moo > Mo
Miet 200c ref

so that A represents the concentration at the mass scale Mt
corresponding to the break of the power law, while o and S are
the slopes in the two legs of the relationship. The pure power law is
a special case of equation (6), where o = B. In this scenario, M
does not represent a break in the concentration—mass relationship, but
simply a pivot mass scale regulating the normalization. A convenient
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Table 5. Best-fitting parameters of the model for the concentration—mass relationship in the DMO and hydrodynamic simulations, as determined by the

AIC (see Fig. 7).

z DMO simulations Hydrodynamic simulations

A lOg(Mref/MO) o B A lOg(Mref/MQ) o B
0 6.3+0.2 1371 £0.02  —0.083+£0.002 —0.13 +0.01 10.74+0.2 11.474 +£0.009 —0.003 +£0.009 —0.124 + 0.004
0.5 69403 1252 4£0.04  —0.071 £0.002 —0.096 + 0.004 9.1+02 11.467 +0.007  0.004 £0.008 —0.118 & 0.004
1.0 6.4+0.2 11.974£0.02  —0.063+£0.002 —0.089 % 0.002 7.84+0.2 11.54 +£0.01 0.01£0.01  —0.120 + 0.005
1.5 5.84+0.4 11.6+0.2 —0.061 +0.004 —0.075 £ 0.003 6.8+0.2 11.59 £ 0.01 0.014+0.01  —0.125 + 0.006
2.0°  4.5840.01 1012 p~1 —0.064 £ 0.001 - 6.074+0.08  11.7014+0.005 0.015+0.006 —0.124 %+ 0.006
30 3974008 11.70+£0.04  —0.055+0.004 —0.030+0.005 4.99+0.06 11.987+0.006 —0.016=+0.004 —0.074 % 0.009
40° 3494004 11.874£0.02  —0.039 £ 0.003 0.01 £ 0.01 4.63 +0.04 1012 p! 0.030 + 0.003 -
5.0°  3.31+0.03 102 p~1 —0.018 £ 0.002 - 3.75+£0.06 10.81 £0.01  0.032+0.004  0.081 % 0.005
7.0°  3.40 £0.09 1012 p~! 0.008 £ 0.005 - 5.0£0.3 1012 ! 0.09 £ 0.01 -

2For at least one group of simulations (i.e. DMO or hydrodynamical), the best-fitting model at these redshifts is a pure power law, therefore there are only
two free parameters. The power law is normalized at a mass scale of 1012 =1 M.

Notes. The models considered are defined in equation (6). The parameter A represents the normalization of the relationship at the halo mass scale M,.r; for
a pure power law, we fixed such pivot scale to 1012 1~! M, therefore it is not a free parameter of the model. The parameters and represent the slopes of
the relationship for M < Mi.r and M > M.s, respectively. In the case of a pure power law, there is no parameter.

choice for such scale Mys = 10'> h~! M, since haloes of this mass
are probed by all simulations considered in this work.

We verified that the best-fitting model at each snapshot considered
typically matches the measured concentration—mass relationship
within 0.01—0.04dex (~2-10 percent), with higher accuracies
generally corresponding to lower masses. On the other hand, the
spread of the concentration—mass relationship around the mean
(see Fig. 5) ranges between 0.12 and 0.23 dex (~32-70 per cent),
depending on halo mass and redshift. Thus, any error between the
measured concentrations and the predictions of our fit is much lower
than the scatter in the concentration—mass relationship.

One might also be concerned about the fact that we combine data
sets from simulations with different mass resolutions in order to
determine the best-fitting parameters of our models. Indeed, there
appears to be an offset of up to ~ 10 per cent in the normalization
of the concentration—mass relationship when moving to a simulation
with a different mass resolution (see Fig. 6). This is in qualitative
and quantitative agreement with an analogous recent study on the
concentration—mass relationship in the IllustrisSTNG simulations
(Anbajagane et al. 2022). In Appendix A, we explicitly verify
that improving the mass resolution by a factor of 8 for every
simulation considered typically introduces a variation between 2 and
10 percent (0.01—0.04 dex) in the normalization of the present-day
concentration—mass relationship, with the larger relative differences
typically impacting higher halo masses. At higher redshift (e.g.
z = 4), the differences shrink down to 3—6 per cent (0.01—0.03 dex).
The impact of the numerical resolution on concentration is therefore
comparable to, or smaller than, the accuracy of our fit. We thus
conclude that our fit is robust.

3.3.3 Evolution of the concentration—mass relationship

Having determined the best models representing the concentration—
mass relationship in all snapshots, we can now discuss its evolution
in the redshift range 0 < z < 7.

We begin with the DMO simulations, showing their concentration—
mass relationships in the left panel of Fig. 8. For each snapshot, we
perform exactly the same analysis as described in Section 3.3.1. The
error bars represent the statistical error on the concentration from
fitting the average density profile in each mass bin. As explained
in Section 3.3.2, this generally underestimates the error on the
concentration in the higher mass bin. We verified that the error due

to cosmic variance or bootstrapping increases the uncertainty on the
concentration to an extent comparable to what we found for z = 0
(Fig. 6). We opt for not including such errors in Fig. 6 to aid the
readability of the plot.

At higher redshift, the normalization of the concentration—mass
relationship decreases. This means that DM haloes of a given mass
are less concentrated at higher redshift, since DM had less time to
accrete on to haloes and cause further collapse due to self-gravity.
The slope of the concentration—mass relationship is less steep at
earlier times, and almost flat (if not mildly increasing) at z = 7. This
suggests that DM haloes tend to start off with the same concentration.
As time goes by, they collapse under their own gravity. Halo mergers
can then generate more massive structures, which will virialize again
after a certain relaxation time. Recalling that we are only considering
relaxed haloes, it is apparent that higher mass haloes have had less
time to attract DM towards their inner regions since their last major
merger. Therefore, higher mass haloes are less concentrated, and
introduce the distinct decline in the concentration—mass relationship.

In the right panel of Fig. 8, we plot the same data as in the left
panel, but as a function of the peak height rather than the halo
mass. The peak height is defined as d./c(Mac, z), Where 8. =
1.686 represents the critical density fluctuation for collapse, linearly
extrapolated (Peebles ; Percival 2005), and o (Myy., z) denotes the
fractional variance of matter density fluctuations in linear theory,
averaged over spheres enclosing a mass M,go.. The mapping between
halo mass and peak height is therefore cosmology dependent, and
represents an important quantity in the study of structure formation
and evolution. We perform the mapping using the fitting formulae
provided by Ludlow et al. (2016).

We then show the best-fitting (broken) power-law models to the
concentration—mass relationships at redshift z > 0.5, as given by the
parameters listed in Table 5. Such relationships are plotted with the
thin solid lines. In the right panel, the fitting functions are obtained
by combining the peak height-mass correspondence provided by
Ludlow et al. (2016) with equation (6). At all redshifts, the best-
fitting models do an excellent job of representing the concentration
of DM haloes, both as a function of mass and of peak height.

We repeat the analysis on the hydrodynamic runs, and report
the results in Fig. 9. As in the DMO run, the normalization
of the relationship decreases at higher redshift. Above a mass
scale of My ~ 10''°—10'> My, more massive haloes are less
concentrated. This is again in line with what we observed for the
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Figure 8. Left panel: concentration—mass relationship for relaxed haloes in the DMO simulations. Data points represent the concentration of the stacked DM
density profiles of haloes with total mass delimited with the horizontal error bars. The data points are plotted at the median mass within each bin. The vertical
error bars show the statistical error deriving from the NFW fit to the stacked profiles. Data points are colour coded according to the redshift considered, as
indicated in the colour bar, while their shape refers to the different simulations, as reported in the legend inside the right panel. The solid lines represent the
concentration—mass relationship given by best-fitting model at each redshift according to the AIC (see Fig. 7 and Table 5). Right panel: same as the left panel,
except that the x-axis reports the peak height instead of the total halo mass. The broken power-law or pure power-law models are excellent fits to the data at all
redshifts, and across the full halo mass range considered.
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Figure 9. As in Fig. 8, but for the hydrodynamic simulations. The solid lines represent the best-fitting functions presented in this work (see Table 5) The
broken power-law or pure power-law models are excellent fits to the concentration—mass relationship, but fall short of capturing the concentration-peak height
relationship at lower masses.
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DMO simulations. But for lower masses, the concentration—mass
relationship is essentially flat, at least for z < 3. Below ~ 101> Mg,
the gravitational collapse is counteracted by the outward pressure
introduced by baryon-driven feedback effects, primarily as stellar
winds and supernova explosions (Anbajagane et al. 2022). These
feedback processes, together with AGN-driven winds and jets, are
present also at higher halo masses, but are overall less effective. As
shown by Anbajagane et al. (2022), the energy loss due to gas cooling
in the TNG-300 simulation is larger than the energy output due to the
kinetic AGN feedback mode in cluster-size haloes (M > 10 Mg).
The increased relative efficiency of cooling, together with the deeper
gravitational potential wells, enables the continued collapse of DM
towards the inner regions of the halo. As a result, the relative
difference between the concentration in the hydrodynamic and DMO
runs is smaller at the higher halo mass end (Anbajagane et al.
2022).

At z > 3, the concentration—mass relationship does not simply
become flat, as it was the case for the DMO runs. In the hydrodynamic
simulations, the slope of the relationship is reversed at such high
redshifts: More massive haloes are now more concentrated. This
follows from enhanced adiabatic contraction and subsequent star
formation occurring in the cores of massive haloes, which further
drives additional DM towards the centre, thereby increasing the
concentration. We will support this interpretation in Section 4, where
we will show DM, gas and stellar density profiles within haloes of
different mass and at different redshift.

The dependence of the concentration on the peak height exhibits
similar differences with respect to the DMO run, as a consequence
of the different trend of the concentration—mass relationship. We
show the best-fits to the data in both panels of Fig. 9 obtained
from our empirical best-fitting models. The formalism successfully
captures the main trends observed in the hydrodynamic simulations
for the concentration—mass relationship. However, this is not the
case for the concentration-peak height relationship. This is not
surprising, because the correspondence between halo mass and
peak height provided by Ludlow et al. (2016) was calibrated on
DMO simulations, and baryons can break a one-to-one relationship
between total halo mass and peak height. This effect should become
more important at lower redshift, when more feedback channels
are active and contribute to the scatter in the hydrodynamic-to-
DMO halo mass ratio. Indeed, we observe a better match to
our numerical concentration-peak height relationship at higher
redshift.

To summarize, we have found a set of formulae that accurately
captures the modification of the concentration—mass relationship
measured from DMO simulations in the presence of baryonic
physics. We have also shown that the DM distribution within haloes
is well represented by an NFW profile both in the DMO and
hydrodynamic runs. The combination of these results means that
our fitting formulae can be used to predict the DM density profiles
of haloes over a wide halo mass and redshift range in the context of
a realistic galaxy formation model. This provides a way to correct
the results of DMO simulations accurately, making it possible to use
them to compare and interpret observational data. As an example,
lensing and, in particular, galaxy—galaxy lensing (Tyson et al. 1984;
Brainerd, Blandford & Smail 1996; dell’ Antonio & Tyson 1996),
is sensitive to the overall matter distribution, where it is important
to characterize the response of the DM within and around haloes
in the presence of galaxy formation processes like feedback; this
work provides a way to account for this effect inside haloes to first
order.
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4 DISCUSSION

4.1 Astrophysical implications

In Section 3, we showed how the concentration—mass relationship
varies in our simulations when switching from DMO to full hydro-
dynamic runs. We will now interpret our findings within the context
of galaxy formation, focusing on the effects of baryons.

The main conclusion of our analysis is that including baryons
in our cosmological simulations flattens the concentration—mass
relationship at Mag. < 10" My. This is not simply caused by
numerical artefacts, because we verified that our simulations, which
span a wide range of box sizes and mass resolutions, provide
consistent results over six orders of magnitude in halo mass (Figs 5—
9; see also Appendix A). The effects that we are seeing are therefore a
consequence of baryon-driven physics. To investigate this further, we
now simultaneously explore the distribution of the gaseous, stellar,
and DM components within haloes.

For consistency with our previous analysis, we match haloes across
the DMO and hydrodynamic runs and extract the density profiles
as explained in Section 3. We show their redshift evolution, for
different halo mass bins, in Fig. 10. At z > 4, the density profiles
of the gaseous and stellar components are steeper in haloes with
mass My = 10'> Mg, especially within 10 percent of the virial
radius. This is a consequence of the stronger gravitational potential
due to the higher mass, which facilitates gas accretion. The accreted
gas receives a smaller amount of energy from AGN-driven outflows
at z > 4, because the black hole accretion rate declines steeply
with increasing redshift before z = 4 in the AGN feedback model
implemented in the IllustrisTNG simulation (Weinberger et al. 2017).
Thus, at z > 4, the collapsed gas cools down efficiently via adiabatic
contraction, and this favours the production of stars, which are the
dominant component within 2 per cent of the virial radius for higher
mass haloes at z > 4. The combined abundance of gas and stars in the
innermost regions of such haloes further deepens the gravitational
potential well, thus attracting DM further towards the centre. It
then follows that haloes are more concentrated in the hydrodynamic
simulations than in their DMO counterparts.

As we can see in Fig. 10, for My, > 10> Mg and z > 4, the DM
density profiles in the hydrodynamic simulations indeed appear to
be more cuspy than in their DMO counterparts. This is true also
at z = 2, although the effect is less conspicuous than at higher
redshift. For Mag. & 10'? Mg, we can see that the scale radius is
still smaller for the hydrodynamic run, but there is no significant
difference with respect to the DMO variant at higher masses. This
reflects the fact that, after peaking at z &~ 4, the AGN energy output
in the TNG galaxy formation model exhibits only a mild decrease
until z = 0 (Weinberger et al. 2017). Its sustained effect therefore
counteracts gas cooling and star formation, hence preventing the
halo from concentrating further.

Moving to lower halo masses, the density profiles of all compo-
nents are flattened within ~ 10 per cent of the virial radius even at
z = 7. This is especially evident for May. =~ 10°° Mg In this case,
the potential well set by the DM halo is shallower and, consequently,
gas does not condense as efficiently as in higher mass haloes. The
result of this is that the concentration in the DMO and hydrodynamic
variants are similar, with the latter being slightly smaller.

The different distribution of the gaseous and stellar components
within haloes of different mass at z = 7 then explains why the
concentration—mass relationship is monotonically increasing in the
hydrodynamic simulations, while the concentration exhibits a weaker
dependence on the halo mass in the DMO runs. Instead, the redshift-
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Figure 10. Redshift evolution of density profiles of haloes in all simulations considered. Every row corresponds to a different total halo mass bin in the DMO
run, as indicated within the left-most panel. Each column corresponds to a different redshift, as reported above the top panels. The black points represent the
comoving density profiles in the DMO run. The teal, blue, and purple data sets show the comoving density profiles of DM, gas, and stars in the matched haloes
in the hydrodynamic runs, respectively. The vertical dashed teal and black lines mark the scale radius for the DM density profiles in the hydrodynamic and DMO
runs, respectively. At higher redshift and for higher mass haloes, the gas and stellar density profiles are steeper. Their normalization does not appreciably change
towards redshift, while the DM component grows more strikingly by redshift z = 0. The observed trends explain the redshift-evolution of the concentration—mass
relationship in the DMO and hydrodynamic simulations (see Section 4.1 for details).
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evolution of the concentration is qualitatively the same regardless of
the halo mass. At later times, all haloes tend to deplete their baryons
due to stellar or AGN feedback processes. Therefore, they become
progressively more DM dominated. This can be clearly seen in Fig.
10: At z = 0, the relative difference between the DM profiles and
the baryonic components (particularly gas) is larger than at earlier
redshift. Thus, the effects of baryons on the internal structure of the
DM halo is more ‘diluted’ at later times. The first major consequence
is that DM haloes at a fixed mass become more concentrated, as the
excess of DM favours further collapse towards the centre of the halo.
Secondly, the concentration in the hydrodynamic and DMO runs are
generally less discrepant at low redshift: Indeed, the respective scale
radii are much closer, at least for My > 10'! M.

In conclusion, the evolution of the density profiles of DM and
baryons within haloes of different mass is consistent with the qual-
itative behaviour of the concentration—mass—redshift relationship in
both the DMO and hydrodynamic simulations considered in this
work.

4.2 Comparison with previous work

In this section, we compare our main results with the findings of
previous related works.

We begin with the halo mass ratio between the hydrodynamic and
DMO runs (Fig. 2). Once baryons are introduced in the simulations,
the total halo mass varies by only a few per cent for My > 10 Mg,
but diminishes at lower masses (see also Castro et al. 2021). Atz =0
and for M. &~ 10°° M, the total mass drops by ~ 20 per cent with
respect to the DMO run. We already mentioned in Section 3.1 that
these results are consistent with previous work with the [llustrisTNG
simulation (Springel et al. 2018). Interestingly, they are quantitatively
in broad agreement with analogous works in the literature that adopt
other simulations as well. For example, in the GIMIC (Crain et al.
2009) and EAGLE (Schaye et al. 2015) simulations, the mass de-
creases by ~ 25—30 per cent at Mg, < 10!° Mg when baryons are
included, while it remains essentially unchanged above ~ 103 Mg
(Sawala et al. 2013; Schaller et al. 2015). However, the trend of
the mass ratio is qualitatively different, depending on the simulation
considered. In the GIMIC simulation, the hydrodrodynamic-to-DMO
mass ratio is monotonically increasing with halo mass (Sawala
et al. 2013), while in EAGLE it resembles a smoothed multiple-step
function. By contrast, we find sharp transitions between increasing
and decreasing trends around two specific mass scales (~ 10" and
~ 108 Mp).

The diverse trends observed in the literature suggest that not only
the presence of baryons, but even the exact modelling of baryon-
driven astrophysics in different cosmological simulations is crucial
in determining the matter content of haloes at different mass scales.
This was clearly shown, for example, in the Simba (Davé et al.
2019) suite of cosmological simulations, which encompasses five
different hydrodynamic runs with varying feedback prescriptions.
Atz = 0and ~ 10'> M, AGN feedback introduces variations of up
to ~ 25 per cent in the total halo mass with respect to a run without
any feedback prescription, either stellar or black hole driven (Sorini
et al. 2022). This is of the same order of the relative differences that
we observe in this work. Thus, whenever trying to model baryonic
effects on top of the results of DMO simulations, one should always
bear in mind the strong model-dependence of even the most basic
quantities, such as the total halo mass.

Similar considerations apply to the concentration—mass relation-
ship. For example, Duffy et al. (2010) showed that the predictions
of the concentration of haloes of a given mass in simulations with
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different supernova and AGN feedback prescriptions can vary up to
40 per cent. The internal structure of DM haloes is then dependent
on the complex interplay of cosmological structure formation and
astrophysical processes (e.g. Chua et al. 2017, 2019, 2022; Arora
et al. 2024; but see also Waterval et al. 2022). It is thus no surprise
that different groups found consistently different variations in the
concentration—mass relationship when comparing hydrodynamic
cosmological simulations to their DMO counterparts (e.g. Schaller
et al. 2015; Beltz-Mohrmann & Berlind 2021). A comprehensive
analysis of the imprint of baryonic physics on the concentration—
mass relationship was recently undertaken by Shao et al. (2023),
using the large suite of CAMELS cosmological simulations. The
CAMELS project encapsulates the main features of feedback models
of widespread state-of-the-art simulations (EAGLE, Simba and
IustrisTNG) in four parameters that represent the ‘intensity’ of
different feedback modes. This facilitates the comparison across
boxes that follow different prescriptions for baryonic astrophysics.
Shao et al. (2023) showed that the concentration—mass relationship
at z = 0 deviates from a power law when including baryons. In both
Simba and IllustrisTNG type of models, the relationship appears to
be decreasing until Mago. < 10'3 M, with an inflection point around
Moy < 102 M. The IllustrisTNG models exhibit a plateau in the
range 10" < Myp./Mp < 103, which is perfectly in line with our
findings. The extension to lower halo masses present in our work
confirms the significance of the flattening of the concentration—mass
relationship in the IllustrisTNG galaxy formation model at the lower
mass end.

The flattening presented in this work matches the trends ob-
served for the TNG-50, TNG-100, and TNG-300 simulations by
Anbajagane et al. (2022). They find that this feature appears at
Mg = 105 Mg, and extends down to Mago. =~ 10° Mg. In this
range, the concentration remains steadily around cypo. =~ 10, in
line with our results. Anbajagane et al. (2022) also find that the
concentration varies by up to ~ 25 per cent with respect to the
DMO versions of the IllustrisTNG runs considered. At intermediate
masses, around the point of flattening of the concentration—mass
relationship, the concentration increases in the hydrodynamic runs
with respect to the DMO variants, but it generally decreases at
the lower and higher mass ends. The results of both Anbajagane
et al. (2022) and our work are qualitatively in agreement with the
earlier work by Lovell et al. (2018), who also found a flattening
in the concentration-mass relationship below Mg, & 10'5 Mg
(although they used a proxy for the concentration rather than cypc;
see their fig. 5). The predecessor Illustris simulation also exhibits
a break in the concentration—mass relationship, but it occurs at a
slightly higher halo mass (M. ~ 10'>! My). Below this scale,
the concentration mildly increases with the halo mass rather than
keeping constant (Chua et al. 2017). The qualitative differences in
the relationship between Illustris and IllustrisTNG reflects the ad-
justments in the underlying feedback models. It is then expected that
other hydrodynamic simulations, with completely different feedback
schemes, would result in significantly more different concentration—
mass relationships (e.g. Schaller et al. 2015).

Comparing different DMO rather than hydrodynamic simulations
is more straightforward, as in the absence of baryons, structure
formation is driven exclusively by gravity and the expansion of the
Universe. The concentration—mass relationship is therefore set solely
by the cosmological model. A large body of literature has shown that
the concentration—mass relationship in cold DM N-body simulations
is monotonically decreasing at 7 = 0 (e.g. Duffy et al. 2008; Dutton &
Maccio 2014; Schaller et al. 2015; Beltz-Mohrmann & Berlind
2021; Ishiyama et al. 2021); this is consistent with our findings
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Table 6. Power-law fit to the concentration—mass relationship in the DMO
simulations considered in this work.

z Model A o
This work 8.434+0.03 —0.088 +0.001
TlustrisTNG-Dark 9.977 —0.122 + 0.005
Tustris-Dark 8.846 —0.125 +0.004
EAGLE-DMO 8.23+0.16 —0.099 £+ 0.003
Dutton & Maccio (2014) 8.09 £+ 0.02 —0.101 £ 0.001
0.5 This work 7.14 +£0.02 —0.079 £ 0.001
Dutton & Maccio (2014) 6.56 +0.02 —0.086 £+ 0.001
1.0 This work 6.02 +0.02 —0.075 £ 0.001
Dutton & Maccio (2014) 5.38+£0.01 —0.073 £ 0.001
2.0 This work 4.59 £0.01 —0.063 +0.001
Dutton & Maccio (2014) 4.121 £0.009 —0.021 £ 0.002
3.0 This work 3.86 +0.02 —0.045 +£0.002
Dutton & Maccio (2014) 3.53+0.03 —0.021 +0.002
4.0 This work 3.50 +0.02 —0.030 £ 0.003
Dutton & Maccio (2014) 3.39+0.03 0.000 £ 0.003
5.0 This work 3.32+0.02 —0.016 +0.002
Dutton & Maccio (2014) 3.49+0.05 0.027 £ 0005
7.0 This work 3.41 +£0.07 0.009 + 0.005

Notes. The definition of the parameters can be deduced from equation (6). We
also report the best-fitting parameters to the IllustrisTNG-Dark and Illustris-
Dark simulations found by Beltz-Mohrmann & Berlind (2021), and to the
EAGLE-DMO simulation Schaller et al. (2015), re-normalized to the Hubble
parameter & = 0.6774, and pivot mass scale Myt = 10'>h~! Mg that we
have adopted throughout this work.

here. However, there are quantitative differences regarding the slope
and normalization of the best-fitting power law to the present-day
concentration—mass relationship. Although we find preference for
a broken power law, we also perform a pure power-law fit to our
numerical results in order to facilitate the comparison with previous
work. We list the best-fitting values of the normalization and slope
in Table 6, following the same definition of the parameters as in
equation (6). In the same table, we also report the values obtained in
other works. Where a different choice for the pivot mass scale M.¢
was made, we have corrected the normalization A to match our own
value of 102 1! M,

Beltz-Mohrmann & Berlind (2021) found similar slopes for the
concentration—mass relationship in the TNG-100-Dark & TNG-300-
Dark simulations and their predecessor Illustris-Dark. However,
the normalization of the relationship in the IlustrisTNG runs is
~ 12 percent larger, presumably following from the slightly
different cosmological model. Compared to our results, Beltz-
Mohrmann & Berlind (2021) found a higher normalization and
a steeper slope for the concentration—mass relationship in the
IustrisTNG-Dark simulations. This may seem somewhat surprising,
given that we adopted the same simulations. However, there are a few
crucial differences with respect to our analysis. First of all, Beltz-
Mohrmann & Berlind (2021) match haloes between hydrodynamic
and DMO runs via abundance matching rather than particle IDs.
Secondly, we include also the TNG-50-Dark run in our work, which
allowed us to extend the analysis to lower halo masses with respect to
Beltz-Mohrmann & Berlind (2021). This may impact the parameters
of the overall concentration—mass relationship. Finally, we consider
only relaxed haloes, whereas Beltz-Mohrmann & Berlind (2021)
included all haloes above 10'°2~! M. We verified that if we do
not restrict ourselves to relaxed haloes, our concentration—mass rela-
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tionship resembles more closely the findings in Beltz-Mohrmann &
Berlind (2021). This comparison confirms that different techniques
for extracting the concentration—mass relationship can yield statisti-
cally significant differences in the parameters of empirical best-fitting
functions. It is therefore important to always bear in mind the details
of the underlying analysis when comparing the results from different
simulations.

Our halo selection criteria and estimation of the mean
concentration—mass relationship match those adopted by Schaller
et al. (2015) in an analogous work with the EAGLE simulations. We
may therefore expect a closer agreement with their results for the
DMO run. However, we must first recall that equation (6) depends
explicitly on the Hubble parameter through the pivot mass scale.
Additionally, the Hubble parameter is encapsulated in the definition
of the concentration through the virial radius (c00c = ¥s/r200.). We
thus correct the normalization parameter found by Schaller et al.
(2015) to match our mass pivot scale and cosmology (the same
was done for the Illustris-Dark normalization reported in Table 6).
Upon such corrections, our normalization parameter is compatible
within one standard deviation with the EAGLE results. We find a
less steep slope, which is in slight tension with Schaller et al. (2015)
results. Nevertheless, there is still agreement within three standard
deviations. This is reassuring, given the complete independence of
the two works.

Both our results and the EAGLE predictions are slightly in-
consistent with Dutton & Maccio (2014), who utilized a set of
DMO simulations with different box sizes and resolutions (Springel
et al. 2005; Maccio et al. 2008; Klypin et al. 2011) to probe the
concentration—mass relationship in the mass range ~ 10'°—10'> M.
They adopted the cosmological parameters from the Planck Collab-
oration XVI (2014) data release, which are different from the Planck
Collaboration XIII (2016) cosmology embedded in the IllustrisTNG
and MillenniumTNG simulations. Even if we correct for the different
Hubble parameter, as we did for the EAGLE DMO simulation, the
discrepancies persist at a statistically significant level. But once
again, the details of the analysis undertaken in Dutton & Maccio
(2014) differ from both Schaller et al. (2015) and our work. Dutton &
Maccio (2014) considered haloes with at least 500 particles rather
than the more restrictive 5000 threshold imposed in Schaller et al.
(2015) and this work, adopted a slightly different criterion for the
selection of relaxed haloes, and a finer binning over a wider range
of radial distance when performing the NFW fit. We believe that
such differences may introduce systematics that could account for
the discrepancies observed.

Dutton & Maccio (2014) extend their analysis up to z = 5, and
find that the normalization of the concentration—mass relationship
decreases at higher redshift. Furthermore, the slope of the rela-
tionship becomes less steep, and eventually changes sign above
z = 4. Qualitatively, our power-law fits exhibit the same pattern.
However, in our case, the turning point from an increasing to
a decreasing trend of the halo concentration with mass appears
at higher redshift, z> 5. The slope that we measure at z =7 is
positive, albeit consistent with a flat relationship within less than
two standard deviations. These features agree with the findings from
the Uchuu N-body simulations (Ishiyama et al. 2021), which also
predict a decreasing concentration—mass relationship up to z = 5.2,
and a mildly increasing one at z = 7. The authors do not provide
a power-law fit, but rather utilize a semi-analytical model for the
concentration—mass relationship whereby DM haloes with low peak
height undergo rapid early growth with a universal profile, followed
by a slow-growth phase where the halo remains approximately
static in physical coordinates (Diemer & Joyce 2019). Ishiyama
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et al. (2021) showed that this model successfully reproduces their
numerical results within 5 per cent.

Dutton & Maccido (2014) tested several analytical models for
the concentration—mass relationship against their numerical results
(Navarro et al. 1997; Bullock et al. 2001; Gao et al. 2008; Zhao et al.
2009; Prada et al. 2012), and concluded that their power-law fits pro-
vided a more accurate agreement with the simulated concentration—
mass—redshift relationship. In our work, we verified that a broken
power law performs better at most redshifts below z = 4, according
to the AIC. We find that a pure power law is acceptable also for
the hydrodynamic simulations at z > 4, but otherwise the broken
power law is necessary to accurately represent the flattening of the
concentration at the lower mass end. In general, the qualitatively
different behaviour of the concentration—-mass relationship across
different hydrodynamic simulations (e.g. Schaller et al. 2015; Beltz-
Mohrmann & Berlind 2021; Shao et al. 2023; Shao & Anbajagane
2024; Ragagnin et al. 2019, 2021) underscores how the structure of
DM haloes is sensitive to the details of the galaxy formation model.

5 CONCLUSIONS AND PERSPECTIVES

In this study, we investigated the impact of baryons on the
concentration—mass relationship of DM haloes in the state-of-the-art
IustrisTNG and MillenniumTNG cosmological simulations, which
are equipped with almost identical galaxy formation models. Our
suite of simulations encompasses a broad range of volumes and mass
resolutions, allowing for a detailed examination of haloes across six
orders of magnitude in mass (Magoc ~ 10%5—10153 M), within the
redshift interval 0 < z < 7. To the best of our knowledge, these are
the widest halo mass and redshift intervals probed by cosmological
hydrodynamic simulations in a study on the concentration—mass
relationship to date. By comparing hydrodynamic runs to analogous
DMO variants, we focused on the impact of baryons on the total
mass of haloes and on the redshift evolution of the concentration—
mass relationship.
The main conclusions of our work are as follows:

(i) We matched haloes from the DMO runs with their counterparts
in the hydrodynamic simulations, and computed the relative variation
of their total mass. We find that, on average, the inclusion of
baryons in the simulations does not appreciably vary the halo mass
above My, = 10'* Mg, while the discrepancy can be as large as
~ 20 per cent for My ~ 10°> M, (Fig. 2). We fit the dependence
of the halo mass variation as a function of M. for all redshifts
considered with multiply broken power laws, and provide the best-
fitting parameters (Table 2).

(ii) The concentration of haloes in the DMO simulations at z = 0
decreases monotonically with mass. The inclusion of baryons flattens
the concentration—mass relationship below a mass scale of Mg ~
10> Mg, (Figs 5 and 6).

(iii) The steepness of the concentration—mass relationship de-
creases at higher redshift for the DMO simulations, becoming almost
flat at z = 7. In the hydrodynamic runs, the concentration increases
with mass at z > 4, and decreases thereafter, while always exhibiting
a plateau at lower masses (Figs 8 and 9).

(iv) The trends described above are caused by the increased
steepness and normalization of the gas and stellar density profiles
in the inner regions of more massive haloes at high redshifts. This
effect is largely due to the adiabatic contraction of infalling gas,
which promotes star formation. As a result, the higher baryonic
density facilitates further DM collapse into the central regions of the
DM halo, thereby increasing the concentration (Fig. 10).
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(v) We tested several empirical and first-principles analytical
models for the concentration—mass relationship in the redshift range
0 < z < 7 (Figs 6-9). We have shown, with a rigorous information
criterion test, that the best-fitting model for the results of the DMO
and hydrodynamic runs is a broken power law at most redshift
considered. A simple power law is generally sufficient to describe
the relationship at higher redshift (z = 4). Instead, the variation of
the concentration of DM haloes in the vast mass range considered
strongly disfavours the commonly utilized power-law fit at low
redshift. We provide the fitting parameters for our best-fitting models
(Tables 5) and for a simple power law in the DMO run, to aid
comparison with previous work (Table 6).

The fitting formulae that we provide for the concentration—mass
relationship in the DMO and hydrodynamic runs can be used to read-
ily model the density profiles of DM haloes, under the assumption
of an IllustrisTNG/MillenniumTNG galaxy formation model in the
Planck-18 cosmology. Thus, our results can improve analytical and
semi-analytical halo models, as well as the results of cosmological
DMO simulations, by incorporating well-motivated baryonic effects.
Practical applications include a more accurate interpretation of
observations that are sensitive to the internal structure of haloes,
such as galaxy—galaxy lensing.

Our results qualitatively agree with the literature. We did not
include haloes below Mjg. ~ 10°3 My, owing to stringent require-
ments on the minimum number of resolution elements that guarantees
numerical convergence of the density profiles. Adding zoom-in
simulations with an analogous galaxy formation model would enable
us to expand our study towards lower mass haloes, hence gaining
further insight on the impact of baryon-driven astrophysics on dwarf
galaxies. We plan to address this limitation in future work. Another
avenue for further development consists in applying our analysis to
other cosmological hydrodynamic simulations with different galaxy
formation models, which may predict significantly different effects
on the concentration—mass relationship. Such questions certainly
merit further exploration.
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APPENDIX A: CONVERGENCE TESTS

A1l Concentration—mass relationship

In Section 3.3, we showed that simulations with different box sizes
and mass resolutions give consistent results for the concentration—
mass relationship across overlapping mass ranges (Figs 5 and 8-9).
In this section, we explicitly test the convergence with respect to
the mass resolution for the IllustrisTNG runs. Since we used the
MillenniumTNG simulation mainly for extending the upper limit of
the halo mass range probed by hydrodynamic simulations, we will
test the box-size independence. This is indeed the relevant test for
ensuring that our results for clusters and superclusters are not affected
by poor statistics.

We show the results of our convergence tests in Fig. Al, with
left and right panels referring to the DMO and hydrodynamic runs,
respectively. We focus on the concentration—mass relationship at
present time (z = 0), cosmic noon (z = 2), and a suitably high
redshift (z =4). Every set of simulations is represented with a
different colour, as represented in the legend beneath each column
of panels. The solid lines are reserved for the fiducial run of each
simulation, i.e. TNG-50, TNG-100, TNG-300, MTNG-740, and their
respective DMO variants. Other line styles refer to either lower mass-
resolution versions of the IllustrisTNG boxes, or smaller volumes of
the MillenniumTNG series. The details of every simulation appearing
in Fig. A1 are reported in Table 1. The shaded regions represent the
maximum among the statistical error on the concentration arising
from the fit, cosmic variance, and the bootstrap error, as explained in
Section 3.3.1. To make the figure more legible, we plot such regions
only for the fiducial simulations, although we verified that there is a
comparable scatter for the other runs.
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For the IllustrisTNG simulations, the runs with intermediate
resolutions match the results of the fiducial runs within the statistical
error. Thus, the predictions on the concentration—mass relationship
are robust. The convergence is higher for the DMO simulations, while
in the hydrodynamic simulations the intermediate-resolution runs can
exhibit relatively larger discrepancies. However, the scatter in the
hydrodynamic runs is also larger, and generally compatible with the
convergence level. Thus, the results obtained from the hydrodynamic
simulations are also robust.

Regarding the MillenniumTNG simulation, convergence with
respect to the box size is achieved at z = 0 for both the DMO and
hydrodynamic runs, except for the highest mass haloes. This is a
reflection of the lower statistics in the higher mass bins following
from the cutoff in the halo mass function, and underscores the
importance of considering large boxes in order to accurately probe
the concentration of superclusters. Atz = 2, the intermediate-volume
run exhibits adequate convergence, but the smaller 93 cMpc box
grossly underestimates the concentration—mass relationship. The box
size is so limited that no halo satisfies our minimal mass cut of 5000
particles at z = 4, therefore this run does not appear in the bottom
panels.

We note that the concentrations in the DMO runs tends to be
slightly biased towards higher values when downgrading the mass
resolution of a simulation with a given box size by a factor of 8 from
its highest resolution run (e.g. from TNG-50-Dark to TNG-50-2-
Dark, etc.). In the case of the hydrodynamic runs, a lower resolution
tends to decrease the concentration of haloes below the mass scale
corresponding to a flattening of the relationship (Mage ~ 10! M),
and to increase concentrations at higher halo masses. In all cases,
the relative change in the normalization of the concentration—mass
relationship ranges between ~ 2 and ~ 10 per cent for lower mass
and higher ass haloes at z = 0, respectively. This is in line with earlier
results from an analogous study with the IllustrisTNG simulation by
Anbajagane et al. (2022). At higher redshift (e.g. z = 4), the relative
differences range between 3 and 6 per cent.

To summarize, we proved that we achieve good convergence
in the concentration—mass relationship with respect to both mass
resolution and volume. Any difference in the normalization of the
relationship due to mass resolution is sub-dominant with respect
to the typical accuracy of our best-fitting models (see also the
discussion in Section 3.3.2). Therefore, the main conclusions and
fitting formulae presented in this work are robust.

A2 Halo mass ratio

We now assess the convergence in the other fundamental quantity
that we analyse in this work, i.e. the halo mass ratio between matched
haloes across DMO runs and their hydrodynamic counterparts.

We therefore repeat the same analysis explained in Section 3.1 on
the same simulations considered in Fig. A1, and report the results in
Fig. A2. The conventions on line styles and colours are the same as
in Fig. Al. The shaded regions represent the error on the geometric
mean for the fiducial runs, but we verified that there is a comparable
level of scatter in all other runs.

The MillenniumTNG simulation exhibits good convergence with
respect to the box size at all redshifts. The MTNG-93 box size is again
too small to produce reliable results, and heavily underestimates
the mass ratio. In this run, only 15 haloes are compatible with our
selection criteria at z = 4, exhibiting a hydrodynamic-to-DMO mass
ratio between 0.6 and 0.7. We omit these results from the bottom
panel of Fig. A2 to make the plot more legible. Clearly, a good
statistics of haloes is crucial in order to obtain trustworthy estimates
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Figure Al. Left panels: convergence test for the concentration—mass relationship predicted by the DMO simulations, at three representative redshifts. For the
IustrisTNG simulations, every colour and line style represent a different box size and mass resolution, respectively, as indicated in the legend at the bottom. For
the MillenniumTNG simulation (purple lines), the different line styles correspond to different box sizes. The details of the run corresponding to each simulation
label reported in the legend can be found in Table 1. Right panels: as in the left panels, but for the hydrodynamic simulations. For both these runs and their DMO
variants, the concentration—mass relationship is well converged with respect to box size and mass resolution, at all redshifts considered.

of the hydrodynamic-to-DMO mass ratio. From Fig. A2, we conclude
that this is certainly the case for the MTNG-740 run and its DMO
counterpart.

The intermediate-resolution IllustrisTNG runs are generally in
agreement with the respective fiducial simulations, within the sta-
tistical error. The inversions of trend of the hydrodynamic-to-DMO
mass ratio consistently occur around the same mass scales (~ 10'!3,
~ 10'3,and ~ 10'* M,,) regardless of the mass resolution. Thus, such
mass scales have physical significance, and are not merely resulting
from numerical artefacts. However, the overall convergence is not

MNRAS 536, 728751 (2025)

as good as in the case of the concentration—mass relationship. At
the lower mass end, the hydrodynamic-to-DMO mass ratio tends to
become more sensitive to the mass resolution, especially at higher
redshift. This is not unexpected, since haloes of lower mass are
represented with a smaller number of particles, and hence more
heavily affected by mass resolution.

It is important to note that the slower convergence in mass
resolution does not imply that our results are not trustworthy. Indeed,
we provided the best-fitting functions to the hydrodynamic-to-DMO
mass ratio by combining the data from all fiducial simulations
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Figure A2. Convergence tests for the hydrodynamic-to-DMO halo mass
ratio, as shown in Fig. 2, for three representative redshifts. The details of
the run corresponding to each simulation label reported in the legend can be
found in Table 1. The hydrodynamic-to-DMO halo mass ratio is generally
converged in the mass range probed by a given set of simulations, but high
resolution is crucial to evaluate the ratio at the lowest mass end.
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together. This means that we can probe the higher mass haloes with
good statistics, thanks to the larger boxes, and at the same time
analyse the smaller haloes with the highest mass resolution provided
by the smaller simulations. Thus, we always utilize the best data
in each end of the expansive mass range that we consider, at every
redshift. This ensures the robustness of our results.
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