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Abstract—Edge computing improves the Internet of Vehicles
(IoV) by offloading heavy computations from in-vehicle devices
to high-capacity edge servers, typically roadside units (RSUs), to
ensure rapid response times for intensive and latency-sensitive
tasks. However, maintaining quality of service (QoS) remains
challenging in dense urban settings and remote areas with limited
infrastructure. To address this, we propose an SDN-driven model
for UAV-assisted vehicular edge computing (VEC), integrating
RSUs and UAVs to provide computing services and gather global
network data via an SDN controller. UAVs serve as adaptable
platforms for mobile edge computing (MEC), filling gaps left by
traditional MEC frameworks in areas with high vehicle density
or sparse network resources. An optimal offloading mechanism,
designed to minimize the age of information (AoI) while balancing
energy consumption and rental costs, is implemented through
a soft actor-critic (SAC)-based algorithm that jointly optimizes
UAV trajectory, user association, and offloading decisions. Exper-
imental results demonstrate the model’s superior performance,
achieving up to 87.2% energy savings in energy-limited settings
and a 50% reduction in time-sensitive scenarios, consistently
outperforming traditional strategies across various task sizes.

Index Terms—Vehicular edge computing, mobile edge comput-
ing, soft actor-critic, computation offloading, unmanned aerial
vehicle, deep reinforcement learning, and age of information.

I. INTRODUCTION

The increasing adoption of IoV technology is propelling the
advancement of the Internet of Things (IoT) and the imple-
mentation of modern mobile applications requiring advanced
functionalities, such as autonomous navigation and unmanned
driving. However, the limited computing power and battery
life of vehicles adversely impact the quality of experience for
computation-intensive services run on these vehicles, as well
as their operational lifespan [1]. The mobile network topology
experiences serial communication links for high-speed data
transfer, with service requirements and varying QoS conditions
that change dynamically.
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Due to limited computing resources in these vehicles, they
cannot meet the high reliability and low processing latency
requirements of the applications mentioned above. Therefore
VEC has been considered as an effective means to solve
the problems [2]. By deploying some servers at the edge
of the radio access network, vehicle users can offload their
computing tasks to nearby RSUs to relieve the computation
burdens of corresponding cellular networks and provide users
with more efficient and reliable network services [3], [4].

MEC has emerged as a promising approach to leveraging
the benefits of heterogeneous IoT applications by bringing
diverse cloud resources, such as storage and computational
capabilities, closer to the user, particularly to vehicles. MEC
represents a paradigm shift, positioning cloud servers proxi-
mate to mobile network vehicles, thereby enhancing comput-
ing quality and vehicle battery life by offloading computation-
intensive processes [5], [6]. However, its application can be
challenging in environments with insufficient infrastructure,
such as those requiring disaster response, military operations,
emergency aid, or in remote areas like forests, mountains,
and wetlands. To overcome these limitations, unmanned aerial
vehicle (UAV)-enabled MEC has been proposed and developed
as an effective alternative [7].

Prior research [8] has predominantly focused on offloading
computation and communication tasks from vehicles, without
considering the computation time on UAVs. Yet, in practical
scenarios, the duration of computation on UAVs is a critical
factor that cannot be overlooked. Additionally, while existing
studies [9], [10] have explored partial or binary computational
tasks, the aspect of continuous task streaming over a fixed
period in the context of UAV-enabled MEC has not been
thoroughly investigated.

The study in [11] introduces an offloading scheme aimed at
reducing the combined cost of energy consumption and delay.
This approach integrates joint optimization of task offloading,
selection of MEC servers, power distribution, UAV path plan-
ning, and CPU frequency allocation. Likewise, [12] seeks to
minimize system energy use and latency by optimizing the
size of offloaded tasks at each node within a multi-hop edge
computing framework.

This work is driven by the utilisation of UAVs as MEC
servers in the wireless networking context. With this in mind,
the study introduces a system that combines computation
offloading and adaptive computing resource allocation, lever-
aging UAVs as edge servers to deliver edge computing services
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to vehicles. The primary aim is to minimise overall energy
consumption across all vehicles while ensuring efficient task
computation for each vehicle within a specified time frame.
This is achieved through a holistic approach that jointly tackles
queue-based offloading and resource allocation challenges.

The optimisation challenge described is highly complex due
to its non-convex and nonlinear characteristics, classifying it
as NP-hard. Cooperative evolution, pioneered by Potter and De
Jong [13], leverages parallelism through divide-and-conquer,
making it well-suited for distributed network settings. This
approach exhibits significant scalability, effectively tackling
high-dimensional and computationally intensive problems. Re-
cent studies by Chen et al. [14], Omidvar et al. [15], [16], and
Mei et al. [17] have introduced novel decomposition methods
that adaptively adjust groupings during optimisation. Despite
advancements, many methods still adhere to traditional co-
operative evolution frameworks, employing uniform strategies
like round-robin allocation across subcomponents such as UAV
processors for computation tasks.

Recent studies on UAV-assisted VEC systems highlight
the importance of computing result freshness for in-vehicle
applications requiring real-time processing. Traditional latency
metrics fall short of ensuring timely execution, which is critical
for accurate decision-making by vehicle users. For example,
if vehicle users generate or send tasks infrequently, even if the
systems perform well in terms of latency, they will not be able
to meet the stringent requirements of real-time computing ap-
plications. Therefore, AoI has been proposed [18] and widely
studied [19]–[21] as a useful performance metric to measure
information freshness. Moreover, all computing services are
currently paid, offloading computing tasks would incur to be
paid to an operator [22].

In this paper, we focus on reducing AoI, energy consump-
tion, and rental price for computation offloading in UAV-
assisted vehicular edge computing networks. Compared with
single airborne or ground-based VEC paradigms, our proposed
UAV-assisted VEC system offers more flexibility and com-
prehensive services. In contrast to existing approaches, we
propose a solution to address the VEC offloading problem with
Deep Reinforcement Learning (DRL) within the complexities
of a dynamic environment.

Our approach utilizes software-defined networking (SDN)
in a multi-layered data processing system for optimising
computational resources. The architecture includes three lay-
ers: the cloud center (CC) at the top, UAV-assisted Mobile
Edge Computing (U-MEC) servers in the middle, and mo-
bile devices at the bottom. Centralised control over network
elements ensures efficient management [5]. SDN partitions
and allocates network flows to reduce congestion and latency
[23]. It operates with a centralised controller making resource
allocation decisions for cloud connectivity [24].

Importantly, different from the single offloading optimi-
sation, a DRL-based approach usually focuses on a long-
term offloading performance which is key to the time-varying
dynamic systems. Moreover, unlike the traditional Markov
decision process (MDP)-based solutions, the DRL-based ap-
proaches can learn offloading strategies by directly interacting
with the environment without prior knowledge. Meanwhile,

deep neural networks (DNNs) in DRL have strong perceptual
computation capability and can support large state and action
spaces to fulfill an optimisation task.

Since state updates of vehicle tasks are random and accurate
information is not available a priori, it is impossible to
derive an accurate analytical solution to reduce AoI based on
theoretical knowledge such as queuing theory. Moreover, due
to the time-accumulative nature of AoI itself, UAV trajectory
control and task offloading decisions are tightly coupled,
which requires joint optimisation.

Traditional VEC approaches are primarily ground-based,
offering limited flexibility in high-mobility environments or
areas lacking stable infrastructure, which hinders effective
task management and service delivery in dynamic settings
like disaster response or remote regions. Optimizing task of-
floading and resource allocation in real-time across distributed
vehicular networks also remains a substantial challenge, as
conventional methods often fail to balance computational load
and energy efficiency, particularly in high-speed, multi-vehicle
interactions. For applications requiring immediate responses
and accurate decision-making, traditional latency metrics fall
short, as they do not account for “information freshness,” or
AoI, a critical measure for ensuring timely data availability in
autonomous vehicular systems. Despite its relevance, AoI is
still underexplored in real-time vehicular edge applications.
Addressing these limitations, this study proposes a UAV-
assisted VEC system that leverages a DRL approach within
the SDN framework. This design focuses on minimizing AoI,
energy consumption, and rental costs, offering a scalable,
adaptive solution tailored to the dynamic needs of multi-
vehicle networks.

Numerous research studies have employed UAVs for their
versatile deployment in wireless communication scenarios
[25]–[27]. Past studies have investigated the coverage and
connectivity in three-dimensional networks potential of UAVs
when integrated with cellular networks, where they serve as
aerial nodes. Additionally, UAV relaying has been identified
as a crucial application capable of enhancing communication
coverage effectively [28].

Although various strategies have been developed for deploy-
ing UAVs to support vehicles with different data requirements,
evolutionary-based approaches for simultaneous resource allo-
cation and deployment are still largely unexplored. We have
analysed stochastic task models within the MEC framework,
encompassing multiple servers and vehicles, to minimise the
long-term weighted average power consumption in the system
[29].

While similar issues have been addressed in ground-based
cellular networks, the management of mobility in MEC servers
has received relatively little attention. Previous studies on UAV
deployment in communication systems have primarily focused
on their applications as mobile relays [30] or airborne base
stations [31]. Moreover, while allocating combined communi-
cation and computing resources has been studied extensively
in multi-user scenarios with a single server MEC [32], these
efforts typically overlooked the computation offloading aspect.

Our work differentiates itself from previous studies [30],
[32] in several crucial ways. Firstly, we investigate scenarios
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where UAV-enabled MEC servers can simultaneously serve
multiple vehicles, unlike prior studies that generally assumed
the MEC server serves vehicles sequentially. Secondly, our
research highlights the cooperative optimisation of task ex-
ecution between UAVs and vehicles, marking a shift from
earlier studies that concentrated exclusively on one approach.
Thirdly, we introduce an innovative element by incorporating
prioritisation among different UAV processors when allocating
computing resources.

While UAVs have been widely studied for enhancing cover-
age and connectivity, their potential as dynamic edge servers
in VEC remains underexplored, as most research emphasizes
UAVs as relays or static nodes rather than active servers
that support simultaneous, multi-vehicle computational needs.
Current VEC frameworks often rely on sequential processing
or assume uniform task distribution strategies, which are
insufficient for the high-speed, complex requirements of UAV-
assisted VEC. This limitation highlights a need for adaptive
optimization approaches that prioritize task distribution based
on real-time UAV and vehicle demands. Existing offloading
strategies also typically employ static or round-robin meth-
ods, lacking adaptability to fluctuating network conditions.
Although some studies address partial task offloading, there is
limited integration of deep reinforcement learning (DRL) for
UAV-enabled VEC, despite DRL’s unique ability to optimize
offloading in dynamic environments without prior knowledge.
Unlike prior studies, this work investigates UAV-enabled MEC
servers designed to support multiple vehicles concurrently and
emphasizes cooperative optimization, marking a key advance-
ment over traditional single-server, static allocation models.
Against the above background, the primary contributions of
this study are summarised as follows:

1) We propose an SDN-based optimisation framework
for UAV-assisted VEC networks, integrating aerial and
ground edge computing services. Unlike conventional se-
tups, our approach allows partial computation offloading.
The SDN controller facilitates information exchange by
collecting global data and distributing it to vehicles. Task
buffers at edge nodes and vehicles accommodate the
randomness of task arrivals, with a first-come, first-served
protocol enabling computation across multiple time slots,
enhancing practicality.

2) We minimize AoI to ensure fresh computing results
while also minimizing energy consumption and rental
costs. The term ’Maximum AoI’ (MAoI) is defined as
the maximum age of information at any node in the
network, which captures information freshness effectively
and facilitates Deep Reinforcement Learning (DRL) op-
timization.

3) Given the dynamic nature of UAV-assisted VEC networks
and their complex interdependencies, we address the
challenge by transforming it into a reinforcement learning
problem based on SAC, which is designed using MDP.
Our proposed algorithm efficiently manages trajectory
control and offloading allocation in dynamic scenarios
with continuous action spaces. It utilises an advanced
reinforcement learning framework to enhance training

stability and prevent Q-value overestimation.
The paper is structured as follows: Section II reviews relevant
literature, contextualising the research within the broader field.
In Section III, the system model of the SDN-based UAV-
assisted VEC network is introduced, laying the foundation
for subsequent discussions. Section IV details the formula-
tion of the optimisation problem, providing a framework for
addressing the challenges at hand. The proposed algorithm is
presented in Section V, offering a novel approach to man-
aging trajectory control and offloading allocation. Section VI
presents simulation results, demonstrating the effectiveness of
the proposed method. Finally, Section VII concludes the paper,
by summarising key findings and suggesting avenues for future
research.

II. NETWORK MODEL

We introduce a UAV-enabled MEC system, illustrated in
Figure 1, where each UAV serves as a MEC server for the
vehicles within its coverage area. The system architecture
is organized into three layers: the cloud computing layer,
the edge computing layer, and the device layer. Within this
architecture, the control plane and data plane operate across
these layers. The control plane, responsible for managing
and coordinating resources, utilizes cellular communications,
while the data plane, handling data transmission, relies on
dedicated short-range communications.

The SDN controller comprises two primary modules. The
first module is responsible for task management, which in-
volves storing all mission data related to the vehicles and
determining whether tasks should be processed locally or
offloaded to the edge for computation. The second module is
the edge server module, which monitors the available memory,
CPU resources, and server load. The goal is to navigate the
UAV to the locations of the offloading from start point to
destination while offloading the vehicle’s computing tasks to
the MEC server for execution.

In the data plane, there are J deployed RSUs and a rotary-
wing UAV as edge nodes (ENs) to provide computing services
to I vehicles within their transmission range. In addition,
each EN is equipped with a computing server and an SDN
switch to communicate with the SDN controller. The ENs
servers, denoted by a set of RSUs J = {1, ..., j, ..., J},
and another set of ENs, where j = J + 1 indicates the edge
server as a UAV, J ′

= {1, ..., j, ..., J, J + 1} are uniformly
distributed across the area to cater to the ground vehicles in
the current investigation. Moreover, I ≜ {1, ..., i, ..., I} and
N ≜ {1, ..., n, ..., N} represent the sets of vehicles and time
slots, respectively. The set T = {1, ..., t, ..., T} is divided into
N time slots, each denoting the time required to accomplish
a task, where the duration of each slot is τ , thus T = τN .

The control plane primarily comprises the SDN controller
and the DRL agent, linked via a wired backhaul connection.
Global information, including vehicle coordinates and task
details, is collected by the SDN controller and transmitted to
the DRL agent. Subsequently, the DRL agent processes this
data to make offload decisions, which are then communicated
to each device through the controller. The UAV uses Frequency
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Figure 1: Network model.

Division Multiple Access (FDMA) to allocate bandwidth
evenly among vehicles, maintaining a constant altitude H > 0.
Positions of vehicles and UAVs as edge servers are described
in a 3D Cartesian coordinate system. UAV j is located at
uj=(Xj , Yj , H), and vehicle i is at mi=(xi, yi, 0). The UAV
plans resource allocation and position by predicting the 3D
coordinates of all vehicles in advance. The flight direction of
UAV is determined by the angle of θu(t) ∈ [0, 2π) and the
flight velocity of vu(t) ∈ [0, vmax].

Xj(t) = xu(t− 1) + τvu(t)cos(θu(t)),∀t ∈ τ, (1)

Yj(t) = yu(t− 1) + τvu(t)sin(θu(t)),∀t ∈ τ, (2)

The necessity to consider Line-of-sight (LoS) connections
between ground vehicles and the UAV arises due to the
UAV’s elevated position and low likelihood of dispersion [33].
The influence of LoS routes prevails over NLoS routes [30].
Therefore, the power gain of the channel from vehicle i to
UAV j is formulated based on previous research [33].

hji =
g0

∥uj −mi∥2
, i ∈ I (3)

where I represents the set of vehicles within the transmission
range of the deployed RSUs. Vehicle i divides its computa-
tional task at time slot t into two parts: ui ≥ 0 bits processed
locally and vi ≥ 0 bits offloaded to the MEC server via UAV.
Here, g0 represents the channel gain at 1 meter from vehicle
i, and ∥·∥ denotes the l2 norm.

For the communication links between the RSU and the
vehicles, the Rayleigh fading channel model is adopted. The
path loss between RSU j and vehicle i in the t-th slot can be
expressed (in dB) as

PLG2G
i,j (t) = 20 log

(
∥wi − wj(t)∥

4πf

)
+ ηRayleigh, (4)

where η is the Rayleigh fading coefficients of G2G channels
and f represents the frequency of the communication link.

According to the Shannon theorem, the achieved transmis-
sion rate between vehicle i and edge node j in time slot t can
be described as

Ri,j(t) = βi,j(t)WJ log2(1 + (
pn(t)hi,j(t)

σ2
i,j(t)

)) (5)

where WJ = WR(orWU ) is the total uplink bandwidth of
each RSU, pn(t) is the transmit power of vehicle i, σ2

i,j(t) =
βi,j(t)N0WM , I denotes the average power of the additive
white Gaussian noise (AWGN) at EN j, N0 is the AWGN
spectral density. hi,j(t) = 10(−PLi,j(t)/10), where PLi,j(t) =
PLG2G

i,j (t), i ∈ I (orPLi,j(t) = PLA2G
i,j (t), j = J + 1).

To prevent interference between vehicles and MEC servers
during data transmission, we employ the orthogonal frequency
division multiple access (OFDMA) technology for communi-
cations between the MEC servers and vehicles.

Each UAV allocates a portion of resources, denoted by αj,
to macro vehicles, while the remaining portion is allocated to
other vehicles of the UAV. The bandwidth demand of each
vehicle must not exceed the allocated bandwidth, represented
as (1 − αj). It must satisfy (1−αj)·Bj

|Ij| ≤ maxB̃j. To ensure
QoS, the admission control criterion [34] is employed and is
defined as follows:

max B̃j · |Ij |
Bj

≤ 1 (6)

FDMA enables the UAV to serve |Ij | vehicles simul-
taneously. UAVs act as edge servers, providing computing
services to vehicles with limited processing power and energy,
as illustrated in Figure 1. We assume UAVs have powerful
processors for handling complex tasks, supported by previous
studies [35].

In mobile topologies, high-speed data transfer and evolving
QoS requirements are crucial. Our objective is to optimise
the average vehicle rates while maintaining QoS through joint
computation offloading and resource allocation. This non-
convex mixed-integer problem is tackled using the SAC-Based
Optimization technique. The signal-to-noise ratio (SINR) [35],
γi, for vehicle i is expressed as:

γi = pg0/σ
2 (7)

The data rate achievable by vehicle i from UAV j, denoted
as ri, depends on the transmission power of the UAV (p),
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noise power (σ2), and the bandwidth allocated (W ) to vehicle
i. This is calculated using the Shannon capacity formula as
ri = Wlog2(1 + γi), where γi represents the signal-to-noise
ratio.

The connectivity between vehicle i and UAV j is denoted by
the variable ai,j , where ai,j = 0 indicates the task is processed
locally on the vehicle itself, and ai,j = 1 indicates it is
offloaded to UAV j. If ri represents the available resources for
vehicle i, and si denotes the required resources, then vehicle
i can connect to UAV j if ri ≥ ai,jSi.

UAV deployment aims to maximise vehicle rates and ensure
fair coverage with fixed resources {Si|∀ i}. Tasks are offloaded
to the UAV’s MEC server for processing, when the execution
is finished at the edge server, the result is sent back from the
edge server to the vehicle. Vehicles must be within the UAV’s
coverage area to execute tasks. The distances between vehicles
and UAVs are calculated as:

di,j =
√
(xi −Xj)2 + (yi − Yj)2 +H2,∀i ∈ I, j ∈ J (8)

The distance between two UAVs is:

dj1,j2 =
√

(Xj1 −Xj2)
2 + (Yj1 − Yj2)2,

∀j1, j2 ∈ J , j1 ̸= j2
(9)

In this system, di,j denotes the distance between vehicle i
and UAV j. The UAVs are equipped with directional antennas
having a fixed beamwidth θ and operate at a constant altitude
H with the coverage radius Cj .

Three operational models are under consideration: the UAV
hover model, where UAVs maintain a fixed position in the air;
the local execution model, where tasks are processed on the
vehicle itself; and the MEC execution model, where tasks are
offloaded to the MEC server for processing.

A. Hover Dynamics of UAVs
The energy consumption necessary for a UAV to maintain

a stationary position over a duration of time, as described by
[36], is given by:

EH = P0Th (10)

where, Th represents the duration of hovering, while P0

denotes the power consumption during hovering.

B. Local computation
The computational capability of vehicle i ∈ I is defined

by its CPU cycles per second. Each vehicle i manages delay-
tolerant tasks shown as Zi(t)

△
= (Di(t), Ci(t)), with Di(t)

being the input data size in bits and Ci(t) the required CPU
cycles at time slot t [37]. If a task is offloaded to edge node
j, vehicle i must be within its coverage.

For local execution, vehicles allocate computing resources,
represented by the matrix L, where li,t indicates the computing
capacity of vehicle i in Hz [37]. The local task completion time
for vehicle i is then computed as:

Ti,t = Ci/li,t (11)

The allocation of computing resources to each vehicle by every
edge server should not exceed the total resource capacity. The

energy consumption for local operations is directly influenced
by the required number of CPU cycles [37], formulated as:

Ei,t = q0l
2
i,tDiCi (12)

where q0 > 0 represents the coefficient of capacitance during
the operating processes.

For Ui(t) with the local computation ratio (1− oi,j(t)), the
local service latency includes the queuing time and computa-
tion time calculated by:

τ locali (t) = τ queuei (t) + τ comp
i (t) (13)

τ queuei (t) =
XcQi(t)

Fi
, (14)

τ comp
i (t) =

(1− on(t))XcDi(t)

Fi
(15)

According to the widely adopted power consumption model
as ki(Fi)

vi where ki ≥ 0 is the effective capacity coefficient
dependent on the processor chip architecture, and vi is typi-
cally set to 3. Thus, the computation energy consumption of
vehicle n in time slot t can be calculated by

Elocal
i (t) = ki(Fi)

3τ comp
i (t) = ki(Fi)

2(1− oi(t))XcDi(t).
(16)

C. Computation offloading

In our method, each vehicle manages computational tasks
based on independently arriving processed data bits Ai(t) at an
average rate ri. Upon arrival, tasks are queued and can either
be processed locally or offloaded to an edge node (EN). Local
tasks are denoted as mi(t), while tasks offloaded to an EN are
denoted as oi(t). The processing density ρ indicates the CPU
cycles required per bit of computation. The local processing
of tasks mi(t) is given by:

mi(t) =
Ci(t)τ

ρ
(17)

where Ci(t) represents the CPU cycles used by vehicle i
during time slot t of duration τ . The backlog of tasks Qi(t)
at time slot t+ 1 is updated as:

Qi(t+ 1) = max {Qi(t)−mi(t)− oi(t), 0}+Ai(t) (18)

When tasks are offloaded to an EN, the queue length Li(t) at
the EN processor increases as:

Li(t+ 1) = max {Li(t)−mi(t), 0}+ oi(t) (19)

The channel selection xi,j,t guides EN j to choose the optimal,
least costly option. After estimating the performance of each
option j using θ̃i,j,t, the optimal option is chosen as:

j = argmin
j

{
θ̃i,j,t

}
(20)

The exploration and exploitation balance is controlled by ω in
the estimation of θ̃i,j,t:

θ̃i,j,t = θ̄i,j,t−1 − ω

√
2 ln t

x̂i,j,t−1
(21)
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The exploration count x̂i,j,t is updated as:

x̂i,j,t = x̂i,j,t−1 + xi,j,t (22)

Before offloading computational tasks, vehicles transmit input
parameters to the EN server on the UAV or RSU. The EN
servers process these tasks based on received data and return
results to the vehicles upon completion. Energy usage and
task execution time during result return are excluded due to
smaller output data size compared to input data [36]. The task
completion time on an EN server includes transmission and
computation times:

Ti,j =
Di

ri,j
+

Ci

Fi,j
,∀i ∈ I, j ∈ J (23)

Energy consumption for local task completion on the vehicle
is determined by:

Evehicle
i = ηc(Fi)

v−1
Ci,∀i ∈ I (24)

where ηc is the effective switching capacitance and v = 3.
Energy consumption for offloading tasks to UAV j is given

by:

EUAV
i,j = P

Di

ri,j
+ ηc(Fi,j)

v−1
Ci,∀i ∈ I, j ∈ J (25)

where P is the transmission power of each vehicle.
The offloading service latency τ offload

i (t) includes transmis-
sion time τ trans

i,j (t), queuing time τ queue
i,j (t), and computation

time τ comp
i,j (t):

τoffloadi (t) = τ transi,j (t) + τ queuei,j (t) + τ comp
i,j (t) (26)

The energy consumed by vehicle i for offloading is calculated
as:

Eoffload
i,j (t) = pi(t)τ

trans
i,j (t) (27)

D. UAV Energy Consumption Model
Similarly, the computation energy consumption of the UAV

in time slot t can be expressed as:

Ecomp
u (t) = ku(FU )

3
τ comp
i,j (t), j = J + 1. (28)

According to [38], the dynamic energy consumption of
rotary-wing UAV depends on its flight velocity and is given
by Eq 29 in which uv(t) represents the UAV velocity. P0 and
Pi are the blade profile power and induced power in hovering
status, respectively. Utip is the tip speed of the rotor blade,
v0 is the mean rotor-induced velocity in hovering status, d0
is the fuselage drag ratio, ρ0 is the air density, s0 is the rotor
solidity, and A0 is the rotor disc area.

Edynamic
u (t) =r

(
P0

(
1 +

3 ∥vu(t)∥2

U2
tip

))

+ Pi

√1 +
∥uv(t)∥4

4u40
− ∥vu(t)∥

2

2v20

 1
2

+
1

2
d0ρ0s0A0 ∥vu(t)∥3

(29)

When the UAV is hovering, i.e., when the flight speed is
0, the hover energy consumption can be obtained as Eh

u =

τ(P0 + Pi). Therefore, the total energy consumption of the
UAV in time slot t is given by

Eh
u(t) = Ecomp

u (t) + Edynamic
u (t) (30)

The following sections will leverage this network model to
address specific problems related to task offloading in UAV-
assisted VEC networks, focusing on both queue-based strate-
gies and DRL approaches.

III. PROBLEM FORMULATION

In this section, we introduce a system reward function
intended to evaluate the costs related to processing tasks
within the system. Subsequently, we define our optimisation
challenge, which aims at simultaneous trajectory management
and task offloading in a multi-time slot setting under the UAV-
enhanced VEC framework, to decrease the cumulative cost of
the system.

Utilizing the network model described in Section III, we
can systematically approach the problem formulation, which
is critical for understanding the constraints and opportunities
within UAV-assisted VEC networks.

A. Cost function

The main factors determining the total cost of the system
include AoI, energy consumption, and cost of processing units
of CPU cycles per second, which will be detailed in the sequel.

AoI is a destination node-centric metric used to assess the
freshness of information within a network [38]. In the context
of this UAV-assisted VEC network, we denote ∆n(t) as the
AoI of vehicle n at time slot t, which is defined as the time
elapsed between the current time t and the generation time of
the latest results received by vehicle n, i.e,

∆n(t) = t− gn(t), (31)

where gn(t) denotes the task generation time of the latest
computing results received by vehicle n before time slot t.

In the proposed computation model, with the utilisation
of a partial offloading scheme where tasks are computed
simultaneously on both ENs and vehicles, the total execution
latency to complete task u can be represented as Ti,u =

max
{
τ locali,u , τoffloadi,u

}
.

If a task is to be executed on a UAV, the vehicle must be
within the UAV’s coverage area. To ensure fair coverage of
vehicles by the UAV, the following constraint needs to be sat-
isfied under the constraints related to computation offloading
and resource allocation needs to be satisfied:

ai,jdi,j ≤ Rj ,∀i ∈ I, j ∈ J (32)

The coverage radius of each UAV is determined by Rj =
H · tanθ, where H represents the constant altitude at which
the UAVs fly [39]. Assuming ∆n(0) = 0, the partial age of
information for vehicle i is derived as:

Atotal
i (t) = max

{
τ locali (t), τoffloadi (t)

}
+ Yi(t) (33)

In the context of the partial offloading scheme, the overall
energy consumption for task execution can be articulated as the
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aggregate of two distinct components: the energy consumed
during local computation and the energy consumed during
computation offloading, specifically:

Etotal
i (t) = Elocal

i (t) + αi,j(t)E
offload
i,j (t) (34)

When considering the cost of processing units of CPU cycles
per second from the EN server, it’s crucial to acknowledge
that RSUs and UAVs may possess different computation
capabilities, resulting in varied service prices. We denote the
unit price (in pence per CPU cycle) of computing resources
rented by RSUs as PR and by UAVs as PU . Thus, the total
price paid by vehicle i to EN j is calculated as:

P total
i (t) = Pjoi(t)XcDi(t) (35)

Hence, the cost function of vehicle i can be represented as
a linear function comprising the aforementioned three costs,
expressed as:

Ctotal
i (t) = γAA

total
i (t) + γEE

total
i (t) + γPP

total
i (t) (36)

where γA, γE , and γP represent the weight coefficients
assigned to the AoI cost, energy consumption, and cost of
processing units of CPU cycles per second from the EN server,
respectively, with the constraint γA+ γE + γP = 1. The main
objective is to optimise UAV trajectory, user association, and
offloading allocation to minimise long-term costs for total I
vehicles.

We define two sets A(t) = {αi,j(t)} for i in I and J in
J

′
, and O(t) = {oi(t)} for i in I . Then, the problem of

minimising the total cost can be formulated as:

OP1 : min
wu(t),A(t),O(t)

∑
t∈τ

∑
i∈I

Ctotal
i (t) (37)

s.t. ∥wi(t+ 1)− wi(t)∥ = vi(t)τ,∀i ∈ I, ∀t ∈ τ (38)

∥wu(t+ 1)− wu(t)∥ ≤ vmaxτ,∀t ∈ τ (39)

vu(t) ∈ [0, vmax] , θu ∈ [0, 2π),∀ t ∈ τ (40)

αi.j(t) ∈ {0, 1} ,∀ j ∈ J
′
,∀ i ∈ I, ∀ t ∈ τ (41)

J+1∑
j=1

αi,j = 1,∀ i ∈ I, ∀ t ∈ τ (42)

∑
t∈τ

Eu(t) ⩽ Emax
U (43)

ai,jdi,j ≤ Rj ,∀i ∈ I, j ∈ J (44)

Constraint (38) defines the trajectory of a vehicle traveling
at a variable speed vu(t). Constraints (39) and (40) ensure that
the UAV flight speed remains within the prescribed maximum
flight speed. Constraints (41)-(42) govern the user association
variable, ensuring that each vehicle selects only one EN per
time slot for offloading, with limitations on the maximum
number of associations per EN. Constraint (41) guarantees that

each task can either be processed locally or offloaded to an
EN. Constraint (43) restricts the UAV’s energy consumption
to be no greater than its available energy consumption, with
Emax

U representing the maximum energy stored by the UAV.
Additionally, constraint (44) specifies that if a task is offloaded
to UAV j, vehicle i must be situated within the coverage area
of UAV j. The coverage radius of each UAV is denoted as Rj ,
and the UAVs are equipped with directional antennas featuring
a fixed beamwidth θ.

It’s worth noting that problem (37) is intractable as it
involves a non-smooth and non-convex objective function due
to the presence of the non-differentiable function. Additionally,
the set A(t) contains binary discrete variables, rendering the
feasible set of the optimisation problem non-convex. Given
that OP1 is a mixed-integer non-linear programming (MINLP)
NP-hard problem, obtaining a closed-form optimal solution
using traditional methods is challenging.

IV. QUEUE BASED OFFLOADING FOR TASK OFFLOADING
IN UAV-ASSISTED VEC NETWORKS

As outlined in the network model, the efficiency of task
offloading mechanisms is contingent upon the network’s archi-
tecture and dynamics. This section explores how these char-
acteristics affect queue-based offloading in UAV-assisted VEC
networks. In a queue-based system, vehicle i’s computation
tasks depend on Ai(t), the data processed at time slot t.
Tasks arrive independently at intervals with an average rate ri.
Vehicles maintain a queue for incoming tasks, managed in a
buffer where they’re processed in order. Tasks are categorized
as local mi(t) or offloaded oi(t). The processing density ρ
denotes CPU cycles per bit. The local queue size mi(t) at
vehicle i. reflects stored data.

mi(t) =
Ci(t)τ

ρ
(45)

At time slot t, where each slot has a duration of τ , Ci(t)
denotes the number of CPU cycles of vehicle i. The task queue
backlog of vehicle i at time slot t, denoted as Qi(t), is updated
as follows:

Qi(t+ 1) = max {Qi(t)−mi(t)− oi(t), 0}+Ai(t) (46)

When tasks are offloaded, the UAV processor must accommo-
date the tasks in numerous parallel buffers. Given the typically
superior computational capacity of the UAV processor, it is
well-equipped to handle offloaded tasks. The increase in the
queue length Li(t) at the UAV processor for vehicle i is
expressed as follows:

Li(t+ 1) = max {Li(t)−mi(t), 0}+ oi(t) (47)

Initially, queue lengths and indicator values are zero. Decisions
are made in each slot. The channel selection indicator is
xi,j,t. UAV processor j selects the option, updating queues
and setting θi,j,t = 1 iteratively until t > T . It uses θ̄i,j,t−1

to estimate θi,j,t for consistent optimal choices and x̂i,j,t−1 to
balance exploration and exploitation. This strategy aids vehicle
i in making informed decisions while x̂i,j,t−1 tracks option
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Algorithm 1 Queue Management Algorithm

1: Input: ω, τj , θi,j,t, xi,j,t
2: Output: Optimal offloading decisions θ̃i,j,t
3: // Initialization
4: Initialize: θ̄i,j,t = 0, x̂i,j,t = 0
5: while t ≤ T do
6: // Estimation and Decision Making
7: Compute estimation θ̃i,j,t using (48)
8: Select optimal option j based on (49)
9: Update exploration count x̂i,j,t using (50)

10: // Task Updates
11: Update local task mi(t) according to (45)
12: Update task backlog Qi(t) using (46)
13: Update EN task backlog Li(t) according to (47)
14: Increment t
15: end while

selection frequency and θ̃ estimates throughput for each option
j in slot t.

θ̃i,j,t = θ̄i,j,t−1 − ω

√
2 ln t

x̂i,j,t−1
(48)

The first term in the above equation indicates the effectiveness
of option j, with ω being the exploration-exploitation trade-
off weight. A higher ω value signifies a greater emphasis
on exploration. The minimum estimated value, derived after
evaluating θ̃i,j,t across all subchannels of UAV j, is defined
as follows:

j = argmin
j

{
θ̃i,j,t

}
(49)

Accordingly, x̂i,j,t is updated as:

x̂i,j,t = x̂i,j,t−1 + xi,j,t (50)

Algorithm 1 outlines the process of queue management,
task offloading decision-making, and queue updates. The UAV
processor j selects the optimal task offloading strategy based
on current information, encompassing both local and non-
local data, aiming for maximum success probability. This
process iterates from lines 6 to 12 until t > T . The algorithm
efficiently handles computation tasks by dynamically adjusting
queue operations and adapting to changes in data backlog
and service conditions. The UAV processor enhances task
execution latency by utilising parallel buffers and efficiently
managing offloaded tasks to improve overall data processing
rates.

V. DRL FOR TASK OFFLOADING IN UAV-ASSISTED
VEC NETWORKS

This section proposes an RL-based joint trajectory control
and offloading allocation algorithm to solve the optimisation
problem. Building on the principles of the network model,
we explore how DRL techniques can optimize task offloading
strategies by considering the network’s state dynamics as
defined in Section III.

A. MDP Formulation

MDP serves as a standardised framework for resolving se-
quential decision problems [40]. Given the dynamic evolution
of buffer queues in vehicles and ENs, the continuous UAV
flight trajectories, varying states of channel gains, vehicle
locations, and computing tasks at each time slot in the con-
sidered networks satisfy the Markov property. Consequently,
we transform the optimisation problem into a model-free
MDP, considering the unknown changing environment where
obtaining state transition probabilities is challenging. A model-
free MDP typically comprises a 3-tuple (S,A,R), where S
denotes the system state space, A denotes the action space,
and R denotes the reward function.

In our system, during time slot t, the DRL agent acquires
global information via the SDN controller, defining the current
environment state as (st) ∈ S. The agent selects an action
from A according to a policy π(at|st), interacts with the
environment, and receives an immediate reward rt(st, at) ∈ R.
Subsequently, the environment state transitions to the next
state st + 1 ∈ S. Continuously improving its policy based on
obtained rewards, the agent learns iteratively through constant
interaction with the environment until an optimal policy is
achieved. For the optimisation problem, the system’s state
space, action space, and immediate reward function are defined
in the sequel.

1) State space S: At the onset of each time slot, the SDN
controller transmits the periodically collected global dynamic
information to the agent from the UAV-assisted VEC network.
This information is regarded as the state of the environment
observed by the agent. We define the state at time slot t as:

st = {W (t), U(t), Y (t), Q(t), H(t), Eres
U (t)} , (51)

where W (t), U(t), Y (t), Q(t), H(t), Eres
U (t) are defined as:

W (t) = [W1(t),W2(t), ...,WI(t)] represents the set of real-
time coordinates of all the vehicles and UAVs in time slot t.
Given that the altitude of the UAV remains constant during
its flight, we only need to consider its horizontal coordinates.
Therefore, W (t) is a vector of size 2(I + 1).
U(t) = [U1(t), U2(t), ..., UI(t)] represents the infor-

mation of all the tasks generated in the time slot t,
where U(t) is a vector of size 2I . If vehicle i does
not generate a task in time slot t, Ui(t) = 0. Y (t) =
[Y1(t), Y2(t), ..., YI(t)] is an N-dimensional vector contain-
ing the time interval for all the vehicles to generate tasks.
Q(t) = [B1(t), · · · , BN (t), Q1(t), · · · , QJ(t), QJ+1(t)] is an
(N + M + 1)-dimensional vector containing the backlog
of computation queues for all vehicles and ENs. H(t) =
[h1,1(t), · · · , hi,j(t), · · · , hI,J+1(t)] is a I(J +1)-dimensional
vector containing the channel gain between the vehicles and
ENs. Eres

u (t) represents the residual energy of the UAV in time
slot t, which is updated according to the formula Eres

u (t+1) =
max {Eres

u (t)− Eu(t), 0}, with Eres
u (0) = Emax

U .
2) Action space A: In time slot t, the DRN agent takes a

collective action, determined by the observed system state st,
which includes the following three actions:

Adjustment of the UAV trajectory, denoted as wu(t): The
UAV manages its flight path by altering both its velocity and
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angle, represented as {vu(t), θu(t)}. User association, noted as
A(t): The utilised DRL algorithm operates within a continuous
action space. Given that αi,j(t) ∈ {0, 1} is discrete, we convert
it into a continuous variable αi(t) ∈ [0, 1]. This variable,
named the offloading allocation variable, ensures consistency.
The decision for task offloading, denoted as oi(t), involves
selecting the offloading ratio on(t) from the continuous range
[0, 1]. To simplify the action space, we introduce the following
definition:

oi(t) =

3α(t)− ⌊3α(t)⌋ , ifα(t) ∈
(
1
3 ,

2
3

)⋃ (
2
3 , 1
)

1, ifαi(t) ∈ ( 23 , 1)
0, otherwise


(52)

Thus, the action is determined solely by the trajectory
control variables and the offloading allocation variables, rep-
resented as:

ot = {vu(t), θu(t), α1(t), ..., αi(t), ..., αN (t)} (53)

3) Reward function R: To minimise the overall system
cost, we establish an immediate reward function inversely
correlated with the cost function. Moreover, to adhere to the
constraints (41) and (42) outlined in the optimisation problem,
we introduce two penalty terms. Consequently, the immediate
reward function is defined as:

rt = −
∑
i∈I

Ctotal
i (t)− ϕ1(t)−

∑
i∈I

ϕ2i(t)− ϕ3(t) (54)

where

ϕ1(t) =

{
c1, if (41) or (42) not satisfy
0, otherwise

}
(55)

ϕ2(t) =

{
c2, max

{
τ locali (t), τoffloadi (t)

}
≥ Tmax

i (t)

0, otherwise

}
(56)

ϕ3(t) =

{
c3, Eres

u (t) < 0
0, otherwise

}
(57)

where c1, c2, and c3 are positive constants representing
penalty terms.

The MDP aims to determine the optimal policy π : S →
A, to maximise the expected long-term discounted cumulative
reward.

max
π

lim
k→ ∞

Eπ

[
k∑

t=0

Ctrt

]
(58)

where Eπ(.) represents the expected value obtained by follow-
ing the policy π. The parameter C, which ranges from 0 to 1,
serves as a discount factor, reflecting the influence of future
rewards on the current state. A value close to 0 indicates the
agent prioritises immediate gains without considering future
benefits, whereas a value near 1 signifies equal importance
placed on long-term rewards. Consequently, utilising the MDP
as mentioned in the earlier model, we can reformulate the
optimisation problem as:

max
vu(t),a(t)i∈I

1

T

T∑
t=1

Ctrt (59)

The optimisation problem represents an unconstrained
model-free MDP problem that can be addressed using our
proposed DRL-based algorithm, as detailed in the subsequent
discussion.

B. ACTOR–CRITIC-BASED TASK OFFLOADING

We employ the Soft Actor-Critic (SAC) algorithm in the
proposed DRL-based algorithm to train our agent for optimal
UAV trajectory control and offloading allocation. SAC is a
deep reinforcement learning algorithm designed for continuous
action spaces. This selection is based on SAC’s ability to ef-
ficiently handle sequential decision problems in environments
with high-dimensional state spaces and continuous action
spaces, ensuring swift, stable, and accurate solutions.

The SAC algorithm is constructed under the framework of
MDP, where an agent interacts with an environment charac-
terised by states, actions, and rewards. This interaction occurs
over discrete time steps. At each step, the agent observes the
current state, takes an action, receives a reward, and transitions
to the next state. Through this process, the agent continu-
ally refines its policy to maximise long-term rewards. SAC
specifically focuses on regulating the entropy of the policy,
which encourages exploration. It employs maximum entropy
reinforcement learning to simultaneously maximise both the
expected reward and entropy, aiming to find the optimal policy
π. This policy is probabilistic in nature, mapping states to
action probability distributions. SAC relies on the Bellman
equation, a core principle in MDPs, to establish relationships
between state-action values and state values. In the context of
air-to-ground networks, these relationships dictate how actions
and states influence future rewards and decisions.

In accordance with the Bellman equation [21], the relation-
ship between the state s, action a, and time t for the given
air-to-ground network is expressed as:

Qπ(st, at) = R(st,at) + γEst+1∼p [V (st+1)] (60)

Vst = E
at∼π

[Q(st, at)− log π (at|st)] (61)

Here, p represents the trajectory distribution generated by the
policy π, and R(st,at) is the reward obtained from the state-
action pair at time t. We define Qπ(st, at) as Qθ(st, at) in
the deep neural network (DNN), where θ denotes the network
parameters.

The network architecture includes actor networks (µ) and
two sets of critic networks (Q1, Q2), with each set compris-
ing both online and target networks. These networks have
distinct parameter sets, denoted as (θµ, θ

′
µ, θc1, θc2, θ

′
c1, θ

′
c2).

The parameters of the Q-function are subject to change, and
the actor and critic components undergo updates based on
the information stored in the replay buffer, which includes
actions and immediate rewards. Accordingly, the parameters
are optimised by minimising a specific loss function, according
to [40].

Qval = (Qθ(st, at)−Q
′

θ′ (st, at))
2 (62)

JQ(θ) = E
(st,at)∼B

[
1

2
Qval

]
(63)
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where Qθ(st, at) denotes the soft Q-value, B denotes the
replay buffer, and

Q
′

θ′ (st, at) = R(st,at) + γ E
st+1∼p

[Vθ′ (st+1)] (64)

The target action-value function, denoted by θ
′
, is intro-

duced to stabilise the iterations for the action-value function.
It is updated using an exponentially weighted moving average
of the parameters θ. This process helps smooth out the updates
and stabilise the learning process. At the onset of each episode,
the algorithm initialises the positions of vehicles and UAVs,
along with queue backlogs, UAV energy levels, and channel
states. Additionally, it initialises six sub-networks and a replay
buffer B. During each time step t, vehicles, RSUs, and
the UAV share their states with the agent based on global
information provided by the SDN controller. Subsequently,
the online actor network generates control actions, represented
as at = µ(st; θµ) + ϵ, where ϵ ∼ N(0, σ) denotes Gaussian
noise facilitating exploration. Based on these actions, the UAV
adjusts its position to wu(t), vehicles offload tasks to ENs,
and the system transitions from state st to st+1, receiving an
immediate reward rt computed according to equation (33).

To address the computational complexity of the Soft Actor-
Critic (SAC) algorithm in the UAV-assisted VEC system, the
primary cost factors are updating the actor and critic networks,
sampling and processing mini-batches, and calculating target
Q-values. The complexity of updating the actor and two critic
networks scales with the network size O(p), where p is
the number of parameters. Mini-batch sampling and Q-value
calculations add O(|Nb|), where |Nb| is the mini-batch size.
Given that these operations are repeated over Nsteps steps per
episode and Nepisodes total episodes, the overall computational
complexity is approximately:

O(Nepisodes ·Nsteps · (p+ |Nb|)) (65)

This reflects the scaling of computational costs with the
number of training episodes, steps per episode, network size,
and mini-batch size.

VI. NUMERICAL EVALUATION

In this section, we showcase numerical simulation results
to evaluate the effectiveness of the proposed Soft Actor-
Critic (SAC) algorithm in a UAV-assisted VEC system. Our
simulations were conducted on a computer with an Intel i7-
12700k CPU and an NVIDIA RTX 3080 GPU with 12GB of
video memory. All neural networks were trained using Python
3.9.12 and Tensorflow-gpu 2.9.1.

Algorithm 2 comprises six identical neural networks, each
consisting of two fully connected hidden layers with [600, 400]
neurons. The hidden layers of the networks utilise the rectified
linear unit (RLU) as the activation function. In contrast, the
output layers of the actor networks employ Tanh to constrain
the range of output action values to [1,−1]. We conducted
experiments in different simulated road scenarios to ensure the
diversity of traffic feature data. In the first scenario, a 600m
two-way lane with 3 RSUs is uniformly deployed, each with
a coverage radius of 100m. The second scenario includes an

Algorithm 2 Soft Actor-Critic (SAC) Algorithm for UAV-
assisted VEC System

1: Input: UAV initial state s0, user task demands, envi-
ronmental parameters, discount factor ζ, learning rates
ξµ, ξc1, ξc2, exploration noise standard deviation σ, mini-
batch size |Nb|, maximum episodes Nepisodes, maximum
steps per episode Nsteps, target network update rate ψ

2: Output: Optimized actor network parameters θµ for UAV
trajectory and task offloading policies, updated critic net-
work parameters θc1, θc2 for state-action value estimation

3: Initialize actor network µ and two sets of critic networks
Q1 and Q2 with random parameters θµ, θc1, θc2

4: Initialize target networks θ′µ ← θµ, θ′c1 ← θc1, θ′c2 ← θc2
5: Initialize replay buffer B, mini-batch size |Nb|, discount

factor ζ, learning rates ξµ, ξc1, ξc2, updated rate ψ, maxi-
mum episodes Nepisodes, and maximum steps Nsteps

6: for episode = 1 to Nepisodes do
7: Randomly initialize system environment and observe

the initial state s0
8: for t = 1 to Nsteps do
9: Select action with exploration noise:

10: at = µ(st; θµ) + ϵ, ϵ ∼ N (0, σ)
11: Obtain immediate reward rt and next state st+1

12: Store experience tuple (st, at, rt, st+1) in B
13: if B is full then
14: Randomly sample a mini-batch of Nb tuples

(si, ai, ri, si+1) from B
15: Compute target action: a′t+1 = µ′(st+1; θ

′
µ) + ϵ′,

ϵ′ ∼ clip(N (0, σ),−c, c)
16: Update target Q-values: yi = ri +

ζmin(Q′
1(si+1, a

′
t+1; θ

′
c1), Q

′
2(si+1, a

′
t+1; θ

′
c2))

17: Calculate the TD-error and update critic networks
θc1 and θc2

18: if mod(t, 2) = 0 then
19: Update actor network by minimizing the SAC

loss
20: Soft update target networks
21: end if
22: end if
23: end for
24: end for

area comprising one 600m east-west lane and two 400m north-
south lanes, with three RSUs deployed at (100, 100), (300,
300), and (500, 100). All vehicles are randomly distributed
on this roadway and travel at speeds ranging from 10 to
20 m/s. The duration of each time slot is set to 0.05s. At
the beginning of each time slot, vehicles randomly generate
computation-intensive tasks. The task arrival rates are defined
by a Poisson distribution with mean arrival rates set to 0.2,
0.4, 0.6, 0.8, and 1.0 tasks per second. These values represent
different traffic conditions, where lower rates correspond to
lower task generation frequencies, and higher rates simulate
more computationally demanding scenarios with increased
task arrival frequency.

We evaluate the performance of the SAC proposed algo-
rithm under various initial conditions and dimensions, com-
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Figure 2: Comparison of the average total cost across various
scenarios, illustrating the impact of different configurations on
cost performance.

paring it with the following four baseline strategies to verify
its effectiveness in achieving optimal trajectory control and
offloading allocation:

• Proposed Algorithm for offloading allocation: A scheme
based on joint optimisation.

• Local execution (LE): All computing tasks are executed
locally.

• Full offloading (FO) [29]: All computing tasks are fully
offloaded to the RSUs for execution. An alternative
scheme based on the queuing algorithm is used instead
of joint optimisation.

• Random offloading (RO) [8]: Computing tasks are ran-
domly assigned to be executed locally, offloaded to the
RSUs, or the UAV.

Mathematically, the convergence for FO can be character-
ized by the time required to reach a steady state where all
tasks are processed by the RSUs. The cost reduction in FO
follows a linear or sub-linear trajectory because of its lack of
dynamic adaptation:

CFO = Cinitial − λ.t (66)

where λ is the rate of cost reduction per time step, and Cinitial

is the initial system cost. The LE and RO methods do not
optimize offloading decisions, and therefore their convergence
speeds are significantly slower compared to SAC. The LE
method, in particular, does not offload any tasks, resulting
in higher system costs and a slow reduction in cost. The RO
strategy assigns tasks randomly, leading to inefficient resource
utilization and even slower convergence.

The effectiveness of the proposed algorithm is demonstrated
by evaluating the system average cost across various applica-
tion scenarios in, Fig. 2. In the normal scenario, the three
sub-costs are equally weighted, i.e., λA = 0.33, λE = 0.33,
λP = 0.33. Compared to the LE, FO, and RO strategies, the
proposed algorithm reduces the total system cost by 56.6%,
12.4%, and 44.0%, respectively. In the time-sensitive scenario,
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Figure 3: Tradeoff among AoI cost, energy consumption, and
rental price across different weightings on AoI, showing how
variations impact overall cost performance.

where real-time information requires frequent updates, we
assign a higher weight to the AoI cost, setting λA = 0.8,
λE = 0.1, λP = 0.1. The proposed algorithm reduces
the system cost by 50% compared to the LE strategy. This
significant reduction highlights the superior computation capa-
bility of edge servers. Moreover, the cost differences between
our algorithm and other strategies are also notable. In the
energy-deficiency scenario where system energy consumption
is critical, we set λA = 0.1, λE = 0.8, λP = 0.1. Here,
the proposed algorithm achieves an 87.2% reduction in cost
compared to the LE strategy, owing to the higher energy
consumption of local computation. Similarly, in the fund-poor
scenario, with priorities on minimising costs, we set λA = 0.1,
λE = 0.1, λP = 0.8. Both the proposed algorithm and LE
strategy incur lower costs compared to other strategies, with
the proposed algorithm emphasising cost minimisation and LE
benefiting from rental-free local computing. Meanwhile, the
cost of the RO strategy remains intermediate. In the energy-
rich scenario, where the onboard energy supply is sufficient,
reducing AoI cost and the rental price are prioritised. Hence,
we set λA = 0.45, λE = 0.1, λP = 0.45. While the
differences in costs between strategies are not as pronounced
as in other scenarios due to tradeoffs between AoI cost and
rental price, the proposed algorithm still achieves cost reduc-
tions of 33.0%, 7.8%, and 17.2% compared to LE, FO, and
RO strategies, respectively. Overall, the proposed algorithm
demonstrates superior performance across different scenarios,
outperforming traditional computation offloading strategies.

Fig. 3 depicts the tradeoff among the AoI cost, energy con-
sumption, rental price, and system cost with varying weights
on AoI. As established in the previous section, we maintain
the constraint λA + λE + λP = 1. Specifically, we set λE to
0.1 and vary λA from 0.1 to 0.9 with an increment of 0.2,
resulting in a corresponding decrease in λP .

As λA increases, the AoI cost decreases while the rental
price increases. This trend is attributed to smaller values
of λA representing the fund-poor scenario, where the agent
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Figure 4: Impact of the available energy of the UAV on the
system cost, illustrating how varying energy levels influence
the overall cost performance.

prioritises reducing the rental price. Conversely, larger values
of λA correspond to the time-sensitive scenario, where the
agent focuses on minimising the AoI cost. Notably, there is
a close correlation between the trends of AoI cost and en-
ergy consumption, owing to the positive relationship between
lower AoI and transmission energy consumption associated
with offloading computation compared to local computing.
These observations highlight the intricate relationships among
AoI, energy consumption, and rental prices, underscoring the
challenge of simultaneously optimising these factors.

Fig. 4 depicts the impact of the maximum available energy
of the UAV on the system cost. Using Eq. (20), we calculate
that the UAV’s maximum propulsion energy consumption is
3209.8J, and the minimum hovering energy consumption is
421.2J. Consequently, the UAV’s maximum available energy
ranges from 500J to 3000J, and we compare this range to the
scenario without an energy limit.

As the available energy of the UAV increases, we observe
a slight decrease in the system cost. This phenomenon arises
because, with higher available energy, the UAV can enhance
its flight capacity and provide computing services to more
vehicle users. Furthermore, the marginal decrease in system
cost highlights the adaptability and tunability of our algorithm,
demonstrating its capability to achieve favourable performance
under varying constraints. Additionally, we notice that the
AoI cost and penalty gradually decrease with the increase in
available energy, while the rental price gradually increases.
This trend indicates a corresponding enhancement in the
UAV’s service capability. When the initial energy of the UAV
reaches 3000J, the penalty approaches zero, suggesting that
the UAV’s service capability remains largely unaffected by
the energy constraint at this level.

Fig. 5 demonstrates the impact of the size of computing
tasks on the total system cost. The average data size of com-
puting tasks during each time slot generated by each vehicle
gradually increases from 250KB to 850KB. As expected, both
the total system cost and the AoI cost increase as the task data

Figure 5: Impact of different sizes of computing tasks on the
total system cost.

size increases. In Fig. 6, we present the mean delay for the
three algorithms in completing high-priority tasks. This figure
displays the mean delay under high traffic conditions with 45
vehicles per kilometre. The overall delay is equal to the sum
of the delays for all tasks. If there are M tasks, and the delay
for each task m is µm, then the overall delay is calculated
as: Overall Delay =

∑M
m=1mum. Also, the number of tasks

and subtasks are denoted as N , representing the total count of
tasks and subtasks involved in the process. The mean delay is
divided by the total number of tasks and subtasks. It represents
the average delay per task or subtask. Mathematically, it is
expressed as:Mean Delay =

Overall Delay
N =

∑M
m=1 µm

N . The
mean delay measures the average delay experienced per task
or subtask by dividing the total accumulated delay by the
total number of tasks and subtasks. Regarding the proposed
algorithm and (FO) which is based on the queuing algorithm,
the mean delay for both algorithms is comparable and rises as
the maximum tolerable delay in the network increases.

Moreover, the system cost of the proposed algorithm and
Queue-based strategy experiences a significant decrease as
the data size increases. Notably, the proposed algorithm con-
sistently exhibits the best performance across varying data
sizes. For instance, when the average data size is small (e.g.,
250KB), the proposed algorithm reduces the total system cost
by 9.46%, 4.36%, and 6.99% compared to LE, FO, and RO
strategies, respectively. These reductions increase to 58.76%,
28.55%, and 26.64% when the data size increases to 850KB.
This result further underscores the versatility and efficacy of
our algorithm in handling diverse computing tasks.

The proposed algorithm is applicable in real-world scenarios
such as disaster response, traffic management, and environ-
mental monitoring, where UAV-assisted VEC systems can
enhance operational efficiency by autonomously optimizing
UAV paths and task allocation. To adapt the SAC algorithm
for these applications, employing lightweight model versions
and edge computing optimizations can reduce processing times
and energy consumption, addressing the constraints of UAV
operations. For scalability in complex environments, tech-
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Figure 6: Mean delay as a function of the maximum tolerable
delay for completing tasks, illustrating the trade-off between
delay and task completion constraints.

Figure 7: Comparative analysis of energy efficiency, latency
reduction, and stability in UAV-assisted VEC deployment,
highlighting the impact of each factor on overall system
performance.

niques such as multi-agent coordination and hierarchical rein-
forcement learning enable efficient management of increased
numbers of UAVs and diverse user demands, ensuring respon-
siveness even in dynamic and resource-constrained conditions

Figure 7 is a grouped bar chart comparing the performance
of SAC, PPO, DDPG, and DQN algorithms across three key
metrics: Energy Efficiency, Latency Reduction Efficiency, and
Stability Efficiency during the deployment phase. Each algo-
rithm is represented by a cluster of three bars, with different
colours indicating the respective metrics. The chart shows that
SAC outperforms the other algorithms in all three categories,
achieving the highest values for energy, latency reduction, and
stability. PPO follows as the next best performer, while DDPG
and DQN show comparatively lower efficiency levels across
these metrics. The values are displayed inside the bars, making
it easy to identify the exact percentages for each metric,
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Figure 8: Energy Efficiency Comparison: SAC with and with-
out Offloading.

with SAC having notable efficiency advantages in deployment
operations.

Figure 8 demonstrates that SAC with offloading achieves
substantially higher energy efficiency 95% compared to SAC
without offloading 70%. This improvement is due to the more
effective distribution of computational tasks, allowing for re-
duced onboard energy use and optimized energy consumption
at the edge, thus enhancing overall system performance.

VII. CONCLUSION

The paper addresses the challenge of real-time and efficient
processing of vehicle tasks in a UAV-assisted VEC network
by optimising trajectory control and computation offloading.
It proposes an optimisation scheme based on the soft actor-
critic (SAC) algorithm to handle the non-convex problem,
considering the stochastic nature of task arrivals and dynamic
network conditions. The proposed algorithm outperforms tra-
ditional methods and four baseline strategies in terms of con-
vergence speed and optimisation objectives. Simulation results
highlight its superiority in reducing system cost and enhancing
performance across various scenarios by adjusting weights
on AoI cost, energy consumption, and rental price. Future
research will explore the impact of packet loss in high mobility
scenarios, collaborative offloading between vehicles or RSUs,
and integration of new optimisation metrics and technologies
like NOMA and RIS to further improve transmission and
computation efficiency while ensuring reliability.
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