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1 Introduction

The High Luminosity Large Hadron Collider (HL-LHC) provides an unparalleled platform to
investigate fundamental processes involving Higgs bosons, electroweak bosons, top quarks,
and hadronic jets with exceptional precision. By achieving high accuracy in experimental
measurements, the HL-LHC will examine in detail the fundamental interactions of particles
at short distances. This precision is crucial, especially when new particle discoveries are
absent, as even the smallest deviations from Standard Model predictions could reveal new
physics. Precision phenomenology, therefore, plays a vital role in the ongoing quest to
expand our understanding of the universe, where any minor discrepancy between theoretical
predictions and experimental data could guide us toward physics beyond the Standard Model.
Continued advancements in fixed-order calculations, parton distribution functions, parton
showers and modelling of non-perturbative effects are necessary to reach the level of accuracy
demanded by the LHC experiments.

Perturbation theory plays a central role in improving theoretical predictions to match
the precision of current or future collider experiments. To achieve percent-level accuracy,
theoretical calculations must extend to at least Next-to-Next-to-Leading Order (NNLO) in
the strong-coupling expansion. However, these higher-order calculations are complex due
to the interplay between real and virtual corrections across multiple phase spaces. Infrared
divergences, arising from unresolved real radiation (such as soft or collinear emissions) must
be carefully canceled by singularities in virtual matrix elements. Schemes for achieving
this cancellation generally fall into two classes - subtraction and slicing. Slicing schemes
typically restrict the allowed phase space of the real-radiation using a slicing parameter. The
approximate form of the matrix elements below the parameter is known, and its (divergent)
contribution is integrated over the unresolved phase space and combined with the virtual
matrix elements. However, since the real matrix elements and their approximations do not
fully match outside the singular limit, there remains a residual dependence on the slicing
parameter that must be carefully evaluated. In contrast, subtraction schemes are free from
systematic effects: they subtract the singular terms from the real radiation and add them back
exactly to the lower-multiplicity virtual contribution, after integration over the unresolved
phase space. Such infrared cancellation schemes offer a well-established solution to handle the
intricacies of higher-order perturbative calculations for an arbitrary scattering process. On
the other hand, subtraction techniques generally require complete control over each individual
unresolved configuration and hence demand significant efforts for their development and
numerical implementation.

For Next-to-Leading Order (NLO) calculations, the infrared cancellation is considered
solved. Fully general schemes like Catani-Seymour dipole subtraction [1] and FKS subtrac-
tion [2] were developed in the mid-1990’s. Together with automated one-loop matrix-element
generators [3, 4], these schemes are used to compute fully-differential predictions for generic
processes, with limitations coming only from the difficulty of generating high-multiplicity
matrix elements. Schemes for matching NLO calculations with parton showers, such as
MC@NLO [5] and POWHEG [6, 7] have been developed which systematically combine
NLO calculations with all-order parton-shower resummation. These innovations laid the
foundations for the state-of-the-art multi-purpose event generators [3, 8–11], see ref. [12] for
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a review. Nevertheless, for some observables NLO predictions are still not precise enough
and even higher order corrections, NNLO or even beyond (N3LO), are needed to approach
the desired target of percent-level precision.

Several methods have been proposed to compute NNLO corrections [13–27], leading to
NNLO-accurate predictions for essentially all 2 → 1 and 2 → 2 processes at hadron colliders.
From 2020 onwards, NNLO calculations for 2 → 3 processes have started to appear [28–39],
thanks to the calculation of two-loop five-point amplitudes [40–52]. These results represent
the current state-of-the-art for NNLO QCD corrections for LHC processes.

The NNLO results currently available have been typically achieved on a case-by-case basis,
often requiring significant effort to adapt existing formalisms to new processes. Despite the
recent advances mentioned above, two-loop matrix elements continue to pose major challenges,
frequently requiring custom integral reduction techniques and the evaluation of new master
integrals. Additionally, the cancellation of infrared divergences across higher-multiplicity final
states becomes increasingly complex. Existing NNLO methods do not scale easily to processes
with higher multiplicities, either because of intrinsic limitations or the complexity of the
numerical implementation. Nevertheless, promising recent progress has been made towards
formulating more general schemes. In particular, the sector-improved residue subtraction
technique [18, 19] has been employed, within the STRIPPER numerical framework, to perform
a series of cutting-edge NNLO calculations for high-multiplicity processes up to three-jet
production at hadron colliders [31, 34]. In parallel, efforts focused on explicitly demonstrating
the cancellation of infrared singularities for arbitrary scattering processes have been made
in the context of the local analytic sector subtraction [26, 53] and nested soft-collinear
subtraction [27] methods. Another major hurdle in making NNLO computations more
widely accessible is the significant computational cost involved in generating cross-section
predictions, further complicating their broader implementation. It is therefore desirable that,
in the development of novel infrared cancellation methods as well as in the improvement
of well-established ones, efforts are made to render NNLO calculations as computationally
efficient as possible.

Among the various methods employed for fully-differential NNLO QCD calculations,
the antenna subtraction scheme has been particularly successful. Initially developed for
electron-positron annihilation with massless partons [13], this method enabled the calculation
of NNLO corrections for three-jet production and related event-shape observables at LEP
energies [54]. It was based on colour-decomposed antenna functions constructed directly
from matrix elements, thereby capturing the necessary infrared behaviour. Each antenna
function captures soft and collinear singularities at the same time. Over time, the scheme was
extended to address initial-state radiation, making it applicable to processes involving hadrons
in the initial state [15, 55–58]. It has since been applied to numerous LHC processes using
the NNLOjet parton-level Monte Carlo framework. Furthermore, the antenna subtraction
technique has been adapted to handle the production of heavy coloured particles [59–66]
as well as fragmentation processes including photons [67] and identified hadrons [68, 69] in
the final state. In [70–72] the analytic integration of N3LO antenna functions for final-state
radiation have been performed.

Recently there have been several improvements to the original antenna subtraction
scheme. The colourful antenna subtraction method [32, 73] exploits the predictability of the
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singularity structure of virtual amplitudes in colour space to straightforwardly construct the
virtual subtraction terms in a completely general way. The advantage consists in automatically
retaining the structure of colour correlations among external QCD particles, making the
construction of subtraction terms straightforward even beyond leading-colour. The one-to-one
correspondence between integrated and unintegrated antenna functions is then exploited
to infer subtraction terms for real emission corrections. In a parallel development, the
recently-proposed designer antenna scheme [74–76] offers an algorithm to build antenna
functions for any number of real emissions directly from a specified list of unresolved limits.
This eliminates the need to decompose the antenna functions into sub-antenna functions
and it reduces the size of the subtraction terms by avoiding the introduction of spurious
limits that are inevitably present in the matrix-element-based antenna functions. This paper
makes a further important step towards the simplification and ultimate automation of the
antenna subtraction scheme for final-state radiation by further reducing the complexity of
the subtraction terms, and paves the way for the merging of the two directions described
above. Since the CPU requirements of NNLO calculations are considerable, any new scheme
needs to be carefully validated: for this purpose, as an example, we consider perhaps the
simplest non-trivial process of e+e− → jjj at NNLO.

The structure of the paper is as follows. In section 2 we review the fundamentals of the
antenna subtraction scheme, outlining the challenges we aim to address in this work and
introducing the principles of the designer antenna method. A key focus of this section is the
dependence on the choice of momentum mapping when connecting phase spaces of different
multiplicities. Section 3 then introduces the generalised real-radiation antenna functions at
NNLO, explaining their definition and construction. In section 4 we detail the implementation
of these new antenna functions in the double-real subtraction terms, using leading-colour
three-jet production at electron-positron colliders as an illustrative example. In section 5
we explain how the real-virtual subtraction terms are modified within the new framework.
At this level, we will introduce a new class of generalised real-radiation one-loop antenna
functions. In the context of a subtraction scheme, these real-radiation antenna functions
must be integrated over the unresolved phase space. Section 6 demonstrates how to achieve
this in full analytical fashion for the novel antenna functions. In section 7 we assemble the
double-virtual subtraction terms and assess the cancellation of infrared singularities. Section 8
presents numerical validation of the entire setup. Finally our conclusions are summarised in
section 9. The appendices provide further details: appendix A lists the unresolved limits of
the new real-radiation antenna functions, appendix C gives the explicit analytic expressions
of the integrated antenna functions and appendix D gives the full set of subtraction terms
required for e+e− → jjj at NNLO.

2 Preliminaries

In this section we briefly cover the necessary background for the remainder of the paper.

2.1 Recap of the antenna subtraction method

The antenna subtraction scheme for NNLO calculations is presented in detail in [13, 15]. In
this section we do not aim at a thorough summary of the method, but rather we want to
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Figure 1. A single-unresolved emission (dashed line) emitted between two hard radiators (continuous
lines).

highlight the underlying structure of the subtraction terms and motivate the generalisations
described in the remainder of this paper.

Antenna functions capture the infrared behaviour of partons becoming unresolved between
a pair of hard radiators. The colour connections between the emitted partons and the hard
radiators determine the possible structures and infrared patterns that need to be addressed
within the antenna subtraction scheme.

Single unresolved.

At NLO, only one parton can become unresolved, therefore the only emission topology to be
considered is the one depicted in figure 1. Here continuous lines represent hard radiators,
while the dashed line indicates the single-unresolved emission.

This configuration is naturally described by a tree-level three-parton (two hard radiators
and a single emission) antenna function X0

3 . In general, Xℓ
n denotes an ℓ-loop n-particle

antenna function. Considering a (n+1)-parton tree-level matrix element M0
n+1(. . . , i, j, k, . . .)

as a real correction to an underlying n-particle Born configuration, in the limits where parton
j becomes unresolved between i and k, we can reproduce the singular behaviour with:

X0
3 (ih, j, kh)M0

n(. . . , (ĩj), (j̃k), . . .)J (n)
n ({p}n), (2.1)

where the superscript h indicates a specific choice of hard radiator. M0
n represents the

Born-level matrix element, and (ĩj), (j̃k) denote composite momenta obtained by applying
a momentum-conserving on-shell map (pi, pj , pk) → (p

ĩj
, p

j̃k
) which preserves the correct

behaviour in the unresolved limits. This map defines the n-particle phase space from the
(n + 1)-particle one. Traditionally, in the context of antenna subtraction, the momentum
mapping (antenna mapping) described in [77] is used. We anticipate that for the generalised
antenna functions introduced below we will make use of other choices of momentum mapping
for reasons we will outline later in the paper. Finally, the jet function J

(np)
nj reconstructs nj

resolved jets from np final-state partons with momenta {p}np and implements the definition
of the fiducial phase space.

Colour connection.

Before analysing the double-unresolved emission case, it is helpful to introduce the idea of
colour-connection. In any colour-string, each gluon is colour-connected to two other partons
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Figure 2. Two colour-unconnected unresolved partons (dashed lines) emitted between two different
pairs of hard radiators (continuous lines).

(either quarks or gluons) and each quark/antiquark is colour-connected to a single parton.
Photons are colour-connected to a quark and an antiquark. At NNLO we encounter different
configurations depending on whether the two unresolved partons are

• colour-unconnected from each other and have no hard radiators in common

• colour-connected to each other

• almost colour-connected, which we define to be the case where the unresolved partons
are colour-unconnected, but one or more of the hard radiators is colour-connected to
both unresolved partons.

These different emission topologies need to be addressed separately.

Double unresolved: colour unconnected.

We start by considering the particularly simple configuration where the two emissions are
well-separated in the colour-string and do not share any common hard radiator. This
configuration is labelled colour-unconnected and is depicted in figure 2. In this case, the
double-unresolved contribution is purely iterated, hence the singular behaviour of a double-
real matrix element M0

n+2(. . . , i1, j1, k1, . . . , i2, j2, k2, . . .) with j1 and j2 becoming unresolved
between the neighbouring partons can be fully described by the product of two disconnected
X0

3 antenna functions:

X0
3 (ih

1 , j1, kh
1 )X0

3 (ih
2 , j2, kh

2 )M0
n(. . . , (ĩ1j1), (j̃1k1), . . . , (ĩ2j2), (j̃2k2), . . .)J (n)

n ({p}n) . (2.2)

We note the combined action of the two antenna functions produces a map from the (n + 2)-
particle phase space to the (n + 1)-particle phase space, and from this to the n-particle one,
whose momenta enter the Born matrix element and the jet function.

Double unresolved: colour-connected.

The next configuration we have to consider at NNLO is given by two unresolved partons that
are colour-connected to each other and one of the hard radiators. This case is depicted in
figure 3. The singular behavior associated to such a configuration is not simply iterated, and
hence cannot be captured by any combination of X0

3 antenna functions. Instead, tree-level
four-parton (two hard radiators and two unresolved partons) antenna functions X0

4 are used.
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Figure 3. Two colour-connected unresolved partons (dashed lines) emitted between two common
hard radiators (continuous lines).

These remove the singular behaviour of the double-real matrix element M0
n+2(. . . , i, j, k, l, . . .)

in configurations where j and k are unresolved according to:

X0
4 (ih, j, k, lh)M0

n(. . . , (ĩjk), (j̃kl), . . .)J (n)
n ({p}n), (2.3)

where (ĩjk), (j̃kl) indicate composite momenta obtained by applying a momentum-conserving
on-shell map (pi, pj , pk, pl) → (p

ĩjk
, p

j̃kl
), which preserves the correct behaviour in the

unresolved limits. This map defines the n-particle phase space from the (n + 2)-particle one.
While providing the correct double-unresolved behaviour, X0

4 antenna functions inevitably
also contribute to spurious limits in single-unresolved regions. In this regard, the X0

4 antenna
functions are constructed in such a way that these limits can be subtracted with iterated
X0

3 X0
3 structures [13, 15, 74]. The complete set of terms to address the colour-connected

case is then given by

X0
4 (ih, j, k, lh)M0

n(. . . , (ĩjk), (j̃kl), . . .)J (n)
n ({p}n)

−X0
3 (ih, j, kh)X0

3 ((ĩj)h, (j̃k), lh)M0
n(. . . , ( ˜(ĩj)(j̃k)), ((̃j̃k)l), . . .)J (n)

n ({p}n)

−X0
3 (lh, k, jh)X0

3 ((l̃k)h, (k̃j), ih)M0
n(. . . , (ĩ(j̃k)), ( ˜(j̃k)(k̃l)), . . .)J (n)

n ({p}n). (2.4)

The momentum mappings in each line of (2.4) produce different reduced n-particle momentum
sets. However, the mappings are chosen in such a way that they yield the same momenta in
the required unresolved limits, to allow for the desired cancellation between the X0

4 antenna
functions and the iterated structures in single-unresolved limits [13, 77].

Double unresolved: almost colour-connected.

One final emission topology has to be considered in order to build a subtraction scheme able
to deal with arbitrary multiplicity at NNLO. This is the so-called almost colour-connected
configuration, depicted in figure 4. Here the two unresolved partons are not colour-connected,
but also not entirely disconnected since they share both hard radiators (figure 4(a)) or
only one of them (figure 4(b)). These two cases are treated differently in the context of
antenna subtraction.
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(a) (b)

Figure 4. Two almost colour-connected unresolved partons (dashed lines) sharing both (a) or one (b)
hard radiator.

First let us consider the four particle configuration shown in figure 4(a), which we
generically label as X̃0

4 . These antenna functions are implemented in subtraction terms as:

X̃0
4 (ih, j, kh, l)M0

n(. . . , (l̃ij), (j̃kl), . . .)J (n)
n ({p}n)

−X0
3 (ih, j, kh)X0

3 ((ĩj)h, l, (j̃k)h)M0
n(. . . , ((̃ĩj)l), ((̃j̃k)l), . . .)J (n)

n ({p}n)

−X0
3 (kh, l, ih)X0

3 ((l̃k)h, j, (ĩl)h)M0
n(. . . , ((̃ĩl)j), ((̃k̃l)j), . . .)J (n)

n ({p}n). (2.5)

Note that there are two types of X̃0
4 . One type typically addresses subleading-colour contribu-

tions to matrix elements which also have two colour-unconnected emissions between the same
hard radiators. The prime example of this is the Ã0

4 which describes the subleading-colour
emission of two gluons radiated within a quark-antiquark pair. This type of antenna is
needed to describe subleading-colour configurations even for higher multiplicity processes.
The other type of X̃0

4 antenna appears with the same colour factor as the corresponding X0
4 .

An example being the F 0
4 and F̃ 0

4 antenna functions. When there are only four gluons in
the process, the F̃ 0

4 is necessary to capture the almost colour-connected limits. However, as
soon as the multiplicity increases, these X̃0

4 would be replaced by the new constructs that
we are introducing below. This point is further discussed in section 3.4.

From now on we focus on figure 4(b) and assume that at least five partons are present at
the double-real level. In the traditional antenna subtraction scheme, dealing with this emission
topology is significantly less straightforward than the cases discussed above. As one can guess,
the reason for this lies in the fact that the unresolved radiation is distributed among three hard
radiators, a situation which is not easily addressed by the two-hard-radiator antenna functions
considered so far in the literature. It is still possible to achieve local infrared subtraction for
these configurations in the context of the traditional antenna subtraction method, however
this requires complex strings of interdependent terms, which typically end up being the
largest contribution to the expressions of the double-real subtraction terms. In addition to
iterated X0

3 X0
3 contributions, the almost colour-connected subtraction terms rely on suitable

combinations of eikonal factors, called large angle soft terms [54, 78]. The complexity of the
subtraction at the double-real level also impacts the integrated structures in the real-virtual
subtraction terms [79]. The conventional treatment of the almost colour-connected case is
described in detail in [15, 54, 73].
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In this paper we revisit the infrared structure of almost colour-connected singularities
at NNLO and aim at a description as concise as the one in the colour-connected case. In
particular, considering the parton string (ih, j, kh, l, mh), the goal is to capture the full
unresolved behaviour of the configuration in figure 4(b) with something like:

X0
5,3(ih, j, kh, l, mh)M0

n(. . . , (ĩjk), (ĩjklm), (k̃lm), . . .)J (n)
n ({p}n)

−X0
3 (ih, j, kh)X0

3 ((j̃k)h, l, mh)M0
n(. . . , (ĩj), ((̃j̃k)l), (l̃m), . . .)(n)

n ({p}n)

−X0
3 (mh, l, kh)X0

3 ((l̃k)h, j, ih)M0
n(. . . , (ĩj), (j̃(k̃l)), (l̃m), . . .)(n)

n ({p}n), (2.6)

where X0
5,3(ih, j, kh, l, mh) denotes a tree-level five-parton three-hard-radiator antenna function.

The notation we will adopt for these generalised antenna functions in the remainder of the
paper is Xℓ

n,nh
, where n is the total number of partons in the antenna function, nh is the

number of hard radiators, and ℓ is the number of loops. If the nh index is omitted, in
analogy with the notation used so far, we assume nh = 2. The immediate advantages of
this program at the double-real level are:

• a more algorithmic construction of generic subtraction terms;

• a significant reduction in the size of the expressions of the subtraction terms;

• the elimination of large angle soft terms;

• the possibility of constructing local subtraction terms which work for a single colour-
ordered matrix element, rather than for the full sum.

The last point above will also allow us to significantly reduce the computational time required
for an NNLO calculation, as we will comment on later. Finally, the simplifications at the
double-real level propagate into the real-virtual subtraction terms, as discussed in section 5.

Single unresolved at one loop.

The removal of single-unresolved divergences at one-loop can also be organised in terms of
emission topologies. Even if at the real-virtual level there is only a single emission, in the
context of antenna subtraction it matters how the unresolved parton relates to the loop
correction. X0

3 antenna-functions are only capable to capture the singular behaviour due
to tree-level sub-graphs of a full virtual matrix elements and so new structures are needed,
which we illustrate in the following.

The first case we consider is given by an unresolved emission directly connected to a
loop. In particular, the soft and collinear singularities are generated by loop graphs where
a virtual particle couples to one or more of the hard radiators and the unresolved real
emission. We represent this topology in figure 5, with a dotted red line representing a
virtual particle exchanged between the two hard radiators. Such configuration is treated
with three-parton one-loop antenna functions X1

3 [13], which are implemented within the
real-virtual subtraction term as:

X1
3 (ih, j, kh)M0

n(., (ĩj), (j̃k), .)J (n)
n ({p}n). (2.7)

– 9 –
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Figure 5. Colour-connected virtual (dotted line) and real (dashed line) partons emitted between the
same pair of hard radiators (continuous lines).

(a) (b)

Figure 6. Colour-unconnected virtual (dotted line) and real (dashed line) partons sharing both (a)
or only one (b) hard radiator (continuous line).

The other possibility at NNLO is given by colour-unconnected virtual and real emissions
with one or more common hard radiators, represented in figure 6. As for the double-real
emission discussed above, we distinguish the cases in which the virtual and real particles
share both or only one hard radiator, depicted in figure 6(a) and figure 6(b) respectively.
The former configuration is practically analogous to the colour-connected case in figure 5,
typically appears in subleading-colour contributions to matrix elements, and is therefore
addressed with subtraction terms like:

X̃1
3 (ih, j, kh)M0

n(. . . , (ĩj), (j̃k), . . .)J (n)
n ({p}n). (2.8)

The configuration in figure 6(b), instead, naturally involves three hard radiators, hence it
is not straightforwardly described by conventional antenna functions. Indeed, figure 6(b)
can be loosely seen as the real-virtual counterpart of figure 4(b). To properly deal with
this case, in section 5 we will introduce four-parton three-hard-radiator one-loop antenna
functions X1

4,3. They will be implemented as:

X1
4,3(ih, j, kh, ah)M0

n(. . . , (ĩj), (j̃k), (k̃a), . . .)J (n)
n ({p}n). (2.9)

As we will discuss in detail, the contribution given by these new antenna functions is a
byproduct of the implementation of X0

5,3 antenna functions at the double-real level. X1
4,3

antenna functions absorb the integrated counterpart of the large-angle eikonal factors, which
are traditionally needed in almost colour-connected configurations [54].

– 10 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
5

The remainder of this paper is dedicated to the construction of generalised antenna
functions and to their implementation in a consistent subtraction scheme for NNLO calculation.
The possibility of building antenna functions with more than two hard radiators is a direct
consequence of the designer antenna method, which is briefly outlined below.

2.2 Recap of designer antenna principles

In the original formulation of the antenna subtraction scheme, the antenna functions used to
construct subtraction terms were extracted from matrix elements [80–82]. Recently, work has
been done to instead construct antenna functions directly from the desired unresolved limits
in a new formalism known as the designer antenna method [74–76]. The antenna functions
obtained from this approach, labelled idealised, offer several advantages with respect to their
traditional counterparts, which are summarised in the design principles:

I. each antenna function has exactly two hard particles (“radiators”) which cannot become
unresolved;

II. each antenna function captures all (multi-)soft limits of its unresolved particles;

III. where appropriate, (multi-)collinear and mixed soft and collinear limits are decomposed
over “neighbouring” antenna functions;

IV. antenna functions do not contain any spurious (unphysical) limits;

V. antenna functions only contain singular factors corresponding to physical propagators;

VI. where appropriate, antenna functions obey physical symmetry relations (such as line
reversal).

The iterative algorithm for constructing real-radiation antenna functions according to the
principles above is described in detail in [74] and relies on:

• a list of “target functions” Li, which describe the behaviour of the colour-ordered matrix
element squared in a given unresolved limit;

• a set of “down-projectors” P↓
i which map the invariants of the full phase space into the

subspace relevant for the limit Li;

• a set of “up-projectors” P↑
i which restore the full antenna phase space.

With such ingredients the construction of an antenna function X is given by:

X1 = P↑
1L1

X2 = X1 + P↑
2

(
L2 − P↓

2X1
)

...
XN = XN−1 + P↑

N

(
LN − P↓

N XN−1
)

The generalisation of the algorithm to include ℓ-loop antenna functions and address virtual
corrections is described in [75].
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2.3 Mapping dependence

In this section we elaborate on the choice of the momentum map which relates different-
multiplicity phase spaces in the context of local subtraction. In any subtraction scheme, one
has to guarantee that the local subtraction terms in the numerical evaluation of the real
radiation contributions precisely cancel against the analytically integrated terms that are
added back to the virtual contributions. We are particularly interested in how the choice of
momentum maps in the unintegrated subtraction terms influences their analytic integration.

The traditional antenna subtraction method with two hard radiators relies on the class
of maps described in [77] for the numerical implementation of the real radiation subtraction
terms. The main advantage of the antenna mapping is the smooth interpolation between
all infrared configurations. However, it is implemented via complicated relations among
momenta and invariants, which clearly make it not suitable for analytical integration. In fact,
as we formalize below, for the case of two hard radiators the integration over the unresolved
phase space is independent of the choice of mapping, and one can therefore choose a simpler
mapping for the analytical integration of the antenna subtraction terms. However, the case
of multiple-hard-radiator antenna functions requires a more careful treatment.

We begin by considering an unintegrated subtraction term,

X({p})M({p̃}, {q̃}) J
(n

p̃
+nq)

nj ({p̃}, {q̃}) dPSnp+nq(p, q) (2.10)

where the np momenta {p} and the nq momenta {q} are the original momenta appearing in
the phase space dPSnp+nq . The mapping acts on the momenta appearing in the antenna X,

{p} → {p̃} (2.11)

(where there are np̃ hard radiators in the set {p̃}) in a way that preserves momentum
conservation and on-shellness but leaves each momentum in the set {q} unaffected,

q → q̃ ≡ q. (2.12)

The jet function J selects nj jets from the final-state partons. The matrix elements M and
the associated jet function J depend on the mapped momentum set.

In general, we aim to select a mapping such that the phase space factorises,

dPSnp+nq(p, q) → dPSX(p/{p̃}) dPSn
p̃
+nq({p̃}, {q̃}) (2.13)

and that the integration over the antenna phase space dPSX can be performed,∫
X({p}) dPSX(p/{p̃}) = X ({p̃}), (2.14)

so that the integrated subtraction term is given by,

X ({p̃})M({p̃}, {q̃}) J
(n

p̃
+nq)

nj ({p̃}, {q̃}) dPSn
p̃
+nq({p̃}, {q̃}). (2.15)

Two mappings are equivalent if X ({p̃}) is the same for both mappings.
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Antenna functions with two hard radiators.

When there are two hard radiators, the generic mapping has the form,

{p1, . . . , pnp} → {p̃I , p̃J}. (2.16)

The only available scale is the invariant mass of the antenna,

s1...np ≡ sIJ (2.17)

which, because of momentum conservation, is the same for all possible mappings. On
dimensional grounds the result of the integration of the antenna over the antenna phase
space must satisfy,

X ({p̃I , p̃J}) = c(ϵ) (sIJ)d (2.18)

where d is a constant fixed by the dimensionality of the antenna and the antenna phase
space, and c(ϵ) is a constant. It is straightforward to check that different np → 2 mappings
(that preserve momentum conservation and on-shellness) always produces the same values
of d and c(ϵ). For this reason, one has the freedom to choose different mappings for the
analytical integration, where simplicity is preferred, and the numerical implementation, for
which regularity across the phase space is better suited. In the two-hard-radiator case, the
numerically integrated real-emission subtraction terms are then guaranteed to match and
cancel the analytically integrated ones added back in virtual corrections.

Antenna functions with three hard radiators.

For antenna functions with three hard radiators, the mapping has the form

{p1, . . . , pnp} → {p̃I , p̃J , p̃K}. (2.19)

In this case, there are multiple scales available,

sIJ , sIK , sJK , sIJK , (2.20)

as well as composite scales, e.g.,

sIJ + sJK , sIJ + sIK , sJK + sIK (2.21)

so that, while the overall dimensionality of X is fixed (and mapping independent), the
dependence on the individual scales is not. In general,

X ({p̃I , p̃J , p̃K}) =
∑

i

ci (sIJ)αi(sJK)βi(sJK)γi(sIJK)δi + . . . (2.22)

where ci is a scaleless function of ratios of scales and d = αi + βi + γi + δi. Here + . . .

represents possible contributions involving composite scales. Different mappings can lead
to different values of {ci, αi, βi, γi, δi}, and therefore it is clear that X ({p̃I , p̃J , p̃K}) is not
necessarily the same for all mappings. For the cases we investigated, each mapping gave
a different dependence on the scales. It may be possible to find classes of mappings that
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lead to the same value of X ({p̃I , p̃J , p̃K}). However, to be guaranteed to avoid any mismatch
between real and virtual subtraction terms, one must use exactly the same mapping for the
numerical implementation as for the analytic integration.

It follows from the observations above that the momentum mapping for the new antenna
functions will be more constrained than the traditional one. For clarity, in the remainder
of this paper, we will denote with ĩj or ĩjk momenta reconstructed applying a single- or
double-unresolved antenna mapping [77]. Where alternative choices are required, we will
introduce dedicated notation.

3 Tree-level five-particle three-hard-radiator antenna functions

The main objective of this section is the construction of five-particle antenna functions
X0

5,3(ih
a, jb, kh

c , ld, mh
e ), aimed at describing the singular behaviour of the configuration in

figure 4(b). The particle types are denoted by a, b, c, d and e, and carry four-momenta pi, pj ,
pk, pl and pm respectively. Particles a, c and e are the three hard radiators and the antenna
functions must have the correct limits when particles b and d become unresolved.

3.1 Unresolved limits

The starting point for the application of the designer antenna algorithm [74] consists in a list
of infrared limits a given antenna functions needs to reproduce. For the X0

5,3(ih
a, jb, kh

c , ld, mh
e )

antenna functions, these limits occur when momenta j, l are either soft or collinear with
the hard radiator momenta i, k, m. In particular, we have: double-soft j, l, triple-collinear
j||kh||l, double-collinear ih||j, kh||l, ih||j and l||mh, j||kh and l||mh, single-soft j and l, and
single-collinear ih||j, j||kh, kh||l and l||mh. In addition, there are the four soft-collinear limits,
when j is soft with either kh||l or l||mh and when l is soft with either ih||j or j||kh. In the
designer antenna approach [74] these soft-collinear limits are automatically satisfied. The list
of eleven limits for X0

5,3(ih
a, jb, kh

c , ld, mh
e ) in the notation of [74] is then given by:

L1(ih, j, kh, l, mh) = Sb(ih, j, kh)Sd(kh, l, mh) double-soft i, l

L2(ih, j, kh, l, mh) = Pab(ih, j)Pcd(kh, l) double-collinear i ∥ j, k ∥ l

L3(ih, j, kh, l, mh) = Pab(ih, j)Ped(mh, l) double-collinear i ∥ j, l ∥ m

L4(ih, j, kh, l, mh) = Pcb(kh, j)Ped(mh, l) double-collinear b ∥ c, l ∥ m

L5(ih, j, kh, l, mh) = Sb(ih, j, kh)X0
3 (kh, l, mh) single-soft i

L6(ih, j, kh, l, mh) = Sd(kh, l, mh)X0
3 (ih, j, kh) single-soft l

L7(ih, j, kh, l, mh) = Pab(ih, j)X0
3 (kh, l, mh) single-collinear i ∥ j

L8(ih, j, kh, l, mh) = Ped(mh, l)X0
3 (ih, j, kh) single-collinear l ∥ m

L9(ih, j, kh, l, mh) = Pbcd(j, kh, l) triple-collinear j ∥ k ∥ l

L10(ih, j, kh, l, mh) = Pbc(kh, j)X0
3 ((j + k)h, l, mh) single-collinear j ∥ k

L11(ih, j, kh, l, mh) = Pcd(kh, l)X0
3 (ih, j, (k + l)h) single-collinear k ∥ l. (3.1)
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The tree-level soft factor Sb is given by the eikonal for particle b radiated between two
hard radiators:

Sg(ih, jg, kh) = Sγ(ih, jγ , kh) = 2sik

sijsjk
, (3.2)

Sq(ih, jq, kh) = Sq̄(ih, jq̄, kh) = 0, (3.3)

where we use Lorentz-invariant momentum structures

si,...,n ≡ (pi + . . . + pn)2. (3.4)

The splitting functions Pab(ih, j) are not singular in the limit where the hard radiator a

becomes soft and are related to the usual spin-averaged splitting functions, cf. [83, 84], by,

P (0)
qg (ih, j) = 1

sij
P (0)

qg (xj) (3.5)

P (0)
qg (i, jh) = 0, (3.6)

P
(0)
qq̄ (ih, j) = 1

sij
P

(0)
qq̄ (xj), (3.7)

P
(0)
qq̄ (i, jh) = 1

sij
P

(0)
qq̄ (1− xj), (3.8)

P (0)
gg (ih, j) = 1

sij
P sub,(0)

gg (xj) (3.9)

P (0)
gg (i, jh) = 1

sij
P sub,(0)

gg (1− xj) (3.10)

with

P (0)
qg (xj) =

(
2(1− xj)

xj
+ (1− ϵ)xj

)
(3.11)

P
(0)
qq̄ (xj) =

(
1− 2(1− xj)xj

(1− ϵ)

)
= P

(0)
qq̄ (1− xj) (3.12)

P sub,(0)
gg (xj) =

(
2(1− xj)

xj
+ xj(1− xj)

)
(3.13)

and
P sub,(0)

gg (xj) + P sub,(0)
gg (1− xj) ≡ P (0)

gg (xj). (3.14)

Here, the momentum fraction xj is defined with reference to one of the other particles in
the antenna, e.g.

xj = pj · pk

(pi + pj) · pk
= sjk

(sik + sjk)
. (3.15)

Finally, Pbcd denotes a triple-collinear splitting function [85–87]. For explicit expressions
see, for example [87]. Of course, not all limits are required or will be present for all particle
types. For example, if b (or d) is a quark there is no singular behaviour when its momentum
become soft, hence no soft limit associated to it.
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In single-unresolved limits (L5–L8, L10, L11) we require that X0
5,3(ih

a, jb, kh
c , ld, mh

e )
factorises onto three-parton tree-level antenna functions. We recall that an individual
X0

3 (ia, jb, kc) antenna function describes the b soft limit and the ah ∥ b or b ∥ ch collinear
limits. In the designer antenna approach, these are denoted as:

L1(ih, j, kh) = Sb(ih, j, kh) ,

L2(ih, j; k) = Pab(ih, j) ,

L3(kh, j; i) = Pcb(kh, j) .

(3.16)

We note that the product of two single-unresolved antenna functions,

X0
3 (ih

a, jb, kh
c )X0

3 (kh
c , ld, mh

e ) (3.17)

correctly describes singular limits when b and d are unresolved and emitted between pairs of
hard radiators (a, c) and (c, e). Namely, eq. (3.17) captures a significant subset of the limits
that are expected for the X0

5,3. However, it does not get every limit correct. More precisely,
every limit involving c being collinear with any other parton is only partially described,
because c is shared between both antenna functions. In other words, eq. (3.17) gives limits
L1–L8 in eq. (3.1) exactly, while only partially describes limits L9–L11, given that they involve
collinear configurations with the shared hard radiator c. It is nevertheless advantageous to
consider eq. (3.17) as the starting point for the construction of the new antenna functions.

We define a middle component of X0
5,3 (that we denote as X0

5,3;M ) that fully satisfies
limits L1–L8 and gives no purely collinear (i.e. not soft) contribution to limits L9–L11 by
removing the collinear limits with the shared hard radiator c:

X0
5,3;M ≡ X0

3 (ih
a, jb, kh

c )X0
3 (kh

c , ld, mh
e )

− C↓
jk((1− S↓

j )X0
3 (ih

a, jb, kh
c ))C

↓
kl((1− S↓

l )X
0
3 (kh

c , ld, mh
e )). (3.18)

In eq. (3.18), the combination C↓
jk((1− S↓

j )X0
3 (ih

a, jb, kh
c )) selects the non-soft j part of the

antenna function when j||k. In general each X0
3 antenna contains three singular limits,

leading to nine terms in the product. After removing the collinear (but not soft) component,
eight terms remain in X0

5,3;M .
We note that X0

5,3;M naturally involves all five particles. However, each term in X0
5,3;M is

composed of invariants made from the momenta in one antenna multiplied by invariants made
from the momenta in the other. No term involves an invariant that spans momenta from
one three-parton antenna function to the other. This feature will turn out to be very useful
in constructing suitable momentum mappings and in performing the analytic integration
of the X0

5,3;M antenna function.
The remaining limits only affect a subset of the five momenta. The triple-collinear

j ∥ kh ∥ l limit L9 directly involves the three collinear momenta, plus a spectator to determine
the momentum fractions, which can be either i or m. The single-collinear limit L10 involves
four momenta j, . . . , m (which all appear in the argument of the X0

3 ), provided that the
spectator for the single-collinear splitting is chosen to be m. Similarly, the single-collinear limit
L11 involves four momenta i, . . . , l when i is chosen as spectator to define the momentum
fractions of the splitting.
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We therefore break the X0
5,3 into three parts:

X0
5,3(ih, j, kh, l, mh) =X0

5,3;M (ih, j, kh, l, mh)
+ X0

5,3;L(ih, j, kh, l, mh)
+ X0

5,3;R(ih, j, kh, l, mh), (3.19)

where X0
5,3;M satisfies limits L1–L8, while X0

5,3;L (left component) and X0
5,3;R (right compo-

nent) are built from limits L9–L11. X0
5,3;L depends on momenta i, j, k, l and not on momentum

m, while X0
5,3;R depends on momenta j, k, l, m and not on momentum i. To assemble X0

5,3;L
and X0

5,3;R, we follow closely the procedure detailed in ref. [74] for the construction of four-
parton antenna functions. We systematically ensure that combination X0

5,3 satisfies eq. (3.1)
by injecting X0

5,3;M as the starting point of the designer algorithm and then working through
limits L9–L11 sequentially to avoid any double-counting of singular behaviour. Limits L9–L11
introduce denominators sjk, skl and sjkl. Terms that have denominators sjk are assigned to
X0

5,3;R (using m as the reference momentum for defining the collinear momentum fractions),
while those that have denominators skl are assigned to X0

5,3;L (using i as the reference
momentum). The X0

5,3;L antenna function depends functionally on the first four momenta,
while the X0

5,3;R antenna function depends functionally on the final four momenta. X0
5,3;L

therefore describes part of L9 and L10 while X0
5,3;R describes the remainder of L9 and L11.

3.2 Momentum mappings

Within a local subtraction term, antenna functions induce a momentum mapping from the
real-emission phase space to the reduced phase space obtained by redistributing the momenta
of the additional emissions among the ones of the hard particles. In this section we define the
appropriate double-unresolved mapping to be used with the new antenna functions. Each
of the three components introduced above (X0

5,3;M , X0
5,3;L and X0

5,3;R) is associated with a
different {i, j, k, l, m} → {I, K, M} mapping. Each mapping must:

(a) preserve both momentum conservation and on-shellness conditions;

(b) behave correctly in the limits relevant to that part of the X0
5,3 antenna;

(c) be analytically integrable over the phase space of the unresolved emissions.

To be precise, point (c) is not strictly necessary to achieve local subtraction, but it is
mandatory to have analytical control over the integrated form of the subtraction terms and
avoid potentially demanding point-by-point numerical integrations.

3.2.1 Momentum mapping for X0
5,3;M : ϕM

For the X0
5,3;M part of X0

5,3, we use the mapping, ϕM ,

pI = pi + pj −
sij

sik + sjk
pk,

ϕM : pK =
(
1 + sij

sik + sjk
+ slm

slk + smk

)
pk, (3.20)

pM = pl + pm − slm

slk + smk
pk,

– 17 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
5

which clearly satisfies both momentum conservation,

pI + pK + pM = pi + pj + pk + pl + pm, (3.21)

and on-shellness,

p2
I = p2

K = p2
M = 0. (3.22)

This mapping amounts to the iterated use of a dipole mapping [1], first on the triplet (i, j, k)
with momentum k rescaled, and then on the triplet (k, l, m), again with momentum k rescaled.
The final mapping is independent of the order of the individual dipole mappings. To make
our notation for this mapping explicit, we will use the following convention:

I ≡ [ijk], K ≡ [ijklm], M ≡ [klm], (3.23)

where the momentum that is rescaled is underscored.
X0

5,3;M describes L1–L8 of eq. (3.1), therefore, the ϕM mapping must collapse appro-
priately in these limits. Indeed, we find that

{I, K, M} j,l soft−−−−→ {i, k, m},

{I, K, M} i||j and k||l−−−−−−−→ {i + j, k + l, m},

{I, K, M} i||j and l||m−−−−−−−→ {i + j, k, l + m},

{I, K, M} j||k and l||m−−−−−−−−→ {i, j + k, l + m},

{I, K, M} j soft−−−→ {i, [kl], [lm]},

{I, K, M} l soft−−−→ {[ij], [jk], m},

{I, K, M} i||j−−→ {i + j, [kl], [lm]},

{I, K, M} l||m−−→ {[ij], [jk], l + m}.

Here {[ij], [jk]} denotes the result of a dipole mapping where k is the scaled momentum,

p[ij] = pi + pj −
sij

sik + sjk
pk,

p[jk] =
sijk

sik + sjk
pk. (3.24)

Similarly, {[kl], [lm]} is obtained by a dipole mapping where k is the scaled momentum.
In addition, the limits where either j or l are soft and one other pair is collinear are also
correctly described,

{I, K, M} j soft k||l−−−−−−→ {i, k + l, m},

{I, K, M} j soft l||m−−−−−−→ {i, k, l + m},

{I, K, M} l soft i||j−−−−−→ {i + j, k, m},

{I, K, M} l soft, j||k−−−−−−→ {i, j + k, m}.
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3.2.2 Momentum mapping for X0
5,3;L: ϕL

For the X0
5,3;L part of X0

5,3, we use the tripole mapping [88], ϕL,

pI = pi + pj + pl −
sijl

sik + sjk + skl
pk

ϕL : pK = sijkl

sik + sjk + skl
pk (3.25)

pM = pm,

which clearly satisfies both momentum conservation,

pI + pK + pM = pi + pj + pk + pl + pm, (3.26)

and on-shellness,

p2
I = p2

K = p2
M = 0. (3.27)

To make our notation for this mapping explicit, we will use the convention:

I ≡ [ijl], K ≡ [jkl], M ≡ m, (3.28)

where the momentum that is rescaled is underscored.
X0

5,3;L describes the triple-collinear limit L9 as well as the single-collinear k||l limit L11.
In this case, we find that for the ϕL mapping,

{I, K, M} j||k||l−−−→ {i, j + k + l, m}

{I, K, M} k||l−−→ {[ij], [j(k + l)], m}.

Here {[ij], [j(k + l)]} denotes the result of a dipole mapping where the collinear momentum
(k + l) satisfies (k + l)2 = 0 and is rescaled:

p[ij] = pi + pj −
sij

sik + sil + sjk + sjl
(pk + pl),

p[j(k+l)] =
sij + sik + sil + sjk + sjl

sik + sil + sjk + sjl
(pk + pl). (3.29)

3.2.3 Momentum mapping for X0
5,3;R: ϕR

The mapping ϕR is obtained by line-reversal {i ↔ m, j ↔ l} from ϕL. By symmetry, the
ϕR mapping correctly describes the j||k||l and j||k limits.

3.3 Summary

Our notation for the X0
5,3 antenna functions is summarised in table. 1. Putting together the

different components, we can write down the complete implementation of the X0
5,3 antenna

function in relation to its respective reduced matrix element within a double-unresolved
subtraction term:

X0
5,3(i, j, k, l, m)M0

n(. . . , {ijk}, {ijklm}, {klm}, . . .) ≡
X0

5,3;L(i, j, k, l, m)M0
n(. . . , [ijl], [jkl], m, . . .)

– 19 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
5

I K M

X0
5,3(i, j, k, l, m)

generic mapping {ijk} {ijklm} {klm}
X0

5,3;M mapping [ijk] [ijklm] [klm]
X0

5,3;L mapping [ijl] [jkl] m

X0
5,3;R mapping i [jkl] [jlm]

Table 1. Notation for the mappings for the X0
5,3 antenna functions with three hard radiators. Details

of the X0
5,3;M (X0

5,3;L(R)) mappings are given in eq. (3.20) and (3.25) respectively.

+X0
5,3;M (i, j, k, l, m)M0

n(. . . , [ijk], [ijklm], [klm], . . .)
+X0

5,3;R(i, j, k, l, m)M0
n(. . . , i, [jkl], [jlm], . . .). (3.30)

In table 2 we list all the X0
5,3 antenna functions required for an NNLO calculation up to line

reversal, charge conjugation and quark-flavour swaps. We organize them according to the
partonic species of the reconstructed hard partons, namely the constituents of the underlying
resolved three-particle configuration in infrared limits. We distinguish gluon-gluon-gluon,
quark-gluon-gluon, quark-antiquark-gluon and quark-antiquark-quark antenna functions.
Within these classes, a specific X0

5,3 has a particular partonic content and a particular order
of reconstructed hard partons. The names of the new antenna functions are chosen to follow
the conventions for traditional antenna functions [13] as closely as possible. Where needed,
we introduced dedicated labels (a, b, . . . ) to distinguish X0

5,3 antenna functions which differ
by a rearrangement of their partonic content. Finally, we indicate what is the pair of X0

3
antenna functions needed to assemble the X0

5,3;M component, according to (3.18). We notice
there are no X0

5,3 antenna functions with two pairs of identical-flavour quarks. This is due
to the fact that the infrared limits associated to a string like (ih

a, jq, kh
q̄ , lq, mh

q̄ ), where a

indicates a generic parton, are almost entirely covered by the (ih
a, jq, kh

q̄ , lQ, mh
Q̄
) configuration.

The only additional limit is represented by the jq ∥ kh
q̄ ∥ lq triple-collinear limit, which can

easily be accommodated by a C0
4 antenna function [13]. Hence, there is no need to introduce

dedicated X0
5,3 antenna functions.

We give the explicit expressions of all the X0
5,3 antenna functions in ancillary files. In

appendix A we illustrate the infrared limits of each antenna function in table 2.
We note that because E0

3(i, j, k) and G0
3(i, j, k) only contain the limit where j and k are

collinear, with parton i being a mere spectator whose nature is irrelevant, we can identify
the following relations between X0

5,3 antenna functions:

B0
5,3;i(i, j, k, l, m) ≡ E

0(b)
5,3;i(i, j, k, l, m), (3.31)

K0
5,3;i(i, j, k, l, m) ≡ H

0(b)
5,3;i(i, j, k, l, m), (3.32)

E
0(a)
5,3;i(i, j, k, l, m) ≡ G

0(b)
5,3;i(i, j, k, l, m), (3.33)

for i = M, L, R. Furthermore, the line reversal symmetry of the antenna induces additional
relations between the three components of the same X0

5,3 antenna functions,

A0
5,3;M (i, j, k, l, m) ≡ A0

5,3;M (m, l, k, j, i), (3.34)
A0

5,3;L(i, j, k, l, m) ≡ A0
5,3;R(m, l, k, j, i), (3.35)
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Type Name and
parton content

Reconstructed
hard partons X0

3 ⊗ X0
3

quark-antiquark-gluon

A0
5,3(ih

q , jg, kh
g , lg, mh

q̄ )

B0
5,3(ih

q̄ , jg, kh
Q, lQ̄, mh

q )

Ã0
5,3(ih

q̄ , jγ , kh
q , lg, mh

g )

B̃0
5,3(ih

q̄ , jγ , kh
q , lQ̄, mh

Q)

qgq̄

qgq̄

q̄qg

q̄qg

D ⊗ D

A ⊗ E

A ⊗ D

A ⊗ E

quark-antiquark-quark ˜̃
A

0
5,3(ih

q , jγ , kh
q̄ , lg, mh

Q) qq̄Q A ⊗ A

quark-gluon-gluon

D0
5,3(ih

q , jg, kh
g , lg, mh

g )

E
0(a)
5,3 (ih

q , jQ̄, kh
Q, lg, mh

g )

E
0(b)
5,3 (ih

q , jg, kh
Q̄

, lQ, mh
g )

E
0(c)
5,3 (ih

q , jg, kh
g , lQ̄, mh

Q)

E
0,(d)
5,3 (ih

Q, jQ̄, kh
q , lg, mh

g )

K0
5,3(ih

q , jQ̄, kh
Q, lR̄, mh

R)

qgg

qgg

qgg

qgg

gqg

qgg

D ⊗ F

E ⊗ D

A ⊗ G

D ⊗ G

E ⊗ D

E ⊗ E

gluon-gluon-gluon

F 0
5,3(ih

g , jg, kh
g , lg, mh

g )

G
0(a)
5,3 (ih

q̄ , jq, kh
g , lg, mh

g )

G
0(b)
5,3 (ih

g , jq̄, kh
q , lg, mh

g )

H
0(a)
5,3 (ih

Q̄
, jQ, kh

g , lq̄, mh
q )

H
0(b)
5,3 (ih

g , jQ̄, kh
Q, lq̄, mh

q )

ggg

ggg

ggg

ggg

ggg

F ⊗ F

G ⊗ F

G ⊗ D

G ⊗ G

G ⊗ E

Table 2. List of X0
5,3 antenna functions, organised by the partonic species of the reconstructed hard

partons of the underlying resolved three-particle configuration. The symbols q (q̄), Q (Q̄), R, (R̄)
represent different flavours of quarks (antiquarks). We use the symbol γ to denote a photon or an
abelian gluon. The X0

3 ⊗ X0
3 column refers to the assemblage of X0

5,3;M in (3.18), with the notation
X

0
3(ia, jb, kc) = X0

3 (kc, jb, ia). Note that A = A, F = F .

˜̃
A

0
5,3;M (i, j, k, l, m) ≡ ˜̃

A
0
5,3;M (m, l, k, j, i), (3.36)˜̃

A
0
5,3;L(i, j, k, l, m) ≡ ˜̃

A
0
5,3;R(m, l, k, j, i), (3.37)

F 0
5,3;M (i, j, k, l, m) ≡ F 0

5,3;M (m, l, k, j, i), (3.38)
F 0

5,3;L(i, j, k, l, m) ≡ F 0
5,3;R(m, l, k, j, i), (3.39)

while the particle content implies further relations between the L and R parts of some
different X0

5,3 antenna functions,

A0
5,3;L(i, j, k, l, m) ≡ D0

5,3;L(i, j, k, l, m), (3.40)

Ã0
5,3;L(i, j, k, l, m) ≡ ˜̃

A
0
5,3;L(i, j, k, l, m), (3.41)
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F 0
5,3;R(i, j, k, l, m) ≡ D0

5,3;R(i, j, k, l, m), (3.42)

E
0(a)
5,3;L(i, j, k, l, m) ≡ E

0(b)
5,3;R(m, l, k, j, i), (3.43)

G
0(a)
5,3;L(i, j, k, l, m) ≡ E

0(c)
5,3;R(m, l, k, j, i), (3.44)

E
0(d)
5,3;L(i, j, k, l, m) ≡ B̃0

5,3;R(m, l, k, j, i). (3.45)

3.4 Link to X̃0
4 antenna functions

As discussed in the introduction, almost colour-connected limits are also present for processes
with only four particles at the double-real level. The X̃0

4 antenna functions describing these
limits were constructed directly from the relevant infrared limits in ref. [74]. However, it
is interesting to see whether these special cases can also be constructed using the same
approach as for the X0

5,3 antenna functions.
The list of limits for the X̃0

4 (ih
a, jb, ld, kh

c ) antenna is given by [74]

L̃1(ih, j, l, kh) = Sb(ih, j, kh)Sd(ih, l, kh) ,

L̃2(ih, j, l, kh) = Pab(ih, j)Pcd(kh, l) ,

L̃3(ih, j, l, kh) = Pad(ih, k)Pcb(kh, j) ,

L̃4(ih, j, l, kh) = Sb(ih, j, kh)X0
3 (ih, l, kh) ,

L̃5(ih, j, l, kh) = Sd(ih, l, kh)X0
3 (ih, j, kh) ,

L̃6(ih, j, l; kh) = Pabd(ih, j, l) ,

L̃7(ih, j, l, kh) = Pab(ih, j)X0
3 ((i + j)h, l, kh) ,

L̃8(ih, j, l, kh) = Pad(ih, l)X0
3 ((i + l)h, j, kh) ,

L̃9(ih, j, l, kh) = Pcdb(kh, l, j) ,

L̃10(ih, j, l, kh) = Pcd(kh, k)X0
3 (ih, j, (l + k)h) ,

L̃11(ih, j, l, kh) = Pcb(kh, j)X0
3 (ih, l, (k + j)h) . (3.46)

We see that one can do a similar construction as for the X0
5,3 antenna, by introducing

X̃0
4,M (ih

a, jb, ld, kh
c ) ≡ X0

3 (ih
a, jb, kh

c )X0
3 (kh

c , ld, ih
a)

− C↓
jk((1− S↓

j )X0
3 (ih

a, jb, kh
c ))C

↓
kl((1− S↓

l )X
0
3 (kh

c , ld, ih
a))

− C↓
ij((1− S↓

j )X0
3 (ih

a, jb, kh
c ))C

↓
il((1− S↓

l )X
0
3 (kh

c , ld, ih
a)) (3.47)

which fully satisfies the double-soft, double-collinear and soft-collinear limits L̃1–L̃5. The
remaining limits L̃6–L̃11 are the single- and triple-collinear limits that are precisely captured
by the X0

5,3;L and X0
5,3;R antenna functions. When the particle types are appropriate, we can

therefore build an X̃0
4 function by combining X̃0

4,M , X0
5,3;L or X0

5,3;R functions as, for example,

F̃ 0
4 (i, j, l, k) = F̃ 0

4,M (i, j, l, k)
+ F 0

5,3;L(i, j, k, l, A) + F 0
5,3;R(A, l, i, j, k)

+ F 0
5,3;L(i, l, k, j, A) + F 0

5,3;R(A, j, i, l, k), (3.48)
D̃0

4(i, j, l, k) = D̃0
4,M (i, j, l, k)

+ D0
5,3;L(i, j, k, l, A) + Ã0

5,3;R(A, l, i, j, k)
+ D0

5,3;L(i, l, k, j, A) + Ã0
5,3;R(A, j, i, l, k), (3.49)
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where, because X0
5,3;L (X0

5,3;R) does not depend on the fifth particle momentum, A is a
dummy momentum. We have explicitly checked that eqs. (3.48) and (3.49) correctly generate
the proper infrared singular structure (and the correct infrared poles when integrated) for
the F̃ 0

4 and D̃0
4 antenna functions respectively.

4 Double-real subtraction terms

As an example of the use of the generalised antenna functions, we consider the process
e+e− → jjj at leading colour. We follow closely the notation in ref. [54] to demonstrate the
similarities and most importantly the differences with the original antenna subtraction.

The real-radiation correction to the cross section dσRR
NNLO,N2 is obtained by summing

the contributions of the colour-ordered matrix elements for the six permutations of gluons
(labelled here as i, j and k). The quarks carry momentum p1 and p2 and the gluons carry
momentum pi, pj and pk in the set {p3, p4, p5}.

dσRR
NNLO,N2 = N5N2dΦ5({p}5; q)

1
3!

∑
(i,j,k)∈P (3,4,5)

M0
5 (1, i, j, k, 2) J

(5)
3 ({p}5). (4.1)

Here we use M0
n(1, . . . , 2) to denote the squared tree-level leading-colour colour-ordered

amplitude |A0
n(1, . . . , 2)|2 for the annihilation of an electron and a positrion to two quarks

and three gluons, while N5 is an overall normalisation and dΦ5 the five particle phase space.
In general we denote:

Nn = 4πα
∑

q

e2
q (4παs)(n−2)

(
N2 − 1

)
. (4.2)

The double-real subtraction term using the generalised X0
5,3 antenna functions is given by,

dσS
NNLO,N2 =N5N2dΦ5({p}5; q)

1
3!

∑
(i,j,k)∈P (3,4,5)

{

1 + D0
3(1, i, j)M0

4 ((1̃i), (ĩj), k, 2) J
(4)
3 ({p}4)

2 + F 0
3 (i, j, k)M0

4 (1, (ĩj), (k̃j), 2) J
(4)
3 ({p}4)

3 + D0
3(2, k, j)M0

4 (1, i, (j̃k), (k̃2)) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−−−−

4 + D0
4(1, i, j, k)M0

3 ((1̃ij), (k̃ji), 2) J
(3)
3 ({p}3)

5 − D0
3(1, i, j)D0

3((1̃i), (j̃i), k)M0
3 ((

˜(1̃i)(ĩj)), (k̃(̃ji)), 2) J
(3)
3 ({p}3)

6 − F 0
3 (i, j, k)D0

3(1, (ĩj), (k̃j))M0
3 ((1̃(̃ij)), (

˜(k̃j)(j̃i)), 2) J
(3)
3 ({p}3)

7 + D0
4(2, k, j, i)M0

3 (1, (ĩjk), (2̃kj)) J
(3)
3 ({p}3)

8 − F 0
3 (i, j, k)D0

3(2, (j̃k), (ĩj))M0
3 (1, ( ˜(ĩj)(j̃k)), (2̃(̃kj))) J

(3)
3 ({p}3)

9 − D0
3(2, k, j)D0

3((2̃k), (j̃k), i)M0
3 (1, (ĩ(̃jk)), ˜((2̃k), (j̃k))) J

(3)
3 ({p}3)

– 23 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
5

−−−−−−−−−−−−−−−−−−−−−−−−−−

10 + A0
5,3(1, i, j, k; 2)M0

3 (({1ij}), ({1ijk2}), ({jk2}))) J
(3)
3 ({p}3)

11 − D0
3(1, i, j)D0

3(2, k, (ĩj))M0
3 ((1̃i), [(j̃i)k], [k2]) J

(3)
3 ({p}3)

12 − D0
3(2, k, j)D0

3(1, i, (k̃j))M0
3 ([1i], [(k̃j)i], (2̃k)) J

(3)
3 ({p}3)

}
, (4.3)

where the single-unresolved X0
3 and double-unresolved X0

4 are as given in ref. [74]. This is to
be compared and contrasted with the subtraction term given by combining eqs. (6.3) and
(3.31) of ref. [54]. First of all, we sum over the six colour orderings, rather than the three
pairs of line-reversed colour orderings, because the new subtraction term is able to locally
remove the divergent behaviour associated to each individual colour ordering. We introduce
coloured line labels to facilitate the discussion below.

The first three terms (1-3) in eq. (4.3) represent the single-unresolved limits and cor-
respond to the first six lines of eq. (6.3) in ref. [54]. Terms 4-9 in eq. (4.3) describe the
double-unresolved colour-connected singularities, as anticipated in (2.4). The D0

4 antenna
functions (lines 4 and 7) contain both single and double-unresolved singularities. The single-
unresolved contributions are removed by lines 5,6 and 8,9 respectively. These terms correspond
roughly to the blocks with D0

4,a and D0
4,b in eq. (6.3) in ref. [54]. The main difference is that

the D0
4 is designed to contain only the required infrared limits, while D0

4,a and D0
4,b were

extracted by partitioning D0
4 based on matrix elements.

The major change comes in the double-unresolved almost colour-connected contribution
in lines 10-12 in eq. (4.3). These terms replace both the remainder of eq. (6.3) and the
large angle soft contribution in eq. (3.3) of ref. [54]. For the first nine terms, all the
mappings (whether 3 → 2 or 4 → 2) are antenna-like (denoted by (ĩj) etc). We note that
in double-unresolved limits both antenna- and dipole-like mappings collapse correctly, but
in single-unresolved limits we must be consistent between terms that should cancel. As
noted in section 3.2 and specifically eq. (3.30), line 10 is divided into three parts, each with
different (dipole-like) mappings,

10 A0
5,3(1, i, j, k, 2)A0

3({1ij}, {1ijk2}, {jk2}) J
(3)
3 ({p}3)

10L ≡A0
5,3;L(1, i, j, k, 2)A0

3([1ij], [ijk], 2) J
(3)
3 ({p}3)

10M + A0
5,3;M (1, i, j, k, 2)A0

3([1ij], [1ijk2], [jk2]) J
(3)
3 ({p}3)

10R + A0
5,3;R(1, i, j, k, 2)A0

3(1, [ijk], [jk2]) J
(3)
3 ({p}3). (4.4)

The mappings in terms 11 and 12 must correctly cancel the single-unresolved contributions
in term 10. This means that the mapping used in the second X0

3 antenna function must
also be dipole-like. To determine the mappings needed, we consider the soft i limit. In this
limit, term 1 gives the correct unresolved behaviour, while there are additional contributions
from terms 3,4,5 and 10,11,12. By design, the contributions from terms 4 and 5 cancel, and
therefore we need pairwise cancellation between terms 3 and 12, and between terms 10 and
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11. For the 3 and 12 cancellation, we find

3 +D0
3(2, k, j)S1i(j̃k)M

0
3 (1, (j̃k), (k̃2)) (4.5)

12 −D0
3(2, k, j)S1i(j̃k)M

0
3 (1, (j̃k), (k̃2)) (4.6)

where Sabc is the soft eikonal function. These contributions do indeed cancel if the mapping
for the first X0

3 antenna in term 12 is antenna-like. For the 10 and 11 cancellation, we find

10 +S1ijD0
3(2, k, j)M0

3 (1, [jk], [k2]) (4.7)
11 −S1ijD0

3(2, k, j)M0
3 (1, [jk], [k2]) (4.8)

which again does cancel, so long as the mapping for the second X0
3 antenna in term 12 is

a dipole mapping with j rescaled. Similar considerations in the k soft limit mean that the
mapping for the first X0

3 antenna in both terms 11 and 12 is an antenna mapping, while the
mapping for the second X0

3 antenna must be a dipole mapping with momentum j rescaled.
One can check that this solution works in single-collinear regions too.

With the appropriate choice of mapping, the single-unresolved limits are addressed by
the (NLO-like) terms 1-3. For example, the limit where particle i is unresolved is fully
described by term 1. All the other terms with divergences when i becomes unresolved must
then cancel between each other.

On the other hand, the double-unresolved behaviour of the matrix element is fully
captured by 4,7 and 10, with the X0

3 X0
3 terms cancelling the additional divergences of 1-3.

Hence, the correct behaviour across the whole phase space is guaranteed.
Overall, the subtraction term in (4.3) represents a dramatic simplification compared to

ref. [54]. Similar simplifications occur for every colour factor that previously required large
angle soft terms, in particular the N2, N0 and NFN−1 contributions in ref. [54]. QED-like
contributions, such as the N−2 factor in ref. [54], do not have such structures and therefore
only benefit from the use of idealized antenna functions.

To confirm that (4.3) indeed does locally reproduce the single- and double-unresolved
behaviour of the matrix element, we performed pointwise numerical tests similar to those
described in [73, 89]. We note that to account for azimuthal contributions in the collinear
limits of the real matrix elements, we employ azimuthal averaging as described in ref. [58].
As expected, we find local cancellation for a single squared colour-ordering. To compare our
implementation to the original subtraction terms for e+e− → jjj [54, 90], a sum over colour
orderings is required. We observe no degradation in the subtraction performances relying
on the new setup, which demonstrates that there are no numerical drawbacks in combining
dipole mappings with antenna mappings. We performed analogous tests for all the other
double-real subtraction terms in appendix D.1 and drew the same conclusions.

5 Real-virtual subtraction term

We now consider the corresponding real-virtual subtraction term. The real-virtual correction
to the cross section dσRV

NNLO,N2 is obtained by summing the contributions of the colour
ordered matrix elements for the two permutations of gluons (labelled here as i and j carrying
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momentum p3 and p4 respectively):

dσRV
NNLO,N2 = N4N2

(
αs

2π

)
dΦ4({p}4; q)

1
2!

∑
(i,j)∈P (3,4)

M1
4 (1, i, j, 2) J

(4)
3 ({p}4) (5.1)

Here we use M1
n(1, . . . , 2) to denote the interference between the one-loop and tree-level

leading-colour colour-ordered amplitudes: 2Re
[
A0

n(1, . . . , 2)(A1
n(1, . . . , 2))†

]
, with N4 being

an overall normalisation as in eq. (4.2) and dΦ4 the four particle phase space.
The real-virtual subtraction term is given by,

dσT
NNLO,N2 =N4N2

(
αs

2π

)
dΦ4({p}4; q)

1
2!

∑
(i,j)∈P (3,4)

{

1 −
[
+D0

3(s1i) + F0
3 (sij) +D0

3(sj2)
]

M0
4 (1, i, j, 2) J

(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−−−−

2 +
[
+D0

3(s1i) + F0
3 (sij)

]
D0

3(1, i, j)M0
3 ((1̃i), (ĩj), 2) J

(3)
3 ({p}3)

3 +
[
+ F0

3 (sij) +D0
3(sj2)

]
D0

3(2, j, i)M0
3 (1, (ĩj), (j̃2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−−−−

4 +D0
3(sj2)D0

3(1, i, j)M0
3 ([1i], [ij], 2) J

(3)
3 ({p}3)

5 +D0
3(s1i)D0

3(2, j, i)M0
3 (1, [ij], [j2]) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−−−−

6 + D1
3(1, i, j)M0

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3)

7 + D1
3(2, j, i)M0

3 (1, (ĩj), (j̃2)) J
(3)
3 ({p}3)

8 + D0
3(1, i, j)M1

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3)

9 + D0
3(2, j, i)M1

3 (1, (ĩj), (j̃2)) J
(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−−−−

10 + D1
4,3(1, i, j, 2)M0

3 ({1i}, {ij}, {2}) J
(3)
3 ({p}3)

11 + D1
4,3(2, j, i, 1)M0

3 ({1}, {ij}, {j2}) J
(3)
3 ({p}3)

}
(5.2)

where the final-final integrated antenna functions are denoted by X 0
3 and are as given in [74],

and the single-unresolved one-loop antenna function X1
3 is as given in ref. [75]. This is to be

compared and contrasted with the subtraction term given by combining eqs. (6.5) and (3.35)
of ref. [54]. The real-virtual subtraction term has a twofold purpose: removing from the
matrix element the implicit divergent behaviour in single-unresolved limits and the explicit
ϵ-poles exactly across the phase space. In the following we show how equation (5.2) achieves
this. The real-virtual subtraction term is structured as follows:
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(a) Terms 1, 2, 3, 4 and 5 are fixed by the integration of terms 1,2,3, 5,6 and 8,9, and 11,12
of eq. (4.3). Specifically,

eq. (4.3) → eq. (5.2)
1,2,3 → 1

5,6 → 2
8,9 → 3
12 → 4
11 → 5. (5.3)

Note that the mappings appearing in terms 4,5 precisely match those in terms 11,12
of eq. (4.3). There is no freedom to choose different mappings for terms 4,5 because,
although the integration from RR to RV is mapping independent, the numerical
integration of terms 4,5 over the rest of the phase space is mapping dependent. We
must use the same mapping as the second mapping in the corresponding RR term,
namely the dipole mapping with j rescaled for term 4 and i rescaled for 5.

(b) Terms 2, 3, 4 and 5 completely cancel the divergent behaviour in single-unresolved
limits of term 1. This is explained by the fact that the RR terms to the left of the
arrows in (5.3) cancel in double-unresolved configurations. After analytical integration
over a single emission one obtains the RV terms to the right of the arrows, which have
to cancel in the residual single-unresolved limits.

(c) Terms 6-9 subtract the single-unresolved behaviour of the real-virtual matrix ele-
ment [15].

(d) Term 1 exactly reproduces the ϵ-pole structure of the real-virtual matrix element, but
in general, terms 2-9 are not poles free. Therefore, we add terms 10,11 precisely to
subtract the leftover ϵ-poles, and we design them in such a way they do not produce
any divergence in unresolved limits. We discuss below how this is achieved.

5.1 One-loop four-particle three-hard-radiator antenna functions

We introduce a generalised antenna function X1
4,3(ih

a, jb, kh
c , lhd) for each possible X0

3 (ih
a, jb, kh

c )
antenna function appearing in the real-virtual subtraction term. Since each X0

3 can appear
with up to three different types of mapping (antenna or dipole with either of the hard radiators
being rescaled), we identify three parts for each X1

4,3 function:

10 X1
4,3(1, i, j, 2)M0

3 ({1i}, {ij}, {2}) J
(3)
3 ({p}3)

10L ≡X1
4,3;L(1, i, j, 2)M0

3 ([1i], [ij], 2) J
(3)
3 ({p}3)

10M + X1
4,3;M (1, i, j, 2)M0

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3)

10R + X1
4,3;R(1, i, j, 2)M0

3 ([1i], [ij], 2) J
(3)
3 ({p}3). (5.4)

The mappings for the three cases are summarised in table 3. The explicit expression for
the X1

4,3 antenna functions are completely determined by the leftover ϵ-poles that they
need to remove.
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I K L

X1
4,3(i, j, k, l)

generic mapping {ijk} {jkl} {l}
X1

4,3;M mapping ĩj j̃k l

X1
4,3;L mapping [ij] [jk] l

X1
4,3;R mapping [ij] [jk] l

Table 3. Notation for the mappings for the X1
4,3 antenna functions with three hard radiators.

For the specific leading-colour subtraction term considered in this example, we first
recall that the poles of the one-loop reduced matrix element can be expressed by means
of integrated NLO antenna functions as:

Poles(M1
3 ((1̃i), (ĩj), 2)) = (−D0

3(s1ij)−D0
3(s(ĩj)2))M

0
3 ((1̃i), (ĩj), 2) (5.5)

With this we obtain:

D1
4,3;L(1, i, j,2)≡ 0,

D1
4,3;M (1, i, j,2)=−Poles

[(
D0

3(s1i)+F0
3 (sij)−D0

3(s1ij)−D0
3(s(ĩj)2)

)
D0

3(1, i, j)+D1
3(1, i, j)

]
=
(

1
ϵ2 +

1
ϵ

(
log
(

s1ijµ2

(s1j+sij)sĩj2

)
+5
3

))
D0

3(1, i, j),

D1
4,3;R(1, i, j,2)=−Poles

(
D0

3(sj2)D0
3(1, i, j)

)
=
(
− 1

ϵ2 +
1
ϵ

(
log
(

sj2
µ2

)
− 5
3

))
D0

3(1, i, j), (5.6)

where µ is the renormalisation scale. The left (L) component vanishes because, for this
specific subtraction term, there is no occurrence of a dipole mapping where momentum 1
is rescaled. We see that term 10R exactly cancels the poles of term 4, while term 10M
removes those of terms 2 and 6,8.

Away from the unresolved limits, the X1
4,3;L, X1

4,3;M and X1
4,3;R contributions multiply

reduced matrix elements with different mappings. However, in the unresolved limits, the
antenna and dipole mappings coincide. This means that X1

4,3;L, X1
4,3;M and X1

4,3;R can be
combined together into an overall non-divergent contribution. For example, in the i soft limit:

D1
4,3;L(1, i, j, 2) ≡ 0,

D1
4,3;M (1, i, j, 2) →

(
1
ϵ2 + 1

ϵ

(
log

(
µ2

sj2

)
+ 5

3

))
S1ij ,

D1
4,3;R(1, i, j, 2) →

(
− 1

ϵ2 + 1
ϵ

(
log

(
sj2
µ2

)
− 5

3

))
S1ij , (5.7)

with X1
4,3;M and X1

4,3;R clearly cancelling each other. This is also true for both the i ∥ j and
j ∥ k single-collinear limits. We remark that this holds in general by construction: terms
1-9, despite not being ϵ-finite, do correctly subtract the divergent behaviour of the matrix
element in single-unresolved limits, both for the finite part and the explicit poles. Therefore,
the poles mismatch encapsulated in terms 10 and 11 has to vanish in singular configurations.
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Type Name and
parton content X0

3 X1
3

quark-antiquark

A1
4,3(ih

q , jg, kh
q̄ , bh)

Â1
4,3(ih

q , jg, kh
q̄ , bh)

Ã1
4,3(ih

q , jg, kh
q̄ , bh)

A0
3

A0
3

A0
3

A1
3

Â1
3

Ã1
3

quark-gluon

D1
4,3(ih

q , jg, kh
g , bh)

D̂1
4,3,g(ih

q , jg, kh
g , bh)

D̃1
4,3,g(ih

q , jg, kh
g , bh)

E1
4,3(ih

q , jQ̄, kh
Q, bh)

Ê1
4,3(ih

q , jQ̄, kh
Q, bh)

Ẽ1
4,3(ih

q , jQ̄, kh
Q, bh)

D0
3

D0
3

D0
3

E0
3

E0
3

E0
3

D1
3

D̂1
3

D̃1
3

E1
3

Ê1
3

Ẽ1
3

gluon-gluon

F 1
4,3(ih

g , jg, kh
g , bh)

F̂ 1
4,3(ih

g , jg, kh
g , bh)

G1
4,3(ih

g , jQ̄, kh
Q, bh)

Ĝ1
4,3(ih

g , jQ̄, kh
Q, bh)

G̃1
4,3(ih

g , jQ̄, kh
Q, bh)

F 0
3

F 0
3

G0
3

G0
3

G0
3

F 1
3

F̂ 1
3

G1
3

Ĝ1
3

G̃1
3

Table 4. List of X1
4,3 antenna functions, organised by the partonic species of the two hard radiators

in the underlying three-parton antenna functions, identified by removing the generic spectator parton
b. The corresponding three-parton tree-level and one-loop antenna functions are indicated in the X0

3
and X1

3 column respectively.

In table 4 we list all the X1
4,3 antenna functions. As explained above, each X1

4,3 collects
residual explicit singularities from terms coming with specific X0

3 and X1
3 antenna functions.

Since standard three-parton antenna functions can be classified as quark-antiquark, quark-
gluon and gluon-gluon ones according to the partonic species of the two reconstructed hard
radiators, we can straightforwardly adopt the same separation for the X1

4,3 too. For each X1
4,3,

we indicate the corresponding X0
3 and X1

3 . We provide expressions for all the unintegrated
X1

4,3 antenna functions in appendix B.

We performed pointwise tests [73] to confirm that the subtraction term in (5.2) correctly
removes both the explicit ϵ-poles and local single-unresolved limits of the real-virtual matrix
element. As for the double-real case, we find that the cancellation works for individual colour-
ordered matrix elements, and observe the same performances when comparing with original
subtraction terms [54, 90]. All the other real-virtual subtraction terms in appendix D.2
passed the tests too.
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6 Analytical integration

In this section we describe how the momentum mappings introduced in the previous sections
for the generalised antenna functions induce a phase-space factorisation which allows us
to perform the integration over the degrees of freedom of the unresolved radiation in fully
analytical fashion. As usual, we work in dimensional regularisation with the number of
dimensions d = 4 − 2ϵ.

6.1 Integration of X0
5,3 antenna functions

6.1.1 X0
5,3;M

The ϕM mapping is defined in eq. (3.20). For this mapping, we can write the five particle
phase space in factorised form as,

dPS5(i, j, k, l, m) = dPSX0
5,3;M

(i, j, k, l, m)dPS3(I, K, M) (6.1)

where

dPSX0
5,3;M

(i, j, k, l, m) = 1
S2

ϵ

(
eϵγ

2Γ(1− ϵ)

)2
dz1 dz2 dy1 dy2 z−ϵ

1
(
1− z1

)−ϵ
z−ϵ

2
(
1− z2

)−ϵ

× y−ϵ
1
(
1− y1

)1−2ϵ
y−ϵ

2
(
1− y2

)2−3ϵ
s1−ϵ

IK s1−ϵ
KM (6.2)

with

Sϵ = 8π2(4π)−ϵeϵγ . (6.3)

The relations between the invariants of un-mapped momenta and the integration variables
y1, y2, z1 and z2 (which all run between 0 and 1) are given by

sij = y1
(
1− y2

)
sIK ,

sjk =
(
1− y1

)(
1− y2

)(
1− z1

)
sIK ,

sik = z1
(
1− y1

)(
1− y2

)
sIK ,

skl =
(
1− y1

)(
1− y2

)(
1− z2

)
sKM ,

skm = z2
(
1− y1

)(
1− y2

)
sKM ,

slm = y2sKM ,

sijk =
(
1− y2

)
sIK ,

sklm =
(
1− y1

(
1− y2

))
sKM . (6.4)

As a basic check of the formulae above, we confirmed that integrating dPSX0
5,3;M

over z1(2)

and y1(2) and then integrating inclusively over the three-particle phase space dPS3(I, K, M)
yields the full d-dimensional five-particle phase space.

Because of the product-like nature of eq. (3.18), every term in an X0
5,3;M antenna can

be completely factorised and written as

IX0
5,3;M

(a1, a2, a3, a4, a5, a6, a7, a8) = sa1
ij sa2

ik sa3
jksa4

ijksa5
kl sa6

kmsa7
lmsa8

klm (6.5)
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where the exponents a1, . . . , a4 are fixed by the X0
3 (i, j, k) antenna function, while a5, . . . , a8

are fixed by the X0
3 (k, l, m) antenna function. Because of the dimensionality of each antenna

function, we have:

a1 + a2 + a3 + a4 = −1,

a5 + a6 + a7 + a8 = −1.

The integration of a term like IX0
5,3;M

in eq. (6.5) over dPSX0
5,3;M

can be performed in full
analytical fashion, retaining exact dependence on the regulator ϵ. The integral has the
following closed form:∫

IX0
5,3;M

(a1, a2, a3, a4, a5, a6, a7, a8)dPSX0
5,3;M

(i, j, k, l, m)

= 1
S2

ϵ

(
eϵγ

2Γ(1− ϵ)

)2
s−ϵ

IKs−ϵ
KM

× I(a2 − ϵ, a3 − ϵ, a6 − ϵ, a5 − ϵ, a1 − ϵ, a2 + a3 + a5 + a6 + 1− 2ϵ,

a7 − ϵ, a1 + a2 + a3 + a4 + a5 + a6 + 2− 3ϵ, a8) (6.6)

with

I(b1, b2, b3, b4, b5, b6, b7, b8, b9)

=
∫ 1

0
zb1

1
(
1− z1

)b2dz1

∫ 1

0
zb3

2
(
1− z2

)b4dz2

×
∫ 1

0

∫ 1

0
yb5

1
(
1− y1

)b6yb7
2
(
1− y2

)b8(1− y1
(
1− y2

))b9dy1 dy2

= Γ(1 + b1)Γ(1 + b2)
Γ(2 + b1 + b2)

Γ(1 + b3)Γ(1 + b4)
Γ(2 + b3 + b4)

× Γ(1 + b5)Γ(1 + b6)
Γ(2 + b5 + b6)

Γ(1 + b7)Γ(1 + b8)
Γ(2 + b7 + b8)

× 3F2([1 + b5, 1 + b8,−b9], [2 + b5 + b6, 2 + b7 + b8], 1). (6.7)

The generalised hypergeometric function pFq([a1, . . . , ap], [b1, . . . , bq], z) can be written as:

pFq([a1, . . . , ap], [b1, . . . , bq], z) =
∞∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

z

n! , (6.8)

where (a)n denotes the Pochhammer symbol:

(a)n = Γ(a + n)
Γ(a) . (6.9)

The expression above allows one to expand the exact result in eqs. (6.6) and (6.7) up to any
desired power in ϵ. We used HypExp[91, 92] to check all our results.

We note that we could achieve a relatively straightforward analytic integration of a double-
unresolved divergent function of five distinct momenta, retaining differential information with
respect to independent hard scales. On one hand, this is due to the simplicity of the integrand,
which in turn descends from the designer antenna algorithm, which naturally produces simple
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physical denominators. On the other hand, the phase-space factorisation induced by the
iterated dipole mapping in (3.20) allows for a sequential integration of the almost completely
factorised integral I in (6.7). The only term spoiling the separation of the y1 and y2 integrals
is (1 − y1(1 − y2))b9 , associated with the sklm invariant, which is at the origin of the 3F2
hypergeometric function. The specific choice of mapping also ensures that the dependence
from the hard scales sIK and sKM of the final result is trivial and completely factorised.

6.1.2 X0
5,3;L (X0

5,3;R)

The ϕL (ϕR) mapping is defined in eq. (3.25). For this mapping, we can write the five-particle
phase space in factorised form as

dPS5(i, j, k, l, m) = dPSX0
5,3;L

(i, j, k, l, m)dPS3(I, K, M) (6.10)

where we can exploit the fact that one of the five momenta is untouched (m=M for X0
5,3;L or

i=I for X0
5,3;R) and rely the four-particle phase space parametrisation (tripole parametrisation)

described in [88]:

dPSX0
5,3;L

(i, j, k, l, m) = 1
S2

ϵ

(
eϵγ

2Γ(1− ϵ)

)2
dz1 dz2 dy1 dy2 z−ϵ

1
(
1− z1

)1−2ϵ
z−ϵ

2
(
1− z2

)−ϵ

× y1−ϵ
1
(
1− y1

)1−2ϵ
y−ϵ

2
(
1− y2

)−ϵ
s2−2ϵ

IK , (6.11)

with a similar expression for X0
5,3;R with sIK → sKM . As a basic check, we verified that

integrating (6.11) over z1(2) and y1(2) and then integrating inclusively over the three-particle
phase space dPS3(I, K, M) yields the full d-dimensional five-particle phase space.

The terms in an X0
5,3;L (X0

5,3;R) antenna functions are products of invariants involving
two or more of the four momenta i, j, k, l (j, k, l, m). Therefore, such expressions can
be all be straightforwardly integrated following the procedure outlined in ref. [88] for the
analytical integration of traditional four-particle antenna functions.

As indicated by eq. (6.13), after integration over dPSX0
5,3;L(R)

, the final result will depend
on a single hard scale sIK (or sKM ), which hence appears simply as an overall factor.

6.1.3 Summary

As a shorthand, we use the notation X 0
5,3(sIK , sKM ) to denote the integrated X0

5,3 func-
tion where,

X 0
5,3(sIK , sKM ) = X 0

5,3;M (sIK , sKM ) + X 0
5,3;L(sIK) + X 0

5,3;R(sKM ). (6.12)

We remark that the explicit scale dependence of each term (6.12) is different, due to the
different phase-space factorisation for the respective mappings. In particular:

X 0
5,3;M (sIK , sKM ) =

(
sIK

µ2

)−ϵ (sKM

µ2

)−ϵ

fM (ϵ), (6.13)

X 0
5,3;L(sIK) =

(
sIK

µ2

)−2ϵ

fL(ϵ), (6.14)

X 0
5,3;R(sKM ) =

(
sKM

µ2

)−2ϵ

fR(ϵ), (6.15)
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where fM , fL and fR are constant series in the dimensional regulator ϵ. In appendix C.1 we
provide the analytically integrated form of all the X0

5,3 antenna functions.
We notice that the deepest infrared poles (ϵ−4 and ϵ−3) of an integrated X0

5,3 antenna
function, whose X0

5,3;M component has been constructed according to (3.18) from X0
3,AX0

3,B,
coincide with the deepest poles of X 0

3,AX 0
3,B. This happens because both the residual terms

in (3.18), as well as X0
5,3;L and X0

5,3;R, do not have soft singularities and hence give only up
to ϵ−2 poles after integration. This serves as a basic sanity check of the analytic integration
procedure.

6.2 Integration of X1
4,3 antenna functions

For any mapping where the fourth spectator momentum is unaffected, the X 1
4,3 function

is a single-scale function, is independent of the choice of how the three active momenta
are mapped and depends only on their invariant mass. The analytic integration of X1

4,3;R
(X1

4,3;L) can be straightforwardly carried out using the appropriate dipole mapping (see
table 3). On the other hand, X1

4,3;M is easy to integrate with a dipole mapping where either
of the two hard momenta is rescaled. For this reason, in the following we explicitly provide
formulae for the X1

4,3;R integration.
For the X1

4,3;R part of X1
4,3, we use the dipole mapping, ρR,

pI = pi + pj −
sij

sik + sjk
pk

ρR : pK = sijk

sik + sjk
pk

pL = pl. (6.16)

As usual, we will use the notation

I ≡ [ij], K ≡ [jk], L ≡ l, (6.17)

where the momentum that is rescaled is underscored.
For the ρR mapping defined in eq. (6.16) we can write the four particle phase space

in factorised form as,

dPS4(i, j, k, l) = dPSX1
4,3;R

(i, j, k, l)dPS3(I, K, L) (6.18)

where

dPSX1
4,3;R

(i, j, k, l) = 1
Sϵ

(
eϵγ

2Γ(1− ϵ)

)
dz dy z−ϵ(1− z)−ϵy−ϵ(1− y)1−2ϵs1−ϵ

IK . (6.19)

The invariants before mapping are related to the invariant masses after mapping by

sij = ysIK ,

sik = (1− z)(1− y)sIK ,

sjk = z(1− y)sIK ,

sijk = sIK ,
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sik + sjk = (1− y)sIK ,

sij + sik = (1− z(1− y))sIK ,

slk = (1− y)sKL. (6.20)

The generic form of the X1
4,3;R integrand is a product of an X0

3 (i, j, k) antenna and a
logarithm (see appendix B). The X0

3 depends only on the invariants constructed from the
momenta i, j and k and has the form,

X0
3 (i, j, k) =

∑
sa1

ij sa2
ik sa3

jksa4
ijk (6.21)

where the sum runs over the terms in the antenna and on dimensional grounds,

a1 + a2 + a3 + a4 = −1. (6.22)

The logarithm can in general be expressed as,

log
(
sb1

ij sb2
iksb3

jksb4
ijk[sik + sjk]b5 [sij + sik]b6sb7

lksb8
KL

)
(6.23)

where, to have a dimensionless argument in the logarithm,

b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 = 0. (6.24)

Moreover, by construction, the dependence on the fourth momentum l has to cancel after
analytic integration, which requires:

b7 + b8 = 0. (6.25)

Note that for the dipole mapping where k is rescaled and the spectator l is unchanged, so
that sLK ∝ slk, eq. (6.25) ensures that the dependence of the integrand on the momentum
l (and on the scale sLK) drops out. Therefore every term that we need to integrate has
the form of the generalised integrand

IX1
4,3;R

(a1, a2, a3, a4, b1, b2, b3, b4, b5, b6, b7, b8)

≡ sa1
ij sa2

ik sa3
jksa4

ijk log
(
sb1

ij sb2
iksb3

jksb4
ijk[sik + sjk]b5 [sij + sik]b6sb7

lksb8
LK

)
= ∂

∂δ

(
sa1+b1δ

ij sa2+b2δ
ik sa3+b3δ

jk sa4+b4δ
ijk [sik + sjk]b5δ[sij + sik]b6δsb7δ

lk sb8δ
LK

) ∣∣∣∣∣
δ=0

(6.26)

Integrating IX1
4,3;R

over dPSX1
4,3;R

we find that

∫
IX1

4,3;R
dPSX1

4,3;R
= 1

Sϵ

(
eϵγ

2Γ(1− ϵ)

)
s−ϵ

IK

× ∂

∂δ
K(a3+b3δ−ϵ, a2+b2δ− ϵ, a1+b1δ−ϵ, 1+a2+a3+(b2+b3+b5+b7)δ−2ϵ, b6δ)

∣∣∣∣∣
δ=0
(6.27)
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where

K(c1, c2, c3, c4, c5)

=
∫ 1

0

∫ 1

0
yc1

1
(
1− y1

)c2yc3
2
(
1− y2

)c4(1− y1
(
1− y2

))c5dy1 dy2

= Γ(1 + c1)Γ(1 + c2)
Γ(2 + c1 + c2)

Γ(1 + c3)Γ(1 + c4)
Γ(2 + c3 + c4)

×3F2([1 + c1, 1 + c4,−c5], [2 + c1 + c2, 2 + c3 + c4], 1). (6.28)

Expressions for the dipole mapping for X1
4,3;L in which i is the scaled momentum can be

obtained from eq. (6.27) with the exchange

{a1 ↔ a3, a5 ↔ a6, b1 ↔ b3, b5 ↔ b6}. (6.29)

Similarly to the integration of the X0
5,3 antenna functions, the result in eq. (6.28) allows

to obtain the expression of the integrated X1
4,3 antenna functions up to any desired power in ϵ.

6.2.1 Summary

As a shorthand, we use the notation X 1
4,3(sIK) to denote the integrated X1

4,3 function where,

X 1
4,3(sIK) = X 1

4,3;M (sIK) + X 1
4,3;L(sIK) + X 1

4,3;R(sIK), (6.30)

where the scale dependence is the same for each component, so we can combine the integrated
results as:

X 1
4,3(sIK) =

(
sIK

µ2

)−ϵ

g(ϵ), (6.31)

where the g is a constant series in ϵ. In appendix C.2 we provide the analytically integrated
form of all the X1

4,3 antenna functions.

7 Double-virtual subtraction term

Finally, we consider the corresponding double-virtual subtraction term. The double-virtual
contribution to the cross section dσV V

NNLO,N2 is given by

dσV V
NNLO,N2 = N3N2

(
αs

2π

)2
dΦ3({p}3; q)M2

3 (1, i, 2) J
(3)
3 ({p}3). (7.1)

Here we use M2
3 (1, i, 2) to denote the sum of the leading-colour contributions of the interference

of two-loop with tree-level and one-loop squared amplitudes:

M2
3 (1, i, 2) = 2Re

[
A0

n(1, i, 2)(A2
3(1, i, 2))†

]
+ |A1

3(1, i, 2)|2. (7.2)

N3 is an overall normalisation and dΦ3 is the three particle phase space.
The double-virtual subtraction term reads

dσU
NNLO,N2 =N3N2

(
αs

2π

)2
dΦ3({p}3; q)

{

1 − [D0
4(s1i) +D0

4(s2i)]M0
3 (1, i, 2) J

(3)
3 ({p}3)
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2 − [A0
5,3(s1i, s2i)]M0

3 (1, i, 2) J
(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−−−−

3 −

D1
3(s1i) +

b0
ϵ

( s1i

µ2
R

)−ϵ

− 1

D0
3(s1i)

M0
3 (1, i, 2) J

(3)
3 ({p}3)

4 −

D1
3(s2i) +

b0
ϵ

( s2i

µ2
R

)−ϵ

− 1

D0
3(s2i)

M0
3 (1, i, 2) J

(3)
3 ({p}3)

5 − [D0
3(s1i) +D0

3(s2i)]M1
3 (1, i, 2) J

(3)
3 ({p}3)

6 − [D1
4,3(s1i) +D1

4,3(s2i)]M0
3 (1, i, 2) J

(3)
3 ({p}3)

}
, (7.3)

where X 0
4 denotes the integrated four particle antenna functions from [74], X 1

3 denotes the
integrated one-loop three particle antenna functions from [75], and X 0

5,3 and X 1
4,3 represent

the integrated generalised antenna functions introduced earlier. Eq. (7.3) is to be compared
with the subtraction term given by combining eqs. (6.6) of ref. [54].

We note that terms 1 and 2 are the integrated counterparts of terms 4 and 7 and 10 in
eq. (4.3). All terms in eq. (4.3) have now been accounted for in either eq. (5.2) or eq. (7.3).
The remaining terms in eq. (7.3) are the integrated versions of terms 6–9 and 10-11 in eq. (5.2).
The X 1

3 antenna are presented with the renormalisation scale set to the mass of the antenna,
while the unintegrated antenna are subtracted at general µ. The contributions in terms 3
and 4 proportional to b0/ϵ restore the full µ dependence of the integrated antenna function,
where b0 is the leading-colour contribution to the one-loop QCD beta-function:

β0 = b0N + b0,F Nf = 11
6 N − 1

3Nf , (7.4)

with Nf the number of light fermions.
We verified that the cancellation of infrared singularities between the subtraction term

in 7.3 and the leading-colour two-loop matrix element happens correctly. The same holds
for all the double-virtual subtraction terms in appendix D.3. This is a strong check of the
validity of the implementation we discussed so far and the analytical integration of the
new antenna functions.

8 Numerical validation

In this section we discuss a series of checks we performed to probe the correctness of the
newly defined antenna functions and of their numerical implementation. We remark that the
tests discussed in the following not only validate the X0

5,3 and X1
4,3 antenna functions, which

represent the main novelty of this paper, but also the idealised final-final X0
3 , X0

4 and X1
3

antenna functions introduced in [74, 75], which have been fully incorporated in our numerical
setup for the first time in the context of this work. In general, the results we obtain stand as
a solid validation of the designer antenna scheme for final-state radiation up to NNLO.

Our main target is to replicate a full NNLO calculation for e+e− → jjj, comparing the
results and the performance we obtain with the long-established implementation available
in NNLOjet [90] based on the traditional antenna subtraction scheme.
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As a preliminary step, we performed checks at the cross section level for simpler processes:
e+e− → jjj at NLO, e+e− → jj at NNLO, χ̃ → jj (neutralino decay to hadrons [81]) at
NNLO. We observe complete agreement between results obtained with the traditional and
idealised antenna functions. Moreover, to assess the performances of different momentum
mappings, we repeated the tests replacing antenna mappings with dipole mappings and found
again agreement with no degradation in the numerical convergence. Such computations allowed
us to validate all the quark-antiquark and quark-gluon X0

3 , X0
4 and X1

3 idealised antenna
functions, without the additional complications given by the almost colour-connected sector.

For the NNLO computation of e+e− → jjj, we consider µ =
√

s = mZ = 91.186GeV.
The fiducial phase space is defined imposing a lower bound ycut = 0.05 on the following
event-shapes:

• one-minus-thrust 1− T with:

T = max|n⃗|=1

(∑
j |p⃗j · n⃗|∑

k |p⃗k|

)
, (8.1)

with the sum running over all external particles. We define the thrust axis n⃗T to be
the vector which maximises the expression in the parentheses;

• C-parameter C, defined through the eigenvalues λi of the linearised momentum tensor:

Θαβ = 1∑
k |p⃗k|

∑
k

pα
k pβ

k

|p⃗k|
, (α, β = 1, 2, 3) , (8.2)

as
C = 3 (λ1λ2 + λ2λ3 + λ3λ1) ; (8.3)

• total jet broadening TJB, defined starting from the hemisphere broadening:

Bm =
∑

i∈Hm
|pi × n⃗T |

2∑i |p⃗i|
, m = 1, 2 , (8.4)

as
TJB = B1 + B2; (8.5)

where the hemispheres (H1, H2) are separated by the plane through the origin which is
normal to the thrust axis n⃗T ;

• wide jet broadening WJB:
WJB = max(B1, B2); (8.6)

• two-to-three jet transition variable in the Jade algorithm y23 computed as the largest
value of ycut,J for which an event is identified as a two-jet event by the Jade algorithm;

• heavy jet mass HJM, defined starting from the single-jet mass:

ρm =
(∑

i∈Hm
pi
)2

Q2 , m = 1, 2 , (8.7)

where Hm are the two hemispheres separated by the plane orthogonal to n⃗T , as

HJM = max(ρ1, ρ2); (8.8)
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For phenomenological studies, one typically chooses a smaller value of ycut, however we want
to prevent our numerical results from being dominated by the large logarithmic behaviour of
the cross section in the two-jet limit ycut → 0. This allows us to precisely probe potential
discrepancies between the traditional and new implementations in the fully-resolved three-jet
region. Since our purpose here is the validation of the new framework, rather than the
delivery of theoretical predictions, we present results for the NNLO coefficient only in the
form of ratios to the traditional setup. Different colour factors in the matrix elements require
different combinations of antenna functions. Therefore, to better ensure the correctness
of the new ingredients, we separate our result by colour factors. We neglect the singlet
contribution, which is infrared-finite [54].

For each event-shape we compute the NNLO corrections to the total cross section as:

σtot.
NNLO =

∫ Omax

ycut

dO dσ

dO

∣∣∣∣∣
NNLO

, (8.9)

where Omax is the appropriate upper bound. In figure 7 we show the comparison between the
new and the original implementation separated by colour factor. The error bars represent the
Monte Carlo uncertainty. In general, we observe percent-level (or better) agreement on the
NNLO correction, which is quite beyond the accuracy typically required for phenomenological
applications, but it is relevant in the context of a proof-of-principle validation of the newly
proposed framework.

For some of the event-shapes, the N0 and Nf N−1 colour factor exhibit larger error
bars. This is due to the fact that the Monte Carlo integration struggles to adapt to these
subleading-colour contributions, due to the oscillatory behaviour of the integrand. In a full
calculation, these colour factor have a small numerical impact on the NNLO coefficient:
≲ 10% for N0 and ≲ 1% for Nf N−1, therefore one typically does not have to resolve them
with the same accuracy as the leading-colour N2 or Nf N contributions (colour sampling).
Here we pushed the numerical integration to a point where we can confidently claim very
good agreement between the two implementations, without exaggerating the computational
cost of this validation. For the remaining colour factors we reach percent or even sub-percent
accuracy on the ratio, showing excellent compatibility with the original implementation.
Overall, the comparison in figure 7 stands as a very solid confirmation of the correctness
of the new approach.

To ensure that the agreement extends beyond the total cross section, in figures 8–12
we show differential results for the event-shapes listed above. In general, no significant
deviations are observed between the new implementation and the traditional one. Large
error bars in some bins are due to the numerical value of the differential cross section being
very close to zero.

One of the main motivations of this work is the improvement of the computational
performances of the antenna subtraction method. As we mentioned before, the new antenna
functions open up the possibility of constructing local subtraction terms for individual colour-
ordered matrix elements, summing over colour orderings a posteriori by multiplication of
the result by a suitable symmetry factor. This is in general not possible with traditional
antenna functions, because the almost colour-connected sector requires a sum over colour
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orderings to achieve local cancellation of infrared singularities. Thanks to this feature, for
a generic sub-process with n gluons, one can expect an n! speedup for the point-by-point
evaluation of matrix elements and associated subtraction terms. This speedup in general does
not directly transfer to the runtime for the full Monte Carlo due to other time-consuming
tasks (phase-space generation, observables evaluation, . . . ) and to the presence of several
partonic channels. However, this improvement clearly becomes more relevant the higher the
multiplicity and the more computational time is required by complicated matrix elements. On
top of this, an individual colour-ordered squared matrix element exhibits a much more regular
behaviour than the full matrix element, due to the fewer infrared divergences, especially for
the double-real correction. This significantly helps the Monte Carlo importance sampling
procedure, which we perform through the VEGAS algorithm [93], with the identification of
the relevant phase space region, and hence results in a faster numerical convergence.

For e+e− → jjj at NNLO, the speedup in a specific calculation is affected by many
factors, such as the choice of the fiducial phase space, the observables to be computed and the
relative size of the double-virtual, real-virtual and double-real contributions. According to the
numerical tests we performed, we can in general expect the new implementation to be five to
ten times faster than the original one in reaching a given numerical accuracy. For the reasons
explained above, the speedup for higher multiplicities will surely be even more significant.
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Figure 7. Ratio between the NNLO coefficient for the total cross section of e+e− → jjj calculated
with the new and the original implementation of antenna subtraction as the integral under the
distribution in the observables indicated on the left. The results are separated by colour factor and
the error bars represent Monte Carlo uncertainties.
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Figure 8. Ratio between the NNLO coefficient for the differential distribution in 1− T calculated
with the new and the original implementation of antenna subtraction. Each plot refers to a single
colour factor, indicated on the left. The error bars indicate the Monte Carlo uncertainties.
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Figure 9. Ratio between the NNLO coefficient for the differential distribution in the C-parameter
calculated with the new and the original implementation of antenna subtraction. Each plot refers to a
single colour factor, indicated on the left. The error bars indicate the Monte Carlo uncertainties.
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Figure 10. Ratio between the NNLO coefficient for the differential distribution in the total jet
broadening calculated with the new and the original implementation of antenna subtraction. Each
plot refers to a single colour factor, indicated on the left. The error bars indicate the Monte Carlo
uncertainties.
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Figure 11. Ratio between the NNLO coefficient for the differential distribution in the wide jet
broadening calculated with the new and the original implementation of antenna subtraction. Each
plot refers to a single colour factor, indicated on the left. The error bars indicate the Monte Carlo
uncertainties.
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Figure 12. Ratio between the NNLO coefficient for the differential distribution in the jet transition
variable y23 calculated with the new and the original implementation of antenna subtraction. Each
plot refers to a single colour factor, indicated on the left. The error bars indicate the Monte Carlo
uncertainties.
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Figure 13. Ratio between the NNLO coefficient for the differential distribution in the heavey jet
mass calculated with the new and the original implementation of antenna subtraction. Each plot refers
to a single colour factor, indicated on the left. The error bars indicate the Monte Carlo uncertainties.

– 46 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
5

9 Conclusions and outlook

We discussed the definition and implementation of final-state generalised antenna functions
for NNLO calculations in QCD, in particular tree-level five-parton three-hard-radiator (X0

5,3)
and one-loop four-parton three-hard-radiator ( X1

4,3) antenna functions. In contrast to
traditional antenna functions, generalised ones can be constructed to have more than two
hard radiators, relying on the recently proposed idealised antenna algorithm. This feature
makes them particularly suitable to remove infrared singularities for almost colour-connected
emissions, resulting in a major simplification of the subtraction infrastructure compared
to the traditional antenna scheme. One of the main advantages lies in the possibility of
assembling local subtraction terms for individual colour-ordered matrix elements, which
reduces the computational cost of NNLO calculations. We showed how, through a careful
choice of momentum mappings, one can write down an exact factorisation of the phase space
leading to a fully analytical integration of the new antenna functions.

Considering three-jet production at electron-positron colliders as a test case, we demon-
strated the complete cancellation of infrared singularities in the new approach. We also
performed several numerical tests to assess the correctness of the setup. Most importantly,
we were able to reproduce inclusive and differential results obtained with the long-established
traditional antenna subtraction method with excellent agreement. We estimate that the
calculation with the new scheme is five to ten times faster than the original implementation,
depending on the specific computational setup. The speedup increases at higher multiplic-
ities. We remark that the results we obtained not only stand as a thorough validation
of generalised antenna functions, but also as a solid check of standard two-hard-radiator
antenna functions obtained according to the idealised antenna algorithm, employed here
in an NNLO calculation for the first time.

This works paves the way to several future developments. First of all, a natural phe-
nomenological application of the antenna functions computed here is the calculation of the
NNLO correction to e+e− → jjjj, which would greatly benefit from the improvements and
the speedup offered by generalised antenna functions. Secondly, we foresee an extension
to hadronic processes through the definition of generalised antenna functions with one or
two hard radiators in the initial-state. Most of the concepts and techniques discussed in
this paper apply straightforwardly to the initial-state radiation case too, while significant
differences lie in the analytical integration of antenna functions and in the bookkeeping of
partonic channels. A necessary preliminary step in this direction consists in the continuation
of the work in [76] with the construction of idealised four-parton initial-final and initial-initial
antenna functions. Finally, as a long-term outlook, generalised antenna functions can be
assembled for N3LO calculations too. At this perturbative order, the simplifications due to
the new antenna functions will be pivotal to achieve a general local subtraction scheme.
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A Limits of X0
5,3 antenna functions

We present here the unresolved limits of each X0
5,3 antenna function. In terms of notation

and explicit expressions of projectors and unresolved factors, we follow [74].

F 0
5,3(ig, jg, kg, lg, mg)

DS↓
jlF

0
5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)Sg(kh, l, mh)

TC↓
jklF

0
5,3(ih, j, kh, l, mh) = P sub

gg ((j + k)h, l)P sub
gg (kh, j)

+ P sub
gg ((k + l)h, j)P sub

gg (kh, l)
DC↓

ij;klF
0
5,3(ih, j, kh, l, mh) = P sub

gg (ih, j)P sub
gg (kh, l)

DC↓
ij;lmF 0

5,3(ih, j, kh, l, mh) = P sub
gg (ih, j)P sub

gg (mh, l)

DC↓
jk;lmF 0

5,3(ih, j, kh, l, mh) = P sub
gg (kh, j)P sub

gg (mh, l)

S↓
jF 0

5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)F 0
3 (k, l, m)

S↓
l F 0

5,3(ih, j, kh, l, mh) = Sg(kh, l, mh)F 0
3 (i, j, k)

C↓
ijF 0

5,3(ih, j, kh, l, mh) = P sub
gg (ih, j)F 0

3 (k, l, m)

C↓
jkF 0

5,3(ih, j, kh, l, mh) = P sub
gg (kh, j)F 0

3 ((j + k), l, m)

C↓
klF

0
5,3(ih, j, kh, l, mh) = P sub

gg (kh, l)F 0
3 (i, j, (k + l))

C↓
lmF 0

5,3(ih, j, kh, l, mh) = P sub
gg (mh, l)F 0

3 (i, j, k) (A.1)

G
0(a)
5,3 (iQ̄, jQ, kg, lg, mg)

DC↓
ij;lmG

0(a)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)Pqq̄(ih, j)

DC↓
ij;klG

0(a)
5,3 (ih, j, kh, l, mh) = P sub

gg (kh, l)Pqq̄(ih, j)

S↓
l G

0(a)
5,3 (ih, j, kh, l, mh) = Sg(kh, l, mh)G0

3(k, j, i)

C↓
lmG

0(a)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)G0
3(k, j, i)

C↓
klG

0(a)
5,3 (ih, j, kh, l, mh) = P sub

gg (kh, l)G0
3((k + l), j, i)

C↓
ijG

0(a)
5,3 (ih, j, kh, l, mh) = Pqq̄(ih, j)F 0

3 (m, l, k) (A.2)

G
0(b)
5,3 (ig, jQ̄, kQ, lg, mg)

TC↓
jklG

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄((k + l)h, j)Pqg(kh, l)

+ P sub
gg ((j + k)h, l)Pqq̄(kh, j)

DC↓
jk;lmG

0(b)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)Pqq̄(kh, j)
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S↓
l G

0(b)
5,3 (ih, j, kh, l, mh) = Sg(kh, l, mh)G0

3(i, j, k)

C↓
jkG

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄(kh, j)F 0

3 (m, l, (j + k))

C↓
klG

0(b)
5,3 (ih, j, kh, l, mh) = Pqg(kh, l)G0

3(i, j, (k + l))

C↓
lmG

0(b)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)G0
3(i, j, k) (A.3)

H
0(a)
5,3 (iQ, jQ̄, kg, lq̄, mq)

DC↓
ij;lmH

0(a)
5,3 (ih, j, kh, l, mh) = Pqq̄(ih, j)Pqq̄(mh, l)

C↓
ijH

0(a)
5,3 (ih, j, kh, l, mh) = Pqq̄(ih, j)G0

3(k, l, m)

C↓
lmH

0(a)
5,3 (ih, j, kh, l, mh) = Pqq̄(mh, l)G0

3(k, j, i) (A.4)

H
0(b)
5,3 (ig, jQ̄, kQ, lq̄, mq)

DC↓
jk;lmH

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄(kh, j)Pqq̄(mh, l)

C↓
jkH

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄(kh, j)G0

3((j + k), l, m)

C↓
lmH

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄(mh, l)G0

3(i, j, k) (A.5)

D0
5,3(iq, jg, kg, lg, mg)

DS↓
jlD

0
5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)Sg(kh, l, mh)

TC↓
jklD

0
5,3(ih, j, kh, l, mh) = P sub

gg ((j + k)h, l)P sub
gg (kh, j)

+ P sub
gg ((k + l)h, j)P sub

gg (kh, l)
DC↓

ij;klD
0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)P sub

gg (kh, l)

DC↓
ij;lmD0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)P sub
gg (mh, l)

DC↓
jk;lmD0

5,3(ih, j, kh, l, mh) = P sub
gg (kh, j)P sub

gg (mh, l)

S↓
jD0

5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)F 0
3 (k, l, m)

S↓
l D0

5,3(ih, j, kh, l, mh) = Sg(kh, l, mh)D0
3(i, j, k)

C↓
ijD0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)F 0
3 (k, l, m)

C↓
jkD0

5,3(ih, j, kh, l, mh) = P sub
gg (kh, j)F 0

3 ((j + k), l, m)

C↓
klD

0
5,3(ih, j, kh, l, mh) = P sub

gg (kh, l)D0
3(i, j, (k + l))

C↓
lmD0

5,3(ih, j, kh, l, mh) = P sub
gg (mh, l)D0

3(i, j, k) (A.6)

E
0(a)
5,3 (iq, jQ̄, kQ, lg, mg)

TC↓
jklE

0(a)
5,3 (ih, j, kh, l, mh) = Pqq̄((k + l)h, j)Pqg(kh, l)

+ P sub
gg ((j + k)h, l)Pqq̄(kh, j)

DC↓
jk;lmE

0(a)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)Pqq̄(kh, j)

S↓
l E

0(a)
5,3 (ih, j, kh, l, mh) = Sg(kh, l, mh)E0

3(i, j, k)
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C↓
lmE

0(a)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)E0
3(i, j, k)

C↓
klE

0(a)
5,3 (ih, j, kh, l, mh) = Pqg(kh, l)E0

3(i, j, (k + l))

C↓
jkE

0(a)
5,3 (ih, j, kh, l, mh) = Pqq̄(kh, j)F 0

3 (m, l, (j + k)) (A.7)

E
0(b)
5,3 (iq, jg, kQ̄, lQ, mg)

TC↓
jklE

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄((j + k)h, l)Pqg(kh, j)

+ P sub
gg ((k + l)h, j)Pqq̄(kh, l)

DC↓
ij;klE

0(b)
5,3 (ih, j, kh, l, mh) = Pqg(ih, j)Pqq̄(kh, l)

S↓
jE

0(b)
5,3 (ih, j, kh, l, mh) = Sg(ih, j, kh)G0

3(m, l, k)

C↓
ijE

0(b)
5,3 (ih, j, kh, l, mh) = Pqg(ih, j)G0

3(m, l, k)

C↓
jkE

0(b)
5,3 (ih, j, kh, l, mh) = Pqg(kh, j)G0

3(m, l, (j + k))

C↓
klE

0(b)
5,3 (ih, j, kh, l, mh) = Pqq̄(kh, l)D0

3(i, j, (k + l)) (A.8)

E
0(c)
5,3 (iq, jg, kg, lQ̄, mQ)

DC↓
ij;lmE

0(c)
5,3 (ih, j, kh, l, mh) = Pqg(ih, j)Pqq̄(mh, l)

DC↓
jk;lmE

0(c)
5,3 (ih, j, kh, l, mh) = P sub

gg (kh, j)Pqq̄(mh, l)

S↓
jE

0(c)
5,3 (ih, j, kh, l, mh) = Sg(ih, j, kh)G0

3(k, l, m)

C↓
ijE

0(c)
5,3 (ih, j, kh, l, mh) = Pqg(ih, j)G0

3(k, l, m)

C↓
jkE

0(c)
5,3 (ih, j, kh, l, mh) = P sub

gg (kh, j)G0
3((j + k), l, m)

C↓
lmE

0(c)
5,3 (ih, j, kh, l, mh) = Pqq̄(mh, l)D0

3(i, j, k) (A.9)

E
0(d)
5,3 (iQ̄, jQ, kq̄, lg, mg)

DC↓
ij;lmE

0(d)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)Pqq̄(ih, j)

DC↓
ij;klE

0(d)
5,3 (ih, j, kh, l, mh) = Pqg(kh, l)Pqq̄(ih, j)

S↓
l E

0(d)
5,3 (ih, j, kh, l, mh) = Sg(kh, l, mh)E0

3(k, j, i)

C↓
lmE

0(d)
5,3 (ih, j, kh, l, mh) = P sub

gg (mh, l)E0
3(k, j, i)

C↓
klE

0(d)
5,3 (ih, j, kh, l, mh) = Pqg(kh, l)E0

3((k + l), j, i)

C↓
ijE

0(d)
5,3 (ih, j, kh, l, mh) = Pqq̄(ih, j)D0

3(k, l, m) (A.10)

K0
5,3(iq, jQ̄, kQ, lR̄, mR)

DC↓
jk;lmK0

5,3(ih, j, kh, l, mh) = Pqq̄(kh, j)Pqq̄(mh, l)

C↓
jkK0

5,3(ih, j, kh, l, mh) = Pqq̄(kh, j)G0
3((j + k), l, m)

C↓
lmK0

5,3(ih, j, kh, l, mh) = Pqq̄(mh, l)E0
3(i, j, k) (A.11)

– 50 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
5

A0
5,3(iq, jg, kg, lg, mq̄)

DS↓
jlA

0
5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)Sg(kh, l, mh)

TC↓
jklA

0
5,3(ih, j, kh, l, mh) = P sub

gg ((j + k)h, l)P sub
gg (kh, j)

+ P sub
gg ((k + l)h, j)P sub

gg (kh, l)
DC↓

ij;klA
0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)P sub

gg (kh, l)

DC↓
ij;lmA0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)Pqg(mh, l)

DC↓
jk;lmA0

5,3(ih, j, kh, l, mh) = P sub
gg (kh, j)Pqg(mh, l)

S↓
jA0

5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)D0
3(m, l, k)

S↓
l A0

5,3(ih, j, kh, l, mh) = Sg(kh, l, mh)D0
3(i, j, k)

C↓
ijA0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)D0
3(m, l, k)

C↓
jkA0

5,3(ih, j, kh, l, mh) = P sub
gg (kh, j)D0

3(m, l, (j + k))

C↓
klA

0
5,3(ih, j, kh, l, mh) = P sub

gg (kh, l)D0
3(i, j, (k + l))

C↓
lmA0

5,3(ih, j, kh, l, mh) = Pqg(mh, l)D0
3(i, j, k) (A.12)

B0
5,3(iq, jg, kQ̄, lQ, mq̄)

TC↓
jklB

0
5,3(ih, j, kh, l, mh) = Pqq̄((j + k)h, l)Pqg(kh, j)

+ P sub
gg ((k + l)h, j)Pqq̄(kh, l)

DC↓
ij;klB

0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)Pqq̄(kh, l)

S↓
jB0

5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)E0
3(m, l, k)

C↓
ijB0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)E0
3(m, l, k)

C↓
jkB0

5,3(ih, j, kh, l, mh) = Pqg(kh, j)E0
3(m, l, (j + k))

C↓
klB

0
5,3(ih, j, kh, l, mh) = Pqq̄(kh, l)D0

3(i, j, (k + l)) (A.13)

Ã0
5,3(iq̄, jγ, kq, lg, mg)

DS↓
jlÃ

0
5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)Sg(kh, l, mh)

TC↓
jklÃ

0
5,3(ih, j, kh, l, mh) = Pqg((j + k)h, l)Pqg(kh, j)

+ Pqg((k + l)h, j)Pqg(kh, l) + Rqγγ(kh, j, l)
DC↓

ij;klÃ
0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)Pqg(kh, l)

DC↓
ij;lmÃ0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)P sub
gg (mh, l)

DC↓
jk;lmÃ0

5,3(ih, j, kh, l, mh) = Pqg(kh, j)P sub
gg (mh, l)

S↓
j Ã0

5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)D0
3(k, l, m)

S↓
l Ã0

5,3(ih, j, kh, l, mh) = Sg(kh, l, mh)A0
3(i, j, k)

C↓
ijÃ0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)D0
3(k, l, m)

C↓
jkÃ0

5,3(ih, j, kh, l, mh) = Pqg(kh, j)D0
3((j + k), l, m)
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C↓
klÃ

0
5,3(ih, j, kh, l, mh) = Pqg(kh, l)A0

3(i, j, (k + l))
C↓

lmÃ0
5,3(ih, j, kh, l, mh) = P sub

gg (mh, l)A0
3(i, j, k) (A.14)

B̃0
5,3(iq̄, jγ, kq, lQ̄, mQ)

DC↓
ij;lmB̃0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)Pqq̄(mh, l)

DC↓
jk;lmB̃0

5,3(ih, j, kh, l, mh) = Pqg(kh, j)Pqq̄(mh, l)

S↓
j B̃0

5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)E0
3(k, l, m)

C↓
ijB̃0

5,3(ih, j, kh, l, mh) = Pqg(ih, j)E0
3(k, l, m)

C↓
jkB̃0

5,3(ih, j, kh, l, mh) = Pqg(kh, j)E0
3((j + k), l, m)

C↓
lmB̃0

5,3(ih, j, kh, l, mh) = Pqq̄(mh, l)A0
3(i, j, k) (A.15)

˜̃
A

0

5,3(iq̄, jγ, kq, lg, mQ̄)

DS↓
jl
˜̃
A

0
5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)Sg(kh, l, mh)

TC↓
jkl
˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg((j + k)h, l)Pqg(kh, j)

+ Pqg((k + l)h, j)Pqg(kh, l) + Rqγγ(kh, j, l)

DC↓
ij;kl

˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)Pqg(kh, l)

DC↓
ij;lm

˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)Pqg(mh, l)

DC↓
jk;lm

˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(kh, j)Pqg(mh, l)

S↓
j
˜̃
A

0
5,3(ih, j, kh, l, mh) = Sg(ih, j, kh)A0

3(k, l, m)

S↓
l
˜̃
A

0
5,3(ih, j, kh, l, mh) = Sg(kh, l, mh)A0

3(i, j, k)

C↓
ij
˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(ih, j)A0

3(k, l, m)

C↓
jk
˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(kh, j)A0

3((j + k), l, m)

C↓
kl
˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(kh, l)A0

3(i, j, (k + l))

C↓
lm
˜̃
A

0
5,3(ih, j, kh, l, mh) = Pqg(mh, l)A0

3(i, j, k) (A.16)

B Unintegrated X1
4,3

In this appendix, we list the three components of the unintegrated X1
4,3 antenna functions

(X1
4,3;L, X1

4,3;M , X1
4,3;R) listed in table 4:

A1
4,3;L(iq, jg, kq̄, bg) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
sib

µ2

)
− 5

3

))
A0

3(i, j, k), (B.1)

A1
4,3;M (iq, jg, kq̄, bg) =

(
2
ϵ2 + 1

ϵ

(
log

(
sijk(µ2)2

siks
ĩjb

s
j̃kb

)
+ 10

3

))
A0

3(i, j, k), (B.2)
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A1
4,3;R(iq, jg, kq̄, bg) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
skb

µ2

)
− 5

3

))
A0

3(i, j, k), (B.3)

Â1
4,3;L(iq, jg, kq̄, bg) = 0, (B.4)

Â1
4,3;M (iq, jg, kq̄, bg) = 0, (B.5)

Â1
4,3;R(iq, jg, kq̄, bg) = 0, (B.6)

Ã1
4,3;L(iq, jg, kq̄, bg) = 0, (B.7)

Ã1
4,3;M (iq, jg, kq̄, bg) = 0, (B.8)

Ã1
4,3;R(iq, jg, kq̄, bg) = 0, (B.9)

D1
4,3;L(iq, jg, kg, bq̄) = 0, (B.10)

D1
4,3;M (iq, jg, kg, bq̄) =

(
1
ϵ2 + 1

ϵ

(
log

(
sijkµ2

(sik + sjk)sj̃kb

)
+ 5

3

))
D0

3(i, j, k), (B.11)

D1
4,3;R(iq, jg, kg, bq̄) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
skb

µ2

)
− 5

3

))
D0

3(i, j, k), (B.12)

D̃1
4,3;L(iq, jg, kg, bq̄) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
sib

µ2

)
− 3

2

))
D0

3(i, j, k), (B.13)

D̃1
4,3;M (iq, jg, kg, bq̄) =

(
1
ϵ2 + 1

ϵ

(
log

(
(sik + sjk)µ2

siks
ĩjb

)
+ 3

2

))
D0

3(i, j, k), (B.14)

D̃1
4,3;R(iq, jg, kg, bq̄) = 0, (B.15)

D̂1
4,3;L(iq, jg, kg, bq̄) = 0, (B.16)

D̂1
4,3;M (iq, jg, kg, bq̄) = − 1

6ϵ
D0

3(i, j, k), (B.17)

D̂1
4,3;R(iq, jg, kg, bq̄) = 1

6ϵ
D0

3(i, j, k), (B.18)

E1
4,3;L(iq, jQ̄, kQ, bq̄) = 0, (B.19)

E1
4,3;M (iq, jQ̄, kQ, bq̄) =

(
1
ϵ2 + 1

ϵ

(
log

(
sijkµ2

siks
ĩjb

)
+ 3

2

))
E0

3(i, j, k), (B.20)

E1
4,3;R(iq, jQ̄, kQ, bq̄) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
skb

µ2

)
− 3

2

))
E0

3(i, j, k), (B.21)

Ẽ1
4,3;L(iq, jQ̄, kQ, bq̄) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
sib

µ2

)
− 3

2

))
E0

3(i, j, k), (B.22)

Ẽ1
4,3;M (iq, jQ̄, kQ, bq̄) =

(
1
ϵ2 + 1

ϵ

(
log

(
µ2

s
ĩjb

)
+ 3

2

))
E0

3(i, j, k), (B.23)

Ẽ1
4,3;R(iq, jQ̄, kQ, bq̄) = 0, (B.24)
F 1

4,3;L(ig, jg, kg, bg) = 0 (B.25)

F 1
4,3;M (ig, jg, kg, bg) =

1
ϵ2 +

1
2ϵ

log
(sij+sik)sijk(µ2)2

siks2
j̃kb

(sik+sjk)

+11
3

F 0
3 (i, j, k), (B.26)

F 1
4,3;R(ig, jg, kg, bg) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
skb

µ2

)
− 11

6

))
F 0

3 (i, j, k), (B.27)

F̂ 1
4,3;L(ig, jg, kg, bg) = 0, (B.28)
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F̂ 1
4,3;M (ig, jg, kg, bg) = − 1

3ϵ
F 0

3 (i, j, k), (B.29)

F̂ 1
4,3;R(ig, jg, kg, bg) = 1

3ϵ
F 0

3 (i, j, k), (B.30)

G1
4,3;L(ig, jq̄, kq, bg) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
sib

µ2

)
− 11

6

))
G0

3(i, j, k), (B.31)

G1
4,3;M (ig, jq̄, kq, bg) =

(
2
ϵ2 + 1

ϵ

(
log

(
sijk(µ2)2

siks
ĩjb

s
j̃kb

)
+ 21

6

))
G0

3(i, j, k), (B.32)

G1
4,3;R(ig, jq̄, kq, bg) =

(
− 1

ϵ2 + 1
ϵ

(
log

(
skb

µ2

)
− 5

3

))
G0

3(i, j, k), (B.33)

Ĝ1
4,3;L(iq, jg, kq̄, bg) = 1

3ϵ
G0

3(i, j, k), (B.34)

Ĝ1
4,3;M (iq, jg, kq̄, bg) = − 1

3ϵ
G0

3(i, j, k), (B.35)

Ĝ1
4,3;R(iq, jg, kq̄, bg) = 0, (B.36)

G̃1
4,3;L(iq, jg, kq̄, bg) = 0, (B.37)

G̃1
4,3;M (iq, jg, kq̄, bg) = 0, (B.38)

G̃1
4,3;R(iq, jg, kq̄, bg) = 0. (B.39)

C Integrated new antenna functions

C.1 Integrated X0
5,3

In this appendix, we list the integrals of the three components of the X0
5,3 antenna functions,

with each part integrated over the appropriate antenna phase space. We can write down
the integral as,

X 0
5,3(sIK , sKM ) = X 0

5,3;M (sIK , sKM ) + X 0
5,3;L(sIK) + X 0

5,3;R(ssKM ). (C.1)

Expressions for X 0
5,3;M , X 0

5,3;L and X 0
5,3;R are listed below where

SIK =
(

sIK

µ2

)−ϵ

, SKM =
(

sKM

µ2

)−ϵ

. (C.2)

A0
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1

ϵ4 +
10
3ϵ3 +

1
ϵ2

(223
16 − 4

3π2
)
+1

ϵ

(673
12 − 317

72 π2− 68
3 ζ3

)

+
(10799

48 − 1789
96 π2− 1315

18 ζ3+
13
90π4

)
+O (ϵ)

]
(C.3)

A0
5,3;L(sIK) = S2

IK

[
− 1
32ϵ2 +

1
ϵ

(1487
1728−

1
48π2−ζ3

)

+
(82133
10368+

127
1728π2− 25

8 ζ3−
1
12π4

)
+O (ϵ)

]
(C.4)
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A0
5,3;R(sKM ) = S2

KM

[
− 1
32ϵ2 +

1
ϵ

(1487
1728−

1
48π2−ζ3

)

+
(82133
10368+

127
1728π2− 25

8 ζ3−
1
12π4

)
+O (ϵ)

]
(C.5)

B0
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

4
3ϵ2 +

1
ϵ

(
−233

48 +29
72π2

)

+
(
−1691

96 +16
9 π2+91

18ζ3

)
+O (ϵ)

]
(C.6)

B0
5,3;L(sIK) = S2

IK

[
+ 1
72ϵ2 +

1
ϵ

(
− 77
216+

1
24π2

)
+
(
−13003

5184 − 1
24π2+9

4ζ3

)
+O (ϵ)

]
(C.7)

B0
5,3;R(sKM ) = S2

KM

[
− 5
36ϵ2 −

131
96ϵ

+
(
−21611

2592 + 85
432π2

)
+O (ϵ)

]
(C.8)

Ã0
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1

ϵ4 +
19
6ϵ3 +

1
ϵ2

(637
48 − 4

3π2
)
+1

ϵ

(1919
36 − 301

72 π2− 68
3 ζ3

)

+
(184445

864 − 5101
288 π2− 1247

18 ζ3+
13
90π4

)
+O (ϵ)

]
(C.9)

Ã0
5,3;L(sIK) = S2

IK

[
− 5
32ϵ2 +

1
ϵ

(
−43
64−

1
48π2− 1

2ζ3

)

+
(
−435
128+

21
64π2− 17

8 ζ3−
1
24π4

)
+O (ϵ)

]
(C.10)

Ã0
5,3;R(sKM ) = S2

KM

[
− 5
32ϵ2 +

1
ϵ

(
−1057
1728−

1
48π2− 1

2ζ3

)

+
(
−8125
3456+

17
64π2− 17

8 ζ3−
1
24π4

)
+O (ϵ)

]
(C.11)

B̃0
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

5
4ϵ2 +

1
ϵ

(
−655
144+

29
72π2

)

+
(
−14503

864 +239
144π2+91

18ζ3

)
+O (ϵ)

]
(C.12)

B̃0
5,3;L(sIK) = 0 (C.13)

B̃0
5,3;R(sKM ) = S2

KM

[
+1

ϵ

(
−133
432+

1
24π2

)
+
(
−517
144+

3
16π2+9

4ζ3

)
+O (ϵ)

]
(C.14)
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˜̃A0
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1

ϵ4 +
3
ϵ3 +

1
ϵ2

(203
16 − 4

3π2
)
+1

ϵ

(407
8 − 95

24π2− 68
3 ζ3

)

+
(1629

8 − 1625
96 π2− 131

2 ζ3+
13
90π4

)
+O (ϵ)

]
(C.15)

˜̃A0
5,3;L(sIK) = S2

IK

[
− 5
32ϵ2 +

1
ϵ

(
−43
64−

1
48π2− 1

2ζ3

)

+
(
−435
128+

21
64π2− 17

8 ζ3−
1
24π4

)
+O (ϵ)

]
(C.16)

˜̃A0
5,3;R(sKM ) = S2

KM

[
− 5
32ϵ2 +

1
ϵ

(
−43
64−

1
48π2− 1

2ζ3

)

+
(
−435
128+

21
64π2− 17

8 ζ3−
1
24π4

)
+O (ϵ)

]
(C.17)

D0
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1

ϵ4 +
7
2ϵ3 +

1
ϵ2

(2095
144 − 4

3π2
)
+1

ϵ

(25277
432 − 83

18π2− 68
3 ζ3

)

+
(75949

324 − 1867
96 π2−76ζ3+

13
90π4

)
+O (ϵ)

]
(C.18)

D0
5,3;L(sIK) = S2

IK

[
− 1
32ϵ2 +

1
ϵ

(1487
1728−

1
48π2−ζ3

)

+
(82133
10368+

127
1728π2− 25

8 ζ3−
1
12π4

)
+O (ϵ)

]
(C.19)

D0
5,3;R(sKM ) = S2

KM

[
− 1
32ϵ2 +

1
ϵ

(1787
1728−

5
144π2−ζ3

)

+
(106825

10368 − 89
1728π2− 31

8 ζ3−
1
12π4

)
+O (ϵ)

]
(C.20)

E0(a)
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

25
18ϵ2 +

1
ϵ

(
−523
108+

3
8π2

)

+
(
−5339

324 +131
72 π2+61

18ζ3

)
+O (ϵ)

]
(C.21)

E0(a)
5,3;L(sIK) = S2

IK

[
− 5
36ϵ2 −

131
96ϵ

+
(
−21611

2592 + 85
432π2

)
+O (ϵ)

]
(C.22)

E0(a)
5,3;R(sKM ) = S2

KM

[
+ 1
72ϵ2 +

1
ϵ

(
−29
48+

5
72π2

)
+
(
−11803

1728 +17
72π2+15

4 ζ3

)
+O (ϵ)

]
(C.23)
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E0(b)
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

4
3ϵ2 +

1
ϵ

(
−233

48 +29
72π2

)

+
(
−1691

96 +16
9 π2+91

18ζ3

)
+O (ϵ)

]
(C.24)

E0(b)
5,3;L(sIK) = S2

IK

[
+ 1
72ϵ2 +

1
ϵ

(
− 77
216+

1
24π2

)

+
(
−13003

5184 − 1
24π2+9

4ζ3

)
+O (ϵ)

]
(C.25)

E0(b)
5,3;R(sKM ) = S2

KM

[
− 5
36ϵ2 −

131
96ϵ

+
(
−21611

2592 + 85
432π2

)
+O (ϵ)

]
(C.26)

E0(c)
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

47
36ϵ2 +

1
ϵ

(
−1933

432 +3
8π2

)

+
(
−39673

2592 +83
48π2+61

18ζ3

)
+O (ϵ)

]
(C.27)

E0(c)
5,3;L(sIK) = 0 (C.28)

E0(c)
5,3;R(sKM ) = S2

KM

[
+1

ϵ

(
− 89
144+

5
72π2

)
+
(
−554

81 + 43
144π2+15

4 ζ3

)
+O (ϵ)

]
(C.29)

E0(d)
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

47
36ϵ2 +

1
ϵ

(
−689
144+

29
72π2

)

+
(
−46085

2592 +751
432π2+91

18ζ3

)
+O (ϵ)

]
(C.30)

E0(d)
5,3;L(sIK) = S2

IK

[
+1

ϵ

(
−133
432+

1
24π2

)
+
(
−517
144+

3
16π2+9

4ζ3

)
+O (ϵ)

]
(C.31)

E0(d)
5,3;R(sKM ) = 0 (C.32)

K0
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1
9ϵ2 +

1
ϵ

(
−197
216+

5
36π2

)

+
(
−13685

1296 + 1
18π2+25

3 ζ3

)
+O (ϵ)

]
(C.33)

K0
5,3;L(sIK) = 0 (C.34)

K0
5,3;R(sKM ) = S2

KM

[
+1

ϵ

(305
216−

5
36π2

)
+
(10823

648 − 53
72π2− 15

2 ζ3

)
+O (ϵ)

]
(C.35)

F0
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1

ϵ4 +
11
3ϵ3 +

1
ϵ2

(243
16 − 4

3π2
)
+1

ϵ

(13187
216 − 347

72 π2− 68
3 ζ3

)

+
(316663

1296 − 17539
864 π2− 1421

18 ζ3+
13
90π4

)
+O (ϵ)

]
(C.36)
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F0
5,3;L(sIK) = S2

IK

[
− 1
32ϵ2 +

1
ϵ

(1787
1728−

5
144π2−ζ3

)

+
(106825

10368 − 89
1728π2− 31

8 ζ3−
1
12π4

)
+O (ϵ)

]
(C.37)

F0
5,3;R(sKM ) = S2

KM

[
− 1
32ϵ2 +

1
ϵ

(1787
1728−

5
144π2−ζ3

)

+
(106825

10368 − 89
1728π2− 31

8 ζ3−
1
12π4

)
+O (ϵ)

]
(C.38)

G0(a)
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

49
36ϵ2 +

1
ϵ

(
−2035

432 +3
8π2

)

+
(
−14083

864 +781
432π2+61

18ζ3

)
+O (ϵ)

]
(C.39)

G0(a)
5,3;L(sIK) = S2

IK

[
+1

ϵ

(
− 89
144+

5
72π2

)
+
(
−554

81 + 43
144π2+15

4 ζ3

)
+O (ϵ)

]
(C.40)

G0(a)
5,3;R(sKM ) = 0 (C.41)

G0(b)
5,3;M (sIK ,sKM ) = SIKSKM

[
− 1
3ϵ3 −

25
18ϵ2 +

1
ϵ

(
−523
108+

3
8π2

)

+
(
−5339

324 +131
72 π2+61

18ζ3

)
+O (ϵ)

]
(C.42)

G0(b)
5,3;L(sIK) = S2

IK

[
− 5
36ϵ2 −

131
96ϵ

+
(
−21611

2592 + 85
432π2

)
+O (ϵ)

]
(C.43)

G0(b)
5,3;R(sKM ) = S2

KM

[
+ 1
72ϵ2 +

1
ϵ

(
−29
48+

5
72π2

)

+
(
−11803

1728 +17
72π2+15

4 ζ3

)
+O (ϵ)

]
(C.44)

H0(a)
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1
9ϵ2 +

1
2ϵ

+
(197

81 − 43
216π2

)
+O (ϵ)

]
(C.45)

H0(a)
5,3;L(sIK) = 0 (C.46)

H0(a)
5,3;R(sKM ) = 0 (C.47)

H0(b)
5,3;M (sIK ,sKM ) = SIKSKM

[
+ 1
9ϵ2 +

1
ϵ

(
−197
216+

5
36π2

)

+
(
−13685

1296 + 1
18π2+25

3 ζ3

)
+O (ϵ)

]
(C.48)
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H0(b)
5,3;L(sIK) = 0 (C.49)

H0(b)
5,3;R(sKM ) = S2

KM

[
+1

ϵ

(305
216−

5
36π2

)
+
(10823

648 − 53
72π2− 15

2 ζ3

)
+O (ϵ)

]
(C.50)

C.2 Integrated X1
4,3

In this appendix, we list the integral of the X1
4,3 antenna functions over the appropriate

antenna phase space. Because the integration of each of the X1
4,3;L, X1

4,3;M and X1
4,3;R

components is proportional to the same scale,

SIK =
(

sIK

µ2

)−ϵ

(C.51)

we combine the results together as X 1
4,3.

A1
4,3(sIK) = SIK

(
1
ϵ

(
−11

8 + 2ζ3

)
+
(
−93

8 + 3ζ3 +
2π4

15

)
+ O(ϵ)

)
, (C.52)

Â1
4,3(sIK) = 0, (C.53)

Ã1
4,3(sIK) = 0, (C.54)

D1
4,3(sIK) = 0, (C.55)

D̃1
4,3(sIK) = SIK

(
1
ϵ

(
−179
108 + 2ζ3

)
+
(
−17461

1296 + 2π4

15 + 10ζ3
3

)
+ O(ϵ)

)
, (C.56)

D̂1
4,3(sIK) = 0, (C.57)

E1
4,3(sIK) = SIK

(
1
ϵ

(
1
6 + π2

18

)
+
(
5
4 + π2

8 + ζ3

)
+ O(ϵ)

)
, (C.58)

Ê1
4,3(sIK) = 0, (C.59)

Ẽ1
4,3(sIK) = SIK

(
1
ϵ

(
59
216 − π2

18

)
+
(
1303
648 − π2

8 − 5ζ3
3

)
+ O(ϵ)

)
, (C.60)

F1
4,3(sIK) = SIK

(
1
ϵ

(
−419
432 + ζ3

)
+
(
−1241

162 + 11ζ3
6 + π4

15

)
+ O(ϵ)

)
, (C.61)

F̂1
4,3(sIK) = 0, (C.62)

G1
4,3(sIK) = SIK

(1
ϵ

95
216 +

(2113
648 − 2ζ3

3

)
+ O(ϵ)

)
, (C.63)

Ĝ1
4,3(sIK) = 0, (C.64)

G̃1
4,3(sIK) = 0. (C.65)

D Subtraction terms for e+e− → jjj at NNLO

In the following, we give the expressions for the NNLO subtraction terms for e+e− → jjj

employing generalised antenna functions. The leading-colour subtraction terms have been
considered as examples and thoroughly discussed in sections 4, 5 and 7. Here we list the
subtraction terms for the remaining colour factors. In general, we denote quark momenta
with numbers, and gluon momenta with letters.
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We follow the notation and the conventions of [54], with a few modifications which we
illustrate in the following. The Born-level matrix element is represented by M0

3 (1q, ig, 2q̄).
The interference between the one-loop correction and the Born amplitude is split according
to its leading-colour, subleading-colour and closed-fermionic-loop components, respectively
denoted with M1

3 (1q, ig, 2q̄), M̃1
3 (1q, ig, 2q̄), M̂1

3 (1q, ig, 2q̄). For the single-real emission matrix
element, we have to distinguish different partonic channels. The two-quark two-gluon matrix
element is split into its leading- and subleading-colour components: M0

4,qggq̄(1q, ig, jg, 2q̄)
and M̃0

4,qggq̄(1q, ig, jg, 2q̄). The four-quark different-flavour matrix element is denoted with
M0

4,qq̄′q′q̄(1q, 4q̄′ , 3q′ , 2q̄). For the identical-flavour case, we isolate the part of the matrix
element which only exists with four same-flavour quarks:

M0
4,qq̄qq̄(1q, 2q̄, 3q, 4q̄) =

∣∣∣A0
4,qq̄q′q̄′(1q, 4q̄′ , 3q′ , 2q̄)− A0

4,qq̄q′q̄′(1q, 2q̄, 3q′ , 4q̄′)
∣∣∣2 , (D.1)

where A is used to denote a scattering amplitude rather than a squared matrix element.
An analogous definition is used for the real-virtual and double-real matrix elements [54].
Everywhere the dependence of the reduced matrix elements on the electron and positron
momenta is understood, as well as the renormalisation scale dependence of loop quantities.

The coloured indices on the left of each line in the subtraction terms follow the scheme
described in sections 4, 5 and 7, to relate different contributions to their (un)integrated
counterparts.

D.1 Double-real subtraction terms

We start with the definition of the abelian (ab.) double-real subtraction term, which come
with the colour factor (N2 + 1)/N2:

dσS
NNLO,ab. = N5

N2 + 1
N2 dΦ5({p}5; q)

{

1 + A0
3(1, i, 2) M̃0

4,qggq̄((1̃i), j, k, (2̃i)) J
(4)
3 ({p}4)

2 + A0
3(1, j, 2) M̃0

4,qggq̄((1̃j), i, k, (2̃j)) J
(4)
3 ({p}4)

3 + A0
3(1, k, 2) M̃0

4,qggq̄((1̃k), j, i, (2̃k)) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

4 + Ã0
4(1, j, i, 2)M0

3 ((1̃ji), k, (j̃i2)) J
(3)
3 ({p}3)

5 − A0
3(2, i, 1)A0

3((1̃i), j, (ĩ2))M0
3 (((̃ĩ1)j), k, (j̃(̃i2))) J

(3)
3 ({p}3)

6 − A0
3(2, j, 1)A0

3((1̃j), i, (j̃2))M0
3 (((̃j̃1)i), k, (ĩ(̃j2))) J

(3)
3 ({p}3)

7 + Ã0
4(1, i, k, 2)M0

3 ((1̃ik), j, (ĩk2)) J
(3)
3 ({p}3)

8 − A0
3(2, i, 1)A0

3((1̃i), k, (ĩ2))M0
3 (((̃ĩ1)k), j, (k̃(̃i2))) J

(3)
3 ({p}3)

9 − A0
3(2, k, 1)A0

3((1̃k), i, (k̃2))M0
3 (((̃k̃1)i), j, (ĩ(̃k2))) J

(3)
3 ({p}3)

10 + Ã0
4(1, j, k, 2)M0

3 ((1̃jk), i, (j̃k2)) J
(3)
3 ({p}3)
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11 − A0
3(2, k, 1)A0

3((1̃k), j, (k̃2))M0
3 (((̃k̃1)j), i, (j̃(̃k2))) J

(3)
3 ({p}3)

12 − A0
3(2, j, 1)A0

3((1̃j), k, (j̃2))M0
3 (((̃j̃1)k), i, (k̃(̃j2))) J

(3)
3 ({p}3)

}
. (D.2)

The subleading-colour double-real subtraction term contributing to the N0 colour factor
has three components:

dσS
NNLO,N0 = dσS,qgggq̄

NNLO,N0 + dσS,qq̄qq̄g
NNLO,N0 +

N2

N2 + 1dσS
NNLO,ab., (D.3)

with:

dσS
NNLO,N0 = −N5N0dΦ5({p}5; q)

1
3!

∑
(i,j,k)∈P (3,4,5)

{

1 + D0
3(1, i, j) M̃0

4,qggq̄((1̃i), (ĩj), k, 2) J
(4)
3 ({p}4)

2 + D0
3(2, j, i) M̃0

4,qggq̄(1, k, (ĩj), (2̃j)) J
(4)
3 ({p}4)

3 + A0
3(1, k, 2)M0

4,qggq̄((1̃k), i, j, (2̃k)) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

4 + A0
4(1, i, j, 2)M0

3 ((1̃ij), k, (ĩj2)) J
(3)
3 ({p}3)

5 − D0
3(1, i, j)A0

3((1̃i), (ĩj), 2)M0
3 ((

˜(1̃i)(ĩj)), k, ((̃ĩj)2)) J
(3)
3 ({p}3)

6 − D0
3(2, j, i)A0

3(1, (ĩj), (j̃2))M0
3 ((1̃(̃ij)), k, ( ˜(ĩj)(j̃2))) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

7 + Ã5,3
0(2, k, 1, i, j)M0

3 ({2k1ij}, {1ij}, {2k1}) J
(3)
3 ({p}3)

8 − D0
3(1, i, j)A0

3(2, k, (1̃i))M0
3 ([(1̃i)k], (j̃i), [k2]) J

(3)
3 ({p}3)

9 − A0
3(2, k, 1)D0

3((k̃1), i, j)M0
3 ([(1̃k)i], [ji], (k̃2)) J

(3)
3 ({p}3)

10 + Ã5,3
0(1, k, 2, j, i)M0

3 ({1k2}, {2ji}, {1k2ji}) J
(3)
3 ({p}3)

11 − D0
3(2, j, i)A0

3(1, k, (2̃j))M0
3 ([1k], (ĩj), [k(̃2j)]) J

(3)
3 ({p}3)

12 − A0
3(1, k, 2)D0

3((k̃2), j, i)M0
3 ((1̃k), [ji], [(k̃2)j]) J

(3)
3 ({p}3)

}
, (D.4)

and

dσS,qq̄qq̄g
NNLO,N0 = −N5N0dΦ5({p}5; q)

{

1 + A0
3(1, i, 3)M0

4,qq̄qq̄((1̃i), 2, (ĩ3), 4) J
(4)
3 ({p}4)

2 + A0
3(2, i, 4)M0

4,qq̄qq̄(1, (2̃i), 3, (ĩ4)) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

3 + 2C0
4 (1, 2, 3, 4)M0

3 ((1̃23), i, (2̃34)) J
(3)
3 ({p}3)

4 + 2C0
4 (3, 2, 1, 4)M0

3 ((3̃21), i, (4̃12)) J
(3)
3 ({p}3)
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5 + 2C0
4 (4, 3, 2, 1)M0

3 ((1̃23), i, (4̃32)) J
(3)
3 ({p}3)

6 + 2C0
4 (2, 3, 4, 1)M0

3 ((1̃43), i, (2̃34)) J
(3)
3 ({p}3)

}
. (D.5)

The most subleading-colour double-real subtraction term contributing to the N−2 colour
factor has two components:

dσS
NNLO,N−2 = dσS,qq̄qq̄g

NNLO,N−2 +
1

N2 + 1dσS
NNLO,ab., (D.6)

with

dσS,qq̄qq̄g
NNLO,N−2 = N5N−2dΦ5({p}5; q)

{

1 − A0
3(1, i, 4)M0

4,qq̄qq̄((1̃i), 3, (ĩ4), 2) J
(4)
3 ({p}4)

2 + A0
3(1, i, 2)M0

4,qq̄qq̄((1̃i), 3, 4, (ĩ2)) J
(4)
3 ({p}4)

3 + A0
3(1, i, 3)M0

4,qq̄qq̄((1̃i), (ĩ3), 4, 2) J
(4)
3 ({p}4)

4 + A0
3(3, i, 4)M0

4,qq̄qq̄(1, (3̃i), (4̃i), 2) J
(4)
3 ({p}4)

5 − A0
3(3, i, 2)M0

4,qq̄qq̄(1, (3̃i), 4, (2̃i)) J
(4)
3 ({p}4)

6 + A0
3(4, i, 2)M0

4,qq̄qq̄(1, 3, (4̃i), (2̃i)) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

7 + 2C0
4 (1, 3, 4, 2)M0

3 ((1̃34), i, (3̃42)) J
(3)
3 ({p}3)

8 + 2C0
4 (4, 3, 1, 2)M0

3 ((4̃31), i, (3̃12)) J
(3)
3 ({p}3)

9 + 2C0
4 (2, 4, 3, 1)M0

3 ((4̃31), i, (2̃43)) J
(3)
3 ({p}3)

10 + 2C0
4 (3, 1, 2, 4)M0

3 ((1̃24), i, (3̃12)) J
(3)
3 ({p}3)

}
. (D.7)

The leading-Nf double-real subtraction term proportional to Nf N after summation over
quark flavours reads:

dσS
NNLO,Nf N = N5Nf NdΦ5({p}5; q)

{[

1 + 1
2 A0

3(1, i, 3)M0
4,qq̄′q′q̄((1̃i), (ĩ3), 4, 2) J

(4)
3 ({p}4)

2 + 1
2 G0

3(i, 3, 4)M0
4,qggq̄(1, (ĩ3), (3̃4), 2) J

(4)
3 ({p}4)

3 + 1
2 E0

3(2, 4, 3)M0
4,qggq̄(1, i, (3̃4), (4̃2)) J

(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

4 + 1
2 E

0
4(1, i, 3, 4)M0

3 ((1̃i3), (4̃3i), 2) J3
3 ({p}3)

5 − 1
2 A0

3(1, i, 3)E0
3((1̃i), (3̃i), 4)M0

3 ((
˜(1̃i)(ĩ3)), (4̃(3̃i)), 2) J3

3 ({p}3)
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6 − 1
2 G0

3(i, 3, 4)D0
3(1, (ĩ3), (3̃4))M0

3 ((1̃(ĩ3)), (
˜(ĩ3)(3̃4)), 2) J3

3 ({p}3)

7 + E0
4(2, 4, 3, i)M0

3 (1, (ĩ34), (2̃43)) J3
3 ({p}3)

8 − 1
2 E0

3(2, 4, 3)D0
3((2̃4), (4̃3), i)M0

3 (1, ((̃4̃3)i), ( ˜(2̃4)(4̃3))) J3
3 ({p}3)

9 − 1
2 G0

3(i, 3, 4)D0
3(2, (4̃3), (3̃i))M0

3 (1, ( ˜(3̃i)(4̃3)), ((̃4̃3)2)) J3
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

10 + 1
2 B0

5,3(1, i, 3, 4, 2)M0
3 ({1i3}, {1, i, 3, 4, 2}, {342}) J3

3 ({p}3)

11 − 1
2 A0

3(1, i, 3)E0
3(2, 4, (3̃i))M0

3 ((1̃i), [4, (3̃i)], (2̃4)) J3
3 ({p}3)

12 − 1
2 E0

3(2, 4, 3)D0
3(1, i, (3̃4))M0

3 ((1̃i), [i, (3̃4)], (2̃4)) J3
3 ({p}3)

+ (1 ↔ 2, 3 ↔ 4)
]
+ (1 ↔ 3, 2 ↔ 4)

}
. (D.8)

The subleading-Nf double-real subtraction term proportional to Nf N−1 reads:

dσS
NNLO,Nf N−1 = −N5Nf N−1dΦ5({p}5; q)

{

1 + 1
2 A0

3(3, i, 4)M0
4,qq̄′q′q̄(1, (3̃i), (4̃i), 2) J

(4)
3 ({p}4)

2 + 1
2 A0

3(1, i, 2)M0
4,qq̄′q′q̄((1̃i), 3, 4, (2̃i)) J

(4)
3 ({p}4)

3 + 1
2 E0

3(1, 3, 4) M̃0
4,qggq̄((1̃3), (3̃4), i, 2) J

(4)
3 ({p}4)

4 + 1
2 E0

3(2, 4, 3) M̃0
4,qggq̄(1, i, (4̃3), (2̃4)) J

(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

5 + 1
2 Ẽ0

4(1, 3, i, 4)M0
3 ((1̃3i), (3̃i4), 2) J

(3)
3 ({p}3)

6 − 1
2 A0

3(3, i, 4)E0
3(1, (3̃i), (4̃i))M0

3 ((1̃(3̃i)), ( ˜(3̃i)(4̃i)), 2) J
(3)
3 ({p}3)

7 + 1
2 Ẽ0

4(2, 4, i, 3)M0
3 (1, (3̃i4), (ĩ42)) J

(3)
3 ({p}3)

8 − 1
2 A0

3(3, i, 4)E0
3(2, (4̃i), (ĩ3))M0

3 (1, ( ˜(3̃i)(4̃i)), (2̃(4̃i))) J
(3)
3 ({p}3)

9 + 1
2 B0

4(1, 3, 4, 2)M0
3 ((1̃34), i, (2̃43)) J

(3)
3 ({p}3)

10 − 1
2 E0

3(1, 3, 4)A0
3((1̃3), (4̃3), 2)M0

3 (( ˜(1̃3)(4̃3)), i, (2̃(4̃3))) J
(3)
3 ({p}3)

11 + 1
2 B0

4(2, 4, 3, 1)M0
3 ((1̃34), i, (3̃42)) J

(3)
3 ({p}3)

12 − 1
2 E0

3(2, 4, 3)A0
3(1, (3̃4), (4̃2))M0

3 ((1̃(3̃4)), i, ( ˜(3̃4)(4̃2))) J
(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−
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13 + 1
2 B̃0

5,3(1, i, 2, 4, 3)M0
3 ((2̃i1), (3̃42), [3, 4, 2, i, 1]) J

(3)
3 ({p}3)

14 − 1
2 A0

3(1, i, 2)E0
3([i, 2], 4, 3)M0

3 ([1, i], [3, 4], [4, [i, 2]]) J
(3)
3 ({p}3)

15 − 1
2 E0

3(2, 4, 3)A0
3((2̃4), i, 1)M0

3 ((1̃i), (3̃4), ((̃2̃4)i)) J
(3)
3 ({p}3)

16 + 1
2 B̃0

5,3(2, i, 1, 3, 4)M0
3 ([2, i, 1, 3, 4], (1̃34), (2̃i1)) J

(3)
3 ({p}3)

17 − 1
2 A0

3(2, i, 1)E0
3([1, i], 3, 4)M0

3 ([[1, i], 3], [3, 4], [i, 2]) J
(3)
3 ({p}3)

18 − 1
2 E0

3(1, 3, 4)A0
3((1̃3), i, 2)M0

3 (((̃1̃3)i), (3̃4), (ĩ2)) J
(3)
3 ({p}3)

+ (1 ↔ 3, 2 ↔ 4)
}

. (D.9)

We notice here that the mappings in term 14 are not like any iterated X0
3 X0

3 mappings
we discussed in section 4: we have two dipole mappings in which particle 3 is rescaled
both times. The reason for this is that terms 13 and 14 only serve to reroute contributions
between different layers of the subtraction infrastructure and, when summed, they do not
yield additional unresolved behaviour at the double-real level. More precisely, we need
the integrated form of 14 at the real-virtual level, so we add it in at the double-real along
with term 13 which fully cancels the extra unresolved behaviour and is integrated to the
double-virtual level. In order for terms 13 and 14 to cancel locally, the mappings of 14
must match the mappings of 13, which explains the choice of mappings above. The same
holds for terms 16 and 17. This seemingly unnecessary complication is actually required to
preserve the general construction principles and the overall pattern of infrared cancellations
common to all the other subtraction terms.

D.2 Real-virtual subtraction terms

The subleading-colour real-virtual subtraction term contributing to the N0 colour factor
has three components:

dσS
NNLO,N0 = dσT,qggq̄

NNLO,N0 + dσT,qq̄qq̄
NNLO,N0 , (D.10)

with:

dσT,qggq̄
NNLO,N0 = −N4N0

(
αs

2π

)
dΦ4({p}4; q)

1
2!

∑
(i,j)∈P (3,4)

{

1 −
[
+D0

3(s1j) +D0
3(sj2) +D0

3(s1i) +D0
3(si2)−A0

3(s12)
]

M̃0
4,qggq̄(1, i, j, 2) J

(4)
3 ({p}4)

2 −A0
3(s12)M0

4,qggq̄(1, i, j, 2) J
(4)
3 ({p}4)

3 −A0
3(s12)M0

4,qggq̄(1, j, i, 2) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

4 +
[
+D0

3(s1i) +D0
3(si2)−A0

3(s12)
]
A0

3(1, i, 2)M0
3 ((1̃i), j, (ĩ2)) J

(3)
3 ({p}3)
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5 +
[
+D0

3(s1j) +D0
3(sj2)−A0

3(s12)
]
A0

3(1, j, 2)M0
3 ((1̃j), i, (j̃2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

6 +D0
3(s1j)A0

3(1, i, 2)M0
3 ([1, i], j, [i, 2]) J

(3)
3 ({p}3)

7 +D0
3(sj2)A0

3(1, i, 2)M0
3 ([1, i], j, [i, 2]) J

(3)
3 ({p}3)

8 +D0
3(s1i)A0

3(1, j, 2)M0
3 ([1, j], i, [j, 2]) J

(3)
3 ({p}3)

9 +D0
3(si2)A0

3(1, j, 2)M0
3 ([1, j], i, [j, 2]) J

(3)
3 ({p}3)

10 +A0
3(s12)D0

3(1, i, j)M0
3 ([1, i], [i, j], 2) J

(3)
3 ({p}3)

11 +A0
3(s12)D0

3(2, j, i)M0
3 (1, [ij], [j, 2]) J

(3)
3 ({p}3)

12 +A0
3(s12)D0

3(1, j, i)M0
3 ([1, j], [j, i], 2) J

(3)
3 ({p}3)

13 +A0
3(s12)D0

3(2, i, j)M0
3 (1, [j, i], [i, 2]) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

14 + A1
3(1, i, 2)M0

3 ((1̃i), j, (ĩ2)) J
(3)
3 ({p}3)

15 + A1
3(1, j, 2)M0

3 ((1̃j), i, (j̃2)) J
(3)
3 ({p}3)

16 + A0
3(1, i, 2)M1

3 ((1̃i), j, (ĩ2)) J
(3)
3 ({p}3)

17 + A0
3(1, j, 2)M1

3 ((1̃j), i, (j̃2)) J
(3)
3 ({p}3)

18 + D̃1
3(1, i, j)M0

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3)

19 + D̃1
3(2, j, i)M0

3 (1, (ĩj), (j̃2)) J
(3)
3 ({p}3)

20 + D̃1
3(1, j, i)M0

3 ((1̃j), (ĩj), 2) J
(3)
3 ({p}3)

21 + D̃1
3(2, i, j)M0

3 (1, (ĩj), (ĩ2)) J
(3)
3 ({p}3),

22 + D0
3(1, i, j) M̃1

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3),

23 + D0
3(2, j, i) M̃1

3 (1, (ĩj), (j̃2)) J
(3)
3 ({p}3),

24 + D0
3(1, j, i) M̃1

3 ((1̃j), (ĩj), 2) J
(3)
3 ({p}3),

25 + D0
3(2, i, j) M̃1

3 (1, (ĩj), (ĩ2)) J
(3)
3 ({p}3),

−−−−−−−−−−−−−−−−−−−−−−−

26 + Ã1
4,3(1, i, 2; j)M0

3 ({1i}, j, {i2}) J
(3)
3 ({p}3)

27 + Ã1
4,3(1, j, 2; i)M0

3 ({1j}, i, {j2}) J
(3)
3 ({p}3)

28 + D̃1
4,3(1, i, j; 2)M0

3 ({1i}, {ij}, 2) J
(3)
3 ({p}3)

29 + D̃1
4,3(2, j, i; 1)M0

3 (1, {ij}, {j2}) J
(3)
3 ({p}3)

30 + D̃1
4,3(1, j, i; 2)M0

3 ({1j}, {ij}, 2) J
(3)
3 ({p}3)

31 + D̃1
4,3(2, i, j; 1)M0

3 (1, {ij}, {i2}) J
(3)
3 ({p}3)

}
, (D.11)
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and

dσT,qq̄qq̄
NNLO,N0 = N4N0

(
αs

2π

)
dΦ4({p}4; q)

{

1 +
[
+A0

3(s13) +A0
3(s24)

]
M0

4,qq̄qq̄(1, 2, 3, 4) J
(4)
3 ({p}4)

}
. (D.12)

The most subleading-colour double-real subtraction term contributing to the N−2 colour
factor has two components:

dσT
NNLO,N−2 = dσT,qggq̄

NNLO,N−2 + dσT,qq̄qq̄
NNLO,N−2 , (D.13)

with

dσT,qggq̄
NNLO,N−2 = N4N−2

(
αs

2π

)
dΦ4({p}4; q)

{

1 −A0
3(s12) M̃0

4,qggq̄(1, i, j, 2) J
(3)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

2 +A0
3(s12)A0

3(1, i, 2)M0
3 ((1̃i), j, (ĩ2)) J

(3)
3 ({p}3)

3 +A0
3(s12)A0

3(1, j, 2)M0
3 ((1̃j), i, (j̃2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

4 + A0
3(1, i, 2) M̃1

3 ((1̃i), j, (ĩ2)) J
(3)
3 ({p}3)

5 + A0
3(1, j, 2) M̃1

3 ((1̃j), i, (j̃2)) J
(3)
3 ({p}3)

6 + Ã1
3(1, i, 2)M0

3 ((1̃i), j, (ĩ2)) J
(3)
3 ({p}3)

7 + Ã1
3(1, j, 2)M0

3 ((1̃j), i, (j̃2)) J
(3)
3 ({p}3)

}
, (D.14)

and

dσT,qq̄qq̄
NNLO,N−2 = N4N−2

(
αs

2π

)
dΦ4({p}4; q)

{

1 +
[
+A0

3(s13)−A0
3(s14)−A0

3(s12)
]

M0
4,qq̄qq̄(1, 2, 3, 4) J

(4)
3 ({p}4)

2 +
[
−A0

3(s23) +A0
3(s24)−A0

3(s34)
]

M0
4,qq̄qq̄(1, 2, 3, 4) J

(4)
3 ({p}4)

}
. (D.15)

The leading-Nf real-virtual subtraction term contributing to the Nf N colour factor has
two components:

dσT
NNLO,Nf N = dσT,qggq̄

NNLO,Nf N + dσT,qq̄′q′q̄
NNLO,Nf N , (D.16)

with

dσT,qggq̄
NNLO,Nf N = N4Nf N

(
αs

2π

)
dΦ4({p}4; q)

{

1 − G0
3(sij)M0

4,qggq̄(1, i, j, 2) J
(4)
3 ({p}4)
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2 − E0
3 (s1i)M0

4,qggq̄(1, i, j, 2) J
(4)
3 ({p}4)

3 − E0
3 (s2j)M0

4,qggq̄(1, i, j, 2) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

4 + G0
3(sij)D0

3(1, i, j)M0
3 ((1̃i), (ĩj), 2) J

(3)
3 ({p}3)

5 + G0
3(sij)D0

3(2, j, i)M0
3 (1, (ĩj), (j̃2)) J

(3)
3 ({p}3)

6 + E0
3 (s1i)D0

3(1, i, j)M0
3 ((1̃i), (ĩj), 2) J

(3)
3 ({p}3)

7 + E0
3 (s2j)D0

3(2, j, i)M0
3 (1, (ĩj), (j̃2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

8 + E0
3 (s1i)D0

3(2, j, i)M0
3 (1, [ij], [j2]) J

(3)
3 ({p}3)

9 + E0
3 (s2j)D0

3(1, i, j)M0
3 ([1i], [ij], 2) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

10 + D0
3(1, i, j) M̂1

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3)

11 + D̂1
3(1, i, j)M0

3 ((1̃i), (ĩj), 2) J
(3)
3 ({p}3)

12 + D0
3(2, j, i) M̂1

3 (1, (ĩj), (2̃j)) J
(3)
3 ({p}3)

13 + D̂1
3(2, j, i)M0

3 (1, (ĩj), (2̃j)) J
(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

14 + D̂1
4,3(1, i, j, 2)M0

3 ({1i}, {ij}, 2) J
(3)
3 ({p}3)

15 + D̂1
4,3(2, j, i, 1)M0

3 (1, {ij}, {2j}) J
(3)
3 ({p}3)

}
, (D.17)

and

dσT,qq̄′q′q̄
NNLO,Nf N = N4Nf N

(
αs

2π

)
dΦ4({p}4; q)

{

1 −
[
+A0

3(s14) +A0
3(s23)

]
M0

4,qq̄′q′q̄(1, 4, 3, 2) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

2 +A0
3(s14)E0

3(1, 4, 3)M0
3 ((1̃4), (4̃3), 2) J

(3)
3 ({p}3)

3 +A0
3(s14)E0

3(4, 1, 2)M0
3 (3, (2̃1), (1̃4)) J

(3)
3 ({p}3)

4 +A0
3(s23)E0

3(3, 2, 1)M0
3 ((3̃2), (2̃1), 4) J

(3)
3 ({p}3)

5 +A0
3(s23)E0

3(2, 3, 4)M0
3 (1, (4̃3), (3̃2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

6 +A0
3(s14)E0

3(3, 2, 1)M0
3 ([3, 2], [2, 1], 4) J

(3)
3 ({p}3)

7 +A0
3(s14)E0

3(2, 3, 4)M0
3 (1, [4, 3], [3, 2]) J

(3)
3 ({p}3)

8 +A0
3(s23)E0

3(1, 4, 3)M0
3 ([1, 4], [4, 3], 2) J

(3)
3 ({p}3)
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9 +A0
3(s23)E0

3(4, 1, 2)M0
3 (3, [2, 1], [1, 4]) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

10 + 1
2 E0

3(1, 4, 3)M1
3 ((1̃4), (4̃3), 2) J

(3)
3 ({p}3)

11 + 1
2 E1

3(1, 4, 3)M0
3 ((1̃4), (4̃3), 2) J

(3)
3 ({p}3)

12 + 1
2 E0

3(2, 3, 4)M1
3 (1, (4̃3), (3̃2)) J

(3)
3 ({p}3)

13 + 1
2 E1

3(2, 3, 4)M0
3 (1, (4̃3), (3̃2)) J

(3)
3 ({p}3)

14 + 1
2 E0

3(3, 2, 1)M1
3 ((3̃2), (2̃1), 4) J

(3)
3 ({p}3)

15 + 1
2 E1

3(3, 2, 1)M0
3 ((3̃2), (2̃1), 4) J

(3)
3 ({p}3)

16 + 1
2 E0

3(4, 1, 2)M1
3 (3, (2̃1), (1̃4)) J

(3)
3 ({p}3)

17 + 1
2 E1

3(4, 1, 2)M0
3 (3, (2̃1), (1̃4)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

18 + 1
2 E1

4,3(1, 4, 3, 2)M0
3 ({14}, {43}, 2) J

(3)
3 ({p}3)

19 + 1
2 E1

4,3(2, 3, 4, 1)M0
3 (1, {43}, {32}) J

(3)
3 ({p}3)

20 + 1
2 E1

4,3(3, 2, 1, 4)M0
3 ({32}, {21}, 4) J

(3)
3 ({p}3)

21 + 1
2 E1

4,3(4, 1, 2, 3)M0
3 (3, {21}, {14}) J

(3)
3 ({p}3)

}
. (D.18)

The subleading-Nf real-virtual subtraction term contributing to the Nf N−1 colour factor
has two components:

dσT
NNLO,Nf N−1 = dσT,qggq̄

NNLO,Nf N−1 + dσT,qq̄′q′q̄
NNLO,Nf N−1 , (D.19)

with

dσT,qggq̄
NNLO,Nf N−1 = −N4Nf N−1

(
αs

2π

)
dΦ4({p}4; q)

{

1 −
[
+ E0

3 (s1i) + E0
3 (s2i)

]
M̃0

4,qggq̄(1, i, j, 2) J
(4)
3 ({p}4)

2 −
[
+ E0

3 (s1j) + E0
3 (s2j)

]
M̃0

4,qggq̄(1, i, j, 2) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

3 +
[
+ E0

3 (s1j) + E0
3 (s2j)

]
A0

3(1, j, 2)M0
3 ((1̃j), i, (j̃2)) J

(3)
3 ({p}3)

4 +
[
+ E0

3 (s1i) + E0
3 (s2i)

]
A0

3(1, i, 2)M0
3 ((1̃i), j, (ĩ2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−
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5 +
[
+ E0

3 (s1i) + E0
3 (s2i)

]
A0

3(1, j, 2)M0
3 ((1̃j), i, (j̃2)) J

(3)
3 ({p}3)

6 +
[
+ E0

3 (s1j) + E0
3 (s2j)

]
A0

3(1, i, 2)M0
3 ((1̃i), j, (ĩ2)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

7 + A0
3(1, i, 2) M̂1

3 ((1̃i), j, (ĩ2)) J
(3)
3 ({p}3)

8 + A0
3(1, j, 2) M̂1

3 ((1̃j), i, (j̃2)) J
(3)
3 ({p}3)

9 + Â1
3(1, i, 2)M0

3 ((1̃i), j, (ĩ2)) J
(3)
3 ({p}3)

10 + Â1
3(1, j, 2)M0

3 ((1̃j), i, (j̃2)) J
(3)
3 ({p}3)

}
, (D.20)

and

dσT,qq̄′q′q̄
NNLO,Nf N−1 = N4Nf N−1

(
αs

2π

)
dΦ4({p}4; q)

{

1 +
[
+A0

3(s12) +A0
3(s43)

]
M0

4,qq̄′q′q̄(1, 4, 3, 2) J
(4)
3 ({p}4)

−−−−−−−−−−−−−−−−−−−−−−−

2 −A0
3(s43)E0

3(1, 4, 3)M0
3 ((1̃4), (4̃3), 2) J

(3)
3 ({p}3)

3 −A0
3(s12)E0

3(4, 1, 2)M0
3 (3, (1̃2), (4̃1)) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

4 −A0
3(s12)E0

3(1, 4, 3)M0
3 ([1, 4], [4, 3], 2) J

(3)
3 ({p}3)

5 −A0
3(s43)E0

3(4, 1, 2)M0
3 (3, [1, 2], [4, 1]) J

(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

6 − E0
3(1, 4, 3) M̃1

3,f1((1̃4), (4̃3), 2) J
(3)
3 ({p}3)

7 − Ẽ1
3(1, 4, 3)M0

3 ((1̃4), (4̃3), 2) J
(3)
3 ({p}3)

8 − E0
3(4, 1, 2) M̃1

3,f2(3, (1̃2), (4̃1)) J
(3)
3 ({p}3)

9 − Ẽ1
3(4, 1, 2)M0

3 (3, (1̃2), (4̃1)) J
(3)
3 ({p}3)

−−−−−−−−−−−−−−−−−−−−−−−

10 − Ẽ1
4,3(1, 4, 3, 2)M0

3 ({14}, {43}, 2) J
(3)
3 ({p}3)

11 − Ẽ1
4,3(4, 1, 2, 3)M0

3 (3, {12}, {41}) J
(3)
3 ({p}3)

}
, (D.21)

where the fi indicates the flavour of the quarks attached to the Z/γ.
The N2

f real-virtual subtraction term is given by:

dσT,qq̄
′
q
′
q̄

NNLO,N2
f
= N4N2

f

(
αs

2π

)
dΦ4({p}4; q)

{

1 + 1
2 E0

3(1, 4, 3) M̂1
3,f1(2, (4̃3), (1̃4)) J

(3)
3 ({p}3)
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2 + 1
2 E0

3(2, 4, 3) M̂1
3,f1((2̃4), (4̃3), 1) J

(3)
3 ({p}3)

3 + 1
2 Ê1

3(1, 4, 3)M0
3 (2, (4̃3), (1̃4)) J

(3)
3 ({p}3)

4 + 1
2 Ê1

3(2, 4, 3)M0
3 ((2̃4), (4̃3), 1) J

(3)
3 ({p}3)

5 + 1
2 E0

3(4, 2, 1) M̂1
3,f2(3, (2̃1), (2̃4)) J

(3)
3 ({p}3)

6 + 1
2 E0

3(3, 2, 1) M̂1
3,f2((3̃2), (2̃1), 4) J

(3)
3 ({p}3)

7 + 1
2 Ê1

3(4, 2, 1)M0
3 (3, (2̃1), (2̃4)) J

(3)
3 ({p}3)

8 + 1
2 Ê1

3(3, 2, 1)M0
3 ((3̃2), (2̃1), 4) J

(3)
3 ({p}3)

}
, (D.22)

where the fi indicates the flavour of the quarks attached to the Z/γ.

D.3 Double-virtual subtraction terms

The subleading-colour double-virtual subtraction term contributing to the N0 reads:

dσU
NNLO,N0 = N3N0

(
αs

2π

)2
dΦ3({p}3; q) J

(3)
3 ({p}3)

{

1 −
(
2C0

4(s12)−
1
2Ã

0
4(s12) +A0

4(s12)
)

M0
3 (1, i, 2)

2 −
(
Ã0

5,3(s12, si2) + Ã0
5,3(s12, s1i)

)
M0

3 (1, i, 2)

−−−−−−−−−−−−−−−−−−−−−−−

3 −
(
A1

3(s12) +
b0
ϵ

((
s12
µ2

)−ϵ

− 1
)
A0

3(s12)
)

M0
3 (1, i, 2)

4 +
(
D̃1

3(s1i) + D̃1
3(si2)

)
M0

3 (1, i, 2)

5 −A0
3(s12)M1

3 (1, i, 2)

6 −
(
D0

3(s1i) +D0
3(si2)

)
M̃1

3 (1, i, 2)

7 −
(
Ã1

4,3(s12) + D̃1
4,3(s1i) + D̃1

4,3(si2)
)

M0
3 (1, i, 2)

}
. (D.23)

The most subleading-colour double-virtual subtraction term contributing to the N−2 colour
factor reads:

dσU
NNLO,N−2 = N3N−2

(
αs

2π

)2
dΦ3({p}3; q) J

(3)
3 ({p}3)

{

1 −
[1
2 Ã0

4(s12) + 2 C0
4(s12)

]
M0

3 (1, i, 2)

−−−−−−−−−−−−−−−−−−−−−−−
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2 − A0
3(s12)M̃1

3 (1, i, 2)

3 − Ã1
3(s12)M0

3 (1, i, 2)
}

. (D.24)

The leading-Nf double-virtual subtraction term proportional to Nf N reads:

dσU
NNLO,Nf N = N3Nf N

(
αs

2π

)2
dΦ3({p}3; q) J

(3)
3 ({p}3)

{

1 −
(
E0

4 (s1i) + E0
4 (si2) +

1
2 Ē

0
4 (s1i) +

1
2 Ē

0
4 (si2)

)
M0

3 (1, i, 2)

2 −
(1
2B

0
5,3(s1i, si2) +

1
2B

0
5,3(si2, s1i)

)
M0

3 (1, i, 2)

−−−−−−−−−−−−−−−−−−−−−−−

3 −
(
D0

3(s1i) +D0
3(si2)

)
M̂1

3 (1, i, 2)

4 − 1
2
(
E0

3 (s1i) + E0
3 (si2)

)
M1

3 (1, i, 2)

5 −
(
D̂1

3(s1i) +
b0,F

ϵ

((
s1i

µ2

)−ϵ

− 1
)
D0

3(s1i)
)

M0
3 (1, i, 2)

6 −
(
D̂1

3(si2) +
b0,F

ϵ

((
si2
µ2

)−ϵ

− 1
)
D0

3(si2)
)

M0
3 (1, i, 2)

7 − 1
2

(
E1

3 (s1i) +
b0
ϵ

((
s1i

µ2

)−ϵ

− 1
)
E0

3 (s1i)
)

M0
3 (1, i, 2)

8 − 1
2

(
E1

3 (si2) +
b0
ϵ

((
si2
µ2

)−ϵ

− 1
)
E0

3 (si2)
)

M0
3 (1, i, 2)

9 − 1
2
(
E1

4,3(s1i) + E1
4,3(si2)

)
M0

3 (1, i, 2)
}

. (D.25)

The subleading-Nf double-virtual subtraction term proportional to Nf N−1 reads:

dσU
NNLO,Nf N−1 = N3Nf N−1

(
αs

2π

)2
dΦ3({p}3; q) J

(3)
3 ({p}3)

{

1 + 1
2
(
2E0

4 (s12) + Ẽ0
4 (s1i) + Ẽ0

4 (si2)
)

M0
3 (1, i, 2)

2 + 1
2
(
B̃0

5,3(s12, si2) + B̃0
5,3(s12, s1i)

)
M0

3 (1, i, 2)

−−−−−−−−−−−−−−−−−−−−−−−

3 +A0
3(s12)M̂1

3 (1, i, 2)

4 + 1
2
(
E0

3 (s1i) + E0
3 (si2)

)
M̃1

3 (1, i, 2)

5 + 1
2
(
Ẽ1

3 (s1i) + Ẽ1
3 (si2)

)
M0

3 (1, i, 2)
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6 +
(
Â1

3(s12) +
b0,F

ϵ

((
s12
µ2

)−ϵ

− 1
)
A0

3(s12)
)

M0
3 (1, i, 2)

7 + 1
2
(
Ẽ1

4,3(s1i) + Ẽ1
4,3(si2)

)
M0

3 (1, i, 2)
}

. (D.26)

The double-virtual subtraction term proportional to N2
f reads:

dσU
NNLO,N2

f
= N3N2

f

(
αs

2π

)2
dΦ3({p}3; q) J

(3)
3 ({p}3)

{

1 − 1
2

[
E0

3 (s1i) + E0
3 (si2)

]
M̂1

3 (1, i, 2)

2 − 1
2

[
Ê1

3 (s1i) +
b0,F

ϵ

((
s1i

µ2

)−ϵ

− 1
)
E0

3 (s1i)
]
M0

3 (1, i, 2)

3 − 1
2

[
Ê1

3 (si2) +
b0,F

ϵ

((
si2
µ2

)−ϵ

− 1
)
E0

3 (si2)
]
M0

3 (1, i, 2)
}

. (D.27)
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