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Facial recognition is one of the most academically studied and industrially developed areas within computer 

vision where we readily find associated applications deployed globally. This widespread adoption has uncov- 

ered significant performance variation across subjects of different racial profiles leading to focused research 

attention on racial bias within face recognition spanning both current causation and future potential solu- 

tions. In support, this study provides an extensive taxonomic review of research on racial bias within face 

recognition exploring every aspect and stage of the associated facial processing pipeline. Firstly, we discuss 

the problem definition of racial bias, starting with race definition, grouping strategies, and the societal impli- 

cations of using race or race-related groupings. Secondly, we divide the common face recognition processing 

pipeline into four stages: image acquisition, face localisation, face representation, face verification and iden- 

tification, and review the relevant corresponding literature associated with each stage. The overall aim is 

to provide comprehensive coverage of the racial bias problem with respect to each and every stage of the 

face recognition processing pipeline whilst also highlighting the potential pitfalls and limitations of contem- 

porary mitigation strategies that need to be considered within future research endeavours or commercial 

applications alike. 
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 Introduction 

ver several decades, the objective of developing face recognition systems has gathered signifi-
ant pace across research, and industry alike [ 3 , 33 , 192 ]. Companies, nonprofits and governments
ave deployed an increasing number of face recognition systems to make autonomous decisions
or millions of users [ 87 ] across various application areas, such as employment decisions, public
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ecurity, law enforcement, surveillance, airport passenger screening and credit reporting [ 4 , 92 ].
owever, such wide-scale adoption within real-world scenarios heightens public concern about

heir potential for abuse and the adverse effect of face recognition may have on some individuals
ue to the presence of bias [ 42 , 173 ]. The most prevalent problem pertaining to such bias arises
ithin the race and race-related groupings and is referred to as racial bias within face recognition

ystems [ 50 ]. 
However, the presence of racial bias within face recognition is not a new thing and is not in itself

imited to technological means. Own-race bias has been previously established in psychology [ 111 ]
y showing that humans are less capable of recognising faces from other races than their own. The
rolonged societal experience humans generally have with their own-race, especially during their
ormative years with biological family members, results in biased human perceptual expertise.

ore specifically, [ 64 ] showed how the use of face feature descriptors varies across participants
rom different racial groupings. For example, it shows that darker skin tone participants use facial
utline, eye size, eyebrows, chin and ears, while lighter skin tone participants use hair colour,
exture, and eye colour. Overall, it concludes that lighter skin tone participants use less varied
escriptors than darker skin tone participants [ 64 ]. Similar to the own-race bias , the conversely
amed other-race effect is also studied by a series of studies in social psychology [ 5 , 151 ] to establish
ocial implications of biased face processing and feature selection of humans in erroneous jury
ecisions and eyewitness identification. 
Accordingly, the first technological study [ 138 ] to explore the other-race effect within the context

f face recognition algorithms was developed by East Asian and Western-based research groups
hat inherently use datasets gathered locally. The study demonstrates that algorithms trained on
 locally gathered face datasets from the Western-based group achieve superior performance on
aucasian faces when compared to performance on East Asian faces, and vice versa. Further stud-

es provide extensive evidence about the influence of demographics, including race, gender, and
ge on both commercial and non-commercial face recognition algorithm performance [ 83 , 135 ].
ubsequently, the Gender Shades study [ 12 ] drew significant attention to gender and skin tone bias
ithin commercial algorithms for gender classification by revealing a 34% performance discrep-

ncy between darker skin tone female and lighter skin tone male subjects. Consequently, grow-
ng research has emerged to understand and mitigate racial bias within face recognition [ 91 , 112 ,
08 ]. These efforts and associated evidence of bias have forced several commercial and academic
esearch to withdraw products, algorithms or datasets due to the differing forms of disparities,
istortions or biases [ 15 , 113 , 166 ]. 
However, face recognition remains a long-standing research topic and a common use case within

omputer vision that comprises multiple stages of processing, a multitude of downstream tasks and
arge-scale face recognition datasets in order to achieve high accuracy. With the availability of such
arge-scale data resources and the advent of Deep Convolutional Neural Networks (DCNNs), the
ccuracy of face recognition algorithms has now excelled the perceived accuracy requirements
or use by the general populous. However, every stage of face recognition, from initial face image
cquisition to final performance evaluation, requires attention and investigation to address racial
ias, which may otherwise result in disparate outcomes across a diverse user population. Unfor-
unately, despite the increasing attention to racial bias within face recognition, we are yet to see
ruly collaborative or tractable solutions emerge from the global research base that could readily
ddress these issues in real-world system deployments [ 44 , 168 , 193 , 210 ]. Moreover, face data itself
s a private biometric capable of identifying a given individual based on their appearance alone,
iving rise to obvious operational privacy and ethical concerns in relation to its processing [ 23 ].
lthough previous surveys on algorithmic bias and fairness in machine learning [ 32 , 110 , 134 ], face
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Fig. 1. Taxonomy of our racial bias within face recognition survey. 
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ecognition in computer vision and biometrics [ 87 , 192 ] exist, many aspects remain under-studied
n relation to the specifics of racial bias within face recognition itself. 

On the other hand, face recognition is a fast emerging field of research and applications alike that
pans multiple more traditional fields, including machine learning, biometrics, statistics, sociology
nd psychology. Therefore, we commonly find that aspects of the problem definition, in addition
o the race conceptualisation and race-related performance evaluation methodologies, need to be
larified and ideally standardised. Which stages, operations and decisions in face recognition are
rone to bias, and how incorrect solutions to addressing the bias issue can cause additional areas
f concern that need to be highlighted in order to maximise the effectiveness of future research in
his area. In this survey, we take face recognition as the central concept of our review and aim at
roviding coverage of all the aspects of racial bias within each stage of the face recognition pro-
essing pipeline, with additional supporting material spanning fundamental concepts from related
elds. 
The primary purpose of this study is to both summarise the current state-of-the-art and to give a

omprehensive critical review of prior research on the topic of racial bias within face recognition.
n addition, we aim at making the reader pertinently aware as to the subtleties, and potential areas
f ambiguity, with regard to how the racial bias problem within face recognition itself is defined.
urthermore, we aim at identifying which parts of the problem have been studied effectively to
ate and which directions remain open for future contributions to mitigate racial bias within the
ace recognition domain. In particular, the survey aims at systematically reviewing each of the
tages that are commonplace within contemporary face recognition processing pipelines from a
erspective of the potential for racial bias impact: image acquisition (for both dataset collation
nd deployment), face localisation, face representation, face verification and identification (final
ecision-making) (see Figure 1 , right). 
On this basis, we present this survey based on our taxonomy of prior work in the field and

ts contribution to the current state-of-the-art (Figure 1 ). Subsequently, we formalise the problem
efinition with the corresponding evaluation and fairness criteria (Section 2 ). Next, we discuss
tandard race and race-related grouping terminology under three categories; race, skin tone and
acial phenotypes (Section 3 ). This discussion provides an information spectrum from grouping
efinitions to their adoption to the associated processing of racial groupings used in prior litera-
ure studies. Consequently, we provide a general development schema for face recognition systems
nd summarise the prior work in the field by aligning it to each development stage (Section 4 ).
ithin this section (Section 4 ), we firstly give an outline description of the general face recognition

rocessing pipeline using consistent notions and symbols. Secondly, we cover image and dataset
cquisition processes for face recognition showing the risks and investigations within this stage.
hirdly, we extend our analysis to face localisation as it is a mandatory stage where the possible
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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iased localisation results propagate within the following face recognition stages. Penultimately, in
he face representation stage, we categorise the proposed racial bias mitigation approaches based
n machine learning techniques. Finally, we cover face identification and verification tasks and
how the impact of the methodological decisions effects on racial bias. Consequently, we sum-
arise the main critical points of the work and highlight the essential steps that need to be con-

idered within any future research endeavours or commercial applications that aim at mitigating
ias or developing fairer face recognition systems (Section 5 ). 

 Preliminaries 

tatistical methods are essential for supervised learning problems, including face recognition,
hich concerns generating a representative and distinctive feature embedding vector z for a sub-

ect y given an observed face image x . A mapping function f ∗ is a particular function among in-
nite function space Ω (f ∗ ∈ Ω) that provides optimal performance over a given training dataset
 tr ain . Preferring certain functions over others is denoted as inductive bias in the seminal work
y Mitchell [ 118 ] and remains a central concept in statistical learning theory. The expression in-
uctive bias (also known as learning bias) refers to the optimal selection process of f ∗. Due to its
mportance for generalisation on unseen large-scale datasets, inductive bias is essential for any
enre of machine learning approach. On the other hand, the broader societal, historical meaning
f the term bias instead refers to the unfair treatment of a subset of the populous based on their
rigins, ethnicity or ideology. While inductive bias is necessary for model generalisation, societal
ias implies negative implications that should ideally be avoided [ 62 ]. In order to avoid the ob-
ious potential for confusion, the prior work of [ 7 ] prefers to use fairness instead of bias when
eferring to aspects of demographic criteria in both statistics and machine learning. Subsequently,
esearch on algorithmic fairness and statistical bias has introduced various formal definitions of
airness, and their relationships with each other [ 7 , 34 , 90 ]. Before we fully detail these fairness
riteria, we first provide a brief explanation of a generic face representation learning and evalu-
tion pipeline to facilitate the introduction of the required notation, which we will subsequently
se for the remainder of this review. 
A face recognition system comprises a training set D tr ain and a test set D te s t where any of

he datasets can be defined as D = { X , Y } where X = {x 1 , x 2 , . . . , x N 

} is a set of face images and
 = {y 1 , y 2 , . . . , y N 

} is a set of subject identity labels corresponding the face images where N is the
otal number of images. The total number of unique subject identity labels is n such that n < = N .
n addition, in order to measure the fairness of a face recognition system, a set of corresponding
ace or race-related grouping labels S is also specified, S = {s 1 , s 2 , . . . , s N 

}. Therefore, any face
ataset can be formed as D = {X , Y , S} where X denotes the set of images, Y denotes the set of
ubject labels, and S denotes the set of sensitive race or race-related labels. Furthermore, a map-
ing function f plays a significant role in face recognition systems as it maps any given image x
nto the feature embedding vector z. f is selected from a function space Ω via a loss function L

hich measures the performance of a given training set, D tr ain , for any of the aforementioned face
ecognition tasks. Typically, a softmax loss is adopted by state-of-the-art face recognition methods
 26 , 101 , 189 , 190 ] in order to disentangle the feature representation of individual identities within
ontemporary training datasets. The inductive representation learning is hence a minimisation of
he loss function L so f tma x , which can be formalised as follows: 

f ∗ = arдmin(L so f tma x (f )), f ∈ Ω where L so f tma x = −
1 

N 

N ∑

i= 1 

log 

e W 

T 
y i 

z i +b y i 

∑n 
j= 1 e 

W 

T 
j z i +b j 

, (1)
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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here z i is the feature representation of the image x i ∈ R 

u×v×3 , u is the weight and v is the height
f the x i , within D tr ain belonging to subject class y i and the number of samples is N labelled with
classes. W j is the j th column of the weights, b j is the j th column of the bias term, and d is the

umber of neurons in the last fully-connected layer which is mostly 512. Weights and bias term
imensions are W j ∈ R 

dxn and b j ∈ R 

n , respectively. Moreover, the selected f ∗ compresses the
ntra-class distance and expands the inter-class distance between feature embeddings belonging
o the same or different subject identity, respectively. Generally, f provides superior approximation
ver the statistically most predominant population subset within the training set, D tr ain , such that
 so f tma x is minimised. 
Additionally, evaluation metrics can quantify how well the selected f ∗ performs on D te s t . The
ost common evaluation metric in face recognition, accuracy , relates to the probability of correctly

redicting the subject label of a face image as P(y α = ˆ y α ). Accuracy can be defined as follows: 

Accuracy = 
T P +T N 

T P +T N + F P + F N 

, (2)

here true positive (TP) is the number of the f ∗ correctly predicts the positive subject label
nd true negative (TN) is the number of the f ∗ correctly predicts the negative subject label.
n contrast, false positive (FP) is the number of the f ∗ incorrectly predicts the positive subject
abel, and false negative (FN) is the number of the f ∗ incorrectly predicts the negative subject
abel. Accuracy measures the consistency between predictions and their ground truth values. In
 similar vein, the True Match Rate (TMR) estimates the number of correct positive predictions
ade from all possible positive predictions. For instance, a binary face verification task aims at

lassifying whether an image pair (x α , x β )w he re x α , x β ∈ D te s t belongs to the same subject label
r not. During testing, the selected f ∗ predicts the feature representation vectors z α , z β for the
orresponding images x α , x β , respectively. Given images are validated as “match” if the similarity

etween two feature vectors (i.e., cosine similarity , cos(z α , z β ) = 
z α ·z β

‖ z α ‖ ‖ z β ‖ 
) is greater than a given

hreshold parameter thre s hold , otherwise as “non-match ”. TMR is the ratio of correctly verified
atch pairs (two different images from the same subject) over the total number of match pairs.
owever, neither Accuracy nor TMR is indicative of failure samples. To investigate such samples,

he False Match Rate (FMR) measures how many incorrect non-match or negative predictions
f ∗ are made via feature representation vectors. Furthermore, the False Non-Match Rate (FNMR)

efers to the probability of samples of the same subject identity is incorrectly matched. All terms,
MR, TNMR, FMR, and FNMR, can be formalised as follows: 

TMR = 
T P 

T P + FN 

, TNMR = 
T N 

T P + FN 

, FMR = 
FP 

FP +T N 

, FNMR = 
FN 

FP +T N 

. (3)

Another facial recognition metric, the ROC curve , plots TMR against FMR at different thresholds.
owering the thre s hold verifies more items as matched, resulting in an increased FMR and TMR .
urthermore, the racial bias literature commonly measures the variation in performance, indicated
y accuracy or FMR , among racial groups to highlight disparities within each group. However,
alculating this deviation varies across studies, as different definitions of standard deviation are
sed (i.e., sample and population). In this study, we utilise the sample standard deviation for further
nalysis. 

To this extent, we briefly described the selection process of f using the loss function and eval-
ation metrics of face recognition. Whilst, loss functions help to understand the behaviour of f 
n D tr ain , evaluation metrics help to measure how well the selected f ∗ maps D te s t into feature
mbedding representation space. Consequently, statistical fairness criteria can be considered as a
ormal property of face recognition systems, including mapping function f ∗, training D tr ain and
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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est datasets D te s t . Accordingly, we give the four most commonly used fairness definitions from
 90 ] that are commonplace within racial bias for face recognition. 

Definition 1. (Fairness Through Unawareness) requires that a machine learning algorithm
ave an independent conditional probability P of the output given X from S (racial labels).
ubsequently, unawareness criteria can be formalised as P(Y |X ) = P(Y | X , S ). However, removing
ependency is impossible for face recognition algorithms due to the high mutual information
etween facial and racial features. Even though racial labels are not explicitly introduced to the
achine learning algorithm, they will implicitly be used in the face representation (algorithm

raining) via the facial images. 

Definition 2. (Individual Fairness) refers to treating similar individuals coequally, meaning that
n algorithm is fair if it gives similar predictions to similar individuals. In order to estimate such
riteria, two distance metrics are defined by Dwork [ 34 ]. These are distance metrics that measure
he degree of similarity between individual subjects and measure the difference in the associated
rediction outcome between those individual subjects. It can be formalised in face recognition
ontext as if image samples x α and x β are similar under a given distance metric d(x α , x β ) depending
n s α , s β then predictions should be similar ˆ y α ≈ ˆ y β where ˆ y α and ˆ y β are the predicted labels
rom corresponding images x α , x β and s α , s β are the sensitive race labels respectively. However,
 40 ] discusses how individual fairness is inadequate for ensuring fairness on the grounds of four
iffering arguments, spanning the insufficiency of similar treatment, systematic bias and arbiters,
rior moral judgements, and incommensurability (see [ 40 ] for a more detailed discussion). 

Definition 3. (Group fairness (or Statistical parity/Demographic parity)) enforces the predicted

ubject labels ˆ Y to be independent of S which can be denoted P( ˆ Y |S = 0 ) = P( ˆ Y |S = 1 ). Racial bias
iterature within the face recognition mostly approaches the problem from a supervised machine
earning paradigm by considering it as a group fairness criteria (demographic parity) [ 34 ], which
an be satisfied if the race or race-related intersectional groups perform similarly to each other.
nfortunately, such criteria may not ensure fairness as it heavily relies on equalising the accep-

ance match percentages even though there is little or no training data available for a given racial
rouping category within D tr ain [ 56 ]. 

Definition 4. (Equal Opportunity, (or Equalised Odds)) is satisfied if an algorithm predictions ˆ Y 

s independent of S conditioned on Y . If the criteria is defined for binary categories [ 56 ], it can be

enoted P( ˆ Y = 1 |S = 0 , Y = y) = P( ˆ Y = 1 |S = 1 , Y = y ), y ∈ { 0 , 1 } . Subsequently, it is adopted by
 198 ] to multiple class labels. More simply, the constraint requires that any sensitive race label
as equal true positive rates and false positive rates across the other sensitive race labels. It also
nforces that the accuracy is equally high in all sensitive labels, penalising algorithms that perform
ell solely on the statistically most predominant such labels. Furthermore, [ 56 ] discusses how
emographic parity is crippled in the typical scenario in which the target variable Y is correlated
ith only S . On the other hand, equalised odds aims at achieving accurate prediction while ensuring
redictions are fair concerning a specified sensitive labels, S . 

As aforementioned, the literature has mainly used statistical parity or group fairness criteria to
inimise the variation of accuracy or FMR across sensitive racial groupings labels on datasets.
owever, such an aim brings a high dependence on sensitive attributes to be used in fairness

riteria above, which may actually increase discrimination [ 90 ]. Moreover, little attention has been
iven to how the sensitive attribute labels, S , are assigned, with regard to the potential for bias
n the assignment (i.e., labelling) process, and what that potentially means normative “unbiased”
resumptions for face recognition system design. In the next section, we address these questions
y focusing on race and race-related groupings and their conceptualisation. 
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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 Towards Racial Group Fairness 

ost studies on racial bias within face recognition, with a few exceptions [ 174 , 202 ], use the crite-
ia of group fairness (demographic parity) to evaluate and mitigate both data and algorithmic bias.
owever, group fairness criteria relies on sensitive attribute labels such as race, ethnicity or skin

one and uses performance evaluation metrics such as accuracy or FMR. Subsequently, stratifica-
ion of the complex and multi-faceted concept of race into abstract race-related categories becomes
ecessary in order to address racial bias groupfairness as the categories allow us to assess whether
he final performance of a given face recognition system is fair and satisfies the group fairness cri-
eria . Accordingly, the face recognition literature mainly utilises either race (African, Asian, etc.)
r race-related grouping categories (skin tones, facial phenotypes, etc.). However, with regard to
acial stratification, this construction of race or race-related groupings also brings with it an addi-
ional set of challenges. 

In this section, we investigate such grouping strategies adopted by racial bias ( group fairness
riteria ) within the face recognition literature. We examine how race and race-related grouping
ategories are constructed, the significance of accurately defining these categories and the poten-
ial risks and consequences of using and evaluating them in face recognition systems. We classify
roupings under the three most predominantly used categories: race, skin tone, and facial pheno-
ype. We discuss the grouping strategies in each category together with their potential positive
nd negative impact and describe the details of subcategories where they have been used. Further-
ore, we cover the literature on annotation processes of grouping categories and summarise recent

iterature along with face datasets by organising them under their grouping strategies in Table 1 . 

.1 Race 

ace, as a term for human categorisation based on varying factors, is a controversial concept re-
ated to sociology, psychology, biology, ethnology, and cultural anthropology, whose definition
aries across different fields and throughout history. Within biology, for example, the race con-
ept has been differentiated into three different kinds: genetic, morphological and psychological,
hich are all widely disputed [ 145 ]. Race was first delineated by European naturalists and anthro-
ologists to establish population-based research on human diversity [ 127 ]. In the seminal early
cientific work of 1758, Systema Naturae [ 97 ], Carl Linnaeus categorises humans into four dif-
erent groups: European white, Americanus rubescens (American reddish), Asiaticus fuscus (Asian
awny), Africanus niger (African black) using a combination of continental (geographic) and obser-
ational (skin tone) terminology. Subsequently, several attempts were made to classify and group
umankind in such a manner in order to use it in societal statistics [ 55 , 216 , 217 ]. Most of the work
as problematic (by the standards of today) or error-prone (even by the standards of the day ) as it

eflected the biased ideologies of researchers, politicians and institutions of the time [ 216 ]. How-
ver, such definitions and classifications were adopted by the national census infrastructure across
any jurisdictions [ 55 ]. The work of Khalid Muhammad [ 126 ] reveals how anecdotal, hereditar-

an and pseudo-biological race theories transformed into statistics and social surveys. Furthermore,
uberi [ 216 ] addresses the complicated history of racial stratification and its evident impact on so-
ial and natural sciences. Consequently, he defines race as a biological notion of physical difference
rounded in an ideology [ 216 ]. 

Within face recognition, subject face images form the primary information source that encap-
ulates these race-related biological and physical differences, which are then combined with ad-
itional information, including gender, age, pose, facial expression and contextual aspects such
s scene background, illumination, subject clothing and facial accessories such as glasses, facial
air, jewellery and makeup. On this basis, it becomes possible to adopt any such ideology via the
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Table 1. Overview of Most Prominent Face Recognition Datasets Categorised by Racial Groupings, 

Including Dataset Size and Image Sources 

Dataset Name Year Grouping Categories Images Source 

Race 

ColorFERET [ 139 ] 1993 White, Asian, Black, Others 14K Participants’ photographs 

MORPH [ 152 ] 2006 Caucasian, Hispanic, Asian, or African American 55K Public Records 

UTK Face [ 212 ] 2017 Asian, Black, Indian, White and Others (Hispanic, Latino, 
Middle Eastern) 

20K MORPH, CACD, online resources 

IJB-C [ 108 ] 2018 North American, South America, Western Europe, South 
West Africa, East Europe, East Africa-Middle East, South 
East Asia, India, China, East Asia 

31K Public, law enforcement 
databases, social media 

RFW [ 193 ] 2019 African, Asian, Caucasian, Indian 45K MS-Celeb [ 54 ] 

DemogPairs [ 69 ] 2019 Asian, Black, White 10.8K CWF, VGGFace1-2 [ 13 , 137 , 205 ] 

BUPT-Balanced [ 191 ] 2020 African, Asian, Caucasian, Indian 1.3M MS-Celeb [ 54 ] 

VGGFace2 1200 [ 208 ] 2020 African, Asian, Caucasian, Indian 1M VGGFace2 [ 13 ] 

FairFace [ 91 ] 2021 Black, East Asian, Indian, Latino, Middle Eastern, 
Southeast Asian, and White 

108K Flickr, X (formerly known as 
Twitter), newspapers, online 
resources 

CASIA-Face-Africa [ 125 ] 2021 Hause (Sudan, Chad, Binin, Ivory Coast), Non-Hause 38K Subjects from Nigeria 

DiveFace [ 122 ] 2021 (Japan, China, Korea), (Europe, North America, and Latin 
America) (Sub-Saharan Africa, India, Bangladesh, Bhutan) 

120K MegaFace [ 77 ] 

Skin Colour 

IJB-B [ 197 ] 2017 1-6 skin tones (increasing in darkness) 1K 1M FreeBase Celebrity List 

PPB [ 12 ] 2018 Light, Dark skin tones (Fitzpatrick I-III,IV-VI) 68K Gov. Official Profiles 

Fair Face Challenge [ 168 ] 2020 Light, Dark skin tones (Fitzpatrick I-III,IV-VI) 152K Flickr, X, newspapers, online 
resources 

Casual Conversations [ 58 ] 2021 Fitzpatrick Skin Tones 45K* Vendor data 

Globalface-8 [ 194 ] 2021 ITA base 8 skin tones (Tone I-VIII) 2M 1M FreeBase Celebrity List 

Balancedface-8 [ 194 ] 2021 ITA base 8 skin tones (Tone I- VIII) 1.3M 1M FreeBase Celebrity List 

IDS-8 [ 194 ] 2021 ITA base 8 skin tones (Tone I-VIII) 10K 1M FreeBase Celebrity List 

Facial Phenotypes 

Diversity in Faces [ 114 ] 2019 ITA 6 skin tone, Craniofacial distance, area, ratio, Facial 
region contrast 

0.97M YFCC-100M 

VGGFace2 [ 13 ] - [ 210 ] 2018 Fitzpatrick Skin Tones, Nose Shape, Eye Shape, Mouth 
Shape, Hair Type 

3.3M Google Image Search 

RFW [ 193 ] -[ 210 ] 2019 Fitzpatrick Skin Tones, Nose Shape, Eye Shape, Mouth 
Shape, Hair Type 

45K MS-Celeb [ 54 ] 
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se of racial groupings and classifications that are introduced to face recognition with the aim of
uantifying racial bias. However, despite this potential, an increasing number of face recognition
tudies instead adopt different variations of racial categorisation [ 50 , 154 ] without any reference
o the underlying critical theory of such categorisation and how they are defined [ 55 , 216 , 217 ].

ore worr yingly, racial annotation of face imager y has now become the initial step in many pro-
osed face recognition approaches aiming to address racial bias, but the crucial decision-making
n how and why a given racial categorisation is defined remains subjective, arbitrary and largely
ndocumented [ 115 ]. 
Previously, racial categories made an initial appearance within automated facial analysis

ia the task of race classification. For example, [ 207 ] propose feature extraction-based tech-
iques for race classification using the MORPH [ 152 ], and FERET datasets [ 139 ] to pre-
ict Caucasian, SouthAsian, EastAsianandAfrican racial classification. Later studies [ 152 ] extend
he MORPH dataset for face recognition and analysis tasks (identification, recognition, and
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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erification) by providing additional ground truth labels spanning age, gender, race, height, weight
nd eye position. Subsequently, DCNN-based methods were introduced for race classification
 1 , 8 , 49 ]. The work of [ 49 ] proposes the large-scale VGGFace2 Mivia Ethnicity Recognition

 VMER ) dataset, composed of more than 3 million face images annotated with four ethnicity cate-
ories, namely AfricanAmerican, EastAsian, CaucasianLatinandAsianIndian , and provides compre-
ensive performance analysis for several contemporary deep network architectures, namely, VGG-
6, VGG-Face, ResNet-50 and MobileNet v2. Although such race classification techniques are not
ecessarily used as a proxy for facial image annotations with regard to the study of racial bias
ithin face recognition, these public datasets containing race labels and their associated racial
roupings are widely adopted de facto by the face recognition research community. As we illus-
rate in Table 1 , the most commonplace face recognition datasets containing race labels [ 12 , 193 ]
se three grouping strategies, namely, race, skin tone and facial phenotypes. Similar to race clas-
ification, broader racial groupings such as {African, Asian, Indian and Caucasian} or binary racial
roupings such as {Black, White} are also commonly followed by many datasets creators [ 12 , 193 ].

Recently, the most commonly used face recognition evaluation dataset, a subset of MS-Celeb-
M [ 54 ] released as the RFW dataset [ 193 ], was constructed to measure relative face verification
erformance across four different racial groupings: {African, Asian, Indian, Caucasian} . FairFace
 91 ] is another dataset, again drawn as a subset from the larger YFCC-100M Flickr dataset [ 181 ],
hich supplements this earlier set of four labels with two additional racial groupings, {Middle
ast, Latino} to evaluate racial bias more broadly. In addition, UTKFace [ 212 ] is a large-scale face
ataset with five different racial groupings, namely {Asian, Black, Indian, White and Others (like His-
anic, Latino, Middle Eastern)} , for various tasks spanning face detection, age estimation, and age
rogression/regression. This variation in racial groupings illustrated more extensively in Table 1 ,
ighlights the ambiguity and uncertainty behind the race concept upon which the presence of bias

s ultimately being evaluated. Consequently, this inconsistency of racial groupings, its historical
nd geographic instability within the face recognition research literature and the commonplace
doption of ill-defined race concepts that are littered with a problematic history with social sta-
istical science make effective performance evaluation and quantification very challenging within
he racial bias problem space. 

Similarly, Khan [ 78 ] identify four specific problems with the racial categories: (1) categories
re not clearly defined and are often loosely associated with geographic origin, (2) categories that
re extremely broad, with continent-spanning construction that results in individuals with vastly
ifferent physical appearance and ethnic backgrounds being grouped incongruously into the same
acial category, (3) categories narrow down the differences between ethnic groups with distinct
anguages, cultures, separation in space and time, and phenotype into the same racial category.
4) assigning a single racial category to a face example for performance evaluation of any form
f automated analysis, including face recognition, is not an ideal solution as it cannot capture a
ubstantial proportion of the distribution of diversity and variation within the human race. 

In parallel with Khan, Raji [ 148 ] discusses three ethical tensions, { Privacy and Representation,
ntersectionality and Group-Based Fairness, Transparency and Overexposure }, when auditing com-

ercial facial processing systems, where there exists a requirement to annotate face imagery with
ace or race-related categories. Privacy and Representation: Collecting a diverse and representa-
ive dataset for facial recognition can bring privacy risks for individuals included in the dataset.
urthermore, potential consent violations may arise during the data collection process, for exam-
le, for the IBM Diversity in Faces dataset [ 114 ], which was sourced from images on the public
mage-sharing platform Flickr that were uploaded under very permissive licensing terms (Creative
ommons). However, it later emerged that the individuals within the photos did not necessarily
onsent to be included within the face recognition dataset [ 171 ]. Intersectionality and Group-Based
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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airness: Intersectionality is based on the idea that the experience of an individual cannot be fully
nderstood by looking at one aspect of their identity. However, when evaluating group fairness

n facial recognition systems, assigning individuals to a racial category and performing disaggre-
ated analysis to account for multiple categories is often necessary. This type of analysis can help
o identify and address potential biases, but it may not fully capture how varying components of
 face recognition processing pipeline interact to recognise individual features across individuals
ith multiple marginalised identities. Transparency and Overexposure: Although sharing details
f the dataset development process and publicly disclosing named audit targets can help to clar-
fy the scope of the audit and the context in which results should be interpreted. This can also
esult in targeted over-fitting (i.e., “cheating”) in order to optimise system performance on the
udit. Moreover, this can also lead to pressure to make the audit more operationally relevant to
eal-world deployment. For example, some institutions have removed or restricted access to their
acial recognition benchmark assets following their inclusion in audits, which can compromise
he performance validation of future systems and make it more expensive and difficult for other
esearchers to evaluate relative performance changes in the field [ 147 ]. 

Finally, although many more studies discuss the possible negative consequences of using racial
ategories in face recognition datasets, Table 1 proves that such racial categories have become
ommonly used and increasingly contributed within the literature. The lack of work on alterna-
ive race-related grouping strategies or fairness criteria that do not rely on any racial category
orces racial bias literature to address racial bias using such commonly defined racial categories.
onsidering the problems that arise with racial categorisation, the current status of research that
ses racial categories ( still ) does not paint an optimistic picture of the global face recognition re-
earch community collaboratively tackling racial bias. As information of racial or ethnic origin
emains sensitive [ 63 ], from these observations across the face recognition field, we agree with
he findings of several major studies [ 9 , 88 , 106 , 117 , 123 , 126 , 148 , 216 ] that already highlight the
dverse effects of the use of racial categories and their suggestion that researchers should either
void revealing such sensitive data or provide an appropriate context for use. Furthermore, trans-
arent provision of the ethical considerations together with any details of the racial annotation
rocess in use and the intended possible use cases, limitations and risks of the designed solution,
hould be made by the originating team in all cases [ 44 ]. 

.2 Skin Tone 

uman skin tone ranges can vary from saturated black to off-white pale, representing one of the
ey race-characterising traits. Variations in skin tone among humans have been traditionally used
o classify people into race or race-colour identities [ 57 ] as skin tone variation caused by genetic
ifferences (also exposure to the sun). Over the past centuries, methods for categorising skin tone
ave evolved from verbal race-related descriptions (that would potentially be seen as derogatory
oday) with skin colour categories as “white”, “yellow”, “black”, “brown” and “red” [ 132 ], to colour-
atching-based methods. The colour-matching-based methods compare skin colour based on their

imilarity to a set of standardised colour samples. The Von Luschan scale, employing 36 coloured
lass tiles for skin color comparison, is one of the most common examples of color-matching-based
ethods, widely utilised for racial categorisation of populations until the mid-20th century [ 187 ].

3.2.1 Fitzpatrick Skin Tone Scale. Following the colour-matching methods, the Fitzpatrick Scale,
stablished in 1975, became the most commonly used skin tone scale in dermatology and medicine.
he dermatologist Thomas B. Fitzpatrick developed his Fitzpatrick Skin Tone Scale to assess the
ropensity of the skin to burn during photo-therapy (i.e., the treatment of skin conditions using
ntense ultraviolet light sources). Initially, four different types ranging from Type I (always burns,
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Fig. 2. Four different skin tone scales used for racial bias analysis within the context of face recognition. 
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oes not tan) to Type IV (rarely burns, tans with ease) were released by [ 38 ]. Later, he extended his
cale to include a broader range of skin types (Type V and VI) [ 39 ] in order to offer a more granu-
ar representation across darker skin tones. The widespread adoption of this work within medical
esearch studies [ 140 , 172 ] subsequently influenced early computer vision research studies con-
idering skin tone. Within the racial bias literature, the Gender Shades study [ 12 ] was the first to
ather attention around the use of the Fitzpatrick Skin Tone Scale within an automated facial image
nalysis context. Subsequent studies then released varying datasets, all using the Fitzpatrick scale
n this basis [ 58 , 168 , 210 ]. Even recently, the extensive Casual Conversations Dataset [ 58 ] contain-
ng 45K videos makes use of Fitzpatrick skin tone labels for its racial grouping strategy. However,
ther researchers have raised concerns about using the Fitzpatrick scale on image-based visual
asks [ 66 ]. Primarily, the Fitzpatrick scale was not initially designed for image-based skin tone
stimation; hence, its evaluation methodology relies on physical skin measurement. As a result,
ts use can cause inconsistent skin tone assignment when applied on images [ 89 ]. Consequently,
 66 ] observes how challenging it is to robustly assign darker skin tone labels within the Fitzpatrick
cale when faced with a significant imaging variance and suggests avoiding the use of such skin
one assignments ascertained from images captured under uncontrolled or unknown conditions. 

3.2.2 Individual Typology Angle (ITA). Subsequently, reflectance spectrophotometry and
olourimetry methods [ 104 ] have become preferential in medical skin tone assessment over earlier
ethods due to increased accuracy and consistency. Whilst colourimeters quantify the appearance

f a tone on the skin, a spectrophotometer measures the spectral characteristics of the skin colour.
uch devices convert light reflectance data from the skin into colourimetric values for estimat-
ng chromophores in the skin [ 128 ]. Subsequently, ITA [ 16 ] has been proposed by Chardon in
991 to classify human skin colour using spectrophotometric measurements. This method utilises
he reflection of skin light via spectrophotometers that measure LaB colour values of the skin
 L: Lightness. a : Red/Green Value. b: Blue/Yellow Value) to represent the intensity of pigments
uch as carotene, haemoglobins, phaeomelanin and eumelanin. Accordingly, Chardon proposes six
hysiologically skin categories: {very light, light, intermediate, tan, brown, and dark} estimated via
quation of I TA IT A = arctan ( L−50 

b 
) × 180 

π
. I TA projects skin colour volume into LaB colour space,

nd is used to categorise skin angle via the associated ITA classification thresholds (see Figure 2 )
 89 ]. As the ITA solely relies on precise and objective skin tone measurements, it is considered
ore accurate than traditional visual assessments. Furthermore, it provides a better representa-

ion of both the diversity and contributory factors associated with skin tone [ 82 , 199 ]. On the other
and, the utilisation of ITA scores and categories varies in the literature; Wang [ 194 ] constructs
hree large-scale face recognition datasets containing four or eight different skin tone groupings
ased on ITA scores and releases the corresponding skin tone labels for each face image with the
atasets. The Diversity in Faces dataset [ 114 ] also adapts ITA (using six categories) as they find ITA
oth a more practical and straightforward method for measuring facial skin tone. However, akin to
he earlier aforementioned issues with skin tone estimation from digital face images, inconsistent
nd uncontrolled imaging conditions again impact accurate and reliable ITA assessment [ 89 , 199 ].
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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3.2.3 Monk Skin Tone (MST) Scale. Most recently, the work of Ellis Monk [ 120 ] produced a new
xtended skin colour scale 10-shade skin tone scale designed to facilitate the construction of more
epresentative datasets for the development of on-line consumer services. Although the associated
tudy discusses the aforementioned limitations of prior work on skin tone groupings such as the
itzpatrick Skin Tone Scale [ 39 ], it does not provide any detail for the practical application of the
ew 10-shade scale or any additional guidance via the provision of an exemplar dataset [ 120 ]. 

3.2.4 Binary Skin Tone Scale. Lastly, binary skin/racial groupings have been employed in so-
iological research on race and race relations [ 133 ]. Focusing on white-black race relations in the
nited States brings expensive socio-economic data and analysis around such binary groupings
 47 ]. Accordingly, the adaption of binary skin/racial groupings into computer vision tasks such as
kin tone estimation, race classification and racial bias of face analysis systems started from this
imple categorisation viewpoint. In order to model skin colour on imagery, several studies [ 73 ]
roposed quantitative colour-space divisors (i.e., a dark-light pixel colour threshold) and simply
rouped skin colours into binary categories. In the racial bias context, many studies adopt such a
arker-lighter skin tone grouping by either narrowing the Fitzpatrick scale or dividing subject skin
one variance into binary categories. One of the seminal works in the field, Gender Shades [ 12 ],
ses darker-lighter skin tone categories on the Pilot Parliament dataset to demonstrate the algo-
ithmic performance disparities in both gender classification and face recognition tasks. Another
xample is the Fair Face Challenge study [ 168 ], which suggested researchers used a requantised
narrower) set of Fitzpatrick skin tone categories as per Gender Shades [ 12 ]. Despite binary skin
one categories are being the most straightforward grouping strategy in terms of automatic im-
ge annotation, in practice, it often obscures the complexity of race concept and results in the
is-quantification of the racial bias problem across solutions where the ultimate aim is unbiased

erformance across any skin tone variant. This is attributable to imaging effects such as skin re-
ectance, which was shown by Cook [ 19 ] to have a very significant net effect on the average
iometric performance when considered across three different skin reflectance groupings within
ace recognition. As such, the use of simple binary groupings is known to result in erroneous or
onflicting group interpretations, whilst broader groupings such as Fitzpatrick Skin Types claim
o be more robust against this issue [ 210 ]. 

The contrasting examples of these various skin tone scales are illustrated in Figure 2 where
e can see a sharp contrast between categorisation in binary, Fitzpatrick, ITA or MST skin tone
roupings. However, skin tone scale grouping strategies alone carry various concerns for the mit-
gation of racial bias within face recognition. We discuss these concerns under three divisions as
ollows: 

Erroneous Skin Tone Annotation: Firstly, most skin tone scales are designed to measure skin tone
n physical human subjects in a medical or dermatological context. By contrast, face recognition
ystems instead used such annotations for digitally captured face images that form part of the train-
ng and test data sets (see Section 4.1 ). Moreover, such face image samples are commonly yielded
rom public domain sources (i.e., internet search engine-based image retrieval - “in-the-wild ”), and
s such, this uncontrolled imagery exhibits enormous variation in both environmental and sub-
ect conditions at the point of image capture. Similarly, [ 85 ] summarises such varying conditions
hat affect skin-colour detection in the visible spectrum as scene illumination, camera character-
stics, demographic characteristics (race, age, gender), and other factors (make-up, wearing glass,
airstyle, head pose). Such varying factors make effective skin tone annotation challenging and
esult in erroneous skin tone assignment for given subjects/samples. Furthermore, human anno-
ators often bring subjectivity and inconsistency to the resulting annotation labels far more so
han other image labelling tasks (c.f object/scene categorisation), whereas skin tone annotation
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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deally needs to be objective, consistent, and repeatable [ 115 ]. Specifically, [ 89 ] highlights the un-
ertainty within the human-based categorisation of skin tones from digital image and proposes
he use of automated skin tone assignment as a means of potentially achieving speed, scalability
nd consistency. However, the consistent skin tone annotation of a given subject under the afore-
entioned image variations remains a pertinent issue with such automated solutions—one that in

tself presents a circular occurrence of bias within facial processing. 
Narrow Representation of Scales: Secondly, the most commonly used skin tone scales used for

ccessing aspects of racial bias are either too narrow in terms of their discretisation of the skin
one spectrum (e.g., Binary Skins Groups, Figure 2 ) to facilitate capture of the foundational reasons
or bias or alternatively offer the less representative capability for specific groups (e.g., Fitzpatrick
kin Types vs. MST Scale, Figure 2 ) [ 66 ]. 

Skin Tone as a Single Dimension of Race: Thirdly, race is a multi-faceted concept conflating other
henotypic facial traits such as lips, eyes, hair and face shape. Solely aligning racial grouping with
kin tone only transforms the racial bias problem into a single-faceted problem. Moreover, there
s no clear evidence that skin tone alone is the primary driver for disparate FMRs within face
ecognition performance [ 88 ]. Accordingly, several studies suggest considering other race-related
acial attributes, including lips, eye, and face shape when measuring racial bias in this context
 129 , 130 ] in order to enable improved interpretation and derivation of bias factors. Accordingly, a
onsensus is beginning to emerge on skin tone assignment and the appropriate quantification of
kin tone within digital facial images as used in face recognition research. Various studies [ 12 , 58 ,
68 ] measure the racial bias in face recognition using either binary skin groupings, the Fitzpatrick
kin Types [ 39 ], or ITA [ 16 ] as depicted in Figure 2 . 

Overall, this section provides an overview of skin tone characterisation approaches and their as-
ociated quantification methodologies spanning both digital imagery and physical dermatological
xamination. Accordingly, we summarise the most common skin tone scales and discuss the chal-
enges of applying such estimation approaches to the skin tone labelling task within face recogni-
ion datasets. Furthermore, we outline all of the face recognition datasets in the research literature
hat use varying skin tone scales in Table 1 . As skin tone-based groupings become widely used for
acial bias evaluation studies, many benchmark datasets are unfortunately annotated with varying
kin tone scales and with varying levels of labelling robustness. Although utilising skin tone scales
s a labelling concept for face recognition datasets avoids otherwise using sensitive or ill-defined
acial categories, the subjectivity of human-based skin tone annotation, the inconsistency of facial
mage capture conditions and most pertinently the fact that the skin tone is only one dimension
f race all make it an imperfect mechanism for the quantification of racial bias within face recog-
ition. As a result, we suggest developing a broader strategy based on the use of high-accuracy,
onsistent and reliable facial phenotypes that can instead analyse the true relationship between fa-
ial features and racial bias. Consequently, we believe such approaches enable investigation across
very facial trait and hence bring greater granularity to the quantification of racial bias within face
ecognition whilst avoiding the use of problematic racial categorisation. 

.3 Facial Phenotypes 

uman phenotypic variation refers to variation over the set of morphological and observable char-
cteristics of an individual, which is the result of both genetic and environmental factors [ 52 ].
uch variation is most observable on faces as the face is identified as a “biological billboard of our
dentity ” [ 17 ]. Subsequently, many studies [ 136 , 165 ] focus on the impact of human phenotype
haracteristics (such as morphological attributes) on race. For example, the Shades of Race study
 37 ] investigates the marginal effects of phenotypic characteristics, including skin tone, lips, nose,
air and body type on racial categorisation. Moreover, Zhuang [ 215 ] considers 21 craniofacial
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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easurements such as face width, length, nose dimensions and eye corner locations in order
o show statistically significant differences in facial measurements between four racial grouping,
hich are {Caucasian, Hispanic, African, other (mainly Asian)} . Therefore, a race-related facial phe-
otypes can be considered to be specific to such facial characteristic attributes, which can then also
e correlated to race (“Phennotopically similar individuals are expected to be genetically more sim-
lar as well. ,” [ 65 ]). On the other hand, facial phenotypes such as skin tone or hair colour do not
dentify racial categories within themselves, but they can combine with other attributes to identify
 broader racial grouping [ 109 ]. Furthermore, this correlation between such facial phenotypes and
acial categories may not be readily visible or clearly delineated, which is in fact highly desirable
hen we aim to curb the continued use of problematic historical racial categorisation approaches

nd the disclosure of sensitive racial categories[ 157 ] (see Section 3.1 ). 
Moreover, Maddox [ 105 ] explains racial appearance bias as a negative disposition toward

henotypic variations in facial appearance. He also discusses how race-conscious social policies
ay fail to address racial bias in the societal treatment and socioeconomic outcomes of disad-

antaged groups [ 106 ]. For example, many studies show that individuals with more stereotypical
acial appearance suffer from poorer socioeconomic outcomes than those with less stereotypical
ppearance for their race [ 72 , 106 , 169 ]. Additionally, the sole use of race or skin tone categories to
uantify racial bias is limiting as they do not account for multi-racial individuals or those who ex-
ibit less stereotypical racial traits. Within this context, an improved understanding of the role of
henotype variation may complement existing solutions that attempt to address racial bias [ 105 ].
A set of race-related facial phenotype attributes such as skin tone, nose shape, and lip shape are

f primary interest for quantifying and addressing racial bias in face recognition. Furthermore,
he recent work of [ 179 ] shows that non-explicit racial attributes (accessories, hairstyles or facial
nomalies) conflated with explicit racial attributes (skin tone, nose shape or eye shape) strongly
ffect recognition performance. This study discusses the need to investigate each attribute in or-
er to achieve robust, fair and explainable face recognition solutions [ 179 ]. Such requirements
irectly contradict the use of more traditional racial groupings as they remain a high-level, yet
mpoverished representation to facilitate elaborate performance interpretation [ 6 ]. Subsequently,
 plethora of work highlighting the shortcomings of race and skin tone-based categorisation (dis-
ussed in Sections 3.1 and 3.2 ) push the current direction of research into phenotype-based cate-
ories [ 210 ]. One of the example studies, Diversity in Faces [ 114 ], provides a new large-scale facial
ata that implements annotations across ten facial coding schemes in order to provide human-
nterpretable quantitative measures of intrinsic facial features. The study comprises an extensive
et of facial annotations spanning intrinsic facial features to include craniofacial distances, areas
nd ratios, symmetry and contrast, skin tone ( ITA ), age, gender, subjective annotations, head pose
nd image resolution that are listed in Table 2 . However, despite its potential to date this Diversity
n Faces is not publicly available due to increased sensitivity around subject privacy and consent
ssues (as discussed in Section 3.1 ). 

In parallel, [ 210 ] proposes a phenotype-based evaluation strategy for racial bias within face
ecognition. The study categorises representative racial characteristics on the face and explores
he impact of each characteristic phenotype attribute: skin tone, eyelid type, nose shape, lips
hape, hair colour and hair type. They annotate these attributes for two different publicly available
ace datasets: VGGFace2 (test set) [ 13 ], and RFW [ 193 ] (as presented in Table 2 ). The study chooses
o use Fitzpatrick Skin Types [ 39 ] for skin tones as it provides sufficient granularity, {Type 1,
ype 2, Type 3, Type 4, Type 5, Type 6} , rather than binary skin-tone groupings, {lighter skin-tone,
arker skin-tone} . For eye shape, [ 210 ] consider epicanthal folds and eyelid difference as a more
istinctive attribute for racial bias [ 93 ]. The nose is categorised into two, wide and narrow, by
xamining the nasal breadth [ 215 ]. Hair texture is down-sampled from the eight categories of [ 24 ]
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Table 2. Overview of Phenotype Attribute-Related Studies: (a) Facial Coding Schemes Analysing 

Craniofacial Metrics, Skin Tones, Age, Gender, and Pose; (b) Categorisation of Phenotype Attributes, 

Including Skin Tone, Eyelid Type, Nose Shape, Lip Shape, Hair Type, and Hair Colour 

Facial 
Coding 

Description 

Schema 1 [ 161 ] Craniofacial Distances 

Schema 2 [ 36 ] Craniofacial Areas 

Schema 3 [ 149 ] Craniofacial Ratios 

Schema 4 [ 102 ] Facial Symmetry 

Schema 5 [ 141 ] Facial Regions Contrast 

Schema 6 [ 16 ] ITA-based Skin Tones 

Schema 7 [ 156 ] Age Prediction 

Schema 8 [ 156 ] Gender Prediction 

Schema 9 [ 96 ] Subjective Age and Gender Annotation 

Schema 10 [ 81 ] Pose and Resolution 

(a) Summary of Facial Coding Scheme Analysis for the DIf 
Dataset [ 114 ] 

Phenotype 
Attribute 

Categories 

Skin Tone [ 39 ] Type 1/2/3/4/5/6 

Eyelid Type [ 93 ] Monolid/Other 

Nose Shape [ 215 ] Wide/Narrow 

Lip Shape Full/Small 

Hair Type [ 24 ] Straight/Wavy/Curly/Bald 

Hair Colour [ 162 ] Red/Blonde/Brown/Black/Grey 

(b) Facial Phenotype Attributes and their Categorisation 
by [ 210 ] 
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nto three main hair texture types: straight, wavy, curly, in addition to bald. Additionally, [ 210 ]
etains hair colour, as it is related to skin tone [ 150 ], with hair colour categories: red, grey, black,
londe, brown (see Table 2 ). 

Compared to the prevalence of race or skin tone categories, phenotype-based groupings have
eceived less attention across the racial bias literature to date, as they involve both skilled attribute
abelling for dataset construction and a significantly more complex evaluation strategy due to the
ignificant number of phenotype categories, and phenotype combinations present. To these ends,
ithin a phenotype-based grouping strategy the concept of race is not represented by the differ-

nce across a single facial phenotype but rather a combination of varying phenotypic differences
hat differentiate the facial characteristics of a given subject from another. As such, subsequently
nvestigating the impact of such differences on face recognition performance becomes both more
omplex and time-consuming despite the improved comprehensiveness and quantification options
hat such a phenotype-based approach offers to the evaluation. On the other hand, it is essential to
ote when used, the correlation of phenotypical categories with more traditional (i.e., historically
roblematic, see Section 3.1 ) racial categories should be avoided in order to prevent the naturali-
ation (or popularisation) of such “headline style ” summation of racial bias evaluation results. 

In conclusion, this section presents an alternative methodology for addressing racial bias (group
airness) within face recognition tasks. Whilst the face naturally conveys identity-related biometric
nformation, it also inherently reflects a significant genetic and geographic relationship with race
ut these secondary relationships with race are not the primary concern for face recognition tasks.
nstead, the group fairness objective within face recognition tasks is to ultimately ensure that its
quity of performance across all subjects, regardless of subject racial grouping or facial phenotype
haracteristics. To these ends, it is necessary to avoid the inherited problem of racial and skin
one category usage within face recognition datasets and processing pipelines (Section 3.1 and
ection 3.2 ), and instead adopt a more general option that facilitates quantifiable performance
easurement without any explicit reference to such problematic concepts. By contrast, the use

f facial phenotypes offers a viable alternative that, whilst not fully independent of earlier racial
ategorisation, offers significantly more granular insight within the quantification of racial bias
panning both skin tone and numerous other facial characteristics. 
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Overall, within this section we explore the race, skin tone and facial phenotype grouping strate-
ies with regard to the group fairness criteria for racial bias within face recognition. We critically
eview current grouping strategies in face recognition datasets spanning race, skin tone and facial
henotypes. Whilst race remains a controversial concept that carries historical bias , ambiguity,
ll-definition and disparity, a plethora of research identifies the possible risks and related problems
f racial subject categorisation as a primary means for bias quantification within face recogni-
ion systems (Section 3.1 ). Alternatively, whilst skin colour has been utilised to both quantify and
ddress racial bias, it remains only one trait of what is a comprehensive and multi-faceted race
oncept (Section 3.2 ). A broader approach, using facial phenotype as race-related facial attributes,
rovides a more objective and granular evaluation strategy for racial bias within face recognition
Section 3.3 ). However, whilst the overall aim is to achieve more accurate and fairer face recogni-
ion system performance across increasingly more diverse populations, we need to still ensure the
ace and related interpretations are not reduced to only facial phenotypes by ignoring the broader
ontext of cultural, historical and social factors [ 55 ]. Moreover, the assessment of any grouping
trategy on facial imagery creates another area of concern attributable to the often uncontrolled
nd inconsistent imaging conditions of facial capture that themselves lead to erroneous racial
rouping annotation. As we move forward, we must address such risks, together with broader
thical considerations, within the wider development of face recognition processing pipelines. 

 Racial Bias within Face Recognition 

ontemporary automated facial recognition encompasses a pipeline of multiple stage processing;
mage acquisition (for both dataset collation and deployment), face localisation, face representa-
ion, face verification and identification (final decision-making) [ 3 , 87 ]. Section 4 is structured ac-
ording to these stages, detailing their development process, identifying the other types of biases
e.g., imaging bias and detection bias.) that emerge and contribute to racial bias, and discussing
otential solutions to mitigate racial bias present in the literature. We describe the development
rocess of these stages first to establish a foundational understanding of the entire face recognition
rocessing pipeline. This introduction in each stage is crucial for effectively analysing how racial
ias occurs at each stage, particularly how decision-making within these stages in the literature
an contribute to racial bias. 

Image Acquisition covers image capture from a wide range of devices such as smartphone
ameras, webcams, high-end DSLR cameras and CCTV-style video surveillance cameras varying
maging conditions that span image resolution and compression, facial occlusion, facial pose, illu-

ination, subject use of make-up/glasses/jewellery and facial expression. Furthermore, it includes
ll stages of initial image pre-processing and formulation such as the demosaicing conversion to
er-pixel RGB colour (from the Bayer pattern of the camera CMOS/CCD device), automatic colour
nd contrast correction (including processes such as automatic exposure control, white balance,
utomatic focus and brightness correction), pixel quantisation to a given bit-depth (e.g., RGB 8-bit
olour) and compression. For data set collation, acquisition is complemented by a data curation
uch that differing imagery is sampled to select a subset of representative images that are ideally
iverse and challenging enough to capture the full range of faces and imaging conditions that a
ace recognition system may encounter in real-world ( “in-the-wild”) deployment. These are then
sed to form the train D tr ain and test D te s t datasets for system training and evaluation (as defined

n Section 2 ). 
Face Localisation consists of two sequential steps to process real-world, in-the-wild images

hat are captured under uncontrolled conditions and may hence exhibit variation across one or
ore of the aforementioned imaging conditions (typically: face off centre, rotated and of vary-

ng scale relative to the camera). The first step, face detection aims at identifying a set of facial
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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andmark locations (e.g., eye, mouth and nose endpoints, face boundaries in width and height)
hilst the subsequent step of face alignment aims to correct for positional, rotational and scale

ariations to obtain a canonical facial image representation. This facial alignment step facilitates
he use of the spatial correlation of facial features across both varying subjects and dataset image
amples within the subsequent stage of face representation. 

Face Representation involves optimisation the mapping function f ∗ that projects a given face
mage sample into a feature embedding space, where the feature embedding vectors are both rep-
esentative and distinctive for each subject. In order to select the optimal mapping function, f ∗, a
raining process is performed via a training dataset, D tr ain , with reference to the minimisation of a
oss function L that incites the use of a distinctive facial feature mapping (as defined in Section 2 ).
onsequently, f ∗ provides mapping for both the curated training dataset, D tr ain , and unseen im-
ges in both test dataset, D te s t , and any subsequent deployment. 

Face Verification and Identification encompass the two most common decision-making (i.e.,
end goal”) tasks in face recognition. Face verification refers to a one-to-one matching operation
o determine whether two facial images belong to the same individual (known subject case), and
dentification refers to a one-to-many matching operation to conversely identify a given individ-
al against a set of reference images (unknown subject case). The optimal selection of mapping
unction, f ∗, via the training process on training dataset, D tr ain , directly impacts the effective-
ess of the feature embedding vectors such that the presence of both improved representational
istinctiveness between differing subjects and also the robust representation of identical subjects
nder varying imaging conditions hence leads to improved face verification and identification
erformance. 
With reference to the formal face recognition problem space definitions of Section 2 , this four

tage conceptual face recognition processing pipeline is illustrated in Figure 3 where we addition-
lly highlight the potential sources of bias (related to the racial bias) to each stage. This emphasis
n different sources of biases, such as imaging bias, and evaluation bias—some of which have been
xtensively researched previously—are essential for understanding the underlying reasons (their
ollective contribution to racial bias) for racial bias. Additionally, it complements our comprehen-
ive review by clarifying their relationships and distinctions with racial bias. Furthermore, we ex-
lore related work at each stage that investigates and addresses racial bias within face recognition
n the literature. 

.1 Image Acquisition 

he facial image acquisition stage, which extends from initial facial imaging to final real-world de-
loyment, comprises both the facial imaging and dataset curation sub-stages. Each of these stages
ntroduces different types of biases that can significantly influence racial bias within face recog-
ition. We begin by discussing the technical and ethical aspects of facial imaging as a form of
iometric data in Section 4.1.1 . Subsequently, we examine how imaging biases arising from this
tage may contribute to racial bias. Subsequently, in Section 4.1.2 , we examine the facial dataset
uration process and address the dataset bias originating from skewed sampling methods (sam-
ling bias) and dataset curation practices (pose bias, category bias, negative set bias) . These biases
ritically affect the performance of face recognition on different racial groupings. 

Furthermore, we explore the limitations of current state-of-the-art datasets and discuss potential
itigation strategies, including the use of data augmentation techniques with Generative Adver-

arial Networks (GANs). Nonetheless, these methods also require careful scrutiny to ensure they
o not inadvertently perpetuate or amplify the existing biases within datasets. 
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Fig. 3. Overview of the face recognition processing pipeline and bias attribution. 
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4.1.1 Facial Imaging. Biometric data refers to distinctive physical characteristics of the human
ace, fingerprints, voice, iris, and body. Such biometrics have been used for identification systems
e.g., fingerprint matching) for several decades [ 86 ]. Commensurately, facial imagery has become
 key part of modern biometric tasks due to the proliferation of imaging technologies, which
ignificantly improve facial image quality, accessibility, and quantity. However, the increased
revalence of facial imagery does not necessarily result in improved biometric outcomes across
ll populations. In addition, collating facial images and annotating them with subject identity or
acial category labels at scale have ignited complex discussions around policy and legality due to
conomic, privacy and ethical implications [ 70 ]. 

We have previously explored the historical bias and potential risks associated with racial
ategorisation and the annotation of facial images (Section 3 ). Building upon this, here we focus
n the privacy risks and ethical concerns surrounding using facial images as a form of biometric
ata, particularly those related to racial bias. Paying attention to such ethical and political
onsiderations on the collation of biometric face imagery becomes particularly important when
he presence of racial bias therein directly or indirectly impacts societal fairness. Accordingly, [ 70 ]
resents a socio-political analysis of face recognition and highlights the distinct challenges and
oncerns associated with its development and evaluation. The study categorises such concerns
nto four sections: privacy, fairness , freedom and autonomy, and security. Even though the
ntention of automatic face recognition is not problematic, in practice, it may enable morally
nacceptable use cases of such technology. Examining the issue of subject consent, both within
ataset collation and in an eventual use-case, is fundamental to preserving privacy [ 70 ]. For
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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xample, government use of such technology for racial profiling and racially-targeted restriction
n some jurisdictions has been widely reported [ 48 , 196 ] and investigated [ 22 , 184 ]. In parallel
o [ 70 ], Prabhu [ 11 ] discusses the fundamentals of informed consent, privacy, or agency of the
ndividual in large-scale datasets and shows the fallacy of the commonplace Creative Commons
icensing model [ 80 ] as a consent-included green flag for large-scale dataset curation. They
uggest the use of dataset audit cards as an approach to publishing the original research goals,
uration procedures, known shortcomings and caveats alongside dataset dissemination [ 11 ].
verall, it must be noted that any erosion of privacy, moral, ethical, or political values will most

ikely disproportionately impact minority groups, such as those defined along racial lines. 
From a technical standpoint, the ISO/IEC 19794-5 [ 41 ] standard and ICAO 9303 guidelines [ 121 ]

ropose both image-based (i.e., illumination and occlusion) and subject-based (i.e., pose, expres-
ion, and accessories) image quality requirements to ensure facial image quality. Accordingly,
acial images should be stored using lossy image compression standards such as JPEG [ 188 ] or
PEG2000 [ 170 ]; and observable in terms of gender, eye colour, hair colour, expression, proper-
ies (i.e., glasses), head pose (yaw, pitch, and roll), and facial landmark positions. However, the
mages within commonplace “in-the-wild ” face datasets, that are readily used in face recognition
ystem performance evaluation [ 13 , 54 ], do not conform to such requirements. Subsequently, Van-
ara [ 185 ] compares ICAO compliance between African and Caucasian groups in MORPH dataset
 152 ] and found that slightly more than 48% of the African-American images were rated as ICAO
ompliant, while slightly more than 57% of Caucasian images were rated as ICAO compliant. The
ost prominent factor contributing to the variation in image quality between the groups is the dif-

erence in brightness; the distribution of which differs significantly between the African-American
nd Caucasian groups. The study argues that the lack of illumination correction with regard to skin
one during image acquisition could be the attributable reason as to why the African-American
mage group contains a larger number of poorly illuminated images. In parallel, [ 19 ] points out the
ignificant impact of skin reflectance across demographic subgroup performance with regard to
ace recognition and mentions that improved imaging acquisition systems (superior camera spec-
fication, lower motion blur, higher image contrast and stricter pose control) may significantly
educe or eliminate performance differences between such subgroups. 

Furthermore, prior literature shows that non-ideal imaging conditions, including image blur,
oise, distortion, occlusion and lossy compression, all have a considerable impact on the perfor-
ance of face recognition [ 75 , 107 , 142 , 209 ]. Recently, [ 107 ] examined distorted test imagery im-

act on gender and skin tone categories (light vs. dark skin tone) using pre-trained DCNN-based
ace recognition models. As a result, the study [ 107 ] finds that the regions of interest used in the
odels shift towards less distinctive regions in the presence of distortions, resulting in unequal

erformance degradation among subgroups. Consequently, Yucer [ 209 ] finds that using lossily
ompressed facial test imagery decreases performance more significantly on specific phenotypes,
ncluding dark skin tone, wide nose, curly hair, and monolid eye when considered relative to a
roader set of 21 phenotypic features. However, whilst the use of compressed imagery during
raining does make the resulting models more resilient and limits the performance degradation
ncountered, lower performance amongst these specific racially-aligned subgroups remains. Ad-
itionally, Yucer [ 209 ] found that removing chroma subsampling, which is itself a key lossy com-
onent of contemporary image compression schemes improves face recognition performance for
he specific phenotype categories which are otherwise more adversely affected by the use of lossy
ompression. 

Consequently, we refer to these performance disparity effects within face recognition caused
y variable imaging conditions as imaging bias as illustrated in Figure 3 . The limited literature
n imaging bias within face recognition to date makes it harder to identify the presence of such
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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ias and align it to common underlying factors and conditions. On the other hand, state-of-the-art
echniques for robust face recognition such as [ 84 ] may help to mitigate such imaging bias effects,
ia the use of a rich set of input variations aligned to phenotypic characteristics, such as skin
olour or other common facial phenotype variations [ 155 ]. 

4.1.2 Facial Datasets. The following stage of image acquisition pertains to sampling the cap-
ured and processed facial images in order to create representative datasets for face recognition
valuation. Nevertheless, such a sampling process is often affected by sampling bias (also similar
o selection, representation, or population bias) [ 18 ], which significantly impacts racial bias in face
ecognition. Sampling bias , referring to non-random selection over a population leading to a set
f samples that do not fairly represent that population statistically, commonly occurs when fa-
ial images are curated from public online image resources, where the available population image
istribution may not be representative of the actual societal population that the face recognition
ystem will encounter in deployment. This is attributable to the fact that technology access is not
lobally or socio-economically homogeneous resulting in a skewed online image presence for a
ubset of the populous. Secondly, the most common approach for face recognition dataset collation
s via targeted per-subject search for named individuals (commonly celebrities from the FreeBase
isting) using public online image resources [ 54 ] (see Table 1 ), which then results in a dataset of

illions of subjects who have/had public attention. 
Even more concerning is that the subsampling decision from the FreeBase celebrity list is most

ften based on ranking all the subjects by their frequency of occurrence in the media, meaning
hat celebrities with greater global media coverage are more likely to be included in the dataset.
his results in a biased convergence to a specific celebrity group, which is dominated by Western,
uropean and American subjects. Moreover, this impact of sampling bias can be subsequently am-
lified during the later stage of feature representation learning due to an increased imbalance of
henotypic features which are themselves aligned to the dominant racial or demographic group-
ngs present from the original dataset curation [ 62 ]. For instance, a DCNN-based face recognition

odel utilising certain features, such as hair colour, to identify face subjects results in a bias to-
ards a particular hairstyle or hair colour, causing less accurate performance on subjects with
ifferent hairstyles, hair colours, or accessories. 
Consequently, contemporary face recognition datasets are largely curated to provide large-scale

overage of differing face subjects images under a rich variation of “in the wild ” imaging conditions,
ith little consideration of the racially differentiating phenotypes of the underlying subject pop-
lation. The two most widely used training datasets for face recognition—MS-Celeb-1M [ 54 ] and
GGFace2 [ 13 ]—contain 10 million and 3.3 million face images, respectively, and are curated from

he FreeBase celebrity list as shown in Table 1 . Similarly, the most common benchmark test sets
or face recognition—LFW (Labeled Faces in the Wild) [ 67 ], CASIA-WebFace [ 205 ], and MegaFace
 77 ]—are curated using online news (Yahoo), FreeBase celebrity and public online photo sharing
esources (Flickr), respectively. Despite efforts to overcome sampling bias within face recognition
atasets, such as the release of new datasets like the CASIA-Face-Africa [ 125 ], a large-scale African
ace image database or the BUPT-Balanced dataset [ 191 ], a large-scale racially balanced training
et, the most prominent face recognition datasets used for face recognition evaluation still suffer
rom sampling bias with regard racial phenotypical population coverage. 

The prevailing assumption in machine learning is that the training set D tr ain and test set D te s t 

re identically and independently distributed. However, this assumption is not valid for face recog-
ition, and hence results in an out-of-distribution (OOD) problem. Accordingly, [ 182 ] relates the
OD problem to “dataset bias ”. Although face recognition datasets should be representative of the

eal-world population in order to enable real-world face recognition model deployment, current
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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tate-of-the-art face recognition approaches remain closed-set methods, reflecting the world in a
ignificantly biased way [ 182 ]. Subsequently, [ 182 ] groups dataset bias into four different types of
ias:- (1) selection bias is similar to our aforementioned concept of sampling bias ; (2) capture bias
ccurs when the dataset imagery contains targets (faces) that have minimal spatial and illumina-
ion variation and can be related with pose bias within face recognition context, as there is still
oor pose variance (i.e., ±30 ◦ horizontal, ±15 ◦ vertical) within facial datasets; (3) category or label
ias poses the ill-definition or mislabelling of subject identities or racial categories; (4) negative set
ias defines bias against target appearances that are not represented in the data set (i.e., “the rest
f the world ” appearance) leading to recognition models that are overconfident and misrepresent
erformance by considering only a skewed subset of possible real-world data samples (i.e., the test
ataset, D te s t ). The underlying causes of each different source of bias are often deeply intersected
ith racial bias. For example, pose bias can be seen when images of African celebrities mostly
epict footballers in side poses during games, in contrast to white celebrities, who are typically
hotographed in frontal poses or (highly visible poses) as demonstrated in the RFW dataset [ 191 ].
onsequently, pose bias (with other types of biases) accumulates and consequently exacerbates

acial bias, as evidenced by the persisting performance disparities between racial groups on RFW
ataset [ 191 ], even when training and test sets are equally distributed see Table 1 . 
In order to mitigate dataset bias, many studies [ 74 , 159 ] propose novel sampling methods by

ither down-sampling or upsampling (i.e., augmenting) the datasets in the early stage of the face
ecognition processing pipeline. With the latest advancements in GANs [ 76 , 176 , 200 ], high-quality
ace image generation has become available as a potential tool to overcome the adverse effects of
ataset distribution bias on subsequent real-world generalisation performance for racial bias. For
xample, [ 208 ] aims at automatically constructing a synthesised dataset by transforming facial
mages across varying racial domains while preserving identity-related features, such that racially
ependent features subsequently become irrelevant within the determination of subject identity.
imilar to [ 208 ], [ 43 ] transforms the facial images of one racial category to corresponding images
f other racial categories in order to facilitate a more balanced racial category distribution via
ata augmentation. Moreover, [ 124 ] proposes a new data augmentation strategy that imposes the
airness constraint to improve the generalisability of fair classifiers. In particular, they highlight
hat fairness can be achieved by augmenting interpolated samples between the racial groups dur-
ng training. However, such generative models themselves produce samples from the underlying
raining set distribution upon which they are trained, meaning that they can also be impacted by
ataset bias. Accordingly, [ 176 ] conduct an empirical study on the fairness of state-of-the-art pre-
rained face synthesis GAN models. They show that a strong correlation between the imbalance
n the original GAN training data and that of the resultant distribution of the GAN output images

eaning that any dataset bias present is only amplified in cases where GAN are used as a potential
ata augmentation strategy for face recognition. 
Overall, this section outlines various sources of bias that can affect the recognition performance

nd racial bias within face recognition systems, such as imagery bias, sampling bias, pose (capture)
ias, category and label bias, and negative set bias as illustrated in Figure 3 against the corresponding
tages of the face recognition pipeline. 

.2 Face Localisation 

he face localisation stage of the face recognition pipeline consists of face detection and alignment,
hereby enabling the spatially correlated facial features for the subsequent stage of face represen-
ation. We initially describe the details of the face detection phase to demonstrate its susceptibility
o racial bias, which is comparable to that of face recognition due to similar procedural stages
e.g., facial imaging and dataset curation). With only a few methods currently examining racial
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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ias within face detection ( detection bias ), we present that while there is an evidence highlighting
acially disparate performance in face detection, there remains a significant gap in efforts aimed
t mitigating it. 

Prior work has primarily focused on hand-crafted facial feature extraction and classification for
ace detection. In a notable milestone, Viola and Jones proposed a real-time cascade of simple Haar-
ike feature classifiers at locally learned image locations [ 186 ]. Recently, face detection methods
ave shifted towards DCNN-based architectures and are categorised into five sub-genres by [ 116 ]:
ascade-CNN-based, R-CNN and Faster-RCNN-based, Single Shot Detection, Feature Pyramid
etwork-based, and other variants. Subsequently, the two most prominent face detectors, Cascade-
NN-based MTCNN [ 211 ] and Feature Pyramid Network-based RetinaFace [ 25 ], and the face de-

ection benchmark dataset, Wider Face [ 203 ], have become widely adopted for face recognition. 
The MTCNN face detector is based on a cascading multi-tasking structure [ 211 ] with three-stage

ightweight DCNN where the Proposal Network (P-Net) generates a set of face regions, or “pro-
osals”, at different scales, the Refinement Network (R-Net) subsequently refines such regions to
etter localise the faces and finally the Output Network (O-Net) performs fine-grained face feature
xtraction and classification. Subsequently, [ 25 ] proposes another multi-level face localisation ap-
roach, RetinaFace, encompassing a single-shot detection network, a multi-task branch network
hat predicts both facial landmarks and attributes, and a bounding box regression network re-
nes the position and size of the detected faces from the facial landmarks and attributes. Both
pproaches achieve outstanding performance on several benchmarks, including Wider Face [ 203 ],
hich comprises 32,203 images and 393,703 bounding boxes under varying imaging conditions. 
Despite the widespread usage of face detectors within the face recognition processing pipeline,

nly a few studies have investigated racial bias within face detection. Menezes [ 112 ], analysis
he performances of five state-of-the-art face detectors; DSFD [ 95 ], Pyramid Box [ 177 ], LFD [ 61 ],
etinaFace [ 25 ], MTCNN [ 211 ] on demographic attributes including age, skin tone, gender. The
tudy randomly samples the Casual Conversation Video Dataset [ 58 ] and obtains 550.000 frames
or training. The Casual Conversation Video Dataset adapts the Fitzpatrick scale and contains an
mbalanced skin tone category distribution with the percentages of Skin Type 1: 4.0%, Type 2:
8.3%, Type 3: 22.9%, Type 4: 8.4%, Type 5: 15.8%, Type 6: 20.7%. Although Type 1 skin tone has the
owest representation in the training data, it was found that empirically LFD [ 61 ], RetinaFace [ 25 ],
SFD [ 95 ] detectors are more likely to fail to detect faces with skin type 4. Moreover, the study

hows that the highest divergence of FNMR occurs within skin tone (being worse than age and
ender groupings) and highlights that three out of five detectors evaluated have a higher likelihood
f incorrect detection (FNMR) for darker skin tones (Type 5 and 6). 
Another study [ 30 ] investigates the robustness of three commercial online face detection ser-

ices: Amazon Rekognition, Microsoft Azure, and Google Cloud Platform and evaluates the impact
f 15 types of natural noise corruption on the face detection performance of different demographic
roups. Similarly to the case of face recognition, they conclude that corrupted data is more likely
o cause face detection errors in specific demographic groups. For example, those with darker skin
ypes, older adults, and those with masculine presentation all had higher errors ranging from
0-60%. Subsequently, they compare the performance and robustness of non-commercial ap-
roaches (TinaFace [ 214 ], YOLO5Face [ 143 ], MogFace [ 103 ]) with commercial ones [ 31 ]. They
how that commercial approaches are always as biased or even more biased than non-commercial
odels, despite relatively larger development investment and supposed dedication to industry-

evel fairness commitments. More recently, [ 119 ] proposes the Fair Face Localisation with At-
ributes (F2LA) dataset with demographic annotations to detect disparate performance over such
emographic groups. The study finds that confounding factors, including facial orientation, il-
umination, and resolution, can cause such disparate performance among demographic groups.
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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herefore, it is important to analyse the performance of such detection models holistically and
ot draw conclusions solely based on demographic annotations. 
Despite ample evidence indicating the existence of racially disparate performance within face

etection, there needs to be further investigation targeting racial bias exploration within face de-
ection. Furthermore, similarly to the image acquisition stage of face recognition (Section 4.1 ), the
resence of imaging, sampling and dataset bias within these face detection benchmark datasets
gain translates through the subsequent stages of face recognition resulting in skewed overall
ace recognition pipeline performance. 

.3 Face Representation 

his section presents a brief overview of face representation learning, including hyper-parameter
ias, uncertainty bias that exacerbate racial bias and mitigation studies within this stage of the face
ecognition processing pipeline (Figure 3 ). In support of this review of prior work on racial bias
itigation a summary table of related work is provided to compare overall relative performance

n the RFW dataset [ 191 ] (Table 3 ). 
Facial feature representation has been a prominent area of computer vision research for many

ecades and several milestones have substantially improved the performance of face recognition
oday [ 192 ]. The first well-known method for estimating the probability of distribution over high-
imensional vector space of face images, Eigenfaces, was introduced in the early 1990s [ 183 ]. Fol-
owing that, Gabor [ 99 ] and LBP [ 2 ] provide robust performance by using local filtering to obtain
nvariant facial features. However, they could not create handcrafted features that were distinctive
nd compact enough to fully scale to the diversity of large-scale benchmark datasets (and hence
he global populous). Although numerous learning-based local descriptors have been developed
o tackle various aspects of face recognition [ 14 , 94 ], higher similarity for intra-class samples and
iversity for inter-class samples within face datasets remain challenging. Subsequently, the avail-
bility of large-scale dataset resources (2007+) and the proliferation of DCNN (2012+) have now
nabled contemporary face recognition architectures to achieve outstanding verification and iden-
ification accuracy. Accordingly, this stage involves a mapping operation from face images to face
epresentation vectors which can be performed by a DCNN-based backbone architecture and a
oss function, as discussed in Section 2 . 

4.3.1 Backbone Architectures. DCNN are multi-layer processing blocks, including convolu-
ional, pooling and fully connected layers. As a central component of DCNN, the convolutional
ayers extract features from the output of the previous layer, starting from the input face im-
ge. Each layer t consists of K kernels with weights W = W 1 , W 2 , . . . , W K 

and added bias fil-
ers B = b 1 , . . . , b K 

. Subsequently, each layer applies an element-wise nonlinear transform (i.e.,
∈ {RELU , tanh, So f tmax , . . . } functions) to generate multiple feature map representations and

asses the result to the next layer x t = σ (W k · x 
t−1 + b k ). Moreover, at the end of each layer, a

ooling function down-samples the feature maps by taking the maximum or average value of
djacent pixels (patch). Similarly, a fully connected layer applies a linear transformation to the
nput vector through a weights matrix. A majority of face recognition methods adopt state-of-the-
rt DCNNs as their backbone architectures, such as the VGG-Net [ 167 ], the ResNet [ 59 ], and the
nception-ResNet [ 163 ]. 

4.3.2 Baseline Loss Functions. Contemporary face recognition literature primarily focuses on
esigning novel DCNN loss functions [ 13 , 26 , 101 , 190 ] to enhance the distinctiveness and sep-
rability of features. Mostly, such loss functions [ 26 , 101 , 190 ] operate on the feature embed-
ing vectors of the last fully connected layer of the selected backbone DCNN architecture [ 59 ].
reviously, we discussed Softmax loss L so f tma x (Equation ( 1 )) which is based on maximising the
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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Table 3. Performance of State-Of-The-Art Face Verification Methods on the RFW Dataset [ 193 ], with 

Comparison Based on Sample Standard Deviation 

Methods Backbone Dataset African Asian Caucasian Indian Avg STD 

Imbalanced Training Sets 

ArcFace [ 26 ] ResNet-34 MegaFace 85.13 86.27 94.78 90.48 89.17 4.39 

IMAN-A [ 193 ] ResNet-34 MegaFace 91.42 91.15 94.78 94.15 92.88 1.86 

ArcFace [ 26 ] ResNet-34 VGGFace2 87.30 85.47 93.50 87.55 88.46 3.49 

ARL+C [ 144 ] ResNet-34 VGGFace2 88.57 87.65 93.48 89.35 89.76 2.57 

ArcFace [ 26 ] ResNet-50 BUPT-Global 96.28 96.03 98.22 96.77 96.83 0.98 

MV-Softmax [ 195 ] ResNet-50 BUPT-Global 95.83 95.66 99.33 95.83 96.66 1.78 

DebFace-ID [ 45 ] ResNet-50 BUPT-Global 93.67 94.33 95.95 94.78 94.68 0.96 

CurricularFace [ 68 ] ResNet-50 BUPT-Global 94.93 95.18 97.75 96.07 95.98 1.28 

RamFace [ 204 ] ResNet-50 BUPT-Global 96.73 96.17 98.28 96.77 96.99 0.90 

ArcFace [ 26 ] ResNet-101 VGGFace2 89.45 87.61 94.71 91.21 90.75 3.02 

VGGF2 Races [ 208 ] ResNet-101 VGGFace2 90.10 87.73 93.72 90.50 90.51 2.46 

ArcFace [ 26 ] ResNet-101 BUPT-Global 96.77 96.52 98.55 97.48 97.33 0.91 

CurricularFace [ 68 ] ResNet-101 BUPT-Global 96.30 95.98 97.83 96.70 96.70 0.81 

RamFace [ 204 ] ResNet-101 BUPT-Global 97.40 96.93 98.65 97.57 97.64 0.73 

Balanced Training Sets 

Softmax ResNet-34 BUPT-Balanced 91.42 91.23 94.18 92.82 92.41 1.38 

CosFace [ 190 ] ResNet-34 BUPT-Balanced 92.98 92.98 95.12 93.93 93.75 1.02 

ArcFace [ 26 ] ResNet-34 BUPT-Balanced 93.98 93.72 96.18 94.67 94.64 1.10 

RL-RBN [ 191 ] ResNet-34 BUPT-Balanced 95.00 94.82 96.27 94.68 95.19 0.73 

RamFace [ 204 ] ResNet-34 BUPT-Balanced 95.28 94.83 97.15 96.08 95.84 1.02 

GAC-ArcFace [ 46 ] ResNet-34 BUPT-Balanced 94.12 94.10 96.02 94.22 94.62 0.94 

Fairness FR [ 201 ] ResNet-34 BUPT-Balanced 95.95 95.17 96.78 96.38 96.07 0.69 

ArcFace [ 26 ] ResNet-50 BUPT-Balanced 96.00 95.45 97.57 96.42 96.36 0.90 

CurricularFace [ 68 ] ResNet-50 BUPT-Balanced 94.90 94.23 96.38 95.50 95.25 0.91 

RamFace [ 204 ] ResNet-50 BUPT-Balanced 96.25 95.50 97.40 96.58 96.43 0.79 

GAC [ 46 ] ResNet-50 BUPT-Balanced 94.65 94.93 96.23 95.12 95.23 0.69 

Sensitive Loss [ 164 ] ResNet-50 BUPT-Balanced 95.82 96.50 97.23 96.95 96.63 0.62 

Fairness FR [ 201 ] ResNet-50 BUPT-Balanced 96.47 95.75 97.08 96.77 96.52 0.57 
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osterior probability of the ground-truth subject class in order to separate features from different
lasses. However, a high number of subject identities, n, within training sets increases the size
f the linear transformation matrix in the last layer W ∈ R 

d×n leading to high complexity. More-
ver, the learned feature embedding vectors of Softmax loss are not distinctive enough to address
he open-set face recognition problem [ 60 ]. To address these problems, CosFace [ 190 ] enforces a
arger cosine margin m between the features of different classes and suggests that both norms of
he vectors contribute to the posterior probability. 

L co sf a ce = −
1 

N 

N ∑

i= 1 

log 

e ‖ z ‖ (cos (θy i ,i )−m)

e ‖ z ‖ (cos (θy i ,i )−m) +
∑n 

j� y i e 
‖z ‖ cos (θ j,i ))

w he re cos (θ j , i) = W 

T 
j z i , (4)

here N is the number of training samples, x i is the ith feature vector corresponding to the ground-
ruth class of y i , the W j is the weight matrix of the jth class, and θ j is the angle between W j and z i .
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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dditionally, the bias term is removed b = 0 , and the weights W and embeddings z are normalised
sing L 2 normalisation. 
An alternative loss function, ArcFace [ 26 ] differs from CosFace [ 190 ] based on its distinct margin

. ArcFace has a more accurate geodesic distance because it has a constant linear, angular margin
penalty throughout the interval, while CosFace has a nonlinear angular margin. Similarly, it

ormalises the weights and embeddings and fixes the bias term to zero. The ArcFace loss function
s formalised as follows: 

L a rcf a ce = −
1 

N 

N ∑

i= 1 

log 

e ‖ z ‖ (cos (θy i ,i +m))

e ‖ z ‖ (cos (θy i ,i +m)) +
∑n 

j� y i e 
‖ z ‖ (cos (θ j,i ))

, (5)

here all definitions are as per Equation ( 4 ). Overall the key Softmax, CosFace [ 190 ], and ArcFace
 26 ] differences lie in their use of deep face representation, weight vectors and their margin penalty
n the last layer. Consequently, the accuracy of the most popular LFW benchmark has increased
rom ∼ 60% (Eigenfaces, [ 183 ] (1991)) to above ∼ 99% (ArcFace [ 26 ] (2019)) further encouraging
he broader adaption of face recognition into real-world applications. 

The central concept of statistical learning is based on the requirement to choose one gener-
lisation over another in order to be able to classify instances non-arbitrarily beyond those in
he training set [ 118 ]. Moreover, [ 118 ] defines unbiased generalisation as one which makes no
rior assumptions about which classes of instances are most likely to occur and bases all its deci-
ions solely on data observation. However, any face recognition system already has dataset bias,
eaning that any type of generalisation or observation based on such datasets results in bias.
n the other hand, [ 62 ] identifies two more different types of model-related bias occurs in this

ace representation stage. The study, first, mentions DCNN hyper-parameter bias due to the ubiq-
itous number of hyper-parameters which are spanning from the choices of number of hidden
odes and layers to type of activation functions made by the user [ 10 ]. The strong influence
f such chosen parameters on DCNN and their performance makes hyper-parameter bias rele-
ant to racial bias as such in the case of hyper-parameter bias , certain models may perform bet-
er on datasets that are biased towards certain groups leading to potentially perpetuating racial
ias. Hyper-parameter bias can also be related with aggregation bias (causing selected parame-
ers forming the mapping function is not optimal for specific groups) defined by [ 175 ]. Another
ype of bias, denoted as uncertainty bias , is based on the probability values that are often com-
uted together with each produced DCNN architecture. The probability represents uncertainty,
nd typically has to be above a set threshold for face detection, verification or identification to
e performed. For example, a DCNN-based face detection model reports predictions via proba-
ility values indicating detection confidence. However, this manual selection of the probability
hreshold can itself create a bias. For example, when the threshold is set too conservatively, faces
rom underrepresented groups are more likely to not be detected due to higher uncertainty in the
odel. 
Up to this point, we have described the general processes within the face representation stage of

 face recognition architecture (Figure 3 ) and the various forms of bias that may exacerbate racial
ias within them. Finally, we complete our discussion of facial representation by exploring current
acial bias mitigation strategies. We categorise bias mitigation literature into three sub-genres:-
utual information mitigation (Section 4.3.3 ), loss function based mitigation (Section 4.3.4 ), and

omain adaptation based mitigation (Section 4.3.5 ). 

4.3.3 Mutual Information Mitigation. The high mutual information between facial identity and
nderlying racial features within face images generally transfer into the learned feature embed-
ing of contemporary DCNN based techniques and hence results in an unsatisfied fairness through
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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nawareness criteria (i.e., the constraint of not retaining information related to s when estimating
as the the formalised problem statement of Section 2 ). A myriad of studies [ 20 , 27 , 45 , 79 , 122 , 146 ,
53 ] attempt to decrease this mutual information in order to debias the performance of face recog-
ition approaches. For example, [ 20 ] proposes a Flexibly Fair VAE (FFVAE) algorithm concerning
emographic parity among multiple sensitive attributes. FFVAE learns the encoder distribution
rom input and sensitive attributes and disentangles prior structure in latent space by enforcing
ow mutual information. On the other hand, adversarial-debiasing approaches become applica-
le in disentangling race-related information on faces within generative generator-discriminator
odels such as GAN [ 27 , 45 ]. For example, the Protected Attribute Suppression System (PASS)

 27 ] discourages the generator from encoding information related with sensitive attributes via
iscriminator. Furthermore, [ 79 ] uses a feature mapping network to unlearn biased sensitive at-
ributes in order to disentangle the mutual information between identity and sensitive character-
stics. Similarly, [ 122 ] suppresses the presence of sensitive information to enforce the learning of
rivacy-preserving embeddings (for any sensitive feature we want to protect) and hence equality
cross such sensitive attributes in any subsequent decision-making algorithms based on these em-
eddings. Their results show that it is possible to reduce the performance of gender and ethnicity
etection by 60–80% on a given facial image embedding, while face verification performance over
he same embedding is only impacted by 5%. 

Other recent works on mitigating racial bias introduce a knowledge distillation module for face
ecognition [ 28 , 71 , 98 ]. Accordingly, [ 28 ] observes that the face recognition networks attend to
ifferent spatial regions in faces according to the category of an attribute label (e.g., light skin vs.
ark skin tone). Firstly, in order to eliminate differences in the representations, they propose a
eacher-student network to enforce the student network to attend to similar teacher-like repre-
entations such as face regions. Whilst the teacher network is trained on light skin tone images,
he student network is trained on dark skin tone images. As a result, they achieve less biased re-
ults in face verification and perform better than state-of-the-art adversarial debiasing approaches.
nother study, [ 98 ] applies knowledge distillation from teacher to student to avoid dataset bias
hich is identified as an imbalance distribution between either class labels or between easy and
ard dataset samples. The imbalance between samples decreases the uniformity of the data, which
ubsequently makes the data distribution far from uniform. As image datasets are usually collected
d-hoc without any inherent uniformity consideration, they propose two different sampling meth-
ds, extrinsic sampling (before training) and intrinsic sampling (during training), to ensure the
uccess of knowledge distillation. On the other hand, some experiments empirically demonstrate
hat the use of race related facial features increases overall face classification performance and
mproves extracted feature discriminability [ 158 ]. 

4.3.4 Loss Function-based Mitigation. Another area of study [ 144 , 194 , 204 ] focuses on setting
daptive margins to tackle racial bias. For previous face recognition baselines [ 26 , 190 ], the margin
etween classes was set at a fixed value to maximise accuracy. However, the training distributions
f demographic groups and their feature embedding vectors inherently differ from each other
eaning that a global margin is essentially a best fit to the largest demographic group in the

raining dataset. While such a constant global margin may result in better performance across one
emographic, that same margin may conversely cause inferior performance for another. 
Recently, [ 204 ] proposes Race Adaptive Margin (RAM) Loss using a new compact margin instead

f using an ArcFace-style fixed margin, m (Equation ( 5 )), approach. Consequently, they define
ntra-subject compactness μr 

intr a for each racial group, { Af ric an, Asian, Indian, Cau c asian} , in the
FW dataset in order to assign the margin to be an identity-related parameter. As such, the final
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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AM Loss (denoted ramface loss, [ 204 ]) is 

L r a mf a ce = −
1 

N 

N ∑

i= 1 

log 

e ‖ z ‖ (cos (θy i ,i +m r ))

e ‖ z ‖ (cos (θy i ,i +m r )) +
∑n 

j� y i e 
‖ z ‖ (cos (θ j,i ))

w he re m r = β × Z r × ˆ μr 
intr a , μr 

intr a = 
1 

B r 

B r ∑

y= 1 

1 

M y j 

M y j ∑

i= 1 

cos θ r 

z 
y j 
i ,c y j 

, 

(6)

here B r is the number of subject identities in the race group, M y j is the number of the samples
ith subject class y j , Z r is the race classification accuracy as the weight indicator in the adaptive
argin loss, and β is the scaling parameter to constrain the upper bound of m r . As per ArcFace

oss, Equation ( 5 ), z i is the feature representation of image x i . Consequently, they benefit from
acially-aware supervision to increase the distinctiveness of the learned feature representations
nd simultaneously decrease the potential for racial bias within that same representation. RamFace
oss achieves both high accuracy on face verification and appears to successfully mitigate racial
ias (see Table 3 ). 

Another study, [ 144 ] proposes an Asymmetric Rejection Loss , which aims at reducing the racial
ias within trained face recognition models by taking advantage of unlabelled images of under-
epresented groups. The study utilises unlabelled images collected from online sources where the
umber of subject identities present is always much greater than the average images per subject.
ubsequently, they consider each unlabelled image as a separate class and design an asymmetric
earning procedure for those labelled and unlabelled images. Their proposed Asymmetric Rejection
oss (denoted arl ) is defined as 

L ar l = L L + λU 

× L U 

+ λC 

× L C 

w he re L C 

= 

∑
i, j cos (z i , z j )

2 

N t 
, 0 < cos(z i , z j ) < t , (7)

here t is the upper bound of the penalty interval, and N t is the number of feature representation
ectors pairs whose cosine similarity lies within the interval (0 , t). L L and L U 

are similar to Arc-
ace loss (Equation ( 5 )) operating on labelled and unlabelled images, respectively. Simultaneously,

U 

and λC 

are two loss weights. Asymmetric Rejection Loss achieves improved performance on
nder-represented demographic groups whilst performance on well-represented groups remains
naffected when compared to other state-of-the-art approaches (Table 3 ). 

4.3.5 Domain Adaptation-based Mitigation. Following the discussion of Section 4.1 on the OOD
roblem, domain adaptation techniques have recently been introduced as a method to address
acial bias issues [ 35 , 53 , 131 , 193 , 206 ]. These techniques use multiple labelled source domains with
ifferent distributions to improve generalisation to new target datasets. One of the first examples
f domain adaptation for racial bias, [ 193 ] prove the domain gap between racial groupings and
ropose a deep information maximisation adaptation network (IMAN > ) architecture to address
his. Subsequently, [ 53 ] propose a novel face recognition methodology via the use of meta-learning
amed Meta Face Recognition (MFR). The meta-optimisation objective of MFR first synthesises the
ource/target domain. Subsequently, it forces the model to learn effective representations of both
ynthesised source and target domains. In another example in face recognition, [ 35 ] introduces
ross-Domain Triplet (CDT) loss based on the triplet loss [ 163 ] and uses similarity metrics from
ne domain to learn compact feature clusters of identities by incorporating them into another
omain. Relative performance for both CDT and MFR on the RFW dataset are shown in Table 3 . 
In conclusion, despite using balanced training sets, significant performance disparities among

acial groups persist (as shown in Table 3 ) with face recognition baselines like CosFace [ 190 ] and
rcFace [ 26 ], primarily due to the use of constant margins within the loss functions across all racial
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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ubgroups. To address these disparities, adaptive margin-based loss functions [ 144 , 194 , 204 ] have
een introduced, achieving improvements in both average performance and racial performance
isparity. Additionally, various studies have proposed methods based on adversarial debiasing [ 98 ],
nd knowledge distillation [ 71 ] to decrease the high mutual information between facial identity
nd racial features, thereby enhancing the effectiveness of DCNN-based face recognition meth-
ds on different racial groups. Furthermore, domain adaptation strategies [ 193 ] have been applied
pecifically to minimise performance gaps between different racial groups. All of the mentioned
ethods performance is presented in a summary table to compare the relative performance on the
FW dataset [ 191 ] (Table 3 ) using different training sets, detailed in Section 3 . 

.4 Face Verification and Identification 

he overarching concept of face recognition , whereby an identity confirmation decision is made for
 given subject based on facial images, can itself be subdivided into two discrete problems:- Face
erification (i.e., one-to-one facial comparison, Section 4.4.1 ) and Face Identification (i.e., one-to-
any facial comparison, Section 4.4.2 ). The underlying algorithms for verification and identifi-

ation often exhibit evaluation bias resulting in performance discrepancies across different racial
roups. We explore the decisions made at this stage of the face recognition pipeline causing evalu-
tion bias contributing to the racial bias, and evaluation methodologies proposed to mitigate such
iases at this stage and aiming to accurately measure both face recognition performance and racial
ias. 

4.4.1 Face Verification. Face Verification refers to one-to-one facial comparison to verify the
dentity of a subject by comparing a hitherto unseen facial image against another a priori image of
he same or different subject. This is commonly used in access control systems for both physical lo-
ations (e.g., government sites and border control) and digital assets (e.g., smart phones and digital
anking applications) hence representing the most common occurrence of a face recognition tech-
ology encountered by the general public in contemporary society. Typically, face verification per-
ormance is measured in terms of accuracy (see Equation ( 2 )) and matching rates (see Equation ( 3 ))
ver pairs of identical/non-identical subject images in order to evaluate the number of correct iden-
ities matches over all the set of all paired images presented. In order to confirm a match, the feature
mbedding vector z tarд e t from a presented unseen subject image instance x tarд e t , and those of a
ubject image x r e f e r e nce held on record a priori , z r e f e r e nce , are compared using a distance or sim-
larity score across the learnt feature embedding space (e.g., cosine similarity). Subsequently, an
 priori thre s hold is used to make a decision on the similarity of z tarд e t ≈ z r e f e r e nce such that a
erified identity can be confirmed or not. Several studies demonstrate significant performance on
ace verification on public benchmark datasets [ 67 , 108 ] where the racial diversity within these
atasets is often limited, biased and overlooked [ 213 ]. Accordingly, the Labelled Faces in-the-wild
LFW) Dataset [ 67 ] contains 13,233 images of 1,680 subjects, and 6,000 specific pairs of images of
ubjects to measure 1:1 verification performance have become widely adopted. Subsequently, prior
ork [ 26 , 190 ] has reached over 99.5 % verification accuracy on LFW. 

4.4.2 Face Identification. Face identification refers to a one-to-many facial comparison to
dentify an unknown facial query image by matching it against a set of known facial images.
rototypically, law enforcement agencies use it to identify suspects in criminal investigations,
rack individuals in public spaces and search for missing persons. The process involves comparing
n obtained query face image x tarд e t with a large database of reference images X en rolm en t . Unlike
ace verification, which is used to verify the identity of a known individual, face identification
s used to identify unknown individuals by matching their facial image to a reference image
ithin the enrolment set for which the identity is known a priori . Face identification tasks
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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an be sub-categorised as either closed-set, when the target is always in the enrolment set
 x tarд e t ∈ X en rolm en t ), or open-set, when the target may or may not be in the enrolment set
 x tarд e t ∈ X en rolm en t or x tarд e t � X en rolm en t ). Whilst the closed-set face identification task is
imited to identifying only the subjects in its enrolment set, the more challenging task of open-set
ace identification is able to determine unknown faces that are not in the enrolment set. In order
o perform a closed-set face identification task, a multi-class classifier is used to identify the target
mage x tarд e t via the use of feature embedding vector z tarд e t over Z en rolm en t . Furthermore, for an
pen-set face identification task an additional threshold becomes necessary in order to ascertain
n unknown target that is not present in the enrolment set. As for face identification, [ 77 ] provides
wo large-scale face identification benchmark datasets under various imaging conditions. 

Furthermore, [ 175 ] defines evaluation bias when the benchmark dataset used to post-training
erformance evaluation is not accurately representative of the target population (in deployment).
he most common face recognition benchmark datasets [ 51 , 67 ] illustrate examples of such eval-
ation bias, encouraging the development of models that only perform well on the specific racial
roupings as the per distribution of the dataset (see Section 4.1 ). Evaluation bias is also related
o the decisions made at this stage of the face recognition pipeline, including pairing selection,
hreshold optimisation, distance and normalisation functions. For example, the selected threshold
an vary across datasets, and final model performance is often susceptible to the changes in these
hresholds [ 100 ]. Studies have found that a single fixed threshold often causes higher variance
cross demographic groups than an adaptive threshold per-group threshold [ 100 ]. Another exam-
le, [ 21 ], investigates template-based face verification and identification and the effects of template
ize, negative set construction and classifier fusion on performance. They find that performance is
ighly dependent on the number of images available in a template. Subsequently, [ 88 ] compares
he accuracy for African-Americans and Caucasians, in a scenario in which a fixed decision thresh-
ld is used for all subjects only to find that African-Americans have a higher FMR and Caucasians
ave a higher FNMR. 
Accordingly, many studies provide verification protocols and a new set of pairings based on

acial groupings to address racial bias. For example, the following study [ 193 ] released the RFW
ataset with a similar protocol to LFW [ 67 ] with the same number (6,000) of pairings for each of
he four racial groups African, Asian, Caucasian, Indian with separate thresholds. Another study
 210 ] annotates RFW for face verification and VGGFace2 for face identification with facial pheno-
ype attributes to measure racial bias. Moreover, [ 29 ] proposes the Adversarial Gender De-biasing
lgorithm (AGENDA) to train a shallow network that removes the gender information of the em-
eddings extracted from a pre-trained network. The authors of [ 27 ] extend this work with PASS
o deal with any sensitive attribute and proposed a novel discriminator training strategy. Subse-
uently, [ 180 ] (2020a) proposed the Fair Template Comparison (FTC) method, which replaces the
omputation of the cosine similarity score by an additional shallow neural network trained using
ross-entropy loss, with a fairness penalisation and L2 penalty term to prevent over-fitting. While
his method reduces model bias, it results in an overall decrease in accuracy and requires training
nd tuning of the shallow neural network. Another work, [ 154 ], proposes a group-specific thresh-
ld (GST) in which the sensitive attributes themselves define its calibration sets. Another study,
 178 ] proposes the Fair Score Normalisation (FSN) method, which is essentially GST with unsu-
ervised clusters. FSN normalises the scores by requiring the model FMRs across unsupervised
lusters to be the same predefined global FMR. Salvador, [ 160 ] proposes a Fairness Calibration
FairCal) method that applies the K-means algorithm to the image feature representation vectors

and makes partitions of the embedding space into K clusters. For each set, it calculates separate
alibration map scores to cluster-conditional probabilities of the set. If the pair of images belong
o the same subject cluster, the algorithm uses the score; if not, it uses the weighted average of
ACM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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he calibrated scores in each cluster of corresponding image features. Consequently, they achieve
etter overall accuracy, reducing the discrepancy in the FMRs while not requiring the use of the
ensitive attribute. 

Similar to face verification, open-set face identification requires a threshold to report a match or
on-matched decision over test target imagery. Accordingly, [ 88 ], highlight the importance of two
ypes of errors in face identification false-non-matched identification and false-matched identifica-
ion together with their dependency on a threshold that defines the minimum similarity required
o report a match. Furthermore, [ 210 ] perform closed-set identification on the VGGFace2 test set
nd show that performance difference between facial phenotypes is much smaller when compared
o the face verification results. However, the study is unable to have the same proportion for each
ttribute, and does not measure open-set face identification. Consequently, there is a need for
he design and application of open-set tests for face identification using more diverse benchmark
atasets and novel evaluation strategies to measure racial bias robustly under varying conditions.
Designing an ideal evaluation strategy is yet another crucial step in the face recognition pro-

essing pipeline. This step becomes particularly important in order to address racial bias within
ace recognition, as every decision made at this stage can have a significant impact on the overall
erformance and performance across different groups. In each decision, whether related to veri-
cation or identification tasks, there is a risk of misguiding the direction of research, particularly
ith regards to the development of face representation models, which can result in increased racial

ias. Accordingly, we summarise the related literature addressing alternative evaluation methods
ithin this stage and illustrate the corresponding stage and source of bias in Figure 3 . 

 Conclusions 

e provide a comprehensive critical review of research on racial bias within face recognition.
irstly, we discuss the racial bias problem definition formalising the notions of the face recognition
valuation process and elucidate the prominent fairness criteria associated with face recognition.
ubsequently, we highlight the racial grouping requirement of current fairness criteria and dis-
uss standard race and race-related grouping terminology under three categories; race, skin tone
nd facial phenotypes and compare the most prominent grouping strategies across face recogni-
ion datasets. The high reliance of prior work on racial categories brings additional challenges as
he race concept is defined and understood via the influence of pre-existing prejudices and dis-
riminatory ideologies. Furthermore, skin tone remains only one trait of a comprehensive and
ulti-faceted race concept. Although a broader facial phenotype approach provides a more objec-

ive and granular evaluation strategy, ensuring that racial interpretations are not reduced to only
acial phenotypes whilst also considering the broader context of historical and social factors, they
emain important and under-explored research topics within the broader goal of achieving more
ccurate and fairer face recognition performance across increasingly more diverse populations. 

Furthermore, we explore the contemporary automated facial recognition multiple-stage pro-
essing pipeline providing references to related work in the literature. In each stage, we cover
he outline with a related baseline, standard procedures, a potential source of bias that can ex-
cerbate racial bias and bias mitigation solutions. Firstly, the image acquisition stage consists of
ources of bias ( imagery bias, dataset bias ) that can affect the accuracy and fairness of face recog-
ition systems. Such sources of bias within this initial stage will be transferred into the following
tages and amplify racial bias in the final performance. Secondly, we consider the face localisa-
ion stage in terms of racial bias, where there is little attention indicating the existence of racially
isparate performance, but further investigation is explicitly needed targeting racial bias within
ace detection itself. Thirdly, we review the most fundamental works spanning the central stage
f the face recognition pipeline, face representation , under three sub-genres:- mutual information
CM Comput. Surv., Vol. 57, No. 4, Article 105. Publication date: December 2024. 
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itigation, loss function-based mitigation, and domain adaptation-based mitigation, providing an
xtensive supporting performance comparison across the RFW dataset. Finally, we investigate the
nal decision-making of the face recognition pipeline, face verification and identification and re-
eal the impact of decision-making within this stage on overall and group-wise face recognition
erformance. 
Overall we observe that racial bias is present at each and every technical stage of the face recog-

ition pipeline such that the cumulative effect remains under-explored mainly in the literature.
urthermore, we observe continued bias within the evaluation strategies employed to measure
he presence of this bias themselves that directly contradict the technological needs of a modern,
iverse global society. 
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