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a b s t r a c t 

The growing integration of Information and Communica- 

tion Technology into Operational Technology environments 

in electrical substations exposes them to new cybersecu- 

rity threats. This paper presents a comprehensive dataset 

of substation traffic, aimed at improving the training and 

benchmarking of Intrusion Detection Systems (IDS) installed 

in these facilities that are based on machine learning tech- 

niques. The dataset includes raw network captures and flows 

from real substations, filtered and anonymized to ensure pri- 

vacy. It covers the main protocols and standards used in sub- 

station environments: IEC61850, IEC104, NTP, and PTP. Ad- 

ditionally, the dataset includes traces obtained during sev- 

eral cyberattacks, which were simulated in a controlled lab- 

oratory environment, providing a rich resource for develop- 

ing and testing machine learning models for cybersecurity 

applications in substations. A set of complementary tools 

for dataset creation and preprocessing are also included to 

standardize the methodology, ensuring consistency and re- 

producibility. In summary, the dataset addresses the critical 

need for high-quality, targeted data for tuning IDS at electri- 
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cal substations and contributes to the advancement of secure 

and reliable power distribution networks. 

© 2024 The Author(s). Published by Elsevier Inc. 
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pecifications Table 

Subject Artificial Intelligence 

Specific subject area This work focuses on using machine learning to enhance intrusion detection 

systems for cybersecurity in electrical substations. 

Type of data Network captures: Raw and Processed 

Data collection Data was collected from two real substations in Ukraine and Spain by 

capturing network traffic using embedded software and tcpdump over a 

seven-day period. Additionally, cyberattack traces were generated in a 

controlled lab environment using testbeds simulating attacks such as Denial of 

Service, packet flooding, fuzzing, and replay. The data was filtered, 

anonymized, and processed to extract relevant features using scripts, ensuring 

privacy and consistency for machine learning model training and testing. 

Data source location Data was obtained from: 

Real electrical substation located in Iltsi (Ukraine) 

Real electrical substation located in Granada (Spain) 

Laboratory testbeds located in Zaragoza (Spain). 

The data is available on Zenodo: 10.5281/zenodo.13898982 

Data accessibility Repository name: Dataset to Train Intrusion Detection Systems based on 

Machine Learning Models for Electrical Substations 

Data identification number: 10.5281/zenodo.13898982 

Direct URL to data: 10.5281/zenodo.13898982 

The data is accompanied by a code repository for processing: 

https://github.com/esguti/cybersecurity-datasets/ 

Related research article 

. Value of the Data 

• Training and Benchmarking ML Models : Researchers can use the dataset to train machine

learning models for tasks such as intrusion and anomaly detection in substation environ-

ments. Given the scarcity of publicly available datasets based on real substation traffic [ 1 , 2 ],

this dataset fills a critical gap, providing realistic data that faithfully reflects actual operating

conditions. It enables the benchmarking of multiple models, allowing researchers to evalu-

ate and compare their accuracy, reliability, and robustness under the same conditions. This

helps develop more effective machine learning algorithms, improving the overall security and

resilience of substation systems against cyber threats. 

• Feature Engineering and Algorithm Development : The dataset provides raw PCAP files (network

captures), allowing researchers to perform custom preprocessing and feature extraction. This

flexibility supports the development of new algorithms designed to detect specific threats or

improve existing detection methods. 

• Standardize the process of files : The dataset is accompanied by a set of scripts specifically de-

signed to standardize the processing of the files in the dataset. These scripts are available

in the repository [ 3 ]. This standardization is essential given the notable absence of a docu-

mented methodology for processing such files in the existing literature. 

• Extending to Other Critical Infrastructure : While the dataset primarily focuses on electrical sub-

stations, it can be adapted for research in other critical infrastructure scenarios, such as water

treatment plants or transportation systems, helping to generalize solutions across sectors. 

• Collaborative Studies and Comparative Analysis : Researchers can use the dataset to conduct

collaborative studies, compare results, and validate findings with other datasets, fostering in-

novation and improving overall cybersecurity practices. 

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.5281/zenodo.13898982
https://doi.org/10.5281/zenodo.13898982
https://doi.org/10.5281/zenodo.13898982
https://github.com/esguti/cybersecurity-datasets/
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2. Background 

Substations play a fundamental role in the electrical grid. They are responsible for convert-

ing electrical voltage to levels suitable for transmission and distribution, manage system protec-

tion and interconnection to keep the network grid stable and secure, and support fault isolation

and maintenance through sophisticated switching operations. The digitalization of substations,

through standards such as IEC61850 [ 4 ] and IEC60870-5-104 [ 5 ] (also known as IEC104), is es-

sential for communication and automation in electrical substations, but introduces new security

problems [ 6,7 ]. 

Substations are typically organized into three levels: Station, Bay , and Process , connected by

the Station and Process bus (see Fig. 1 ). Each level is explained in more detail below. 

The Station Level is responsible for monitoring, controlling, and communicating with exter-

nal systems such as control centers and other substations. Typical protocols used at this level

are IEC104, Network Time Protocol (NTP), and Precision Time Protocol (PTP). This level typically

includes: a Supervisory Control and Data Acquisition (SCADA) system for real-time monitoring

and control of the entire substation through a Remote Terminal Unit (RTU); a Human-Machine

Interface (HMI) that allows operators to interact with the substation control systems, providing

graphical displays of operations and controls; other servers and workstations that host software

applications for data processing, visualization, and control; time synchronization servers; and a

router to connect to the control center. 

The Bay Level is responsible for the control and protection of individual sections (or “bays”)

of the substation, i.e., transformers, feeders, and busbars. It executes control commands and pro-

tection algorithms, and includes the following components: Intelligent Electronic Devices (IEDs),

responsible for controlling specific bays; protection relays capable of detecting faults and initi-

ating corresponding protective actions (e.g., tripping a circuit breaker); and control panels and a

local HMI, for operation and control of bay equipment. 

The Process Level directly interacts with the physical electrical equipment. It performs real-

time data acquisition from sensors and actuators and sends control commands to the primary

equipment (e.g., transformers and circuit breakers). It may include multiple merging units, which

digitize the electrical signal and share these measurements via the Sampled Values protocol

(defined by IEC61850). 

2.1. Substation communication protocols: IEC61850 and IEC104 

IEC61850 is a comprehensive standard designed to modernize substation automation,

emphasizing interoperability and open system architectures. It enables seamless integration

between devices from different manufacturers and supports real-time communication and data

modeling within substations. This standard uses an object-oriented approach to represent each

device as a collection of logical nodes, facilitating efficient performance even in complex and

large-scale environments. It also includes the definition of several network protocols. In partic-

ular: Manufacturing Message Specification (MMS), which is used for client-server communication

between IEDs and control systems, allowing the exchange of data, control commands, and

status information in real time via TCP/IP; Generic Object Oriented Substation Event (GOOSE),

which is designed to support real-time protection and automation functions and has very strict

delay constraints (3 milliseconds in some cases), so it is sent directly over Ethernet. Finally,

Sampled Values (SV) is used to transmit digitized analog data, such as current and voltage mea-

surements, from merging units to protective relays and other IEDs. Like GOOSE, it is sent over

Ethernet. 

IEC104 extends the IEC60870-5 standard to include network access via Ethernet, focusing on

remote control and monitoring of substations. It is especially useful for telecontrol tasks, using

the standard TCP/IP stack to leverage existing network infrastructures. 
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Fig. 1. Substation architecture diagram. 
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Table 1 

Attacks included in the testbed traces. 

Attack IEC104 IEC61850 

DoS 
√ 

Packet flooding 
√ √ 

Fuzzing 
√ √ 

Packet starvation 
√ 

NTP DoS 
√ 

PTP attack 
√ 

Port scanning 
√ 

PitM 

√ 

Replay 
√ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Data Description 

The core of the dataset consists of network traffic captures and flow files. The content of each

file is self-described in its name, which is composed of: 

• file type : it can be captured61850 or captured104 , depending on whether it contains IEC61850

or IEC104 protocol captures; 

• attack : it can have no attacks ( attackfree ) or a specific attack name (see Table 1 ); 

• function : optionally, if there are additional details about the captured functionality ( normal-

fault ) or specific protocol capture (PTP); and 

• file extension : it can be PCAP (network capture) or CSV (flow file). 

Additionally, two file types have been added: one containing all the features found in the CSV

files ( headers_[iec104|iec61850]_all.txt ) and another with a selection of relevant features ( head-

ers_[iec104|iec61850].txt ) used in the example described in the section “Illustrative Example”. All

these files can be found in [ 8 ] and are released under the CC BY-NC-SA 4.0 license [ 9 ]. 

The dataset is accompanied by a set of scripts specifically designed to standardize the pro-

cessing of dataset files, available in our software repository [ 3 ] under the GNU/GPLv3 license

[ 10 ]. The scripts are organized into two folders: 

– ids : contains the Python scripts for running the machine learning algorithms to test the

datasets. 

– tools : tools to process the dataset files. 

4. Experimental Design, Materials and Methods 

The dataset provides operational data collected from two substations. The data obtained from

the first substation includes frames corresponding to the IEC104 and NTP protocol. The second

substation provided data using IEC61850 standard and PTP. We will call this data “real substation

traces” (see section “Real Substation Traces”). In addition, the dataset also contains attack traces.

To obtain them, a testbed with specific hardware has been implemented in our laboratory. We

will call them “testbed traces” (see section “Testbed Traces”). 

4.1. Real substation traces 

These traces were obtained in two real substations. Specifically, the IEC104 data belongs to a

facility located in Iltsi (Ukraine) and operated by JSC (“Prykarpattyaoblenergo”) within regional

power distribution networks with a capacity of 110/35/10 kV, while the IEC61850 data belongs

to a substation placed in Granada (Spain), which houses two 30 MVA transformers operating at

66/20 kV and contains two 20 kV bars with a total of 14 output lines (7 per busbar), supply-

ing electricity to several municipalities. For confidentiality reasons, we cannot disclose internal

schematics of the substations. 
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t  
The IEC104 and IEC61850 data captures correspond to a seven-day period, spanning 24 h each

ay, within the internal network of the Iltsi (for IEC104) and Granada (for IEC61850) substations.

he traffic was filtered to include only IEC104, IEC61850, PTP and NTP protocols. The files were

nonymized, and in the case of IEC104, also processed to obtain a listing of the TCP connections.

he resulting files are called flows and are stored in CSV files. 

.2. Testbed traces 

To obtain attack traces, it was necessary to perform attack simulations in a controlled lab-

ratory environment, since conducting these tests in real substations is infeasible due to the

ritical nature of the infrastructure. In this sense, laboratory simulators provide a safe and con-

rolled environment to test and analyze the effects of various cyberattack scenarios, avoiding any

eal-world consequences. The attack traces have been obtained using two specifically prepared

est environments: the IEC104 and IEC61850 testbeds. 

The IEC104 testbed (detailed in Fig. 2 a) consists of five virtual machines: two of them sim-

late specific industrial devices (specifically, an RTU and a Programmable Logic Controller or

LC), while the remaining ones correspond to the networking infrastructure: an NTP server and

 VyOS [ 11 ] router, and finally, a machine controlled by the attacker. All components are con-

ected to the same local network. 

The IEC61850 testbed (in Fig. 2 b) consists of two virtual machines (one controlled by the

ttacker and a GOOSE/SV simulator), two embedded devices (a GOOSE/SV capturer and a PTP

apturer), and four IEDs. These devices are interconnected through two different networks. The

rst one is dedicated to the transmission of power grid control packets, including GOOSE, SV,

nd MMS protocols, while the second one carries PTP messages for time synchronization pur-

oses. The IEDs protect the substation equipment against overcurrent faults. They monitor SV

rames, which carry samples of electrical signals, for anomalies indicative of failure. Initially,

he system operates for about 30 0 0 milliseconds without faults, followed by a “line to ground”

ault (known as an AG fault) which triggers the protection mechanism and opens the line. This

cenario is then repeated under the condition of a cyberattack to observe the impact on the

rotection process. 

Table 1 summarizes the attacks included in this dataset, specifying the testbed where they

ere generated. Each of them is stored in a separate file for easy labeling. 

DoS refers to a DoS attack against the PLC (IEC104 testbed), where numerous TCP SYN pack-

ts are sent skipping the subsequent SYN + ACK response. The packet flooding attack in the

EC61850 dataset floods the Bus Differential Protection (BDP) with packets, thereby inducing a

ault within the substation electrical network and disrupting the flow of electricity. In the IEC104

ataset, it floods the RTU with messages from the PLC. In the fuzzing attack, random commands

re sent to cause failures in the RTU (IEC104 dataset) or the BDP (IEC61850 dataset). During the

acket starvation attack, the RTU is overwhelmed with connections until it stops responding.

imilarly, NTP DoS also involves attacking the NTP server to disrupt the operation of the ser-

ice. In the PTP attack , a new time source is introduced into the network, which disrupts the

aster clock and messes up the time settings. The Port scanning attack involves reconnaissance

ttack on the PLC, RTU, NTP server, and VyOS router (IEC104 dataset). In the PitM attack (IEC104

ataset), ARP poisoning is conducted to isolate and drop traffic between the RTU and the PLC.

inally, the Replay attack tricks an IED into failing based on a repeated ( replayed ) packet, leading

o operational issues such as opening an electrical circuit breaker at an unexpected time. 

.3. Preprocessing 

The PCAP files available in the dataset are appropriately filtered and anonymized to prevent

he disclosure of sensitive information such as topology or equipment models, which could be
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Fig. 2. Testbeds used to generate attack traces. 
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sed to attack the critical infrastructure used for the creation of the dataset. This process is

ollowed by a feature extraction process, during which CSV files are generated. 

Filtering was performed using tshark [ 12 ]. Due to issues with handling large files, we

rst split the files into 10GB chunks, which were then merged after preprocessing. Splitting

nd filtering were performed using the filter_and_split.sh script, and subsequent merging was

erformed using the merge_pcap.sh script. Both scripts are available in our software repository

 3 ]. After this, the anonymization process is performed using the script anonymize.sh , which is

ased on Sanicap [ 13 ]. 

The final stage in the preprocessing process is feature extraction. Below, we provide an illus-

rative example of feature selection and extraction. Additionally, our dataset provides the original

CAP files to allow users to perform their custom feature processing. 

The IEC104 protocol operates on top of the transport layer (specifically, over TCP/IP protocol),

nlike the IEC61850 protocol that operates on top of the link layer. This disparity requires the

se of distinct features for training algorithms. To extract TCP/IP flows relevant to IEC104, we

ave used the CICFlowMeter [ 14 ] tool. Additionally, tshark was used to extract crucial features

rom IEC61850 frames. Our dataset provides scripts for feature extraction in each protocol: gen-

ratecsv_iec104.sh and generatecsv_iec61850.sh . A final step in the feature extraction process is

abeling: an additional column, called “Label”, is appended to each CSV file and stores the attack

ype, or lack thereof, which is derived from the file name. 

.4. Illustrative example 

An example of usage is provided in the Python script pycaret_ids.py , created to facilitate the

xecution and comparison of various machine learning algorithms, specifically those used for

lassification tasks. In particular, this script leverages the PyCaret [ 15 ] library, an open-source

ool that simplifies and automates the process of developing machine learning models. 

The script reads all the CSV files from the dataset, using the “Label” column to categorize the

ata, removes invalid values, and runs several classification models to compare them. Finally, it

tores the model with the best results found for future predictions. 

We have employed a variety of machine learning models for our analysis, covering multiple

lgorithmic categories: Linear Models (Logistic Regression and Ridge Classifier), Nearest Neighbors

K Neighbors Classifier ), Support Vector Machines (Linear Support Vector Machine), Decision Trees

nd Ensembles (Decision Tree Classifier, Random Forest Classifier, Extra Trees Classifier, Gradi-

nt Boosting Classifier, Light Gradient Boosting Machine and Extreme Gradient Boosting), Naive

ayes (Naive Bayes Classifier), Discriminant Analysis (Linear Discriminant Analysis and Quadratic

iscriminant Analysis) and Dummy Classifier (just for benchmarking). This selection allowed us

o explore a wide range of approaches to identify the most effective model for each anomaly

etection task. 

The Area Under the ROC Curve (AUC) is often recommended for comparing models [ 16 ], par-

icularly with imbalanced datasets, as it provides a balanced view of performance across all

hresholds. F1-Score (F1) is also very valuable in such scenarios, as it balances the importance of

recision (Prec.) and Recall. Furthermore, the Matthews’s Correlation Coefficient (MCC) is benefi-

ial for a comprehensive evaluation of classifiers, considering all aspects of the confusion matrix.

sing these three metrics, we can conclude that the Linear Discriminant Analysis model per-

orms better than the rest of the models. The table also shows the Accuracy, the Cohen’s kappa

oefficient ( κ), and the Training Time (in seconds; TT). 

We ran this script on subsets of our dataset to show how it facilitates model comparison. We

ave employed zscore normalization and StratifiedKFold validation, with a 70 % partition for the

raining data. These experiments were run on a machine with two Intel Xeon Gold @2.20GHz

nd 128GB of RAM. For IEC104, all available traces have been used to detect the attacks de-

cribed in Table 1 (multiclass classification). For IEC61850, a single attack (binary classification)

as been carried out to illustrate another type of classification. More details and additional ex-

mples can be found in [ 8 ]. 
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Table 2 

Comparison of different machine learning models evaluating IEC104 on our dataset. The best results for each metric 

have been highlighted in bold with an orange background. 

Table 3 

Comparison of different machine learning models evaluating IEC61850 on our dataset. The best results for each metric 

have been highlighted in bold with an orange background. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 provides the results for the IEC104 data. The results indicate that classifier models

such as Extra Trees and Random Forest achieve an excellent balance between predictive perfor-

mance and training time, positioning them as the most suitable for real-world applications in

this context. In particular, the Extra Trees classifier exhibited the highest accuracy (0.8217) and

competitive results in AUC (0.8297), with a moderate training time of 2.620 seconds. Similarly,

Random Forest performed well in both AUC (0.9127) and F1-score (0.8059), while maintaining a

relatively short training time (1.989 s), making it a strong candidate for practical deployment. 

Likewise, Table 3 illustrates the detection of fuzzy attacks on the IEC61850 dataset. LightGBM

and Extreme Gradient Boosting offer the best predictive performance, although they incur higher

computational costs. Linear Discriminant Analysis offers a solid balance between performance

and efficiency, making it a good choice in situations where fast training is essential. Models

such as Ridge Classifier and SVM underperform, while simple models such as Naive Bayes and

K-Neighbors are also viable alternatives in this context. 
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