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ABSTRACT: Classical reaction barriers in density-functional theory are
considered from the perspective of the density-fixed adiabatic connection. A
‘reaction adiabatic-connection integrand’, , is introduced, where λ is the

electron−electron interaction strength, for which d
0

1
equals the barrier,

meaning the barrier can be easily visualized as the area under a plot of vs λ.
For five chemical reactions, plots of reference , calculated from Lieb
maximizations at the coupled-cluster level of theory, are compared with
approximate , calculated from common exchange−correlation functionals
using coordinate scaling, for coupled-cluster densities. The comparison
provides a simple way to visualize and understand functional-driven errors and
trends in barriers from approximate functionals, while allowing a clean
separation of the role of exchange and correlation contributions to the barrier.
Specifically, the accuracy of 0 is determined entirely by the accuracy of the exchange functional, while the shape of is
determined entirely by the correlation functional. The results clearly illustrate why the optimal amount of exact (orbital) exchange in
hybrid functionals differs between reactions, including forward and reverse directions in the same reaction, and hence why simply
introducing larger amounts of exact exchange may not be a reliable approach for improving barriers. Instead, the shape of must be
captured more accurately through more accurate correlation functionals, and the numerical data presented may be useful for this
purpose. Density-driven errors are then considered, and possible cancellation with functional-driven errors in barriers�noted in
prior studies when Hartree−Fock densities are used�is illustrated from the perspective of .

1. INTRODUCTION
Kohn−Sham density-functional theory1 (DFT) is the most
widely used electronic-structure method, achieving remarkable
accuracy�considering its relatively low cost�for a broad range
of properties and quantities.2−4 The accuracy of a practical DFT
calculation is governed by the accuracy of the exchange−
correlation energy functional, Exc[ρ], where ρ is the electron
density. Numerous density functional-approximations (DFAs)
to this quantity have been proposed.

One chemical quantity that remains a particular challenge for
DFAs, especially semilocal approximations, is the classical
reaction barrier,

= ‡ n
r

r r

(1)

where ‡ is the total energy (electronic and nuclear repulsion) of
the transition state (‡) and the summation is over reactants (r)
with total energies, r, weighted by their stoichiometries, nr. We
shall, hereafter, simply refer to it as a “barrier”. It is well
established that DFAs often significantly underestimate barriers
and this deficiency has been analyzed in terms of the one-
electron self-interaction error5−18 and many-electron self-
interaction or delocalization errors.19−23 A common approach

for improving the accuracy of barriers from DFAs is to increase
the amount of exact (orbital) exchange,13,24 to yield hybrid
DFAs. Alternatively, the use of explicit self-interaction
corrections has been explored.10,11,16−18,25,26

While the perspectives of self-interaction and delocalization
errors give important insight into how errors in barriers arise,
they do not distinguish clearly between the role of errors in the
exchange and correlation components of Exc[ρ]. The aim of the
present work is to consider barriers in DFT from a new
perspective, namely that of the density-fixed adiabatic
connection,27−30 which does clearly distinguish the effects of
exchange and correlation. This approach, which connects the
Kohn−Sham noninteracting electronic system (λ = 0) with the
physical interacting system (λ = 1) through a series of partially
interacting systems with electron−electron interaction strength,
λ, with the same density, underpins many important aspects of
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DFT, including hybrid functionals31 and the perturbation theory
of Görling and Levy.32

We commence in Section 2 by presenting the necessary
theory and computational details. Starting from the Levy
constrained-search variation principle,33 we define the ex-
change−correlation integrand, [ ]xc, , the accurate calcula-
tion of which requires an accurate wave function for interaction
strength λ. We then show how maximization of the Lieb
functional34 using a correlated electronic-structure method can
yield such a wave function and hence an accurate reference

[ ]xc, . We also describe how [ ]xc, can be determined for
an arbitrary DFA by coordinate scaling.35−38 We then describe
how we compute Kohn−Sham barriers, and how they relate to

[ ]xc, , and we distinguish between functional- and density-
driven errors.39

In Section 3, we present plots of [ ]xc, , as a function of λ,
for the reactants and transition state in a simple reaction,
comparing accurate reference plots, determined from Lieb
maximizations using coupled-cluster singles-doubles-perturba-
tive-triples (CCSD(T)) wave functions,40 with plots for
common DFAs, determined using coordinate scaling for relaxed
(Lagrangian) CCSD(T) densities. Consideration of the
associated barriers leads us to define a ‘reaction adiabatic-
connection integrand’, , involving the difference between

[ ]xc, of the transition state and reactants, whose integral
between λ = 0 and λ = 1 equals the barrier.

In Section 4, plots of reference CCSD(T) , as a function of
λ, are compared with those from approximate DFAs for five
chemical reactions, providing insight into the dependence on
DFA, the role of exchange and correlation contributions, the
effect of adding an amount of exact exchange to yield hybrid
functionals, the differences between forward and reverse
reactions, and the distinction between functional- and density-
driven errors. Finally, some conclusions are presented in Section
5.

2. THEORY AND COMPUTATIONAL DETAILS
2.1. Levy Constrained-Search Functional. Consider an

N-electron system with the Hamiltonian,

[ ] = + +H v T W v r( )
i

i
(2)

where T̂ is the kinetic-energy operator, Ŵ is the electron−
electron repulsion operator, and v is the external potential. The
ground-state electronic energy at a given interaction strength, λ
∈ [0, 1], is given by the Rayleigh−Ritz variation principle as

[ ] = | [ ]|E v H vinf
N (3)

where N is the set of all L2-normalized, antisymmetric N-
electron wave functions with a finite kinetic energy. The ground-
state energy in eq 3 is well-defined for all potentials v ∈ χ* with
χ* = L3/2 + L∞, a vector space that includes all Coulomb
potentials. A minimizing wave function may or may not exist in
eq 3, depending on whether the external potential v supports an
N-electron ground state.

Following Levy,33 we may express the ground-state energy of
eq 3 in the form

[ ] = [ [ ] + ]E v F vr r rinf ( ) ( )d
N (4)

where = L LN
3 1 is the set of all N-representable

densities and

[ ] = +F T Wmin
(5)

is the constrained-search expression for the universal density
functional. For each interaction strength λ and each N , one
or more minimizing wave functions exist in the constrained
search and we may therefore write the universal density
functional as an expectation value

[ ] = | + |F T W (6)

where Ψλ
ρ is one of the minimizing wave functions of eq 5.

2.2. Kohn−Sham Decomposition and Adiabatic Con-
nection. Differentiating eq 6 with respect to λ and applying the
Hellmann−Feynman theorem, we arrive at the adiabatic-
connection expression for the universal density functional,27−30

[ ] = [ ] + | |F T W ds
0 (7)

where Ts[ρ] = F0[ρ] is the noninteracting kinetic energy
functional. Introducing the classical Coulomb (Hartree) energy
functional, EJ[ρ], and the exchange−correlation integrand

[ ] = | | [ ]W Exc, J (8)

we obtain from eq 7 the Kohn−Sham decomposition of the
universal density functional,1

[ ] = [ ] + [ ] + [ ]F T E Es J xc, (9)

where the exchange−correlation energy at interaction strength λ
is given by

[ ] = [ ]E dxc,
0

xc, (10)

Evaluation of Exc,λ[ρ] at λ = 1 yields the familiar exchange−
correlation energy of the interacting system, Exc[ρ]. The
exchange−correlation energy at interaction strength λ may be
further decomposed into exchange and correlation energies

[ ] = [ ] + [ ]E E Exc, x c, (11)

where the exchange energy, Ex[ρ], is obtained by evaluating eq 8
at λ = 0, that is, using the noninteracting wave function,

[ ] = [ ] = | | [ ]E W Ex xc,0 0 0 J (12)

and the remainder, Ec,λ[ρ] = Exc,λ[ρ] − λ Ex[ρ], is the correlation
energy at interaction strength λ,

[ ] = [ ] [ ]E E( )dc,
0

xc, x (13)

Thus, while the exchange energy represents the (usually
dominant) linear dependence of the exchange−correlation
energy on the interaction strength, all (usually small) nonlinear
dependence is contained in the correlation energy.

The exchange−correlation integrand, [ ]xc, in eq 8, is the
central adiabatic-connection quantity in the present work. Our
first task is to evaluate this quantity accurately, which requires us
to compute Ψλ

ρ using high-precision quantum chemistry. This, in
turn, requires a consideration of the Lieb functional and its
maximization.34

2.3. Lieb Functional. The (constrained-search) universal
density functional in eq 5 is not directly amenable to calculation.
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There exists, however, an alternative formulation of the universal
density functional, which is well suited to calculation and which
yields the minimizing wave function Ψλ

ρ, thereby enabling the
calculation of the desired [ ]xc, in eq 8.

Noting that the ground-state electronic energy Eλ[v] is
continuous and concave in the external potential, Lieb
concluded that there exists a (convex) universal density
functional F̃λ[ρ] such that34

[ ] = [ [ ] ]
*

F E v vr r rsup ( ) ( )d
v (14)

[ ] = [ [ ] + ]E v F vr r rinf ( ) ( )d
(15)

where F̃λ[ρ] ≤ Fλ[ρ] for each N , with equality for all pure-
state v-representable densities.34 We note in passing that, if the
constrained search33 in eq 5 is extended to include also a search
over mixed states, then full equality with the Lieb functional is
obtained.34 Note also that, if Eλ[v] of eq 3 is substituted in eq 14,
then the external potential of the Lieb functional plays the role of
a Lagrangemultiplier in an unconstrainedminimax optimization
of the universal density functional.

For a v-representable density ρ, the supremum in the Lieb
functional of eq 14 can be attained and there exists a potential vλ

ρ

such that

[ ] = [ ]F E v vr r r( ) ( )d (16)

The optimization to yield the maximizing potential vλ
ρ can be

carried out practically41−44 by choosing a correlated electronic-
structure method to calculate Eλ[v] in eq 14 and setting the
density ρ in eq 14 equal to the interacting density from that
electronic-structure method, for all λ ∈ [0, 1]. Once the
maximizing potential is obtained, the wave function Ψλ

ρ, required
for the evaluation of [ ]xc, in eq 8, can be obtained directly
from the calculation of Eλ[v].
2.4. Reference [ ]xc, from Lieb Maximizations. The

potential in eq 16 depends explicitly on λ and can be
decomposed in the manner used in Kohn−Sham theory,

= + +

+ [ ]

v v v v

v v

r r r r

r r

( ) ( ) (1 ) ( ) (1 ) ( )

( ) ( )

ext J x

c,1 c, (17)

where vext(r) is the external potential due to the nuclei, vJ(r) is
the Coulomb potential from density ρ, vx(r) is the exchange
potential, and the final term corresponds to the difference
between the full correlation potential vc,1(r) and that at the
interaction strength under consideration, vc,λ(r).

To facilitate the optimization in eq 14 with respect to the
potential for a given density ρ, the potential is expanded in a
Gaussian basis as proposed by Wu and Yang,42,45

= + +

+

v v v v

b g

r r r r

r

( ) ( ) (1 ) ( ) (1 ) ( )

( )
t

t t

b, ext J ref

(18)

in which vref(r) is a reference potential evaluated on ρ, which
ensures that vb,λ(r) has the correct asymptotic behavior, while gt
are a set of Gaussian functions with expansion coefficients bt to
be determined. The form of the reference potential employed in
this work is that of the localized Hartree−Fock potential,46

corrected at long-range by an approximate Fukui potential.47

The details of the construction of the reference potential are
given in ref 48.

With the parametrization of the potential in eq 18, the
universal density functional in eq 14 can be calculated by
maximizing the objective function,

[ ] = [ ]G E v vb r r r( ) ( )db b, , , (19)

with respect to variations in the potential-basis coefficients b.
The gradient of eq 19 with respect to these coefficients is given
by42

[ ]
= [ ]

G

b
g

b
r r r r( ) ( ) ( )d

t
tb

,
, (20)

while the second derivative of the objective function with respect
to the potential-basis coefficients is given by42

[ ]
=

G

b b
g g

v

b
r r

r

r
r r( ) ( )

( )

( )
d d

t u
t u

b

b

2
, ,

, (21)

At themaximizing potential vλ
ρ, the iterating density ρb,λ becomes

identical to the input density ρ.
In this work, the objective function is maximized by an

approximate Newton approach49 combined with GDIIS50 as
implemented in the QUEST program.51 This is a second-order
optimization algorithm in which the Hessian is approximated by
the noninteracting Hessian, given by eq 21 at λ = 0.49 Initially,
the basis coefficients of the potential are updated at each
iteration using a backtracking line search and Eλ is evaluated with
the corresponding potential vb,λ, yielding the energy and
iterating density ρb,λ from which the objective function eq 19,
gradient eq 20, and approximate Hessian are constructed. When
the Euclidean norm of the gradient in eq 20 falls below 10−4 a.u.,
the GDIIS algorithm is used to achieve convergence to a final
gradient norm of 10−8 a.u. The use of GDIIS acceleration is
discussed in Appendix A and ensures that very tight convergence
can be achieved at all interaction strengths. At each step, the
approximate Hessian is regularized using the smoothing norm
procedure of ref 52, with a regularisation parameter of 10−5 a.u.

All Lieb maximizations in this work are carried out at the
CCSD(T)40 level of theory in the cc-pCVTZ basis53−56 for λ ∈
[0, 1]. See the Supporting Information for further details. The
same basis set is used for all calculations throughout this work.
The relaxed (Lagrangian) CCSD(T) density57−59 and the wave
function Ψλ

ρ from the λ-interacting CCSD(T) calculation in the
Lieb maximization are used to calculate [ ]xc, in eq 8. We
shall use this as our reference [ ]xc, throughout this work.
2.5. [ ]xc, from Exchange−Correlation Energy

Functionals. For any exchange−correlation functional
Exc[ρ]�exact or approximate�the corresponding integrand

[ ]xc, can be determined from coordinate scaling,35−38

[ ] = [ ]Exc,
2

xc 1/ (22)

where ρ1/λ is the coordinate-scaled density,

=r r( ) ( / )1/
3

(23)

Partitioning Exc[ρ] into exchange and correlation functionals,
and using the fact that the exchange functional satisfies the
coordinate-scaling condition,35

[ ] = [ ]E Ex 1/
1

x (24)
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we obtain

[ ] = [ ] + [ ] +
[ ]

E E
E

2xc, x c 1/
2 c 1/

(25)

The exchange contribution to [ ]xc, is therefore constant in λ
and equal to the exchange energy, in agreement with eqs 10−12.
Any deviation from constancy in [ ]xc, reflects the effect of
electron correlation and arises from second- and higher-order
dependence of the correlation energy on λ.

We use eq 25 to determine [ ]xc, for DFA energy
functionals. The coordinate-scaled correlation functional
Ec[ρ1/λ] can be readily evaluated for a given DFA using the
scheme described in ref 60. In this approach, the ingredients
defining the functional are coordinate scaled to evaluate
Ec[ρ1/λ]; expressions for these quantities may be found in eqs
49−53 of ref 60. Some care is required to ensure accurate
numerical integration of the scaled quantities as λ approaches
zero. In practice, we use a relatively fine numerical quadrature
grid consisting of the order-41 Lebedev angular grid and a radial
component constructed using the scheme of Lindh, Malmqvist,
and Gagliardi61 with a relative error threshold of 10−10 a.u. Once
Ec[ρ1/λ] has been determined, the λ-derivative in the final term
of eq 25 is evaluated by a simple forward finite difference with a
step size of 10−6 in λ.

This procedure has been implemented in the QUEST

program51 and is available for all DFAs in the XCFun62 or
LibXC63 libraries. For a given DFA, the implementation allows
eq 25 to be evaluated for any available density; we consider the
self-consistent Kohn−Sham density of the DFA under study, the
Hartree−Fock density, and the reference CCSD(T) density. For
meta-GGA functionals and functionals containing exact
(orbital) exchange, the evaluation of eq 25 requires a knowledge
of the orbitals corresponding to the density. For the Kohn−
Sham and Hartree−Fock densities, we use the orbitals from
standard self-consistent field calculations. For the reference
CCSD(T) density, the orbitals are obtained from a CCSD(T)
Lieb maximization, as described in Section 2.4, at λ = 0. The
optimizing potential of eq 17 is, in this case, the Kohn−Sham
effective potential vs, yielding Kohn−Sham orbitals and orbital
energies consistent with the CCSD(T) density.
2.6. Kohn−Sham Barriers. Next, consider Kohn−Sham

barriers and how they relate to [ ]xc, . In the Kohn−Sham
decomposition,1 the total energy at interaction strength λ takes
the form

= [{ }] + [ ] + [ ] + [ ] +T E E E Eis ext J xc, nn (26)

where Ts[{φi}] is the noninteracting kinetic energy calculated
f r om t h e o c c u p i e d Kohn− S h am o r b i t a l s φ i ,

[ ] =E vr r r( ) ( )dext is the interaction energy between the
density and the external potential, and Enn is the nuclear
repulsion energy, which depends only on the nuclear
coordinates and charges. Inserting eq 26 into eq 1 and using
eq 10, the barrier at interaction strength λ can be written as

= +C dR
0

Jxc, (27)

where the first term contains the Kohn−Sham contributions to
the barrier that are independent of the interaction strength,

= [{ } ] + [ ] +

[{ } ] + [ ] +

‡ ‡ ‡ ‡C T E E

n T E E

( )

( )
i

i

R s ext nn

r

r
s

r
ext
r r

nn
r

(28)

while the second term contains the exchange−correlation and
Coulomb contributions to the barrier, calculated by interaction-
strength integration over the integrand,

= [ ] + [ ] [ ] + [ ]‡ ‡E n E( )Jxc, xc, J
r

r
xc,

r
J

r

(29)

Note that the use of two superscripts in Eext
‡ [ρ‡] and [ ]Eext

r r in
eq 28 emphasizes that both the density and external potential
depend on the molecular structure.

For a given DFA, we use the QUEST program51 to evaluate the
barrier in eq 27 for the self-consistent Kohn−Sham density of
the DFA under study, the Hartree−Fock density and the
reference CCSD(T) density.

For the self-consistent Kohn−Sham density, the Ts, Eext, and
EJ terms in eqs 28 and 29 are calculated directly from the self-
consistent density and corresponding orbitals. The [ ]xc,
terms in eq 29 are evaluated for the self-consistent density, as
described in Section 2.5, for λ ∈ [0, 1] in steps of 0.05. The
integral in eq 27 is then evaluated numerically using these data.
We have confirmed that, for the systems considered in this work,
the physical barriers (eq 27 for λ = 1) determined in this manner
agree with the conventionally calculated DFA barriers to better
than 0.1 kcal mol−1; the high accuracy follows from the fact that

[ ]xc, is a smooth function of λ.
For the Hartree−Fock density, exactly the same procedure is

followed, except that the Hartree−Fock density and orbitals are
used throughout, instead of self-consistent Kohn−Sham ones.
For the reference CCSD(T) density, we again use the same
procedure, but now use the CCSD(T) density and orbitals from
a CCSD(T) Lieb maximization at λ = 0, throughout.

In addition to DFA barriers, we also calculate Kohn−Sham
barriers purely from CCSD(T) data, which we shall use as
reference barriers throughout this work. To do this, we again
calculate the Ts, Eext, and EJ terms in eqs 28 and 29 directly from
the CCSD(T) density and orbitals from a CCSD(T) Lieb
maximization at λ = 0. However, for [ ]xc, , we use the
reference CCSD(T) values of Section 2.4, numerically
integrating them as above. Physical barriers determined in this
manner agree with standard CCSD(T) barriers�that is, those
obtained without any consideration of DFT�to within 0.2 kcal
mol−1.

It is worth noting that the values of CR and the EJ contribution
to Jxc, are identical for DFA calculations for CCSD(T)
densities and for the reference CCSD(T) calculations. This will
be pertinent in Sections 3 and 4.
2.7. Functional-Driven and Density-Driven Errors. The

flexibility to evaluate [ ]xc, and Kohn−Sham energy
components for various densities (including high-accuracy
reference densities) allows for quantification of two distinct
sources of error: those arising from errors in the density and
those arising from errors in the DFA. Following Kim et al.,39 we
write the error in a given quantity, Q, obtained from a self-
consistent calculation using a DFA, as

= [ ] [ ] = +Q Q Q Q QDFA DFA exact exact D F (30)

where the density-driven error,
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= [ ] [ ]Q Q QD DFA DFA DFA exact (31)

arises from the error in the density when aDFA is used, while the
functional-driven error,

= [ ] [ ]Q Q QF DFA exact exact exact (32)

arises from the error in the DFA when the exact density is used.
In the context of barriers, we note that CR in eq 28 can only have
density-driven errors, whereas Jxc, in eq 29 may carry
functional-driven, as well as density-driven errors.

The main focus of this work will be on functional-driven
errors, although we shall consider density-driven errors in
Section 4.2. We use the reference CCSD(T) densities as a
sufficiently accurate proxy for ρexact in eqs 31 and 32.

3. REACTION ADIABATIC-CONNECTION INTEGRAND
To illustrate the adiabatic connection in the context of a
chemical reaction, Figure 1 presents the reference CCSD(T)
integrand [ ]xc, , as a function of λ, for the reactants and
transition state in the exchange reaction of H with H2 to formH2
and H. These are compared with the corresponding (a)
LDA,64,65 (b) PBE,66 and (c) r2SCAN67 integrands, determined
by evaluating eq 25 for CCSD(T) densities. The difference
between the DFA and reference CCSD(T) curves therefore
quantifies the functional-driven error, eq 32, in [ ]xc, . These
DFAs were chosen as representative of the first, second, and
third rungs, respectively, of Jacob’s Ladder of DFAs.68 The
r2SCAN functional was selected as the representative meta-
GGA because it satisfies a wide range of exact constraints while
overcoming numerical instabilities associated with the original
SCAN functional.69 (We have also reproduced all calculations in
this paper with the TPSS meta-GGA functional70 and the results
are very similar to those of r2SCAN.) We employ reference
geometries from the BH76 set in the GMTKN55 database.71−74

The reference CCSD(T) curve for the H atom is horizontal,
reflecting the fact that there is no electron correlation in a one-
electron system and so [ ] = [ ]Exc, x , see eq 25. By contrast,
the reference curves for H2 and H3 are not horizontal, reflecting
the presence of correlation in these systems. However, neither
curve exhibits a significant curvature, indicating primarily
dynamic correlation, consistent with low-order dependence on
the interaction strength, which can be well described by low-
order Görling−Levy perturbation theory from their non-
interacting Kohn−Sham systems.32,43,44

The LDA curves in Figure 1a are in relatively poor agreement
with the reference CCSD(T) ones, with all three exhibiting
excessive curvature at low λ. For the H atom, the deviation from
horizontal reflects a spurious self-interaction in the LDA
correlation functional. The PBE curves in Figure 1b are a
notable improvement over LDA, although the curve for the H
atom is still not quite horizontal, again reflecting spurious self-
correlation. By contrast, the r2SCAN curve for the H atom in
Figure 1c is horizontal and equal to the reference curve, while
the curves for H2 and H3 resemble those of the PBE functional.
The PBE curve is closest to the reference curve for H3, whereas
r2SCAN is closest for H2.

In order to quantify the functional-driven errors in the
associated barriers, we must compare the DFA barriers
determined for CCSD(T) densities with the reference CCSD-
(T) barriers. From Section 2.6, these DFA and reference barriers
both involve the same CR in eq 28 and the same EJ contribution
to Jxc, in eq 29. Given that the only other contribution to the

barrier in eq 27 arises from [ ]xc, in eq 29, it follows that the
differences between the DFA and reference barriers arise
entirely due to the differences between the black and colored
curves in Figure 1.

Given the relatively subtle differences between the curves in
Figure 1, we might hope to obtain relatively accurate DFA
barriers�in particular, for PBE and r2SCAN. However, when eq
27 is evaluated for the physical system (λ = 1), barriers of −3.0,
3.5, 2.5, and 10.0 kcal mol−1 are obtained for LDA, PBE,
r2SCAN, and CCSD(T), respectively. The DFA barriers are
therefore in very poor agreement with the reference CCSD(T)
barrier.

This simple example illustrates that analysis of the individual
[ ]xc, plots provides limited insight into the associated

Figure 1. [ ]xc, for reactants and transition state of the reaction H +
H2 → H2 + H, as a function of interaction strength λ, for reference
CCSD(T) (black) and (a) LDA (blue), (b) PBE (red), (c) r2SCAN
(purple). All DFA [ ]xc, are calculated for CCSD(T) densities.
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barriers. This is, of course, unsurprising given that the plots
relate to relatively large individual exchange−correlation
energies via eq 10, whereas the barriers relate to relatively
small total-energy differences via eq 1. It is therefore instructive
to instead consider the Jxc, integrand in eq 29 directly. Given
that our interest is in barriers of physical systems (λ = 1), it is
convenient to introduce the function,

= +CR Jxc, (33)

for which

= d1
0

1

(34)

meaning the “area” between the curve and the horizontal axis
=( 0), between λ = 0 and λ = 1, equals the barrier of the

physical system, eq 27 at λ = 1. Note that replacing the upper
integral limit in eq 34 by an arbitrary λ ≠ 1 would not yield
because CR would be incorrectly scaled by λ. We denote a
reaction adiabatic-connection integrand and we investigate its
utility in Section 4.

4. FOR REPRESENTATIVE REACTIONS
The hydrogen transfer reaction set, HTBH38,71 and non-
hydrogen transfer reaction set, NHTBH38,72 of Truhlar and co-
workers have been extensively used to evaluate the performance
of DFAs, often combined in the BH76 set in the GMTKN55
database.71−74 We consider a subset of five of these reactions,
listed in Table 1, performing all calculations at the database

reference geometries. For each reaction, the table presents high-
accuracy benchmarks barriers at the W2-F12 level of theory for
the GMTKN55 database.74,75 Also shown are standard
CCSD(T) barriers. In all cases, the CCSD(T) barriers agree
with the benchmark W2-F12 barriers to better than 1.5 kcal
mol−1, confirming that the CCSD(T)/cc-pCVTZ level of theory
is of sufficient accuracy. Preliminary calculations highlighted the
need for triple excitations to achieve this level of agreement. A
detailed discussion of basis-set convergence of the reaction
barriers at the coupled-cluster level can be found in the
Supporting Information.
4.1. Functional-Driven Errors in and Barriers. We

commence by comparing plots of reference CCSD(T) , eq 33,
as a function of λ, and their associated barriers, eq 34, with those
determined from DFAs for CCSD(T) densities. All terms are
calculated as described in Section 2.6. Differences again quantify
functional-driven errors. Studies76−78 indicate that functional-
driven errors in barriers are typically negative and of significant
magnitude for semilocal DFAs.

4.1.1. H + H2 →H2 + H. First, we revisit the exchange reaction
considered in Section 3. Figure 2 presents the reference
CCSD(T) , compared to approximate for LDA, PBE,
and r2SCAN. Note that the vertical scale is now in kcal mol−1.

The area between the reference CCSD(T) curve and the
horizontal axis is the aforementioned reference barrier of 10.0
kcal mol−1. The LDA curve is significantly below the reference
curve and the negative area/barrier (−3.0 kcal mol−1) is clearly
evident. The PBE and r2SCAN curves more closely resemble the
reference curve, with correspondingly larger areas/barriers,
although errors remain significant; it is clear from the areas that
the PBE barrier (3.5 kcal mol−1) is slightly larger and more
accurate than that of r2SCAN (2.5 kcal mol−1), although both
still strongly underestimate the reference value. Figure 2 clearly
illustrates negative functional-driven errors, consistent with refs
76−78.

As well as providing a simple way to “visualize” the barrier, a
key feature of computed in this manner is that it allows a clean
separation of the role of exchange and correlation contributions
to the barrier, due to the scaling property in eq 25. From eqs 25,
28, 29, and 33, together with the fact that all methods yield the
same value of CR and the same EJ contribution to Jxc, , the
accuracy of 0 (i.e., the lef t-hand points in Figure 2) is determined
entirely by the accuracy of the exchange DFA. The value of 0 in
Figure 2 is strongly underestimated for LDA, somewhat
improved for PBE and improved further for r2SCAN, although
the discrepancy remains significant. By contrast, the shape of is
determined entirely by the correlation DFA. It is clear from Figure 2
that the behavior of LDA correlation under the scaling relation
of eq 25 is poor, reflected by relatively strong curvature in
compared with the CCSD(T) reference curve. For PBE
correlation, is less curved but is still far from parallel to the
reference curve. For r2SCAN correlation, becomes most
parallel to the reference curve.

Interestingly, despite the aforementioned improvements in
both 0 and the shape of from PBE to r2SCAN, the barrier
(area) actually degrades because the increase in barrier
associated with the improved exchange (improved 0) is
more than compensated by the decrease in barrier associated

Table 1. Benchmark W2-F1274,75 and CCSD(T) Forward and
Reverse Barriersa

reaction

W2-F12 CCSD(T)

forward reverse forward reverse

H + H2 → H2 + H 9.7 9.7 10.0 10.0
H + N2 ⇄ HN2 14.6 10.9 15.6 10.2
HCN ⇄ CNH 48.1 33.0 48.0 33.0
H2 + OH ⇄ H2O + H 5.2 21.6 6.6 20.6
H2 + CH3 ⇄ H + CH4 11.9 15.0 12.2 15.3

aAll values in kcal mol−1.

Figure 2. in eq 33, for the reactionH+H2 → H2 +H, as a function of
interaction strength λ, for reference CCSD(T) (black), LDA (blue),
PBE (red), r2SCAN (purple). All DFA are calculated for CCSD(T)
densities. The barrier for each method�given in the legend�is the
area between the curve and the horizontal axis =( 0).
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with the improved correlation (improved shape of ). Put
another way, PBE benefits from error cancellation between
exchange and correlation, whereas r2SCAN does not.

It is well-known that introducing an amount of exact (orbital)
exchange into an approximate functional, to yield a hybrid
functional, often increases the value of, and hence improves the
accuracy of barriers. The aforementioned separation of the role
of exchange and correlation contributions in makes the
introduction of exact exchange particularly simple to visualize: as
the amount of exact exchange increases from 0 to 100%, the
shape of is unchanged, but the curve shifts vertically, such
that 0 shifts from that of the 0% functional to that of the
reference CCSD(T) curve. This is illustrated in Figure 3, which

plots for hybrid versions of the r2SCAN functional, from 0%
(conventional r2SCAN) to 100%. The optimal barrier (area) of
8 kcal mol−1 is obtained with 100% exchange. (We only consider

amounts in the range 0% − 100% in this work). To address the
remaining 2 kcal mol−1 error in a rigorous manner, it is necessary
to consider improvements to the correlation DFA in order to fix
the shape of . Access to accurate may therefore be desirable
for functional development and testing.

The reaction of H with H2 is a simple case, which is symmetric
in the forward and reverse directions. We now consider other
representative reactions from the BH76 set to illustrate the
utility of more broadly.

4.1.2. H + N2 ⇄ HN2. As an example of an asymmetric
reaction from the BH76 set, where the forward and reverse
directions are different, we consider the addition reaction of H
with N2 to form HN2 and the reverse dissociation process.
Figure 4a,b present the reference CCSD(T) for the forward
and reverse reactions, respectively, compared to approximate
for LDA, PBE, and r2SCAN.

First, consider the forward reaction H + N2 → HN2 in Figure
4a. In moving from LDA to PBE to r2SCAN, the behavior closely
resembles what was observed for H + H2 → H2 + H, with an
improvement in 0 and the shape of the curve from LDA to
PBE to r2SCAN, but a slight degradation in the barrier from PBE
to r2SCAN.

By contrast, for the reverse reaction HN2 → H + N2 in Figure
4b, all three DFAs yield rather similar curves, none of which
bear much resemblance to the reference CCSD(T) curve. The
areas between these curves and the horizontal axis are, however,
reasonably close to that of the reference curve due to error
cancellation between low- and high-λ regions. Hence the
barriers are reasonably good�LDA is actually best�with a
maximum error of 0.7 kcal mol−1. But each gives approximately
the right answer for the wrong reason. It is interesting that, for
this reverse reaction, the reference exhibits strong curvature
in the low-λ region, which is not captured by any of the DFAs. In
fact, the DFAs have a qualitatively different shape, suggesting
that the λ-dependence of the correlation contributions
according to eq 25 could be significantly improved in the
reverse dissociation reaction.

Figure 5a,b present the effect of exact exchange for hybrid
versions of r2SCAN, for the forward and reverse reactions,
respectively. For the forward reaction, the barrier improves
steadily as the amount of exchange increases, with an optimal

Figure 3. in eq 33, for the reactionH +H2 → H2 +H, as a function of
interaction strength λ, for reference CCSD(T) (black) and r2SCAN
hybrid functionals, with varying amounts of exact (orbital) exchange
indicated in parentheses (purple lines, lighter shading indicates more
exact exchange). The pure r2SCAN functional is written as r2SCAN-
(0%). All DFA are calculated for CCSD(T) densities. The barrier for
each method�given in the legend�is the area between the curve
and the horizontal axis =( 0).

Figure 4. in eq 33, for the reaction H + N2 ⇄ HN2, as a function of interaction strength λ, in (a) forward and (b) reverse directions, for reference
CCSD(T) (black), LDA (blue), PBE (red), r2SCAN (purple). All DFA are calculated for CCSD(T) densities. The barrier for each method�given
in the legend�is the area between the curve and the horizontal axis =( 0).
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value at 100%, giving an error of just 0.8 kcal mol−1. By contrast,
for the reverse reaction, an amount between 0 and 20% is
optimal; using 100% dramatically overestimates the barrier.

Once again, this difference highlights the key interplay
between exchange and correlation. If the correlation functional
is accurate (in the sense that the correlation part of eq 25
resembles that of the reference CCSD(T) curve), then the shape
of will be similar to that of the reference curve and so ∼100%
exchange will be optimal for the barrier, since only then can the
areas from the DFA and reference curves be approximately the
same. However, if the correlation functional is poor, then the
shape of will be very different to that of the reference curve
and so the optimal amount of exchange must differ from 100%;
an accurate barrier will then be a consequence of error
cancellation between different λ regions. In terms of the
functional components, the residual exchange in the latter case
compensates for the error in the correlation functional.
4.1.3. HCN ⇄ CNH and H2 + OH ⇄ H2O + H. Results for the

rearrangement of HCN to CNH and the hydrogen abstraction
reaction of H2 with OH to form H2O and H, together with their

reverse reactions, are presented in the Supporting Information.
As in Section 4.1.2, the key result is that the shape of is
notably better reproduced by r2SCAN in one direction than the
other, with the consequence that the optimal amount of
exchange is much higher in one direction than the other.

4.1.4. H2 + CH3 ⇄ H + CH4. As a final representative reaction
from the BH76 set, we consider the hydrogen abstraction
reaction of H2 with CH3 to form H and CH4, and the reverse
reaction; see Figures 6 and 7. For the forward reaction in Figure
6a, there is marked improvement in the curve and the barrier
from LDA to PBE to r2SCAN. The LDA functional exhibits too
little curvature and a negative barrier. The curves for PBE and
r2SCAN now exhibit a similar shape and so the improvement in

0 from PBE to r2SCAN leads to an improved barrier. For the
reverse reaction in Figure 6b, the situation resembles that in
Section 4.1.1 and the forward reaction in Section 4.1.2.

Of all the nonsymmetric reactions considered, this is the one
where the quality of the shape of from r2SCAN is most similar
between the forward and reverse reactions. It follows that both
directions benefit from reasonably large amounts of exact

Figure 5. in eq 33, for the reaction H + N2 ⇄ HN2, as a function of interaction strength λ, in (a) forward and (b) reverse directions, for reference
CCSD(T) (black) and r2SCAN hybrid functionals, with varying amounts of exact (orbital) exchange indicated in parentheses (purple lines, lighter
shading indicates more exact exchange). The pure r2SCAN functional is written as r2SCAN(0%). All DFA are calculated for CCSD(T) densities.
The barrier for each method�given in the legend�is the area between the curve and the horizontal axis =( 0).

Figure 6. in eq 33, for the reaction H2+CH3 ⇄ H+CH4, as a function of interaction strength λ, in (a) forward and (b) reverse directions, for
reference CCSD(T) (black), LDA (blue), PBE (red), r2SCAN (purple). All DFA are calculated for CCSD(T) densities. The barrier for each
method�given in the legend�is the area between the curve and the horizontal axis =( 0).
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exchange, as illustrated in Figure 7. The optimal amount for the
forward reaction, just above 60%, is less than for the reverse
reaction, which is 80−100%, reflecting the fact that the r2SCAN
DFA curves are slightly more parallel to the reference CCSD(T)
curve for the reverse reaction than for the forward reaction.
4.2. Density-Driven Errors in and Barriers. Kaplan et

al.,76 Kanungo et al.,77 and Hernandez et al.78 recently
investigated the role of functional-driven and density-driven
errors in barrier calculations. Their key observation was that the
density-driven errors in eq 31 are generally much smaller than
the functional-driven errors in eq 32, meaning the overall error
in eq 30 is generally dominated by the functional-driven error.
However, when they replaced the self-consistent DFA density in
these equations with the Hartree−Fock density, the analogue of
the density-driven error in eq 31 could become large and
positive, leading to some degree of error cancellation with the
(unchanged) functional-driven error, meaning the overall error
in the barrier could become much smaller.

Here, we investigate this observation from the perspective of
by comparing r2SCAN curves for self-consistent densities,

Hartree−Fock densities, and CCSD(T) densities.
4.2.1. H + N2 ⇄HN2. Figure 8 presents the reaction adiabatic-

connection integrand of the forward and reverse H + N2 ⇄
HN2 reactions for the r2SCAN functional, evaluated for three
different densities: the self-consistent density (r2SCAN@SCF),
the Hartree−Fock density (r2SCAN@HF), and the CCSD(T)
density (r2SCAN@CC). We have also included the reference
CCSD(T) curve. The CCSD(T) and r2SCAN@CC curves have
previously been presented in Figure 4, in our discussion of
functional-driven errors; in that plot, the r2SCAN@CC curve
was denoted r2SCAN.

For the forward reaction in Figure 8a, the r2SCAN@SCF
curve is close to the r2SCAN@CC curve, indicating that the
density-driven error in is small and that, on average, the
r2SCAN densities/orbitals are reasonably close to those from
CCSD(T). By contrast, the r2SCAN@HF curve is notably above
the r2SCAN@CC curve and closer to the reference CCSD(T)
curve, indicating that the Hartree−Fock analogue of the density-

Figure 7. in eq 33, for the reaction H2+CH3 ⇄ H+CH4, as a function of interaction strength λ, in (a) forward and (b) reverse directions, for
reference CCSD(T) (black) and r2SCAN hybrid functionals, with varying amounts of exact (orbital) exchange indicated in parentheses (purple lines,
lighter shading indicates more exact exchange). The pure r2SCAN functional is written as r2SCAN(0%). All DFA are calculated for CCSD(T)
densities. The barrier for each method�given in the legend�is the area between the curve and the horizontal axis =( 0).

Figure 8. in eq 33, for the reaction H+N2 ⇄ HN2, as a function of interaction strength λ, in (a) forward and (b) reverse directions, for reference
CCSD(T) (black), r2SCAN@SCF (purple, dotted), r2SCAN@HF (purple, dot-dashed), r2SCAN@CC (purple). The barrier for eachmethod�given
in the legend�is the area between the curve and the horizontal axis =( 0).
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driven error is large and positive and goes some way toward
canceling the functional-driven error. It is important to note,
however, that this improvement is obtained at the expense of a
degraded density. For the reverse reaction in Figure 8b, the
effect is much less pronounced, with the r2SCAN@CC,
r2SCAN@SCF, and r2SCAN@HF curves close together,
indicating that the functional-driven error dominates, irrespec-
tive of the density used.

The shapes of the three r2SCAN curves for the forward
reaction in Figure 8a are rather similar, indicating that the
correlation scaling property in eq 25 is relatively insensitive to
variations in the density. The same is observed for the reverse
reaction in Figure 8b. The reason why theHartree−Fock density
has such a pronounced effect for the forward reaction, but not
the reverse reaction, is therefore largely because the value of 0
changes significantly from r2SCAN@SCF to r2SCAN@HF in
the former, but not the latter. For these calculations, differences
in 0 between r2SCAN@SCF and r2SCAN@HF arise not only
from the use of different densities in the exchange terms in Jxc,

in eq 29, but also from different values of CR in eq 28 and EJ
terms in Jxc, . This contrasts the functional-driven analysis in
Section 4.1, where the use of the CCSD(T) density throughout
led to the same CR and EJ terms.

An analysis of how the aforementioned terms change from
r2SCAN@SCF to r2SCAN@HF, for both the forward and
reverse reaction, offers little insight into the different behavior of

0. All termsmake non-negligible contributions to the change in
0, the largest magnitudes being the Ts and Eext components of

CR for the forward and reverse reactions, respectively.
4.2.2. Other Reactions. Results for the hydrogen exchange

reaction H + H2 → H2 + H, for the rearrangement HCN ⇄
CNH, and for the hydrogen abstraction reactions H2 + OH ⇄
H2O + H and H2 + CH3 ⇄ H + CH4 are presented in the
Supporting Information and they show a similar picture: In all
cases, the density-driven error in is small. When the self-
consistent density is replaced with the Hartree−Fock density,
the effect can be pronounced, leading to some degree of
cancellation with the functional-driven error. An analysis of the
components of 0 again offers little insight into the different
behaviors.

The observations in Sections 4.2.1 and 4.2.2 translate into
barrier observations, through eq 34, that are fully consistent with
those of refs 76−78 while providing additional insight into those
observations.
4.2.3. Density-Corrected DFT. The idea of using Hartree−

Fock quantities in DFAs to improve barriers is not new. It was
proposed in the so-called HF-DFT79−81 and a similar idea has
recently gained popularity as density-corrected DFT (DC-
DFT).39,82−87 The application of DC-DFT is somewhat more
nuanced, in that the density-sensitivity of a molecule,84

= | [ ] [ ]|S E ELDA HF (35)

is quantified by evaluating the absolute change in the total
energy for the chosen DFA, when using the LDA density ρLDA
and the Hartree−Fock density ρHF. Since LDA tends to
significantly overdelocalize densities, while Hartree−Fock
tends to significantly overlocalize densities, this difference
gives an indication of the sensitivity of the selected DFA to
changes in the density. It has been suggested84 that, when S̃ > 2
kcal mol−1 for small molecules, then the system is density-
sensitive and DC-DFT should be applied. For the H + N2 ⇄

HN2 reaction using the r2SCAN functional, this threshold is
surpassed for N2, HN2 and the [HN2]‡ transition state, with
values of 2.5, 8.4, and 8.7 kcal mol−1, respectively. For the H
atom, the density sensitivity value is just 0.3 kcal mol−1.

The r2SCAN@HF curves in Figure 8 correspond to using the
DC-DFT approach for all species, including the H atom. The
associated barriers are larger (and more accurate) than the
conventional barriers, associated with the r2SCAN@SCF curves.
The fact that this is so much more pronounced for the forward
reaction is fully consistent with the thresholds: while the [HN2]‡

transition state is density-sensitive with S̃ = 8.7 kcal mol−1, the
reactants are relatively density-insensitive, with S̃ = 0.3 kcal
mol−1 for H and S̃ = 2.5 kcal mol−1 for N2. As a result, the use of
the HF density raises the energy of the transition state relative to
the (variationally optimal) self-consistent energy by more than it
raises the energy of the reactants, resulting in a significant
increase in the r2SCAN@HF barrier compared with that of
r2SCAN@SCF. For the reverse reaction, the transition state is
only marginally more density-sensitive than the reactant, with S̃
values of 8.7 and 8.4 kcal mol−1 respectively. As a result the effect
of using the HF density is to raise the energy of the reactant and
transition state by approximately the same amount, leading to
relatively little change in the barrier.

In a recent study, Hernandez et al.78 also examined the issue of
error cancellations when applying DC-DFT to calculate barriers,
reaching similar conclusions. As part of their study, the authors
also proposed a second criterion to check that theHartree−Fock
density is reasonable for use in DC-DFT. Specifically, the degree
of spin-contamination |⟨S2⟩HF − ⟨S2⟩exact| should not exceed 10%
for open-shell systems. For the [HN2]‡ transition state, this
value is 20.1%, while for the product HN2, it is 17.1%, suggesting
that DC-DFTmay not be suitable for use in either the forward or
reverse reaction. In the present work, calculations at the
r2SCAN@HF level are used merely to quantify the effect of
changing the density, which is of interest regardless of whether
DC-DFT should be applied practically. Finally, it should also be
noted that the criteria for applying DC-DFT are heavily sensitive
to the choice of DFA. For the 15 systems comprising the 5
reactions studied in this work, the combined S̃ and ⟨S2⟩ criteria
suggest that only 5 systems should be corrected for r2SCAN.
This increases to 11 for both the LDA and PBE functionals.

5. CONCLUSIONS
The calculation of classical reaction barriers has long been
challenging for semilocal DFAs, which have a tendency to
severely underestimate these quantities. We have examined
these shortcomings from a new perspective�namely, that of the
density-fixed adiabatic connection, which links the Kohn−Sham
noninteracting system to the physical interacting system. A
reaction adiabatic-connection integrand, , was introduced,
such that integration over the interaction strength, λ, from 0 to 1
yields the barrier, meaning the barrier can be easily visualized as
the area under a plot of vs λ.

Initially, we focused on functional-driven errors by comparing
reference curves obtained from CCSD(T) Lieb max-
imizations with density-functional approximations to these
curves for LDA, PBE, and r2SCAN, determined using coordinate
scaling for CCSD(T) densities. By fixing the densities to be
those obtained from the CCSD(T) wave function, our analysis
provides a simple way to visualize and understand functional-
driven errors and trends in barriers from approximate func-
tionals, while allowing a clean separation of the role of exchange
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and correlation contributions to the barrier. Specifically, the
accuracy of 0 is determined entirely by the accuracy of the
exchange DFA, while the shape of is determined entirely by
the correlation functional.

As may be expected, the value of 0 tended to improve from
LDA to PBE to r2SCAN. Increasing the fraction of exact
(orbital) exchange to form hybrid functionals has a particularly
simple effect on the curves: it shifts them vertically,
improving the value of 0, until the reference CCSD(T) value
is recovered with 100% exchange.

Obtaining the correct shape of was more challenging. In
some reactions, the shape of was reasonably well described, in
which case increasing the amount of exact exchange to close to
100% led to a significant improvement in the barrier. However,
in other cases the shape of was poorly described and, while a
modest increase in the amount of exact exchange did lead to a
nominal improvement in the barrier due to cancellation of errors
in high and low λ regions, this is nothing more than error
compensation between the exchange and correlation contribu-
tions. We note that for the four reactions where the forward and
reverse directions are different, the shape of is best described
for the direction with the larger barrier, i.e. the direction with the
later transition state. However, the amount of data is limited and
so further investigation is required to establish if this trend is
more widely applicable.

These results illustrate how simply introducing larger
amounts of exact exchange may not be a reliable approach to
generate improved functionals for barriers, especially since the
amount required for forward and reverse directions of the same
reaction may be significantly different. To make significant
progress, the shape of must be captured more accurately.
Since the shape is determined entirely by the correlation
functional and its scaling properties according to eq 25, it would
be fruitful to consider design of functionals parametrized to
more accurately reproduce the shape of . The results reported
here present a first step toward benchmark numerical data that
may be useful for this purpose and this will be pursued in future
work.

We then considered density-driven errors, comparing self-
consistent r2SCAN results for with those evaluated using
r2SCAN for the reference CCSD(T) density. The self-consistent

curves remained close to those evaluated for the reference
CCSD(T) density, indicating that the density-driven error is
small and that, at least on average, the r2SCAN densities/orbitals
of each species involved in the reactions studied are close to the
CCSD(T) ones. Using the Hartree−Fock density instead, as is
done in HF-DFT and DC-DFT, could lift the , bringing it
closer to the reference CCSD(T) curve, reflecting some degree
of cancellation with the functional-driven errors, consistent with
recent studies.76−78 However, given that the associated
improvements in the barriers are not a result of an improved
density, barriers obtained using HF-DFT and DC-DFT should
be treated with some caution.

Finally, we also considered the use of the density-sensitivity
measure S̃ of eq 35 and the spin-contamination criterion of
Hernandez et al.78 Our and barrier results for a representative
reaction are fully consistent with the values of S̃, whereby similar
sensitivities in the reactant/transition state lead to a small effect
on the reverse barrier, whereas very different sensitivities in
reactant/transition state led to a much larger effect on the
forward barrier.

In this work, we have focused on simple semilocal
approximations, since these represent some of the most cost-
effective methods in widespread application. However, range-
separated hybrids often give rise to much improved barriers
when tested on, for example, the BH76 benchmark set. An
interesting avenue for future work is therefore to use a
generalized adiabatic connection to study such functional
forms. Indeed, such calculations can be carried out with the
framework used in the present work, as shown in ref 88.
Alternative adiabatic connections, where the electron density is
not held fixed, could also be considered in a similar manner, for
example the potential-fixed adiabatic connection in ref 43., or
the Mo̷ller−Plesset adiabatic connection in ref 89.; the latter
may give additional insight into the performance of approaches
that use a Hartree−Fock reference.

We note that errors in barriers are often attributed to self-
interaction, which functionals with increased orbital-dependent
exchange and approaches such as HF-DFT/DC-DFT are
thought to help mitigate. The use of explicit self-interaction
corrections has been explored extensively in the recent literature
and it would be interesting to analyze how is influenced by
these approaches.

Finally, our approach for defining an adiabatic-connection
integrand for reaction barriers could be applied to many other
properties, including the majority of those in the GMTKN55
database. Future work will pursue the construction of adiabatic-
connection data sets for a range of quantities, providing
extensive data to benchmark new density-functional approx-
imations.

■ APPENDIX A

GDIIS Optimization of Gλ,ρ[b]
TheGDIIS algorithm50 is defined by choosing an approximation
to the error vectors ei that define the difference between the
potential coefficients bi at a particular iteration i and the
converged potential coefficients b*, such that bi = b* + ei. The
error vectors can be approximated by those for a quadratic
function,

=e H gi i
1

(A1)

where H and g are the Hessian and gradient with respect to the
coefficients b, respectively. A set of potential expansion
coefficients and error vectors are generated for m iterations,
defining an m-dimensional iterative subspace. Minimisation of
the residuum vector ∑iciei subject to the constraint ∑ici = 1
leads to the DIIS equations,
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where Bij = ⟨ei|ej⟩ is the scalar product of the error vectors ei and
ej and ζ is a Lagrange multiplier. The potential coefficients at the
next iteration can then be calculated according to
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where the coefficients ci are determined from A2 and define an
interpolated set of coefficients (the first term of A3) and an
interpolated gradient (in parentheses in the second term of A3).
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The potential coefficients for the next step bm+1 then correspond
to the interpolated coefficients updated by a Newton step
constructed using an approximation to the Hessian H and the
interpolated gradient. In the present work, we use the
noninteracting Hessian, given by eq 21 at λ = 0.49 Since the
quadratic approximation of A1 is only valid close to the
maximum of Gλ,ρ[b], the GDIIS algorithm is switched on when
the Euclidean norm of gi falls below 10−4 a.u.
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