
Canad. Math. Bull. 2025, pp. 1–20
http://dx.doi.org/10.4153/S0008439524000778
© The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Spectral ratios and gaps for Steklov
eigenvalues of balls with
revolution-type metrics

Jade Brisson , Bruno Colbois , and Katie Gittins

Abstract. We investigate upper bounds for the spectral ratios and gaps for the Steklov eigenvalues
of balls with revolution-type metrics. We do not impose conditions on the Ricci curvature or on
the convexity of the boundary. We obtain optimal upper bounds for the Steklov spectral ratios in
dimensions 3 and higher. In dimension 3, we also obtain optimal upper bounds for the Steklov spectral
gaps. By imposing additional constraints on the metric, we obtain upper bounds for the Steklov
spectral gaps in dimensions 4 and higher.

1 Introduction

The spectral ratio of the first two Dirichlet eigenvalues λD
2 /λD

1 on Euclidean domains
has received a great deal of attention since the work of Payne, Pólya, and Weinberger
[10, 11]. They conjectured that in 2 dimensions, the best constant for λD

2 /λD
1 is that

achieved by the disc and this conjecture was generalized to higher dimensions by
Thompson [13]. Both conjectures were proven by Ashbaugh and Benguria in [2].
In addition, it was shown by Andrews and Clutterbuck [1], respectively Payne and
Weinberger [12], that among all convex domains in R

n of prescribed diameter, the
gap between the first two Dirichlet, respectively Neumann, eigenvalues is minimized
by the line segment. Results for the spectral ratio and spectral gap for the Robin
eigenvalues on rectangles under various geometric constraints have been obtained by
Laugesen [9]. These results lend support to conjectures in broader classes of domains
and we refer the reader to [9] and references therein for further details. It is known
that the spectral ratio for consecutive nontrivial Neumann eigenvalues λN

k+1/λN
k can

be arbitrarily large. For example, by taking k disjoint balls in R
n and joining them by

thin cylinders we obtain a Cheeger dumbbell whose first k Neumann eigenvalues are
very small but the (k + 1)-st one is not (see, for example, [4, Example 18]).

In this paper, we investigate the spectral ratios of the Steklov eigenvalues. Our
results also shed light on the Steklov spectral gaps.

It is well known that the Steklov eigenvalues of a smooth, compact, connected
Riemannian manifold (M , g) of dimension n ≥ 2 with boundary Σ are the real
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numbers σ for which there exists a nonzero harmonic function u ∶ M → R which
satisfies ∂νu = σu on the boundary Σ. Throughout this paper, ∂ν is the outward-
pointing normal derivative on Σ. We will denote the Steklov eigenvalues as

0 = σ0 < σ1 ≤ σ2 ≤ ⋯ ↗∞,

where each eigenvalue is repeated according to its multiplicity.
In general, reminiscent of the situation for the Neumann spectral ratio mentioned

above, the Steklov spectral ratio can be arbitrarily large. For example, in [8, Section
2.1], a family of bounded, simply-connected domains in R

2, Ωε , is constructed such
that the Steklov spectral ratio σk+1/σk of the limiting domain as ε → 0 is arbitrarily
large. Indeed, for k ∈ N, Ωε consists of k + 1 overlapping discs each of unit radius
such that as ε → 0, Ωε degenerates to the disjoint union of k + 1 discs, B1 , . . . , Bk+1,
each of unit radius and the authors show that limε→0 σk+1(Ωε)∣∂Ωε ∣ = 2π(k + 1). But,
it is possible to show that limε→0 σk(Ωε) = 0. In addition, the generalization of this
example to two overlapping domains in higher dimensions has been addressed in
[3, Example 3]. In a similar spirit, it is also possible to obtain examples of Riemannian
manifolds for which the Steklov spectral ratio can be made arbitrarily large by
employing [7, Theorem 1.1] which asserts that for a collection M1 , . . . , Ms of compact
n-dimensional Riemannian manifolds with non-empty boundary and ε > 0, there
exists a Riemannian manifold Mε that is obtained by gluing M1 , . . . , Ms suitably along
their boundaries such that for k = 0, 1, 2, . . . , limε→0 σk(Mε) = σk(M1 ⊔ ⋅ ⋅ ⋅ ⊔ Ms). So
taking s = k + 1, we see that σk(M1 ⊔ ⋅ ⋅ ⋅ ⊔ Mk+1) = 0 while σk+1(M1 ⊔ ⋅ ⋅ ⋅ ⊔ Mk+1) > 0.
Therefore, in order to obtain bounds on the Steklov spectral ratio, it is necessary to
impose additional geometric constraints.

To that end, in this paper, we consider the case where M = [0, R] × S
n−1 and

g ∶= gh = dr2 + h(r)2 g0 ,

where g0 is the usual metric on the (n − 1)-dimensional unit sphere and h(R) = 0
so that (M , g) corresponds to a metric of revolution on the ball. In this setting, we
denote the Steklov eigenvalues counted without multiplicities as

0 = σ0(gh) < σ(1)(gh) < σ(2)(gh) < ⋯ ↗∞.

In [14, 15]1 the author considers this setting with the additional assumptions
that (M , g) has strictly convex boundary and either nonnegative Ricci curvature
or nonpositive Ricci curvature. In the case where the Ricci curvature of (M , g) is
nonnegative, the author shows in [15] that

σ(k)(gh) ≥ k (−h′(0))
h(0) , k ≥ 0,(1)

with equality if and only if h(r) = R − r or M is isometric to the Euclidean ball of
radius R. The author also obtains a corresponding result when the Ricci curvature of
(M , g) is nonpositive where the inequality in (1) is reversed. The case where the Ricci

1Note that we use the convention that r = 0 corresponds to the boundary whereas the convention in
[14, 15] is that r = R corresponds to the boundary which explains the differences in the statement of those
results here.
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Spectral ratios and gaps for steklov eigenvalues 3

curvature is nonnegative and k = 1 is related to a conjecture of Escobar about a lower
bound for the first nontrivial Steklov eigenvalue (see [15] and references therein).
For an overview of lower bounds for the first nontrivial Steklov eigenvalue see
[6, Section 4.1].

In [14], the author investigates the spectral gaps and ratios of the Steklov eigenval-
ues. For the case where the Ricci curvature of (M , g) is nonnegative, the author shows
in [14] that
• when n = 2,

σ(k)(gh) =
k

h(0) , k ≥ 0,

• when n ≥ 3,

σ(k+1)(gh) − σ(k)(gh) ≥
−h′(0)

h(0) , k ≥ 0,(2)

and
σ(k+1)(gh)
σ(k)(gh)

≤ k + 1
k

, k ≥ 1,(3)

with equality in (2) or (3) if and only if h(r) = R − r or M is isometric to the
Euclidean ball of radius R. The author also obtains corresponding results when the
Ricci curvature of (M , g) is nonpositive where the inequalities in (2) and (3) are
reversed.

In this paper, we obtain optimal upper bounds for the Steklov spectral ratios

σ(k+1)(gh)
σ(k)(gh)

when n ≥ 3 and the Steklov spectral gaps

σ(k+1)(gh) − σ(k)(gh)

when n = 3 without any assumptions on the curvature of (M , g) or any convexity
assumptions on the boundary. By imposing additional assumptions on the metric h,
we also obtain upper bounds for the Steklov spectral gaps when n ≥ 4.

Throughout, analogously to [14, 15], we impose the following constraints on h
which ensure that the metric is smooth.
(H) h ∈ C∞([0, R]), h(r) > 0 for r ∈ [0, R), h′(R) = −1 and h(2k)(R) = 0 for all

k ∈ Z, k ≥ 0.
In addition, we denote the eigenvalues of the Laplacian on the (n − 1)-dimensional
unit sphere S

n−1 with usual metric g0 counted without multiplicity by λ(k). As in
[14, 15], we note that σ(k) has the same multiplicity as λ(k). Our main results are the
following.

Theorem 1.1 Let M = [0, R] × S
n−1 be equipped with the metric gh = dr2 + h(r)2 g0 ,

where g0 is the usual metric on the (n − 1)-dimensional unit sphere and h satisfies
assumptions (H). For k ≥ 1 we have that
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• when n ≥ 3,
σ(k+1)(gh)
σ(k)(gh)

<
λ(k+1)

λ(k)
= (k + 1)

k
(n + k − 1)
(n + k − 2) ,(4)

• when n = 2,

σ(k)(gh) =
k

h(0) .

Moreover, the upper bound (4) is optimal.

Theorem 1.2 Let n ≥ 3. Let M = [0, R] × S
n−1 be equipped with the metric gh = dr2 +

h(r)2 g0 , where g0 is the usual metric on the (n − 1)-dimensional unit sphere and h
satisfies assumptions (H). For k ≥ 1 we have that

sup
h

σ(k+1)(gh)
σ(k)(gh)

=
λ(k+1)

λ(k)

where the supremum is taken over all h satisfying (H).

We prove Theorem 1.2 by constructing a suitable family of metrics that are very
large on a substantial part of [0, R]. However, it is surprising that this is not the only
construction that ensures the Steklov spectral ratio approaches the supremum. We
explore a different construction where the metrics become very small and have this
property in Example 3.1 for n ≥ 4. These explorations shed light on some constraints
that can be imposed on the metric h so that the Steklov spectral ratio is not close to
the supremum. More precisely, we prove the following theorem in Section 3.3.

Theorem 1.3 Let n ≥ 3. Let M = [0, R] × S
n−1 be equipped with the metric gh = dr2 +

h(r)2 g0 , where g0 is the usual metric on the (n − 1)-dimensional unit sphere and h
satisfies assumptions (H). Suppose there exist C2 > C1 > 0 and 0 < R1 < R such that

h(r) ≤ C2 , for 0 ≤ r ≤ R,(5)

and

h(r) ≥ C1 , for 0 ≤ r ≤ R1 .(6)

Then
σ(k+1)(gh)
σ(k)(gh)

≤
λ(k+1)

λ(k)
− γ,

with

γ = min
⎧⎪⎪⎨⎪⎪⎩

1
4R1

C2(n−1)
1

C2(n−2)
2

(λ(k+1) − λ(k))(Rλ2
(k) +

C2
2

R − R1
λ(k))

−1

,

C4(n−2)
1

C2(2n−3)
2

R3
1

128
(λ(k+1) − λ(k))(R + C2

2
(R − R1)λ(k)

)
−1⎫⎪⎪⎬⎪⎪⎭

.

(7)
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Remark 1.4 We observe that when C2 →∞ or when R1 → 0, the right-hand side of
(7) tends to 0. These cases correspond to constructions that ensure that the Steklov
spectral ratio approaches the supremum which we explore in Section 3.2. We note
that the case R1 → R is not possible as h(R) = 0 (see (H)).

In addition, when n ≥ 4, for the family of metrics constructed in the proof of
Theorem 1.2 (respectively Example 3.1) the Steklov spectral gap is arbitrarily large
(respectively small). However, when n = 3, it is possible to obtain the following upper
bound for the Steklov spectral gap.

Theorem 1.5 Let M = [0, R] × S
2 be equipped with the metric gh = dt2 + h(t)2 gS2 ,

where gS2 is the usual metric on S
2 and h satisfies assumptions (H). For each k ≥ 0, we

have

σ(k+1)(gh) − σ(k)(gh) <
R(λ(k+1) − λ(k))

h(0)2 .

Moreover, if we fix the value of h at t = 0, the upper bound is optimal:

sup
h
{σ(k+1)(gh) − σ(k)(gh) ∶ h(0) = h0} =

R(λ(k+1) − λ(k))
h2

0
.

In order to prove Theorem 1.5, we make use of the following result which is an
upper bound for the Steklov eigenvalues in this setting.

Theorem 1.6 Let M = [0, R] × S
2 be equipped with the metric gh = dt2 + h(t)2 gS2 ,

where gS2 is the usual metric on S
2 and h satisfies assumptions (H). For k ≥ 1, we have

that

σ(k)(gh) <
Rλ(k)

h(0)2 .

Moreover, if we fix the value of h at t = 0, the bound is sharp. Namely, we have

sup
h
{σ(k)(gh) ∶ h(0) = h0} =

Rλ(k)

h2
0

= Lk(k + 1)
h2

0
.

For the case where n ≥ 4, under bounds on h as in Theorem 1.3, it is also possible
to obtain upper bounds for the Steklov spectral gap as given in the next theorem.

Theorem 1.7 Let n ≥ 4 and M = [0, R] × S
n−1 be equipped with the metric gh = dr2 +

h(r)2 g0 , where g0 is the usual metric on the (n − 1)-dimensional unit sphere and h
satisfies assumptions (H). If h(r) ≤ C2 for 0 ≤ r ≤ R, then

σ(k+1)(gh) − σ(k)(gh) ≤
(λ(k+1) − λ(k))Cn−3

2 R
h(0)n−1 .(8)
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6 J. Brisson, B. Colbois, and K. Gittins

1.1 Plan of the paper

In Section 2, we recall some tools in this geometric setting that will be used in the
proofs of our results. We then prove Theorem 1.1 in Section 3.1, Theorem 1.2 in
Section 3.2, and Theorem 1.3 in Section 3.3. The proof of Theorem 1.6 is given in
Section 3.4 and Section 3.5 contains the proof of Theorem 1.5 and that of Theorem 1.7.

2 Tools in this geometric setting

In this section, we recall some well known facts about the Steklov eigenvalue problem
on manifolds with revolution-type metrics (see, for example, [14, Proposition 11]).

If {φ j}∞j=0 is an L2-orthonormal basis of eigenfunctions of the Laplacian on S
n−1,

i.e.,

−Δφ j = λ jφ j , λ j = j(n − 2 + j),

then the eigenfunctions of (M , gh) have the form a jφ j where a j ∶ [0, R] → R is a
nontrivial solution of

⎧⎪⎪⎨⎪⎪⎩

1
hn−1

d
dr (hn−1 d

dr a j) − λ j a j
h2 = 0, r ∈ (0, R),

a(R) = 0.
(9)

We observe that the Rayleigh quotient of a jφ j is

R(a jφ j) =
∫

R
0 {(a′j)2hn−1 + λ j a2

j hn−3} dr
a j(0)2h(0)n−1 .(10)

Hence, if λ(k) is the kth eigenvalue of Sn−1 counted without multiplicity, then we have
that

σ(k)(gh) = min
a∶[0,R]→R,a(R)=0

∫
R

0 {(a′)2hn−1 + λ(k)a2hn−3} dr
a(0)2h(0)n−1 .

By comparing the Rayleigh quotient (10) and the results of Theorem 1.1 and Theo-
rem 1.2, we observe that in order to obtain these results, the term involving a′j must
vanish. This observation will be key to the strategies of the proofs that follow.

The following classic result will also be useful in the arguments that follow.

Lemma 2.1 Let a ∶ R→ R be differentiable. Then, for α, β ∈ R, we have

∣a(β) − a(α)∣2 ≤ ∣β − α∣ ∫
β

α
a′(r)2 dr.

Proof By the Fundamental Theorem of Calculus, we have that

∣a(β) − a(α)∣ = ∣∫
β

α
a′(r) dr∣.
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Applying the Cauchy–Schwarz inequality to the right-hand side gives

∣ ∫
β

α
a′(r) dr∣ ≤

√
∣β − α∣ (∫

β

α
a′(r)2 dr)

1/2

from which we deduce the required result by squaring. ∎

3 Proofs of main results

In this section, we give the proofs of our main results.

3.1 Proof of Theorem 1.1

Proof of Theorem 1.1 We first consider the case where n ≥ 3. In order to find an
upper bound for

σ(k+1)(gh)
σ(k)(gh)

,

we take a function ak that gives rise to an eigenfunction for σ(k)(gh), that is

σ(k)(gh) = ∫
R

0 {(a′k)2hn−1 + λ(k)a2
k hn−3} dr

ak(0)2h(0)n−1 ,

and use it as a test function in the Rayleigh quotient corresponding to σ(k+1)(gh). We
have the following:

σ(k+1)(gh) ≤ R(ak φk+1) = ∫
R

0 {(a′k)2hn−1 + λ(k+1)a2
k hn−3} dr

ak(0)2h(0)n−1

= ∫
R

0 {(a′k)2hn−1 + λ(k)a2
k hn−3} dr

ak(0)2h(0)n−1 + ∫
R

0 {λ(k+1) − λ(k)}a2
k hn−3 dr

ak(0)2h(0)n−1 .

So

σ(k+1)(gh) ≤ σ(k)(gh) +
λ(k+1) − λ(k)

λ(k)

∫
R

0 λ(k)a2
k hn−3 dr

ak(0)2h(0)n−1

≤ σ(k)(gh) +
λ(k+1) − λ(k)

λ(k)
σ(k)(gh).(11)

Hence we deduce that

σ(k+1)(gh)
σ(k)(gh)

≤
λ(k+1)

λ(k)
.

In order to have

σ(k+1)(gh)
σ(k)(gh)

=
λ(k+1)

λ(k)
,
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8 J. Brisson, B. Colbois, and K. Gittins

we must have equality in Inequality 11. In particular,

∫
R

0 λ(k)a2
k hn−3 dr

ak(0)2h(0)n−1 = σ(k)(gh)

which implies that

∫
R

0 (a′k)2hn−1 dr
ak(0)2h(0)n−1 = 0

and hence a′k(r) = 0 for almost every r ∈ [0, R]. However, this would give that ak
is a constant function which is not possible as we know ak(R) = 0 but the ak are
nontrivial. Alternatively, constant functions do not satisfy the ODE in (9). Therefore,
we conclude that

σ(k+1)(gh)
σ(k)(gh)

<
λ(k+1)

λ(k)
.

Finally, we consider the case where n = 2. If g(r, θ) = dr2 + h(r)2dθ2 is a Rieman-
nian metric on the disc D, then the length of the boundary of (D, g) is 2πh(0). Via a
homothety of ratio 1

h(0) , (D, g) is conformal to (D, g0), with boundary of length 2π.
Moreover, σ(k)(D, g) = 1

h(0)σk(D, g0). Now, as in [5, Proposition 1.10], (D, g0) is
conformal to the Euclidean unit disc, with a conformal factor taking the value 1 on the
boundary. This implies that the Steklov spectrum of (D, g0) is the same as the Steklov
spectrum of the unit Euclidean disc and σ(k)(D, g) = k

h(0) . ∎

3.2 Proof of Theorem 1.2

The key idea of the proof of Theorem 1.2 is to choose a sequence of functions (hε)ε ,
0 < ε < 1, such that when ε → 0, the supremum of

∫
R

0 {(a′)2hn−1
ε + λa2hn−3

ε } dr
a(0)2h(0)n−1

is given by

∫
R

0 λa2hn−3
ε dr

a(0)2h(0)n−1 .

To achieve this, we choose hε so that they become very large on a substantial part of
[0, R] and we show that this leads to a being close to a constant.

However, using such a family of functions hε is not the only way to approach
the supremum and we explore another possible family in Example 3.1 for which the
functions become very small.
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Proof of Theorem 1.2 We first prove Theorem 1.2 for n ≥ 4. For ε sufficiently small,
we consider the following function:

h̃ε(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, r ≤ ε,
ε−1/2(n−3) , 2ε ≤ r ≤ R − 2ε,
R − r R − ε ≤ r ≤ R.

We then define hε ∶ [0, R] → R to be the function that is smooth, increasing on [ε, 2ε],
decreasing on [R − 2ε, R − ε] and equal to h̃ε otherwise. We observe that hε satisfies
assumptions (H).

For k ≥ 1, we are interested in the following quantity

Rk(a) = ∫
R

0 {(a′)2hn−1
ε + λ(k)a2hn−3

ε } dr
a(0)2 .

Without loss of generality, we suppose that a(0) = 1. We observe that taking

ã(r) =
⎧⎪⎪⎨⎪⎪⎩

1, r ≤ R − ε,
R−r

ε , R − ε ≤ r ≤ R,

as a test function gives the following upper bound for the Rayleigh quotient

Rk(ã) ≤ ∫
R−ε

0
λ(k) (

1
ε
)

1/2
dr + ∫

R

R−ε
( 1

ε
)

2
(R − r)n−1 dr

+ ∫
R

R−ε
λ(k)(R − r)n−3 (R − r)2

ε2 dr

= ∫
R−ε

0
λ(k) (

1
ε
)

1/2
dr + (1 + λ(k))∫

R

R−ε
( 1

ε
)

2
(R − r)n−1 dr

= (λ(k) (
1
ε
)

1/2
(R − ε) + (1 + λ(k))

εn−2

n
) .(12)

Hence, we have that

σ(k)(ghε) ≤ Rk(ã) ≤ (λ(k) (
1
ε
)

1/2
(R − ε) + (1 + λ(k))

εn−2

n
) .(13)

If instead, a gives rise to an eigenfunction for σ(k)(ghε) then we have that

σ(k)(ghε) ≥ ∫
2ε

0
(a′)2hn−1

ε dr ≥ ∫
2ε

0
(a′)2 dr ≥ 1

2ε
∣1 − a(2ε)∣2(14)

by Lemma 2.1. Hence, from Inequalities (13) and (14) we deduce that

∣1 − a(2ε)∣2 ≤ 2ε(
λ(k)

ε1/2 (R − ε) + (1 + λ(k))
εn−2

n
)

which implies that

a(2ε) = 1 + O(ε1/4).
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10 J. Brisson, B. Colbois, and K. Gittins

When a gives rise to an eigenfunction for σ(k)(ghε), we also have that

Rk(a) ≥ ∫
R−2ε

2ε
{(a′)2 ( 1

ε
)
(n−1)/2(n−3)

+ λ(k)a2 ( 1
ε
)

1/2
} dr.(15)

Then, by combining Inequality (15) and Inequality (12), we deduce that

∫
R−2ε

2ε
(a′)2 ( 1

ε
)

1/(n−3)
( 1

ε
)

1/2
dr ≤ (λ(k) (

1
ε
)

1/2
(R − ε) + (1 + λ(k))

εn−2

n
)

= (λ(k) (
1
ε
)

1/2
(R − ε) + Cεn−2) ,

where C = (1+λ(k))

n , which implies that

∫
R−2ε

2ε
(a′)2 dr ≤ ε1/(n−3)λ(k)(R − ε) + Cε(2n2−9n+11)/2(n−3) .

By Lemma 2.1, for 2ε < r < R − 2ε, we then deduce that

∣a(r) − a(2ε)∣2 ≤ ε1/(n−3)λ(k)(R − ε)∣R − 4ε∣ + Cε(2n2−9n+11)/2(n−3)∣R − 4ε∣

which implies that

a(r) = 1 + O(ε1/2(n−3)) + O(ε1/4).

We therefore obtain

Rk(a) ≥ ∫
R−2ε

2ε
λ(k)(1 + o(1))2 ( 1

ε
)

1/2
dr =

(R − 4ε)λ(k)

ε1/2 + o(ε−1/2).(16)

We note that for � > 0 fixed, Inequality (13) and Inequality (16) hold for any k ≤ � + 1
so for all k ≤ �, we deduce that

σ(k+1)(ghε)
σ(k)(ghε)

≥
λ(k+1)

λ(k)
+ o(1),

where we used Inequality (13) for σ(k)(ghε) in the denominator and Inequality (16)
for σ(k+1)(ghε) in the numerator.

In the case where n = 3, applying the same arguments as above but with the
function

h̃ε(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, r ≤ ε,
ε−1/2 , 2ε ≤ r ≤ R − 2ε,
R − r R − ε ≤ r ≤ R,

prove the result. ∎

In the following example, for n ≥ 4, we show that the construction used in the proof
of Theorem 1.2 is not the only way that the Steklov spectral ratio in this setting can
approach the supremum. Roughly, speaking, it is not only metrics for which h is very
large that achieve this, but also metrics that are very small.
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Example 3.1 Let n ≥ 4. For ε sufficiently small we define

h̃ε(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, r ≤ ε,
ε2 , ε + ε2 ≤ r ≤ R − ε2 ,
R − r, R − ε2 ≤ r ≤ R,

and define hε ∶ [0, R] → R to be a function that is smooth, decreasing on [ε, ε + ε2]
and equal to h̃ε otherwise. We claim that

σ(k+1)(ghε)
σ(k)(ghε)

→
λ(k+1)

λ(k)
(17)

as ε → 0.
Taking

ã(r) =
⎧⎪⎪⎨⎪⎪⎩

1, 0 ≤ r ≤ R − ε,
R−r

ε , R − ε ≤ r ≤ R,

as a test function gives that

R(ã) ≤ ∫
R

0
λ(k)hε(r)n−3 dr + ∫

R

R−ε

hε(r)n−1

ε2 dr = λ(k)ε + O(ε2).

Hence

σ(k)(ghε) ≤ λ(k)ε + O(ε2).(18)

On the other hand, when ak (with ak(0) = 1) gives rise to an eigenfunction for
σ(k)(ghε), we have by Lemma 2.1 that

∣ak(r) − 1∣ = ∣∫
r

0
a′k(r) dr∣ ≤ (∫

r

0
(a′k)2)

1/2
r1/2 .

So, for r ≤ ε, we have

∣ak(r) − 1∣ ≤ σ(k)(ghε)1/2ε1/2 ≤ λ1/2
(k)ε + O(ε3/2),

which implies that

ak(r) = 1 + O(ε)

for 0 ≤ r ≤ ε. Hence we obtain that

σ(k)(ghε) ≥ ∫
ε

0
a2

k λ(k) = λ(k)ε + O(ε2).(19)

Therefore by (18) and (19), we deduce (17).

Remark 3.2 For n ≥ 4, we remark that the construction used in the proof of
Theorem 1.2 also shows that in this setting the Steklov spectral gap σ(k+1)(ghε) −
σ(k)(ghε) → ∞ as ε → 0. Indeed, by Inequality (12) and Inequality (16) we have that

σ(k+1)(ghε) − σ(k)(ghε) ≥ (λ(k+1) − λ(k))
R

ε1/2 →∞, ε → 0.
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In addition, the construction used in Example 3.1 shows that the Steklov spectral
gap σ(k+1)(ghε) − σ(k)(ghε) → 0 as ε → 0. Thus, in order to obtain bounds for the
Steklov spectral gap when n ≥ 4, additional geometric constraints are required. See,
for example, [14] and Theorem 1.7.

3.3 Proof of Theorem 1.3

To prove Theorem 1.3, we make use of several lemmas that we introduce below.

Lemma 3.3 Suppose that ak gives rise to an eigenfunction for σ(k)(gh). If

σ(k+1)(gh)
σ(k)(gh)

≥
λ(k+1)

λ(k)
− γ,(20)

for γ > 0, then

∫
R

0 (a′k)2hn−1 dr
ak(0)2h(0)n−1 ≤ γ

σ(k)(gh)λ(k)

λ(k+1) − λ(k)
.(21)

Proof of Lemma 3.3 We recall from the proof of Theorem 1.1 that

σ(k+1)(gh) ≤ σ(k)(gh) +
λ(k+1) − λ(k)

λ(k)

∫
R

0 λ(k)a2
k hn−3 dr

ak(0)2h(0)n−1 .(22)

We denote

∫
R

0 λ(k)a2
k hn−3 dr

ak(0)2h(0)n−1 = ψ

so that

σ(k)(gh) = ∫
R

0 (a′k)2hn−1 dr
ak(0)2h(0)n−1 + ψ.(23)

Then by Inequality (20) and Inequality (22), we have that

λ(k+1)

λ(k)
σ(k)(gh) − γσ(k)(gh) ≤ σ(k+1)(gh) ≤ σ(k)(gh) +

λ(k+1) − λ(k)

λ(k)
ψ

which implies that

ψ ≥ σ(k)(gh) − γ
σ(k)(gh)λ(k)

λ(k+1) − λ(k)
.

Hence by (23) we have that

ψ ≥ ∫
R

0 (a′k)2hn−1 dr
ak(0)2h(0)n−1 + ψ − γ

σ(k)(gh)λ(k)

λ(k+1) − λ(k)
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which implies that

∫
R

0 (a′k)2hn−1 dr
ak(0)2h(0)n−1 ≤ γ

σ(k)(gh)λ(k)

λ(k+1) − λ(k)

as required. ∎

Remark 3.4 From Inequality (21) we deduce that when γ is small,

∫
R

0 (a′k)2hn−1 dr
ak(0)2h(0)n−1(24)

must also be small. The construction that we employed in the proof of Theorem 1.2,
respectively Example 3.1, ensures that the term in (24) is small by making h very large,
respectively small, on a substantial part of [0, R] which leads to ak being close to a
constant.

Lemma 3.5 Suppose that h satisfies (5) and (6) and that

σ(k+1)(gh)
σ(k)(gh)

≥
λ(k+1)

λ(k)
− γ,

for some γ > 0 where

γ ≤ 1
4R1ρ

(25)

and ρ is a constant depending on C1 , C2 , R, R1 , λ(k) , λ(k+1) which will be determined
below. Then, for each ak that gives rise to an eigenfunction for σ(k)(gh), we have that

1
2
≤ ak(r) ≤ 3

2
, for 0 < r ≤ R1 .(26)

Proof of Lemma 3.5 Without loss of generality, we suppose that ak(0) = 1. From
Inequality (21) and the hypotheses (5) and (6) on h, we have that

Cn−1
1 ∫

R1
0 (a′k)2 dr
Cn−1

2
≤ ∫

R
0 (a′k)2hn−1 dr

h(0)n−1 ≤ γ
σ(k)(gh)λ(k)

λ(k+1) − λ(k)
,

which implies that

∫
R1

0
(a′k)2 dr ≤ γ

C(n−1)
2

C(n−1)
1

σ(k)(gh)λ(k)

λ(k+1) − λ(k)
.(27)

We wish to obtain an upper bound independent of σ(k)(gh) so we take

ã(r) =
⎧⎪⎪⎨⎪⎪⎩

1, 0 ≤ r ≤ R1 ,
R−r

R−R1
, R1 ≤ r ≤ R.
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as a test function for σ(k)(gh) to obtain

σ(k)(gh) ≤ R(ã) =
λ(k)

hn−1(0) ∫
R1

0
hn−3(r) dr

+ 1
hn−1(0)∫

R

R1
[( 1

R − R1
)

2
hn−1(r) + ( R − r

R − R1
)

2
hn−3(r)λ(k)] dr

≤ Cn−3
2

Cn−1
1

(Rλ(k) +
C2

2
R − R1

) .(28)

Hence, we have by (27) and (28) that

∫
R1

0
(a′k)2 dr ≤ γ

C2(n−2)
2

C2(n−1)
1

1
λ(k+1) − λ(k)

(Rλ2
(k) +

C2
2

R − R1
λ(k))

= γρ(C1 , C2 , R, R1 , λ(k) , λ(k+1)).(29)

By Lemma 2.1 we deduce that for 0 < r ≤ R1,

∣ak(r) − 1∣2 ≤ R1 ∫
R1

0
(a′k)2 dr ≤ R1γρ.

Hence if

γ ≤ 1
4R1ρ

,

then ∣ak(r) − 1∣2 ≤ 1
4 which implies that

1
2
≤ ak(r) ≤ 3

2
for 0 < r ≤ R1 as required. ∎

We now employ Lemma 3.3 and Lemma 3.5 to show that when h is bounded,
it is not possible for the Steklov spectral ratio σ(k+1)(gh)/σ(k)(gh) to approach the
supremum in Theorem 1.2.

Proof of Theorem 1.3 The strategy of the proof of Theorem 1.3 is to assume (20)
holds and to obtain a contradiction.

We consider the ak that gives rise to an eigenfunction for σ(k)(gh). We show
that by making a small perturbation of the ak , under the assumption of (20) for
suitable γ > 0 (to be determined below), the Rayleigh quotient corresponding to the
perturbed values is smaller than that corresponding to the ak . Since ak gives rise to
an eigenfunction for σ(k)(gh), this gives the desired contradiction.

We consider the following test function which is a small perturbation of ak :

a(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ak(r) − δr, 0 ≤ r < R1
2 ,

ak(r) − δ(R1 − r), R1
2 ≤ r ≤ R1 ,

ak(r), r ≥ R1 .
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The contributions to the Rayleigh quotient, R(a), on each interval are as follows. For
0 ≤ r ≤ R1

2 ,

∫ R1/2
0 {(a′)2hn−1 + λ(k)a2hn−3} dr

h(0)n−1

= ∫
R1/2

0 {(a′k − δ)2hn−1 + λ(k)(ak − δr)2hn−3} dr
h(0)n−1

= ∫
R1/2

0 {(a′k)2hn−1 + λ(k)(ak)2hn−3} dr
h(0)n−1

+ δ
h(0)n−1 (δ∫

R1/2

0
{hn−1 + r2 λ(k)h

n−3} dr − 2∫
R1/2

0
(a′k hn−1 + rak hn−3 λ(k)) dr)

=∶ ∫
R1/2

0 {(a′k)2hn−1 + λ(k)(ak)2hn−3} dr
h(0)n−1 + T1

h(0)n−1 .

For R1
2 ≤ r ≤ R1,

∫ R1
R1/2{(a

′)2 hn−1 + λ(k)a2 hn−3} dr

h(0)n−1

=
∫ R1

R1/2{(a
′
k + δ)2 hn−1 + λ(k)(ak − δ(R1 − r))2 hn−3} dr

h(0)n−1

=
∫ R1

R1/2{(a
′
k)2 hn−1 + λ(k)(ak)2 hn−3} dr

h(0)n−1

+ δ
h(0)n−1 (δ∫

R1

R1/2
{hn−1 + (R1 − r)2 λ(k)hn−3} dr + 2∫

R1

R1/2
(a′k hn−1 − (R1 − r)ak hn−3 λ(k)) dr)

=
∫ R1

R1/2{(a
′
k)2 hn−1 + λ(k)(ak)2 hn−3} dr

h(0)n−1 + T2

h(0)n−1 .

So we see that

R(a) = R(ak) +
T1

h(0)n−1 +
T2

h(0)n−1 .

In order to show that R(a) < R(ak), we show that for certain γ, T1 < 0 and T2 < 0.
We observe that both T1 and T2 are of the form

δ(δA− B)

and if A, B > 0, then

δ(δA− B) < 0 ⇐⇒ δ < B
A

.

We have that

T1 = δ(δA1 − B1)

= δ (δ∫
R1/2

0
{hn−1 + r2 λ(k)hn−3} dr − 2∫

R1/2

0
(a′k hn−1 + rak hn−3 λ(k)) dr)
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So

B1

A1
=

2 ∫
R1/2

0 (a′k hn−1 + rak hn−3 λ(k)) dr

∫
R1/2

0 {hn−1 + r2 λ(k)hn−3} dr
.

We see immediately that A1 ≥ 0. We can also ensure B1 ≥ 0 by imposing constraints
on γ as follows.

We observe that

a′k hn−1 + rak hn−3 λ(k) ≥ rak hn−3 λ(k) − ∣a′k ∣hn−1 .

Now we have that

∣ ∫
R1/2

0
a′k hn−1 dr∣ ≤ ∫

R1/2

0
∣a′k ∣hn−1 dr

≤ Cn−1
2 ∫

R1/2

0
∣a′k ∣ dr

≤ Cn−1
2 (∫

R1/2

0
∣a′k ∣2 dr)

1/2

(R1

2
)

1/2

≤ Cn−1
2 (R1

2
)

1/2
γ1/2ρ1/2 ,

where we used the Cauchy–Schwarz Inequality and then Inequality (29). In addition,
we have that

∫
R1/2

0
rak hn−3 λ(k) dr ≥ Cn−3

1
2

λ(k) ∫
R1/2

0
r dr = Cn−3

1 R2
1

16
λ(k)

by Inequality (26). Hence we have that

∫
R1/2

0
(a′k hn−1 + rak hn−3 λ(k)) dr ≥ Cn−3

1 R2
1

16
λ(k) − Cn−1

2 (R1

2
)

1/2
γ1/2ρ1/2 .(30)

The right-hand side of Inequality (30) is nonnegative if and only if

Cn−1
2 (R1

2
)

1/2
γ1/2ρ1/2 ≤ Cn−3

1 R2
1

16
λ(k)(31)

⇐⇒ γ ≤ C2(n−3)
1

C2(n−1)
2

R3
1

128
λ2
(k)

ρ
= C4(n−2)

1

C2(2n−3)
2

R3
1

128
(λ(k+1) − λ(k))(R + C2

2
(R − R1)λ(k)

)
−1

.

For such values of γ and δ ≤ B1
A1

, we have that T1 < 0.
By performing the analogous calculations for T2, we obtain the same upper bound

for γ as in Inequality (31). Hence, for such values of γ and δ ≤ B2
A2

, we have that T2 < 0.
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Therefore, for

γ = min
⎧⎪⎪⎨⎪⎪⎩

1
4R1

C2(n−1)
1

C2(n−2)
2

(λ(k+1) − λ(k))(Rλ2
(k) +

C2
2

R − R1
λ(k))

−1

,

C4(n−2)
1

C2(2n−3)
2

R3
1

128
(λ(k+1) − λ(k))(R + C2

2
(R − R1)λ(k)

)
−1⎫⎪⎪⎬⎪⎪⎭

,

(32)

and δ ≤ min{ B1
A1

, B2
A2
}, we have that R(a) < R(ak)which is a contradiction. Note that

the first condition in (32) comes from (25). ∎

3.4 Proof of Theorem 1.6

In this section, we prove Theorem 1.6.

Proof of Theorem 1.6 We recall that h(R) = 0 and h′(R) = −1. Thus, there exists
ρ > 0 such that if r ∈ [R − ρ, R], we have

1
2
(R − r) ≤ h(r) ≤ 2(R − r).(33)

Let 0 < ε < ρ. Similarly to the proof of Theorem 1.2, we take

ã(r) =
⎧⎪⎪⎨⎪⎪⎩

1, 0 ≤ r ≤ R − ε,
R−r

ε , R − ε ≤ r ≤ R,
(34)

as a test function and make use of the upper bound in (33) to obtain that

σ(k)(gh) ≤
1

h(0)2 (λ(k)(R − ε) + ∫
R

R−ε
[h2

ε2 + λ(k) (
R − r

ε
)

2
] dr)

≤ 1
h(0)2 (λ(k)(R − ε) + (4 + λ(k))ε).

Then, by taking the limit as ε → 0, we obtain that

σ(k)(gh) ≤
Rλ(k)

h(0)2 .

To prove that the previous inequality is strict, we assume that there exists a h ∈
C∞([0, R]) such that h(R) = 0, h′(R) = −1 and

σ(k)(gh) =
Rλ(k)

h(0)2

and obtain a contradiction. Given such a h, it is possible to construct a func-
tion h ∈ C∞([0, R]) such that h(R) = 0, h

′(R) = −1, h(0) = h(0), h(r) > h(r) for
r ∈ [ R

4 , R
2 ] and h(r) ≥ h(r) for r ∈ [0, R] ∖ [ R

4 , R
2 ]. Let ak be a function that gives rise

to an eigenfunction corresponding to σk(gh). Then ak is not a constant function since
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constant functions do not satisfy (9) for k ≥ 1. Taking ak as a test function for σk(gh),
we obtain that

σk(gh) ≤ ∫
R

0 {(a
′
k)2h2 + λ(k)a2

k} dr
ak(0)2 h(0)2 < ∫

R
0 {(a

′
k)2h

2 + λ(k)a2
k} dr

ak(0)2h(0)2
= σk(gh) ≤

Rλ(k)

h(0)2 ,

which is a contradiction.
To show that sup{σ(k)(gh) ∶ h(0) = h0} =

Rλ(k)
h2

0
, we follow the same arguments as

in the proof of Theorem 1.2 with the function

h̃ε(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h0 , r ≤ ε,
h0ε−1/2 , 2ε ≤ r ≤ R − 2ε,
R − r R − ε ≤ r ≤ R,

to obtain, analogously to (16), that

σ(k)(ghε) ≥
1

h2
0
∫

R−2ε

2ε
λ(k)(1 + O(ε1/2))2 dr =

∣R − 4ε∣λ(k)

h2
0

+ O(ε1/2).

Taking the limit as ε → 0 concludes the proof. ∎

3.5 Upper bounds for Steklov spectral gaps

In this section, we prove Theorem 1.5 and Theorem 1.7. Both proofs make use
of arguments from the proof of Theorem 1.1. The former also employs the upper
bound from Theorem 1.6, while the latter exploits the additional hypotheses that h
is bounded.

Proof of Theorem 1.5 As in the proof of Theorem 1.1, we take a function ak that
gives rise to an eigenfunction for σ(k)(gh) and use it as a test function in the Rayleigh
quotient corresponding to σ(k+1)(gh). By (11) and the fact that ak is not a constant
function, we have that

σ(k+1)(gh) < σ(k)(gh) +
λ(k+1) − λ(k)

λ(k)
σ(k)(gh).

Therefore, by Theorem 1.6 we have that

σ(k+1)(gh) < σ(k)(gh) +
R(λ(k+1) − λ(k))

h(0)2 ,

which implies

σ(k+1)(gh) − σ(k)(gh) <
R(λ(k+1) − λ(k))

h(0)2

as required.
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Moreover, this upper bound is optimal. Indeed, consider the family of smooth
functions (hε) constructed in the proof of Theorem 1.6. By the previous inequality,
for k ≥ 0, we have that

σ(k+1)(ghε) =
k
∑
j=0

σ(k+1− j)(ghε) − σ(k− j)(ghε) ≤
k
∑
j=0

R(λ(k+1− j) − λ(k− j))
h2

0
=

Rλ(k+1)

h2
0

.

By Theorem 1.6, we have that σ(k+1)(ghε) →
Rλ(k+1)

h2
0

as ε → 0. This implies that each
term in the previous sum converges, namely, for all 0 ≤ j ≤ k, we have that

σ(k+1− j)(ghε) − σ(k− j)(ghε) →
R(λ(k+1− j) − λ(k− j))

h2
0

,

as ε → 0. ∎

Finally, we prove Theorem 1.7.

Proof of Theorem 1.7 As in the proof of Theorem 1.6, we take ã as defined in (34)
as a test function and employ the upper bound in (33) and the bounds on h given in
the statement of Theorem 1.7 to obtain that

σ(k)(gh) ≤ ∫
R

0 {(ã′)2hn−1 + λ(k) ã2hn−3} dr
h(0)n−1 ≤ Cn−3

2
h(0)n−1 (Rλ(k) +

2
3

ε) .(35)

Now by (11) and (35), we have that

σ(k+1)(gh) ≤ σ(k)(gh) +
λ(k+1) − λ(k)

λ(k)
σ(k)(gh)

≤ σ(k)(gh) +
(λ(k+1) − λ(k))Cn−3

2 R
h(0)n−1 +

λ(k+1) − λ(k)

λ(k)

2Cn−3
2 ε

3h(0)n−1 .

Then, letting ε → 0, we obtain (8) as required. ∎
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