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Abstract

We give a surprising classification for the computational complexity of the Quantified
Constraint Satisfaction Problem over a constraint language Γ, QCSP(Γ), where Γ is a
finite language over 3 elements which contains all constants. In particular, such problems
are either in P, NP-complete, co-NP-complete or PSpace-complete. Our classification
refutes the hitherto widely-believed Chen Conjecture.

Additionally, we show that already on a 4-element domain there exists a constraint
language Γ such that QCSP(Γ) is DP-complete (from Boolean Hierarchy), and on a
10-element domain there exists a constraint language giving the complexity class ΘP

2 .
Meanwhile, we prove the Chen Conjecture for finite conservative languages Γ. If the

polymorphism clone of such Γ has the polynomially generated powers (PGP) property
then QCSP(Γ) is in NP. Otherwise, the polymorphism clone of Γ has the exponentially
generated powers (EGP) property and QCSP(Γ) is PSpace-complete.

1 Introduction

The Quantified Constraint Satisfaction Problem QCSP(Γ) is the generalization of the Con-
straint Satisfaction Problem CSP(Γ) which, given the latter in its logical form, augments
its native existential quantification with universal quantification. That is, QCSP(Γ) is the
problem to evaluate a sentence of the form ∀x1∃y1 . . .∀xn∃yn Φ, where Φ is a conjunction of
relations from the constraint language Γ, all over the same finite domain D. Since the reso-
lution of the Feder-Vardi “Dichotomy” Conjecture, classifying the complexity of CSP(Γ), for
all finite Γ, between P and NP-complete [8, 29], a desire has been building for a classification
for QCSP(Γ). Indeed, since the classification of the Valued CSPs was reduced to that for
CSPs [20], the QCSP remains the last of the older variants of the CSP to have been systemat-
ically studied but not classified. More recently, other interesting open classification questions
have appeared such as that for Promise CSPs [6] and finitely-bounded, homogeneous infinite-
domain CSPs [2]. The exact dates of these classification questions are not exactly cast in
stone but the question for QCSPs dates at least to the announcement of the classification for
the 2-element case in [28].

While CSP(Γ) remains in NP for any finite Γ, QCSP(Γ) can be PSpace-complete, as
witnessed by Quantified 3-Satisfiability or Quantified Graph 3-Colouring (see [5]). It is well-
known that the complexity classification for QCSPs embeds the classification for CSPs: if
Γ + 1 is Γ with the addition of a new isolated element not appearing in any relations, then
CSP(Γ) and QCSP(Γ + 1) are polynomially equivalent. Thus, and similarly to the Valued
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CSPs, the CSP classification will play a part in the QCSP classification. It is now clear that
QCSP(Γ) can achieve each of the complexities P, NP-complete and PSpace-complete. It has
thus far been believed these were the only possibilities (see [5, 14, 13, 16, 25] and indeed all
previous papers on the topic).

A key role in classifying many CSP variants has been played by Universal Algebra. We say
that a k-ary operation f preserves anm-ary relationR, whenever (x11, . . . , x

m
1 ), . . . , (x

1
k, . . . , x

m
k )

in R, then also (f(x11, . . . , x
1
k), . . . , f(x

m
1 , . . . , x

m
k )) in R. The relation R is called an invariant

of f , and the operation f is called a polymorphism of R. An operation f is a polymorphism of
Γ if it preserves every relation from Γ. The polymorphism clone Pol(Γ) is the set of all poly-
morphisms of Γ. Similarly, a relation R is an invariant of a set of functions F if it is preserved
by every operation from F . By Inv(F ) we denote the set of all invariants of F . We call an
operation f idempotent if f(x, . . . , x) = x, for all x. An idempotent operation f is a weak near-
unanimity (WNU) operation if f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, x, . . . , x, y).
We recall the following form of the (now proved) Feder-Vardi Conjecture.

Theorem 1 (CSP Dichotomy [8, 29]). Let Γ be a finite constraint language with all constants.
If Γ admits some WNU polymorphism, then CSP(Γ) is in P. Otherwise, CSP(Γ) is NP-
complete.

Indeed, this theorem holds with the same criterion even without constants [1]. However, for
the general CSP one may assume without loss of generality that Γ contains all constants (one
can imagine these appearing in various forms, one possibility being all unary relations x = c,
for c ∈ D). This is equivalent to the assumption that all operations f of Pol(Γ) are idempotent.
We can achieve this by moving to an equivalent constraint language known as the core. The
situation is more complicated for the QCSP and it is not known that a similar trick may be
accomplished (see [17]). However, all prior conjectures for the QCSP have been made in this
safer environment where we may assume idempotency and almost all classifications apply only
to this situation. A rare exception to this is the paper [18] where the non-idempotent case is
described as the terra incognita. We will henceforth assume Γ contains all constants.

For the purpose of pedagogy it is useful to look at the Π2 restriction of QCSP(Γ), denoted
QCSP2(Γ), in which the input is of the form ∀x1 . . .∀xn∃y1 . . .∃ym Φ. In order to solve
this restriction of the problem it suffices to look at (the conjunction of) |D|n instances of
CSP(Γ). It is not hard to show (see [15]) that, if Dn can be generated under Pol(Γ) from
some subset Σ ⊆ Dn, then one need only consult (the conjunction over) of |Σ| instances of
CSP(Γ). Suppose there is a polynomial p such that for each n there is a subset Σ ⊆ Dn of size
at most p(n) so that Dn can be generated under Pol(Γ) from Σ, then we say Pol(Γ) has the
polynomially generated powers (PGP) property. Under the additional assumption that there
is a polynomial algorithm that computes these Σ, we would have a reduction to CSP(Γ). It
turns out that if the nature of the PGP property is sufficiently benign a similar reduction
can be made for the full QCSP(Γ) to the CSP with constants [15, 10]. Another behaviour
that might arise with Pol(Γ) is that there is an exponential function f so that the smallest
generating sets under Pol(Γ) for Σ ⊆ Dn require size at least f(n). We describe this as the
exponentially generated powers (EGP) property. The outstanding conjecture in the area of
QCSPs is the merger of Conjectures 6 and 7 in [16] which we have dubbed in [11] the Chen
Conjecture.

Conjecture 1 (Chen Conjecture). Let Γ be a finite constraint language with all constants. If
Pol(Γ) has PGP, then QCSP(Γ) is in NP; otherwise QCSP(Γ) is PSpace-complete.

In [16], Conjecture 6 gives the NP membership and Conjecture 7 the PSpace-completeness.
In light of the proofs of the Feder-Vardi Conjecture, the Chen Conjecture implies the tri-
chotomy of idempotent QCSP among P, NP-complete and PSpace-complete. Chen does not
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state that the PSpace-complete cases arise only from EGP, but this would surely have been on
his mind (and he knew there was a dichotomy between PGP and EGP already for 3-element
idempotent algebras [15]). Since [31], it has been known for any finite domain that only
the cases PGP and EGP arise (even in the non-idempotent case), and that PGP is always
witnessed in the form of switchability. It follows we know that the PGP cases are in NP
[15, 10].

Theorem 2 ([11]). Let Γ be a finite constraint language with all constants such that Pol(Γ)
has PGP. Then QCSP(Γ) reduces to a polynomial number of instances of CSP(Γ) and is in
NP.

Using the CSP classification we can then separate the PGP cases into those that are in P
and those that are NP-complete.

A tantalizing characterization of idempotent Pol(Γ) that are EGP is given in [31], where
it is shown that Γ must allow the primitive positive (pp) definition (of the form ∃x1 . . .∃xn Φ)
of relations τn with the following special form.

Definition 1. Let the domain D be so that α ∪ β = D yet neither of α nor β equals D. Let
S = α3 ∪ β3 and τn be the 3n-ary relation given by

∨

i∈[n] S(xi, yi, zi).

The complement to S represents the Not-All-Equal relation and the relations τn allow for
the encoding of the complement of Not-All-Equal 3-Satisfiability (where α \ β is 0 and β \ α
is 1). Thus, if one has polynomially computable (in n) pp-definitions of τn, then it is clear
that QCSP(Γ) is co-NP-hard [11]. In light of this observation, it seemed that only a small
step remained to proving the actual Chen Conjecture, at least with co-NP-hard in place of
PSpace-complete.

In this paper we refute the Chen Conjecture in a strong way while giving a long-desired
classification for QCSP(Γ) where Γ is a finite 3-element constraint language with constants.
Not only do we find Γ so that QCSP(Γ) is co-NP-complete, but also we find Γ so that Pol(Γ)
has EGP yet QCSP(Γ) is in P. In these latter cases we can further prove that all pp-definitions
of τn in Γ are of size exponential in n. Additionally, we show that on a 4-element domain there
exists a constraint language Γ such that QCSP(Γ) is DP-complete (from Boolean Hierarchy),
and on a 10-element domain there exists a constraint language giving the complexity class
ΘP

2 . Our main result for QCSP can be given as follows.

Theorem 3. Let Γ be a finite constraint language on 3 elements which includes all constants.
Then QCSP(Γ) is either in P, NP-complete, co-NP-complete or PSpace-complete.

Meanwhile, we prove the Chen Conjecture is true for the class of finite conservative lan-
guages (these are those that have available all unary relations). One might see this as among
the larger natural classes on which the Chen Conjecture holds. Another form of “conserva-
tive QCSP”, in which relativization of the universal quantifier is permitted, has been given
by Bodirsky and Chen [3]. They uncovered a dichotomy between P and PSpace-complete,
whereas the QCSP for finite conservative languages bequeaths the following trichotomy.

Theorem 4 (Conservative QCSP). Let Γ be a finite constraint language with all unary rela-
tions. If Pol(Γ) has PGP, then QCSP(Γ) is in NP. If Γ further admits a WNU polymorphism,
then QCSP(Γ) is in P, else it is NP-complete. Otherwise, Pol(Γ) has EGP and QCSP(Γ) is
PSpace-complete.

It is hard to exaggerate how surprising our discovery of multitudinous complexities above
P for the QCSP is. In Table 1 (reproduced but updated from [23]), all syntactic fragments of
first-order logic built from subsets of {∀, ∃,∧,∨,¬,=} are considered. It can be seen that they
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Fragment Dual Classification
{∃,∨} {∀,∧}

LogSpace{∃,∨,=} {∀,∧, 6=}
{∃,∨, 6=} {∀,∧,=}
{∃,∧,∨} {∀,∧,∨} LogSpace if there is some element a so that all

relations contain
{∃,∧,∨,=} {∀,∧,∨, 6=} the tuple (a, . . . , a), and NP-complete otherwise
{∃,∧,∨, 6=} {∀,∧,∨,=}
{∃,∧} {∀,∨} CSP dichotomy: P if language admits some WNU

polymorphism,
{∃,∧,=} {∀,∨, 6=} and NP-complete otherwise.
{∃,∧, 6=} {∀,∨,=} NP-complete for domain at least 3, reduces to

Schaefer classes otherwise.
{∃, ∀,∧} {∃, ∀,∨}

QCSP polychotomy?
{∃, ∀,∧,=} {∃, ∀,∨, 6=}
{∃, ∀,∧, 6=} {∃, ∀,∨,=} PSpace-complete for domain at least 3, reduces to

Schaefer classes for Quantified Sat otherwise.
{∀, ∃,∧,∨} Tetrachotomy: P, NP-complete, co− NP-

complete or PSpace-complete
{∀, ∃,∧,∨,=} {∀, ∃,∧,∨, 6=}

LogSpace when domain at most 1, PSpace-complete otherwise
{¬, ∃, ∀,∧,∨,=}
{¬, ∃, ∀,∧,∨} LogSpace when language contains only empty or

full relations, PSpace-complete otherwise

Table 1: Complexity classifications for model-checking syntactic fragments of first-order logic.
The “Schaefer classes” are the domain 2 CSPs that have a polynomial algorithm, as given in
the seminal work [28].

all give model-checking problems with simple, structured complexity-theoretical classifications
(the classifications are simple but not necessarily the proofs), except the QCSP ({∀, ∃,∧}, with
or without =), and its dual ({∀, ∃,∨}, with or without 6=), whose complexity classification is
in any case a mirror of that for the QCSP. This holds for complexity classes of P and above
(the classification of CSP complexities within P is quite rich).

1.1 Related Work

In [11], we have proved a variant of the Chen Conjecture using infinite relational languages
encoded in quantifier-free logic with constants and equality. An algebra consists of a finite
domain and a set of operations on that domain. A polymorphism clone is an excellent example
of an algebra which additionally satisfies certain properties of closure.

Theorem 5 (Revised Chen Conjecture [11]). Let A be an idempotent algebra on a finite
domain A where we encode relations in Inv(A) in quantifier-free logic with constants and
equality. If A satisfies PGP, then QCSP(Inv(A)) is in NP. Otherwise, QCSP(Inv(A)) is
co-NP-hard.

In this theorem it was known that co-NP-hardness could not be improved to PSpace-
completeness, because QCSP(Inv(A)) is co-NP-complete when, e.g., A = Pol({0, 1, 2}; 0, 1, 2,
τ1, τ2, . . .}) where α = {0, 2} and β = {1, 2}. However, Inv(A) is not finitely related, that
is, generated from a finite set of relations under pp-closure. It was not thought possible that
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there could be finite Γ such that QCSP(Γ) is co-NP-complete. If we take the tuple-listing
encoding of relations instead of quantifier-free logic with constants and equality, Theorem 5
is known to fail [11].

The systematic complexity-theoretic study of QCSPs dates to the early versions of [5]
(the earliest is a technical report from 2002). By the time of the journal version [5], the
significance of the semilattice-without-unit s = sc (definition at opening of Section 6) had
become apparent in a series of papers of Chen [12, 14, 15]. Although CSP(Inv({s})) is in P it
is proved in [5] that QCSP(Inv({s})) is PSpace-complete (even for some finite sublanguage of
Inv({s})). We were unable to use the proof from that paper to expand the PSpace-complete
classification in the 3-element case, but we have expanded it nonetheless.

Finally, the study of which sequences of relations Ri, of arity i, have polynomial-sized (in
i) pp-definitions in a finite constraint language Γ, has been addressed in [21]. Of course, this
question for our relations τi plays a central role in this paper.

1.2 Structure of the paper

The paper is organized as follows (see Figure 1). In Section 2 we formulate the main results
of the paper. We start with the classification of the complexity of QCSP(Γ) for constraint
languages Γ on a 3-element domain containing all constants. Then we show how we can
combine two constraint languages in one constraint language and explain how this idea gives
exotic complexity classes such as DP = NP∧ co-NP.

In Sections 3-5 we give necessary definitions, prove Chen’s conjecture for the conservative
case, and prove how to combine two constraint languages in one constraint language to gener-
ate new complexity classes. In Section 6 we prove hardness results we need for the 3-element
case and show how QCSP(Γ) can be reduced to QCSP2(Γ) (the Π2 restriction of QCSP(Γ)).
In Sections 7 and 8 we define two families of constraint languages Γ such that Pol(Γ) has the
EGP property but QCSP(Γ) can be solved in polynomial time. Additionally, we show that τn
can be pp-defined from Γ only by a formula of exponential size, which explains why the proof
of co-NP-hardness does not work.

In Sections 9-10 we prove the classification of the complexity of QCSP(Γ) for constraint
languages on a 3-element domain containing all constants. In Section 9 we derive the existence
of necessary relations in Γ from the fact that Pol(Γ) has the EGP property. In Section 10 we
complete the proof of the 3-element classification.

2 Main Results

In this section we formulate two main results of the paper: classification of the complexity
of QCSP(Γ) for all constraint languages Γ on a 3-element domain containing all constants,
and a theorem showing how we can combine constraint languages to obtain exotic complexity
classes.

2.1 QCSP on a 3-element domain

Let a and c be constants of our domain {0, 1, 2}.

fa,c(x, y, z) =

{

x, if x = y or y = z = a

c, otherwise.

sa,c(x, y) =

{

x, if x = y or y = a

c, otherwise.
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4 Conservative Case
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3 Preliminaries // 5 QCSP Monsters // 2 Main Results

6 Reductions &
Hardness
3-elements

%%❑
❑❑

❑❑
❑
❑❑

❑❑
❑❑

7 Strange Structure 1 //
9 EGP
and WNU
3-elements

//
10 Main
result
3-elements

OO

8 Strange Structure 2

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

Figure 1: Section dependency diagram for this article.

ga,c(x, y) =

{

x, if x = a or y 6= c

c, otherwise.

sc(x, y) =

{

x, if x = y

c, otherwise.

If {a, b, c} = {0, 1, 2} then call any idempotent operation f , such that f(x, a, b) = x and
f(x, c, c) = c, ab-stable. Note that f(x, y, z) = sa,c(x, y) is an ab-stable operation. We get the
following characterization of the complexity of QCSP(Γ) on a 3-element domain.

Theorem 6. Suppose Γ is a finite constraint language on {0, 1, 2} with constants. Then
QCSP(Γ) is

1. in P, if Pol(Γ) has the PGP property and has a WNU operation.

2. NP-complete, if Pol(Γ) has the PGP property and has no WNU operation.

3. PSpace-complete, if Pol(Γ) has the EGP property and has no WNU operation.

4. PSpace-complete, if Pol(Γ) has the EGP property and Pol(Γ) does not contain an ab-
stable operation.

5. in P, if Pol(Γ) contains sa,c and ga,c for some a, c ∈ {0, 1, 2}, a 6= c.

6. in P, if Pol(Γ) contains fa,c for some a, c ∈ {0, 1, 2}, a 6= c.

7. co-NP-complete otherwise (in which case Pol(Γ) additionally has an ab-stable operation).
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{s2}

{s0,2} {g0,2, s2}

{f0,2} {g0,2, s0,2}

{g1,2, s2} {s1,2}

{g1,2, s1,2} {f1,2}

PSpace

co-NP

P P P P

Figure 2: Constraint languages defined as invariants of sets of operations and their complexity.

Note that the semilattice sc can be derived from each of the operations fa,c, sa,c. As we
know from [5], the problem QCSP(Inv(s2)) is PSpace-complete. Figure 2 demonstrates how
adding new operations makes the constraint language weaker and the quantified constraint
satisfaction problem easier. Note that all the languages in Figure 2 have the EGP property.

2.2 Examples of Constraint Languages

In this section we will show an example of a constraint language on {0, 1, 2} for every case of
Theorem 6 and explain informally why it gives the respective complexity class.

Case (1). Pol(Γ) has the PGP property and has a WNU operation, and QCSP(Γ) is in
P. We can build a constraint language Γ with a single ternary relation x − y + z = 1 mod 3.
That Pol(Γ) has the PGP property and has a WNU operation as witnessed by the operation
x − y + z = 1 mod 3. We can solve QCSP(Γ) by reducing it to a polynomial number of
instances of CSP(Γ), as detailed in Theorem 2, then solving these by Gaussian elimination.

Case (2). Pol(Γ) has the PGP property but has no WNU operation, and QCSP(Γ) is
NP-complete. We can take a single ternary relation {(1, 0, 0), (0, 1, 0), (0, 0, 1)} that does
not involve 2. As a result universal quantifiers do not play any role and can be omitted,
therefore the problem is equivalent to the CSP over the relation {(1, 0, 0), (0, 1, 0), (0, 0, 1)} on
the domain {0, 1} which is known to be NP-complete [28].

Case (3). Pol(Γ) has the EGP property and has no WNU operation, and QCSP(Γ) is
PSpace-complete. We can take the closely related single ternary relation

{(x, 0, 0), (0, x, 0), (0, 0, x) : x ∈ {1, 2}}.

The QCSP over this language is equivalent to the QCSP over the relation {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
on the domain {0, 1} which is known to be PSpace-complete [5].

Case (4). Pol(Γ) has the EGP property and Pol(Γ) does not contain an ab-stable operation,
and QCSP(Γ) is PSpace-complete. Unlike case (3), Γ may have a WNU polymorphism. Let τ
be the ternary relation on {0, 1, 2} consisting of all tuples (a, b, c) such that {a, b, c} 6= {0, 1}.
Then the complement to τ is equal to NAE3, where NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Put

σ(x1, x2, x3, y1, y2) = (y1, y2 ∈ {0, 2}) ∧ (τ(x1, x2, x3) ∨ (y1 = y2)).

We claim that Γ = {σ, x = 0, x = 1, x = 2} satisfies the case (4) and QCSP(Γ) is PSpace-
complete (see Section 6 for the detailed explanation). The reduction will be from the com-
plement of (monotone) Quantified Not-All-Equal 3-Satisfiability (co-QNAE3SAT) which is
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co-PSpace-hard (see [26]) and consequently also PSpace-hard (as PSpace is closed under com-
plement). First, we define a predicate p(x1, . . . , xn, y, y

′) such that for y 6= y′, y, y′ ∈ {0, 2},
and all x1, . . . , xn ∈ {0, 1} it equals the quantifier-free part of the instance of co-QNAE3SAT,
and p always holds if xi = 2 for some i or y = y′ ∈ {0, 2}. Put p(x1, . . . , xn, y0, yk) =
∃y1 . . .∃yk−1

∧k
i=1 σ(z

1
i , z

2
i , z

3
i , yi−1, yi), which expresses the quantifier-free part of the instance

of co-QNAE3SAT

Φ := ¬(NAE3(z
1
1 , z

2
1 , z

3
1) ∧ . . . ∧ NAE3(z

1
k, z

2
k, z

3
k)).

It remains to show how to add quantifiers to Φ:

• The formula ∀x1 p(x1, . . . , xn, y, y
′) obviously expresses ∀x1 Φ.

• It is more complicated with the existential quantifier because we need x1 to be from
{0, 1} and we cannot just write ∃x1 p(x1, . . . , xn, y, y

′) to express ∃x1 Φ. Nevertheless,
the following trick suggested by Miroslav Ol̆sák solves the problem. To express ∃x1 Φ
we define

p′(x2, . . . , xn, y, y
′) = ∃z∀x1∃z

′ (p(x1, . . . , xn, z, z
′) ∧ σ(x1, 0, 0, y, z

′) ∧ σ(x1, 1, 1, y
′, z′)) .

Thus, instead of adding the existential quantifier to x1 we add the universal quantifier to
x1, two existential quantifiers, and two additional constraints. In fact, if z were chosen
to be equal to y then to satisfy the formula for x1 = 0 we send z′ to y′, which, assuming
y 6= y′, implies that Φ holds on x1 = 0. Otherwise, if z 6= y then to satisfy the formula
for x1 = 1 we send z′ to y, which, assuming y 6= y′, implies that Φ holds on x1 = 1.
Thus, we simulated adding the existential quantifier to Φ.

Cases (5)-(6). Two concrete constraint languages are presented in Sections 7 and 8. These
constraint languages have the EGP property but the QCSP over these languages can be solved
in polynomial time. The polynomial algorithm is based on the following two ideas.

• The existence of the polymorphism sa,c guarantees that it is sufficient (see Lemma 18)
to find a polynomial algorithm for sentences of the form ∀x1 . . .∀xn∃y1 . . . ∃ym Φ.

• Since Pol(Γ) has the EGP property, the usual reduction from QCSP to CSP (without
looking at the formula) cannot help because theoretically we need to check exponentially
many tuples (x1, . . . , xn). The key idea here is to calculate the list of tuples (x1, . . . , xn)
we need to check to be sure that the formula holds for all the tuples. To calculate
them we look at the formula Φ, substitute necessary values to some variables, and solve
polynomially many CSP instances solvable in polynomial time (we have the semilattice
polymorphism). See the algorithms in Sections 7 and 8 for more details.

Case (7). The first and probably easiest example of a constraint language Γ such that

QCSP(Γ) is co-NP-complete is as follows. Let RAND =





0 0 1 1 2 ·
0 1 0 1 · 2
0 0 0 1 · ·



 and ROR =





0 0 1 1 2 ·
0 1 0 1 · 2
0 1 1 1 · ·



 where columns are tuples of the relations and · means any element of

{0, 1, 2}, that is RAND and ROR are row-wise the truth table of AND and OR respectively.
Put Γ = {RAND, ROR}. The proof of co-NP-completeness can be divided into two steps (see
Section 6 for the details):
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• Using existential quantifiers we can compose these relations in the same way as we
compose the operations AND and OR on {0, 1}. Using this idea we efficiently define (see
Lemma 20) the complement to Not-All-Equal 3-Satisfability. Hence, adding universal
quantifiers makes the problem co-NP-hard.

• To show that the problem is in co-NP we need to explain a polynomial strategy for the
Existential player in a (Hintikka) game corresponding to the truth of the instance of
the QCSP. It turns out that to calculate the best move Existential can assume that all
the later choices of the Universal player are 0. It is also important that the Existential
player should play 2 if several moves are possible. Since the CSP over this language is
solvable in polynomial time, after fixing the choice of the Universal player this can be
done in polynomial time.

2.3 QCSP Monsters

The following theorem shows how we can combine constraint languages to obtain QCSPs with
different complexities.

Theorem 7. Suppose Γ1, Γ2, and Γ3 are finite constraint languages on sets A1, A2, and A3,
respectively, and Γ1 contains a constant relation (x = a). Then there exist constraint languages
∆1, ∆2, ∆3, ∆4, on the domains of size |A1|+ 1, |A2| · |A3|+ |A2|+ |A3|, 2 · |A2|+ |A3|+ 2,
and |A2| · |A3| + |A2|+ |A3| + 2, respectively, such that QCSP(∆i) is polynomially equivalent
to the following problem:

i=1 Given an instance of QCSP(Γ1) and instance of an NP-complete problem; decide whether
both of them hold, i.e. QCSP(Γ1) ∧ NP.

i=2 Given an instance of QCSP(Γ2) and an instance of QCSP(Γ3); decide whether both of
them hold, i.e. QCSP(Γ2) ∧QCSP(Γ3).

i=3 Given n > 0, instances I1, . . . , In of QCSP(Γ2), and instances J1, . . . , Jn of CSP(Γ3);
decide whether (I1 ∨ J1) ∧ · · · ∧ (In ∨ Jn) holds, i.e. (QCSP(Γ2) ∨ CSP(Γ3)) ∧ · · · ∧
(QCSP(Γ2) ∨ CSP(Γ3)).

i=4 Given n > 0, instances I1, . . . , In of QCSP(Γ2), and instances J1, . . . , Jn of QCSP(Γ3);
decide whether (I1 ∨ J1) ∧ · · · ∧ (In ∨ Jn) holds, i.e. (QCSP(Γ2) ∨ QCSP(Γ3)) ∧ · · · ∧
(QCSP(Γ2) ∨QCSP(Γ3)).

Proof. The proof for i = 1, i = 2, i = 3, and i = 4 follows from Lemmas 13, 16, 15, and 14,
respectively.

Corollary 8. There exists a finite constraint language Γ on a 4-element domain such that
QCSP(Γ) is DP-complete (where DP = NP ∧ co-NP from the Boolean hierarchy).

Proof. By Theorem 6, there exists a constraint language Γ1 on a 3-element domain with
constants such that QCSP(Γ1) is co-NP-complete. Applying Theorem 7 with i = 1 to Γ1 we
obtain a constraint language Γ on a 4-element domain such that QCSP(Γ) is polynomially
equivalent to DP.

The complexity class ΘP
2 (see [22] and references therein) admits various definitions, one

of which is that it allows a Turing machine polynomial time with a logarithmic number of
calls to an NPoracle. A condition proved equivalent to this, through Theorems 4 and 7 of [9],
is as follows. In this theorem i 6 p(|x|) indicates i is a positive integer smaller than p(|x|),
where x is a string of length |x|.
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Theorem 9 ([9]). Every predicate in ΘP
2 can be defined by a formula of the form ∃i 6

p(|x|) A(i, x) ∧ ¬B(i, x) as well as by a formula of the form ∀i 6 p′(|x|) A′(i, x) ∨ ¬B′(i, x),
where A,B,A′ and B′ are NP-predicates and p and p′ are polynomials.

The second (universal) characterization will play the key role in the following observation.

Corollary 10. There exists a finite constraint language Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

Proof. By Theorem 6, there exists a constraint language Γ1 on a 3-element domain with
constants such that QCSP(Γ1) is co-NP-complete. Choose a constraint language Γ2 on a 2-
element domain such that CSP(Γ2) is NP-complete. Using item 3 of Theorem 7, we construct
a constraint language Γ so that QCSP(Γ) is equivalent to the truth of (I1∨J1)∧· · ·∧(In∨Jn),
where I1, . . . , In are instances of QCSP(Γ1) and J1, . . . , Jn are instances of CSP(Γ2).

To prove membership of QCSP(Γ) in ΘP
2 , we use the second characterization of Theorem 9

together with A′(i, x) indicating that Ji is a yes-instance of CSP(Γ2) and ¬B′(i, x) indicating
that Ii is a yes-instance (or B′(i, x) indicating Ii is a no-instance) of QCSP(Γ1). Thus, we
want i to range over numbers from 1 to n, so in the predicates A′(i, x) and ¬B′(i, x) we should
in particular set these to be true if i is not a number from 1 to n.

To prove that QCSP(Γ) is ΘP
2 -complete, we use again the second formulation of charac-

terization of Theorem 9, but this time break the universal quantification into a conjunction
of length p′(|x|).

3 Preliminaries

Let [n] = {1, . . . , n}. We identify a constraint language Γ with a set of relations over a fixed
finite domain D. We may also think of this as a first-order relational structure. If Φ is a
first-order formula including x1, . . . , xn among its free variables and not containing y1, . . . , yn
in any capacity, then Φx1,...,xny1,...,yn

is the result of substituting the free occurrences of x1, . . . , xn
by y1, . . . , yn, respectively. If I is an instance of QCSP(Γ), then Var(I) refers to the variables
mentioned in I.

We always may assume that an instance of QCSP(Γ) is of the prenex form

∀x1∃y1∀x2∃y2 . . .∀xn∃ynΦ,

since if it is not it may readily be brought into such a form in polynomial time. Then a
solution is a sequence of (Skolem) functions f1, . . . , fn such that

(x1, f(x1), x2, f2(x1, x2), . . . , xn, fn(x1, . . . , xn))

is a solution of Φ for all x1, . . . , xn (i.e. yi = fi(x1, . . . , xi)). This belies a (Hintikka) game
semantics for the truth of a QCSP instance in which a player called Universal plays the
universal variables and a player called Existential plays the existential variables, one after
another, from the outside in. The Skolem functions above give a strategy for Existential. In
our proofs we may occasionally revert to a game-theoretical parlance.

An algebra A consists of domain and a set of operations defined on that domain. The
most important type of algebra in this paper is a clone. Let Clo(G) be the clone generated
by the set of operations G, that is the closure of G under the addition of projections and
composition, where the composition of a k-ary operation f and m-ary operations g1, . . . , gk is
the m-ary operation defined by f(g1, . . . , gk).

In general with our operators, if the argument is a singleton set, we omit the curly brackets.
A subalgebra of A consists of a subset D of the domain of A, that is preserved by all the
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operations of G, together with all the operations of A restricted to D. A congruence on an
algebra A is an equivalence relation ∼ on its domain so that, for each k-ary operation f in
A, f(x1, . . . , xk) ∼ f(y1, . . . , yk) whenever x1 ∼ y1, . . . , xk ∼ yk. We can quotient A by ∼ in
the obvious way to obtain a new algebra that we describe as a homomorphic image of A. A
factor of A is a homomorphic image of a subalgebra of A.

A formula of the form ∃y1 . . .∃ynΦ, where Φ is a conjunction of relations from Γ is called a
positive primitive formula (pp-formula) over Γ. If R(x1, . . . , xn) = ∃y1 . . .∃ynΦ, then we say
that R is pp-defined by ∃y1 . . .∃ynΦ, and ∃y1 . . .∃ynΦ is called a pp-definition. Note that if a
relation R is pp-definable over Γ then it is preserved by any operation f ∈ Pol(Γ) [4, 19].

In a pp-formula we allow always, except for Section 5, the use of constants from the domain.
Note that using constants is equivalent to having all unary relations x = c in our constraint
language. On the algebraic side, this corresponds to assuming all polymorphism operations
are idempotent. For a conjunctive formula Φ by Φ(x1, . . . , xn) we denote the n-ary relation
defined by a pp-formula where all variables except x1, . . . , xn are existentially quantified. We
do not require the variables x1, . . . , xn to be different; for instance, Φ(x1, x1) defines pairs of
equal elements. Equivalently, Φ(x1, . . . , xn) is the set of all tuples (a1, . . . , an) such that Φ has
a solution with (x1, . . . , xn) = (a1, . . . , an).

For a k-ary relation R and a set of coordinates B ⊂ [k], define prB(R) to be the |B|-ary
relation obtained from R by projecting to B, or equivalently, existentially quantifying variables
at positions [k] \B.

For a tuple α by α(n) we denote the n-th element of α. We define relations by matrices
where the columns list the tuples.

Let α and β be strict subsets ofD so that α∪β = D. The most interesting cases arise when
α ∩ β 6= ∅ but we will not insist on this at this point. An n-ary operation f is αβ-projective
if there exists i ∈ [n] so that f(x1, . . . , xn) ∈ α, if xi ∈ α, and f(x1, . . . , xn) ∈ β, if xi ∈ β.
In this case, we may say that f is αβ-projective to coordinate i. It is now known that an
idempotent algebra A over domain D has EGP iff there exists α and β, strict subsets of D,
so that all operations of A are αβ-projective [31].

4 The conservative case

In this section we prove Theorem 4 describing the complexity of QCSP(Γ) for conservative
constraint languages Γ, i.e. languages containing all unary relations. As it was mentioned
in the introduction, if Pol(Γ) has the PGP property then we can reduce QCSP(Γ) to several
copies of CSP. Thus, the only open question was the complexity for the EGP case. Here we
will use the following fact from [11].

Lemma 11 ([11]). Suppose Γ is a constraint language on domain D with constants, such that
Pol(Γ) has the EGP property. Then there exist α, β ( D such that α ∪ β = D and τn (as in
Definition 1) is pp-definable from Γ for every n > 1.

It turns out that if Γ contains all unary relations then two copies of τk can be composed to
define the relation τ2(k−1) as follows. Choose 0 ∈ α \ β and 1 ∈ β \ α, then

τ2(k−1)(x1, y1, z1 . . . , x2(k−1), y2(k−1), z2(k−1)) = ∃w τk(x1, y1, z1 . . . , xk−1, yk−1, zk−1, 0, 0, w)∧

τk(xk, yk, zk, . . . , x2(k−1), y2(k−1), z2(k−1), 1, 1, w) ∧ w ∈ {0, 1}.

Identifying variables in τk we can derive τk−1, therefore τk is pp-definable from τj and unary
relations whenever k > j > 3.
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Lemma 12. There is a polynomially (in k) computable pp-definition of τk from τ3 and unary
relations.

Proof. As above we can define τ2(k−1) in a recursive fashion using two copies of τk plus a single
new existential quantifier whose variable is restricted to being on domain {0, 1}. Note that in
the recursive pp-definition of τk over τ3 every variable that is not quantified appears just once,
each quantified variable appears three times, and most variables are not quantified. Therefore,
our recursive scheme gives a polynomially computable pp-definition of τk.

We are now in a position to prove Theorem 4, whose statement we recall.

Theorem 4. Let Γ be a finite constraint language with all unary relations. If Pol(Γ) has
PGP, then QCSP(Γ) is in NP. If Γ further admits a WNU polymorphism, then QCSP(Γ) is
in P, else it is NP-complete. Otherwise, Pol(Γ) has EGP and QCSP(Γ) is PSpace-complete.

Proof. Assume Γ is a finite constraint language with all unary relations. Suppose Pol(Γ)
has PGP. Then we know from Theorem 2 that QCSP(Γ) reduces to a polynomial number of
instances of CSP(Γ). It follows from Theorem 1 that if Γ admits a WNU then QCSP(Γ) is in
P, otherwise QCSP(Γ) is NP-complete.

Suppose now Pol(Γ) has EGP. By Lemma 11 there exist α, β as in Definition 1 such that
τ3 is pp-definable from Γ. Combining this with Lemma 12 we conclude that there are poly-
nomially (in k) computable pp-definitions of τk in Γ. We will reduce from the complement of
Quantified Not-All-Equal 3-Satisfiability (QNAE3SAT) which is known to be PSpace-complete
(see, e.g., [26]). From an instance φ = ¬∀x1∃y1 . . . ∀xn∃yn Φ of co-QNAE3SAT, where
Φ = NAE3(z

1
1 , z

2
1 , z

3
1)∧ . . .∧NAE3(z

1
k, z

2
k, z

3
k) and z

1
1 , z

2
1, z

3
1 , . . . , z

1
k, z

2
k, z

3
k ∈ {x1, y1, . . . , xn, yn},

we build an instance φ′ of QCSP(Γ) as follows. Consider φ to be ∃x1∀y1 . . . ∃xn∀yn ¬Φ and
set φ′ =

∃x1∀y1 . . . ∃xn∀yn x1, . . . , xn ∈ (α \ β ∪ β \ α) ∧ τk(z
1
1 , z

2
1 , z

3
1 , . . . , z

1
k, z

2
k, z

3
k).

The idea is that the set α \ β plays the role of 0 and β \ α plays the role of 1.
(φ ∈ co-QNAE3SAT implies φ′ ∈ QCSP(Γ).) Let the universal variables be evaluated in

φ′ and match them in φ according to α \ β being 0 and β \ α being 1. If a universal variable
in φ′ is evaluated in α ∩ β, then we can match it in φ w.l.o.g. to 0. Now, read a valuation of
the existential variables of φ′ from those in φ according to 0 becoming any fixed d0 ∈ α \ β
and 1 becoming any fixed d1 ∈ β \ α. By construction we have φ′ ∈ QCSP(Γ).

(φ′ ∈ QCSP(Γ) implies φ ∈ co-QNAE3SAT.) Suppose φ′ ∈ QCSP(Γ). We will prove
φ ∈ co-QNAE3SAT again using the form of φ being ∃x1∀y1 . . .∃xn∀yn ¬Φ. Let the universal
variables be evaluated in φ and match them in φ′ according to 0 becoming any fixed d0 ∈ α\β
and 1 becoming any fixed d1 ∈ β \ α. Now, read a valuation of the existential variables
of φ from φ′ according to to α \ β being 0 and β \ α being 1. By construction we have
φ ∈ co-QNAE3SAT.

5 QCSP Monsters

This section explains the building of monsters with greater than a 3-element domain. It has
no bearing on the 3-element classification.

Lemma 13. Suppose Γ is a finite constraint language on a set A where |A| > 1 containing the
unary relation x = a. Then there exists a constraint language Γ′ on a domain of size |A|+ 1
such that QCSP(Γ′) is polynomially equivalent to QCSP(Γ)∧NP, that is the following decision
problem: given an instance of QCSP(Γ) and an instance of some NP-complete problem; decide
whether both of them hold.
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Proof. Let a ∈ A be as in the statement of the lemma and let a′ be some element not in A.
Put A′ = A ∪ {a′}.

Put φ(x) =

{

x, if x ∈ A

a, if x = a′
.We assign a relation R′ on the set A′ to every R ∈ Γ as follows:

R′ = {(a1, . . . , ah) | (φ(a1), . . . , φ(ah)) ∈ R}. Let NAE3 ⊆ {a, a′}3 be the ternary relation
containing all tuples on {a, a′} except for (a, a, a), (a′, a′, a′). Let Γ′ = {R′ | R ∈ Γ}∪{NAE3}.

Suppose I is an instance of QCSP(Γ) and J is an instance of CSP({NAE3}), which is an
NP-complete problem. If we replace every relation R from Γ by the corresponding relation
R′, we get an instance I ′ that is equivalent to I. Then the instance I ′ ∧ J can be viewed as
an instance of QCSP(Γ′) that is equivalent to I ∧ J .

Suppose I ′ is an instance of QCSP(Γ′). W.l.o.g. we will assume that no variable appearing
in an NAE3 relation is universally quantified, else, since |A| > 1, this is a no-instance of
QCSP(Γ′) and can be reduced to a fixed no-instance (e.g.) J of CSP({NAE3}). Now, we
define an instance I of QCSP(Γ) and an instance J of CSP({NAE3}) as follows. I is obtained
from I ′ by replacement of all relations R′ by the corresponding R and NAE3 by {(a, a, a)}.
Since Γ contains x = a, I is an instance of QCSP(Γ). The instance J consists of the NAE3-
part of I ′ which is a CSP as we already assumed it contains no universal variables. Now,
to see I ′ ∈ QCSP(Γ′) iff I ∈ QCSP(Γ) and J ∈ CSP({NAE3}) it is enough to observe that
QCSP(Γ) and QCSP(Γ′ \ {NAE3}) are equivalent on all instances.

Lemma 14. Suppose Γ1 and Γ2 are finite constraint languages on sets A1 and A2 respectively.
Then there exists a constraint language Γ on a domain of size |A1| · |A2|+ |A1|+ |A2|+2 such
that QCSP(Γ) is polynomially equivalent to (QCSP(Γ1) ∨ QCSP(Γ2)) ∧ · · · ∧ (QCSP(Γ1) ∨
QCSP(Γ2)), i.e. the following decision problem: given n, instances I1, . . . , In of QCSP(Γ1),
and instances J1, . . . , Jn of QCSP(Γ2); decide whether (I1 ∨ J1) ∧ · · · ∧ (In ∨ Jn) holds.

Proof. Assume that A1 ∩A2 = ∅, a1, a2 /∈ A1 ∪A2. Let

A = (A1 × A2) ∪ A1 ∪ A2 ∪ {a1, a2},

σ = (A1 × {a1}) ∪ ({a2} × A2),

σ1 = {(a, (a, b)) | a ∈ A1, b ∈ A2} ∪ ({a2} × A) ∪ (A1 × (A1 ∪ A2 ∪ {a1, a2})),

σ2 = {(b, (a, b)) | a ∈ A1, b ∈ A2} ∪ ({a1} × A) ∪ (A2 × (A1 ∪A2 ∪ {a1, a2})),

Γ = {R ∪ {(a2, . . . , a2)} | R ∈ Γ1} ∪ {R ∪ {(a1, . . . , a1)} | R ∈ Γ2} ∪ {σ1, σ2, σ}.

We would like to assume, w.l.o.g., that Γ contains constants a1 and a2. This would follow
from our definitions, so long as both Γ1 and Γ2 contain a unary empty relation. We may
assume this, through definitions of the form ∀x1, . . . , xkR(x1, . . . , xk), so long as not every
relation in either Γ1 or Γ2 contains all tuples. Suppose, w.l.o.g., that every relation in Γ1

contains all tuples, then we take Γ to be Γ1 and we are done. Thus we may assume w.l.o.g.,
that Γ contains constants a1 and a2.

Suppose we have an instance I1 of QCSP(Γ1) and an instance I2 of QCSP(Γ2). W.l.o.g.
we will assume that neither I1 nor I2 is empty and that they are variable disjoint. We will
explain how to build an instance J of QCSP(Γ). Let x1, . . . , xn be all universally quantified
variables of I1.

We replace every atomic relation R of I1 by R∪{(a2, . . . , a2)} and add relational constraints
σ1(xi, yi) for every i ∈ [n] (where the variables yi are new). Also we replace ∀xi by ∀yi∃xi for
every i ∈ [n]. The result we denote by I ′1. Similarly, but with a1 instead of a2 and σ2 instead
of σ1 we define I ′2. We claim that the sentence J defined by

I ′1 ∧ I
′
2 ∧

∧

u∈Var(I1),v∈Var(I2)

σ(u, v)
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(we move all the quantifiers to the left part after joining) holds if and only if I1 holds or I2
holds. W.l.o.g. we will henceforth assume the first variable in J is existential (if necessary we
could enforce this by a dummy existential variable at the beginning of I1).

Let us guide our proof with an example. Suppose that I1 is ∃x1∀x2∃x3∀x4Φ1(x1, x2, x3, x4)
and I2 is ∀x′1∃x

′
2Φ2(x

′
1, x

′
2) then J has the form

∃x1∀y2∃x2∃x3∀y4∃x4∀y
′
1∃x

′
1∃x

′
2 Φ1(x1, x2, x3, x4) ∧ Φ2(x

′
1, x

′
2)∧∧

i σ1(xi, yi) ∧
∧

j σ2(x
′
j , y

′
j) ∧

∧

i,j σ(xi, x
′
j).

(I1 ∈ QCSP(Γ1) ∨ I2 ∈ QCSP(Γ2) implies J ∈ QCSP(Γ).) W.l.o.g. I1 ∈ QCSP(Γ1). Let
us give a winning strategy for Existential in J based on the winning strategy Existential
enjoys on I1. Existential will evaluate all (existential) variables of J coming from I2 as a1.
It follows that all of the atoms in J arising purely from I2, in our example Φ2(x

′
1, x

′
2) and

∧

j σ2(x
′
j , y

′
j), will be satisfied. There is no longer a need to worry about how Universal plays

in J on variables y′i coming from I2. Now, consider Universal’s play in J on a variable yi
coming from I1. If he plays some pair (a, b), with a ∈ A1 and b ∈ A2, then let Existential
respond with xi set to a. If he plays some element a ∈ A1 ∪A2 ∪ {a1, a2}, then let Existential
respond with xi set to any arbitrary a ∈ A1 (we could imagine this corresponding to Universal
instead having played some (a, b) for yi). Finally, Existential plays the remaining (existential)
variables of J matching her winning strategy in the game on I1, supposing Universal plays xi
in I1 whatever we just described Existential playing for xi (associated with yi in J). This is
a winning strategy on J by construction of Γ.

(J ∈ QCSP(Γ) implies I1 ∈ QCSP(Γ1)∨ I2 ∈ QCSP(Γ2).) Consider a winning strategy for
Existential in J ∈ QCSP(Γ) where Universal only played on elements of the form (a, b) where
a ∈ A1, b ∈ A2. The first variable x of J is existential and indeed is associated with I1. This
must be played by Existential in A1 or as a2. If x is evaluated in A1 then the σ constraints
force all variables associated with I2 to now be a1 and thus all variables associated with I1
to be in A1. Existential can now witness I1 ∈ QCSP(Γ1) by considering that Universal in I1
plays a, where Universal in J played (a, b). If x is evaluated to a2, then the σ constraints force
all variables associated with I2 to now be in A2 and thus all variables associated with I1 to be
a2. Existential can now witness I2 ∈ QCSP(Γ1) by considering Universal in I2 plays b, where
Universal in J played (a, b).

We can reduce a more complicated set of instances I1, . . . , In of QCSP(Γ1) and J1, . . . , Jn
of QCSP(Γ2) to K in QCSP(Γ), in such a way that K ∈ QCSP(Γ) iff (I1 ∈ QCSP(Γ1) ∨ J1 ∈
QCSP(Γ2))∧ . . .∧ (In ∈ QCSP(Γ1)∨ Jn ∈ QCSP(Γ2)) by taking the conjunction of our given
reduction over each pair Ii and Ji.

Now, let us prove that any instance of QCSP(Γ) can be reduced to some conjunction of
instances of QCSP(Γ1)∨QCSP(Γ2). Call an instance K of QCSP(Γ) connected if the Gaifman
graph of the existential variables of K is connected. The number of connected components
of K will give the number of conjuncts QCSP(Γ1) ∨ QCSP(Γ2). Let us assume now w.l.o.g.
that K is connected otherwise we can split K into a conjunction of its connected instances
where each connected instance contains all universal variables but only the atoms containing
instances of (universal variables and) its existential variables. Notice that all variables in K
are typed, in that any variable in a relation from Γ either takes on values ranging across:
A1 ∪ {a2}; or A2 ∪ {a1}; or A. If a variable appears with more than one type but the types
are consistent (i.e. one type is A and the other is one from A1 ∪ {a2} or A2 ∪ {a1}) then this
is because the variable appears in some σi in the second position. But now we could remove
this σi constraint because the other existing type restriction to one of A1 ∪ {a2} or A2 ∪ {a1}
means σi will always be satisfied. Furthermore, if some variable has inconsistent types or a
fixed element constant appears in a position where it is forbidden due to type, then we know
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the instance is false. This would also be the case if a universal variable appears in any type
other than A. We will now assume none of these situations occurs and we term such an input
reduced.

We would like now to assume that K has no existential variables x in the second position
in a σi. First we must argue that if K is reduced then Existential can witness the truth of
K while never playing outside of A1 ∪A2 ∪ {a1, a2}. Suppose Existential ever played outside
of this set, then any element in the set could be chosen as a legitimate alternative. Indeed,
Existential could only win by playing an element of the form (a, b) in the second position
of some σi and in this circumstance the atom would be equally satisfied by any choice from
A1 ∪A2 ∪ {a1, a2}. Now we can make the assumption that K has no existential variables x in
the second position in a σi because any choice among A1 ∪ {a2} or A2 ∪ {a1} satisfies this.

Let us remark that Universal has a winning strategy in K iff he has this winning strategy
only playing elements of A1 × A2. Indeed, we already used this property in the simpler case
above. Suppose we have in K some σ1(x1, y) ∧ σ1(x2, y), where y is universally quantified
before x1 and x2. Then adding the constraint x1 = x2 doesn’t change the result (since y will
be played in A1 × A2). Let us do this and propagate out the innermost of x1 and x2.

Let us process likewise similar instances in K of the form σ2(x1, y) ∧ σ2(x2, y).
Suppose we have in K some σ1(x1, y) ∧ σ2(x2, y), where y is universally quantified before

x1 and x2. Note that, since we applied already previous rewriting rules, these are the only
occurrences of y in the whole sentence. Owing to this, and since ∀y∃x1∃x2σ1(x1, y)∧σ2(x2, y) is
logically equivalent to ∀y1∀y2∃x1∃x2σ1(x1, y1)∧σ2(x2, y2), we may substitute the quantification
and atoms in our sentence of the first form for those of the latter form.

Finally, if σ1(x, y) appears in the instance K with x is quantified before y then it is
equivalent to the substitution x = a2. Similarly, for σ2(x, y) with x is quantified before y then
it is equivalent to the substitution x = a1. In the former case, K2 becomes redundant, and in
the latter case, K1 becomes redundant.

We are now in a position to build an instance K1 ∨K2 of QCSP(Γ1)∨QCSP(Γ2). We can
now split K into K1 and K2 based on the types of the existential variables using the following
additional rule. If y is quantified before x (recall it must be universally quantified) then we
may consider this enforces in K1 universal quantification of x but restricted to A1. Similarly,
with σ2(x, y), and K2 and A2.

We claim K ∈ QCSP(Γ) iff K1 ∈ QCSP(Γ1) or K2 ∈ QCSP(Γ2).
(Forward.) Assume the converse, then there exist winning strategies for Universal players

for K1 and K2. We need to build a winning strategy for K. If one of K1 or K2 is empty,
then we may play all existential variables to a2 or a1, respectively. To do this we apply both
strategies (choose different strategies for different variables) until the moment when the first
existential variable (let it be x) is evaluated. Recall we assume existential variable x is either
of type A1 ∪ {a2} or of type A2 ∪ {a1}. W.l.o.g. let it be the former. If x is evaluated in A1

then the Universal player of K uses the strategy of K1, if it is evaluated as a2 then we use
the strategy for K2. Since K is connected, if x is evaluated in A1 then all variables of type
A1 ∪ {a2} must be evaluated in A1, while if x is evaluated as a2 then all variables of type
A2∪{a1} must be evaluated from A2 (because a1 can not appear). Thus the strategy we built
is a winning strategy for the Universal player in K.

(Backwards.) W.l.o.g. assume K1 ∈ QCSP(Γ1). Evaluate all variables in K of type
A2 ∪ {a1} to a1. Evaluate all variables in K of type A1 ∪ {a2} in A1 according to the winning
strategy for K1 ∈ QCSP(Γ1).

Similarly we can prove the following two lemmas.

15



Lemma 15. Suppose Γ1 and Γ2 are finite constraint languages on sets A1 and A2 respectively.
Then there exists a constraint language Γ on a domain of size 2 · |A1| + |A2| + 2 such that
QCSP(Γ) is polynomially equivalent to (QCSP(Γ1)∨CSP(Γ2))∧· · ·∧ (QCSP(Γ1)∨CSP(Γ2)),
i.e. the following decision problem: given n, instances I1, . . . , In of QCSP(Γ1), and instances
J1, . . . , Jn of CSP(Γ2); decide whether (I1 ∨ J1) ∧ · · · ∧ (In ∨ Jn) holds.

Proof. It is sufficient to define a new language as follows. Let A′
1 be a copy of A1. For any

a ∈ A1 by a′ we denote the corresponding element of A′
1. Let

A = A′
1 ∪ A1 ∪ A2 ∪ {a1, a2},

σ = (A1 × {a1}) ∪ ({a2} × A2),

σ1 = {(a, a′) | a ∈ A1} ∪ ({a2} × A) ∪ (A1 × (A1 ∪A2 ∪ {a1, a2})),

Γ = {R ∪ {(a2, . . . , a2)} | R ∈ Γ1} ∪ {R ∪ {(a1, . . . , a1)} | R ∈ Γ2} ∪ {σ1, σ}.

Lemma 16. Suppose Γ1 and Γ2 are finite constraint languages on sets A1 and A2 respectively.
Then there exists a constraint language Γ on a domain of size |A1| · |A2|+ |A1|+ |A2| such that
QCSP(Γ) is polynomially equivalent to (QCSP(Γ1) ∧ QCSP(Γ2)), i.e. the following decision
problem: given an instance I of QCSP(Γ1) and an instance J of QCSP(Γ2)); decide whether
I ∧ J holds.

Proof. It is sufficient to define a new language as follows. Let

A = (A1 ×A2) ∪A1 ∪ A2,

σ1 = {(a, (a, b)) | a ∈ A1, b ∈ A2} ∪ (A1 × (A1 ∪ A2)),

σ2 = {(b, (a, b)) | a ∈ A1, b ∈ A2} ∪ (A2 × (A1 ∪ A2)),

Γ = Γ1 ∪ Γ2 ∪ {σ1, σ2},

where we consider any relation from Γ1 ∪ Γ2 as a relation on A.

6 Reductions and hardness results for the 3-element do-

main

In this section we consider the domain A = {0, 1, 2} and prove all the hardness results we
need for the 3-element domain.

Lemma 17. Suppose b ∈ {0, 1},

σ0 = {(a1, a2, a3) : a1 ∈ A, a2, a3 ∈ {b, 2}, (a1 ∈ {0, 2} ∨ a2 = a3)},
σ1 = {(a1, a2, a3) : a1 ∈ A, a2, a3 ∈ {b, 2}, (a1 ∈ {1, 2} ∨ a2 = a3)}.

Then QCSP({σ0, σ1, {b}, {2}}) is PSpace-hard.

Proof. The reduction will be from the complement of (monotone) Quantified Not-All-Equal
3-Satisfiability (co-QNAE3SAT) which is co-PSpace-hard (see [26]) and consequently also
PSpace-hard (as PSpace is closed under complement). Consider an instance I of co-QNAE3SAT
of the form

Q1x1Q1x2 . . . Qnxn AE3(xa1 , xb1 , xc1) ∨ · · · ∨ AE3(xas , xbs , xcs),
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where Q1, Q2, . . . , Qn ∈ {∀, ∃} and AE3 = {(0, 0, 0), (1, 1, 1)}.
By pk(x1, . . . , xk) we denote the predicate (relation) on {0, 1} defined by

Qk+1xk+1Qk+2xk+2 . . . Qnxn AE3(xa1 , xb1 , xc1) ∨ · · · ∨ AE3(xas , xbs , xcs).

We inductively define a predicate δk(x1, . . . , xk, y, y
′) for k = n, n − 1, . . . , 1, 0 satisfying

the following conditions

1. if y, y′ ∈ {b, 2}, y 6= y′, x1, . . . , xk ∈ {0, 1} then δk(x1, . . . , xk, y, y
′) = pk(x1, . . . , xk);

2. If y = y′ ∈ {b, 2} then δk(x1, . . . , xk, y, y
′) holds;

3. If δk(x1, . . . , xk, y, y
′) holds, then it holds if we replace some of the values x1, . . . , xk by

2;

4. δk is definable by a quantified formula over {σ0, σ1, {b}, {2}} that can be efficiently
computed.

Put

δn(x1, . . . , xn, y0, y2s) = ∃y1 . . .∃y2s−1

∧

16i6s

(σ0(xai , yi−1, yi) ∧ σ0(xbi , yi−1, yi) ∧ σ0(xci , yi−1, yi))
(σ1(xs+ai , ys+i−1, ys+i) ∧ σ1(xs+bi , ys+i−1, ys+i) ∧ σ1(xs+ci, ys+i−1, ys+i))

If Qk = ∀ then we put δk−1(x1, . . . , xk−1, y, y
′) = ∀xk δk(x1, . . . , xk, y, y

′).
If Qk = ∃ then we put

δk−1(x1, . . . , xk−1, y, y
′) = ∃u∀xk∃u

′ δk(x1, . . . , xk, u, u
′) ∧ σ0(xk, y, u

′) ∧ σ1(xk, y
′, u′).

Let us check that δn satisfies the above properties (1)-(4). If pn(x1, . . . , xn) holds, then
there exists i such that xai = xbi = xci = d. If d = 0 then to satisfy δn(x1, . . . , xn, y0, y2s) we
send y1, y2, . . . , yi−1 to y0, and yi, yi+1, . . . , y2s−1 to y2s. If d = 1 then we send y1, y2, . . . , ys+i−1

to y0, and ys+i, ys+i+1, . . . , y2s−1 to y2s. Suppose δn(x1, . . . , xn, y0, y2s) holds on y, y
′ ∈ {b, 2},

y 6= y′, x1, . . . , xk ∈ {0, 1}. Then there should be i such that yi−1 6= yi. If i 6 s then
xai = xbi = xci = 0, if i > s then xai−s

= xbi−s
= xci−s

= 1. Thus, in both cases pn(x1, . . . , xn)
holds, which completes the proof of (1). To prove (2) it is sufficient to send y1, . . . , y2s−1 to
y = y′. (3) and (4) follow from the definition of δn.

Let us prove by induction on k that δn−1, . . . , δ0 satisfy the above properties (1)-(4). Sup-
pose they hold for δk. (4) for δk−1 follows from the definition and (4) for δk. (3) for δk−1

follows from the definition and the properties of σ0 and σ1. If Qk = ∀ then (1) for δk−1 follows
from (1) and (3) for δk.

Suppose Qk = ∃. Notice that the Universal player in the definition of δk−1 should always
play xk = 0 if u = y and xk = 1 if u = y′, since otherwise a winning strategy for the Existential
player is to play u′ = u. Thus, the Existential player controls the choice of xk, and we have

u = y ∧ (∀xk∃u
′ δk(x1, . . . , xk, u, u

′) ∧ σ0(xk, y, u
′) ∧ σ1(xk, y

′, u′)) =

∃u′δk(x1, . . . , xk−1, 0, y, u
′) ∧ σ0(0, y, u

′) ∧ σ1(0, y
′, u′) =

δk(x1, . . . , xk−1, 0, y, y
′)

u = y′ ∧ (∀xk∃u
′ δk(x1, . . . , xk, u, u

′) ∧ σ0(xk, y, u
′) ∧ σ1(xk, y

′, u′)) =

∃u′δk(x1, . . . , xk−1, 1, y
′, u′) ∧ σ0(1, y, u

′) ∧ σ1(1, y
′, u′) =

δk(x1, . . . , xk−1, 1, y
′, y)
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From the above equations and (1) for δk we derive (1) for δk−1. To prove (2) for δk−1 we just
check that if y = y′ then the Existential player can play u = u′ = y = y′. Thus, we proved the
properties (1)-(4) for δk−1, and by the inductive assumption we conclude that they hold for
δ0. Since the quantified formula over {σ0, σ1, {b}, {2}} defining δ0 is efficiently computable, it
remains to check that ∃y∃y′ δ0(y, y

′) ∧ y = b ∧ y = 2 holds if and only if I holds.

Recall that an operation f is 01-stable if it is idempotent, f(x, 0, 1) = x, and f(x, 2, 2) = 2.

Lemma 18. Suppose Γ is preserved by s2 and a 01-stable operation h01. Then an instance

∀x1∃y1∀x2∃y2 . . .∀xn∃ynΦ

of QCSP(Γ) is equivalent to

∀x1∀x2 . . .∀xn∃∃((∃
′∃′Φ0

1 ∧ Φ1
1) ∧ (∃′∃′Φ0

2 ∧ Φ1
2) ∧ · · · ∧ (∃′∃′Φ0

n ∧ Φ1
n)),

where
Φ0
i = Φ

xi+1,...,xn,yi+1,...,yn

x0i+1
,...,x0n,y

0
i+1

,...,y0n
∧ x0i+1 = 0 ∧ · · · ∧ x0n = 0,

Φ1
i = Φ

xi+1,...,xn,yi+1,...,yn

x1i+1
,...,x1n,y

1
i+1

,...,y1n
∧ x1i+1 = 1 ∧ · · · ∧ x1n = 1,

(note that Φ0
n = Φ1

n = Φ) and by ∃∃ and ∃′∃′ we mean that we add all necessary existential
quantifiers for y-variables without a superscript and with a superscript, respectively.

Proof. (Forwards/ downwards.) If we have a solution (f1, . . . , fn) of the original instance then
it is also a solution of the new instance with the additional assignments x0j = 0, x1j = 1,
y0j = fj(x1, . . . , xi, 0, . . . , 0), and y1j = fj(x1, . . . , xi, 1, . . . , 1) in the definition of Φ0

i ∧ Φ1
i for

every j > i.
(Backwards/ upwards.) First, introduce several notations. By ∨ denote s2, by6 denote the

partial order on {0, 1, 2} such that 0 6 2 and 1 6 2 but 0 and 1 are incomparable. For an oper-
ation f(x1, . . . , xs) by f(x1, . . . , xt), where t < s we denote

∨

(at+1,...,as)

f(x1, . . . , xt, at+1, . . . , as).

By h′01 we denote the operation defined by h′01(x, y, z) = s2(x, h01(x, y, z)). Notice that h′01 is
also a 01-stable operation, but it satisfies the property h′01(x, y, z) > x.

Let us show how to build a solution to the original instance from a solution of the
new instance. Let a solution of the new instance be defined by yi = fi(x1, . . . , xn), y

0
i =

g0j,i(x1, . . . , xn) and y
1
i = g1j,i(x1, . . . , xn) for the variables y0i and y1i from Φ0

j ∧ Φ1
j .

First, let us show that

(x1, . . . , xj, c, . . . , c, f1(x1, . . . , xj), . . . , fj(x1, . . . , xj), g
c
j,j+1(x1, . . . , xj), . . . , g

c
j,n(x1, . . . , xj))

is a solution of Φ for every j ∈ [n] and c ∈ {0, 1}. In fact, from Φcj the tuple

(x1, . . . , xj, c, . . . , c, f1(x1, . . . , xn), . . . , fj(x1, . . . , xn), g
c
j,j+1(x1, . . . , xn), . . . , g

c
j,n(x1, . . . , xn))

is a solution of Φ. Consider all the evaluations of the variables xj+1, . . . , xn to obtain 3n−j

solutions of Φ, and apply the semilattice s2 to them. As a result we obtain the required tuple,
which implies that this tuple satisfies Φ.

We prove by induction on N = 0, 1, . . . , n that there exist operations q1, . . . , qn satisfying

1. (x1, . . . , xn, q1(x1, . . . , xn), . . . , qn(x1, . . . , xn)) is a solution of Φ,

2. qi(x1, . . . , xn) > fi(x1, . . . , xn) for every i ∈ [n],

3. qi(x1, . . . , xn) depends fictitiously on xi+1, . . . , xn for every i ∈ [N ],
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4. qi(x1, . . . , xn) is uniquely determined by x1, . . . , xi and fi(x1, . . . , xn) for every i ∈ [n].

For N = 0 we can put qi(x1, . . . , xn) = fi(x1, . . . , xn) for every i ∈ [n]. Let us prove
the induction step. Assume that q1, . . . , qn satisfy conditions (1)-(4) for some N . Apply the
01-stable operation h′01 to the three solutions of Φ

(x1, . . . , xn, q1(x1, . . . , xn), . . . , qn(x1, . . . , xn))

(x1, . . . , xN+1, 0, . . . , 0, f1(x1, . . . , xN+1), . . . ,fN+1(x1, . . . , xN+1),

g0N+1,N+2(x1, . . . , xN+1), . . . , g
0
N+1,n(x1, . . . , xN+1))

(x1, . . . , xN+1, 1, . . . , 1, f1(x1, . . . , xN+1), . . . ,fN+1(x1, . . . , xN+1),

g1N+1,N+2(x1, . . . , xN+1), . . . , g
1
N+1,n(x1, . . . , xN+1))

The first n coordinates of the obtained tuple are (x1, . . . , xn) and we denote this tuple by
(x1, . . . , xn, q

′
1(x1, . . . , xn), . . . , q

′
n(x1, . . . , xn)). Let us show that q′1, . . . , q

′
n satisfy (1)-(4) for

N := N + 1. Condition (1) follows from the fact that h′01 preserves Γ. Condition (2) follows
from the fact that q1, . . . , qn satisfy (2) and h′01(x, y, z) > x.

For i ∈ [N ] we have

q′i(x1, . . . , xn) = h′01(qi(x1, . . . , xn), fi(x1, . . . , xN+1), fi(x1, . . . , xN+1)).

Let us show that q′i depends essentially only on x1, . . . , xi. Since qi depends fictitiously on
xi+1, . . . , xn and qi(x1, . . . , xn) > fi(x1, . . . , xn), we have qi(x1, . . . , xn) = qi(x1, . . . , xi) >

fi(x1, . . . , xi). If fi(x1, . . . , xi) = 2 then qi(x1, . . . , xi) = 2 and q′i(x1, . . . , xn) = 2. If
fi(x1, . . . , xi) = d 6= 2, then fi(x1, . . . , xN+1) = d and qi(x1, . . . , xi) ∈ {d, 2}. Therefore,
q′i(x1, . . . , xn) = qi(x1, . . . , xi) and q

′
i depends fictitiously on xi+1, . . . , xn and satisfies (3) and

(4).
We have

q′N+1(x1, . . . , xn) = h′01(qN+1(x1, . . . , xn), fN+1(x1, . . . , xN+1), fN+1(x1, . . . , xN+1)).

If fN+1(x1, . . . , xN+1) = 2 then q′N+1(x1, . . . , xn) equals 2, otherwise it is uniquely determined
by x1, . . . , xN+1, and fN+1(x1, . . . , xn) = fN+1(x1, . . . , xN+1). That is, in all the cases q′N+1 is
uniquely determined by x1, . . . , xN+1 and satisfies (3) and (4).

We have q′i(x1, . . . , xn) = h′01(qi(x1, . . . , xn), g
0
N+1,i(x1, . . . , xN+1), g

0
N+1,i(x1, . . . , xN+1)) for

i > N + 1. Since qi is uniquely determined by x1, . . . , xi and fi(x1, . . . , xn), the same is true
for q′i, that is, q′i satisfies (4). Thus, we defined operations q′1, . . . , q

′
n satisfying conditions

(1)-(4) with N := N + 1.
Hence, by the induction there exist operations q1, . . . , qn satisfying conditions (1)-(4) for

N = n. We may check that (x1, . . . , xn, q1(x1, . . . , xn), . . . , qn(x1, . . . , xn)) is a solution of the
original instance, which completes the proof.

The next lemma follows from Lemma 18 and the fact that if Γ is preserved by a semilattice
then CSP(Γ, 0, 1) can be solved in polynomial time. Nevertheless, to explain how a 01-stable
operation can be used in an algorithm we give an alternative proof.

Lemma 19. Suppose Γ is preserved by s2 and a 01-stable operation g. Then QCSP(Γ) is in
co-NP.

Proof. Suppose we have an instance ∀x1∃y1∀x2∃y2 . . .∀xn∃ynΦ. We can use an oracle to
choose an appropriate value for x1 (let this value be a1). Then we need to find an appropriate
value for y1, such that we can use an oracle for x2 and continue. We want to be sure that if
the instance holds then it holds after fixing y1.
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To find out how to fix y1 we check the satisfability of the two instances

Φ ∧ x1 = a1 ∧ x2 = x3 = · · · = xn = 0,

Φ ∧ x1 = a1 ∧ x2 = x3 = · · · = xn = 1.

These are CSP instances, which can be solved in polynomial time because the semilat-
tice preserves (Γ, 0, 1). We check whether both have a solution with y1 = 0, y1 = 1,
y1 = 2 (we solve six instances). Let Y be the set of possible values for y1 such that
both instances have solutions. If Y is empty, then the QCSP instance does not hold and
we are done. If |Y | = 1, then we fix y1 with the only value in Y . Obviously, the fix-
ing of y1 cannot transform the QCSP instance that holds into an instance that does not
hold. If |Y | > 1 then 2 ∈ Y due to the semilattice polymorphism. Let the solutions
of the CSP instances with y1 = 2 be (x1, y1, x2, y2, . . . , xn, yn) = (a1, 2, 0, c2, . . . , 0, cn) and
(x1, y1, x2, y2, . . . , xn, yn) = (a1, 2, 1, d2, . . . , 1, dn). Assume that the QCSP instance has a so-
lution (a1, f1(a1), x2, f2(x1, x2), . . . , xn, fn(x1, . . . , xn)). Then by applying the operation g to
this solution, (a1, 2, 0, c2, . . . , 0, cn), and (a1, 2, 1, d2, . . . , 1, dn), we get a (partial) solution of
the QCSP(Γ) with y1 = 2.

We proceed this way through the quantifier prefix, using an oracle to choose values for
x2, . . . , xn, while we solve CSP instances to choose appropriate values for y2, y3, . . . , yn.

We say that a ternary relation R is an AND-type relation if R∩({0, 1}×{0, 1}×{0, 1, 2}) =




0 0 1 1
0 1 0 1
0 0 0 1



, that is, it is row-wise the truth table of AND. If s2 preserves R, then it also

contains (2, 2, 0) and (2, 2, 2). We say that a ternary relation R is an OR-type relation if

R∩ ({0, 1}×{0, 1}×{0, 1, 2}) =





0 0 1 1
0 1 0 1
0 1 1 1



, that is, it is row-wise the truth table of OR.

Again, if s2 preserves R, then it also contains (2, 2, 1) and (2, 2, 2). One can readily imagine
AND/OR-type relations of arity k + 1 higher than three built from AND/OR operations of
arity k.

Lemma 20. Suppose Γ contains an AND-type relation and an OR-type relation, and Γ is
preserved by s2. Then QCSP(Γ) is co-NP-hard.

Proof. By Rand,2 and Ror,2 we denote an AND-type and an OR-type relation, respectively.
For n = 2, 3, 4, . . . put

Rand,n+1(x1, . . . , xn, xn+1, y) = ∃z Rand,n(x1, . . . , xn, z) ∧ Rand,2(xn+1, z, y),

Ror,n+1(x1, . . . , xn, xn+1, y) = ∃z Ror,n(x1, . . . , xn, z) ∧ Ror,2(xn+1, z, y).

Let us define a relation ξn for every n by

ξn(x1, y1, z1, . . . , xn, yn, zn) = ∃u∃u1 . . .∃un∃v∃v1 . . .∃vn Rand,2(u, v, v)∧

Rand,3(x1, y1, z1, u1) ∧ · · · ∧Rand,3(xn, yn, zn, un) ∧ Ror,n(u1, . . . , un, u)∧

Ror,3(x1, y1, z1, v1) ∧ · · · ∧Ror,3(xn, yn, zn, vn) ∧ Rand,n(v1, . . . , vn, v).

It follows from the definition that ξn∩{0, 1}
3n is defined by AE3(x1, y1, z1)∨AE3(x2, y2, z2)∨

· · · ∨ AE3(xn, yn, zn), where AE3 = {(0, 0, 0), (1, 1, 1)}.
Suppose R(y1, . . . , yt) = ξn(yi1, yi2, . . . , yi3n), where i1, . . . , i3n ∈ {1, 2, . . . , t}. Let us show

that ∀y1 . . .∀yt ξn(yi1, yi2, . . . , yi3n) holds if ξn(yi1, yi2, . . . , yi3n) holds for all y1, . . . , yt ∈ {0, 1}.
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We need to prove that if {0, 1}t ⊆ R then At ⊆ R, which follows from the fact that the
semilattice s2 preserves R.

Now we may encode the complement of Not-All-Equal 3-Satisfiability using Γ. This com-
plement can be expressed by a formula of the following form:

∀y1 . . .∀yt AE3(yi1, yi2, yi3) ∨ · · · ∨ AE3(yi3n−2
, yi3n−1

, yi3n),

which is equivalent to
∀y1 . . .∀yt ξn(yi1, yi2, . . . , yi3n).

Thus, we reduced a co-NP-complete problem to QCSP(Γ), which completes the proof.

Lemma 21. Suppose Γ ⊆ Inv(s2), Γ contains the constant 0, δ(x, y, z) = (x 6= 0) ∨ (y = z)
and an AND-type relation R2. Then QCSP(Γ) is co-NP-hard.

Proof. Here we will define a reduction from the complement of CSP({1IN3}), which is known

to be NP-complete [28], where 1IN3 =





1 0 0
0 1 0
0 0 1



. First, put

δ1(x1, x2, x3, x4) = ∃t δ(x1, x3, t) ∧ δ(x2, t, x4).

It is not hard to see that δ1(x1, x2, x3, x4) = (x1 6= 0) ∨ (x2 6= 0) ∨ (x3 = x4). Put

δ2(x1, x2, x3, x4) = δ1(x1, x2, x3, x4) ∧ δ1(x1, x3, x2, x4) ∧ δ1(x2, x3, x1, x4).

By the definition, the first three variables of δ2 are symmetric. Suppose (a, b, c, d) ∈ δ2. It is
not hard to see that a = b = c = 0 implies d = 0. Also a = 1, b = c = 0 implies d = 1. If
there are at least two 1s in (a, b, c) then d can be arbitrary. Put R′(x, y) = R2(x, x, y). By the
definition of an AND-type relation, R′ contains (0, 0), (1, 1), (2, 2), (2, 0) but doesn’t contain
(0, 1), (0, 2), (1, 0), (1, 2). Put

δ3(x1, x2, x3, x4) = ∃x′1∃x
′
2∃x

′
3 δ2(x

′
1, x

′
2, x

′
3, x4) ∧R

′(x1, x
′
1) ∧ R

′(x2, x
′
2) ∧R

′(x3, x
′
3).

Then (a, b, c, 0) ∈ δ3 for all tuples (a, b, c) but the tuples from 1IN3.
Again, we apply the recursive formula to build an n-ary “and”

Rn+1(x1, . . . , xn+1, z) = ∃t Rn(x1, . . . , xn, t) ∧ R2(t, xn+1, z).

Define ζn(x1, . . . , x3n) by

∃z1 . . .∃zn∃t Rn(z1, . . . , zn, t) ∧ δ3(x1, x2, x3, z1) ∧ · · · ∧ δ3(x3n−2, x3n−1, x3n, zn) ∧ (t = 0).

Now we may encode the complement of CSP({1IN3}) using Γ. If 1IN3 is the complement
of 1IN3 with respect to {0, 1}3, then we use a formula of the following form:

∀y1 . . .∀yt 1IN3(yi1, yi2, yi3) ∨ · · · ∨ 1IN3(yi3n−2
, yi3n−1

, yi3n),

which is equivalent to
∀y1 . . .∀yt ξn(yi1, yi2, . . . , yi3n).

Thus, we reduced a co-NP-complete problem to QCSP(Γ), which completes the proof.

Lemma 22. Suppose σ = {0, 2}2 ∪ {1, 2}2,

σ0 = {(a1, a2, a3) : a1 ∈ A, a2, a3 ∈ {1, 2}, (a1 ∈ {0, 2} ∨ a2 = a3)},
σ1 = {(a1, a2, a3) : a1 ∈ A, a2, a3 ∈ {0, 2}, (a1 ∈ {1, 2} ∨ a2 = a3)}.

Then QCSP({σ, σ0, σ1, {0}, {1}}) is co-NP-hard.
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Proof. Let us encode the complement of Not-All-Equal 3-Satisfiability using {σ, σ0, σ1, {0}, {1}}.
An instance I of this complement can be expressed by a formula of the following form:

∀x1 . . .∀xt AE3(xa1 , xb1 , xc1) ∨ · · · ∨ AE3(xas , xbs , xcs),

where AE3 = {(0, 0, 0), (1, 1, 1)}. Let

Φ0 =
∧

16i6s

(σ0(xai , yi−1, yi) ∧ σ0(xbi , yi−1, yi) ∧ σ0(xci , yi−1, yi))

Φ1 =
∧

16i6s

(σ1(xai , zi−1, zi) ∧ σ1(xbi , zi−1, zi) ∧ σ1(xci , zi−1, zi))

Ψ =∀x1 . . .∀xt ∃y0∃y1 . . .∃ys ∃z0∃y1 . . .∃zs (y0 = 1 ∧ Φ0 ∧ z0 = 0 ∧ Φ1 ∧ σ(ys, zs)).

Let us show that I is equivalent to Ψ.
(I ∈ co-NAE3SAT implies Ψ ∈ QCSP({σ, σ0, σ1})). Suppose in Ψ that Universal plays

some sequence of 0s, 1s and 2s for the xis. Let this be duplicated by Universal in I where
we additionally consider 2 in Ψ as 1 in I. We may assume that the resulting instance of
co-NAE3SAT has a clause j that is either (0, 0, 0) or (1, 1, 1). Suppose first it is (1, 1, 1),
which arises from a setting in Ψ of (xaj , xbj , xcj) ∈ {1, 2}3. Existential plays in Ψ as follows.
y0, . . . , yj−1, yj, . . . , ys are set to 1, z0, . . . , zj−1 are set to 0 and zj , . . . , zs are set to 2. Let us look
at the interesting conjunction in Φ1, which is σ1(xaj , zj−1, zj)∧σ1(xbj , zj−1, zj)∧σ1(xcj , zj−1, zj),
and note that this is satisfied trivially as (xaj , xbj , xcj) ∈ {1, 2}3. The fact that the other parts
are satisfied is straightforward since yi = yi−1 and zi = zi−1. Suppose now that it is (0, 0, 0),
which arises only from a setting in Ψ of (xaj , xbj , xcj) = (0, 0, 0). Existential plays in Ψ as
follows. z0, . . . , zj−1, zj , . . . , zs are set to 0, y0, . . . , yj−1 are set to 1 and yj, . . . , ys are set to 2.
This case concludes as the previous.

(Ψ ∈ QCSP({σ, σ0, σ1}) implies I ∈ co-NAE3SAT). Let us consider Universal playing
in I and we duplicate this in Ψ (in other words, we only consider Universal plays in Ψ
on {0, 1}). We cannot have y0, . . . , ys = 1 and z0, . . . , zs = 0 because we violate σ(ys, zs).
Thus, at least at some point in one of these sequences, we make a transition to 2. First,
let us assume that it is in the yi at the point yj−1 = 1 and yj = 2. Then the conjunction
σ0(xaj , yj−1, yj)∧σ0(xbj , yj−1, yj)∧σ0(xcj , yj−1, yj) enforces that (xaj , xbj , xcj) = (0, 0, 0). Now
let us assume that it is in the zi at the point zj−1 = 0 and zj = 2. Then the conjunction
σ1(xaj , zj−1, zj)∧σ1(xbj , zj−1, zj)∧σ1(xcj , zj−1, zj) enforces that (xaj , xbj , xcj) = (1, 1, 1). Thus,
in both cases, we deduce that I is a no-instance of NAE3SAT.

Thus, we reduced a co-NP-complete problem to QCSP({σ, σ0, σ2, {0}, {1}}), which com-
pletes the proof.

7 Strange structure 1

In this section we will define a constraint language Γ consisting of just 2 relations and constants
such that Pol(Γ) has the EGP property but every pp-definition of τn (see Definition 1) has
at least 2n existential quantifiers. Moreover, we will show that QCSP(Γ) can be solved in
polynomial time.

Let A = {0, 1, 2}. Recall that τn for α = {0, 2} and β = {1, 2} is the 3n-ary relation
defined by

{(x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn) | ∃i : {0, 1} 6⊆ {xi, yi, zi}}.

By σn we denote the 2n-ary relation defined by

{(x1, y1, x2, y2, . . . , xn, yn) | ∃i : {xi, yi} 6= {0, 1}}.
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Note τn can be pp-defined from σn but the obvious definition is of size exponential in n (see
[11]). At the same time, σn can be pp-defined from τn by identification of variables. Let

Rand,2 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}∪ {(2, a, b), (a, 2, b) | a, b ∈ A},

δ = {(0, 0), (1, 0), (2, 0), (1, 2), (2, 2)},

Γ = {Rand,2, δ, {0}, {1}, {2}}.

The relation ρ of arity 2n omitting just one tuple 1n0n can be pp-defined over Γ as follows.
First, as usual, we define an n-ary “and” by the following recursive formula

Rand,n+1(x1, . . . , xn, xn+1, y) = ∃zRand,n(x1, . . . , xn, z) ∧Rand,2(xn+1, z, y),

Then ρ can be defined by

ρ(x1, . . . , xn, y1, . . . , yn) = ∃y′1 . . .∃y
′
n∃z∃t Rand,n(x1, . . . , xn, z)∧

δ(y1, y
′
1) ∧ · · · ∧ δ(yn, y

′
n) ∧ Rand,n(y

′
1, . . . , y

′
n, t) ∧ Rand,2(z, z, t).

As a conjunction of 2n copies of ρ with permuted variables we can define the relation σn
but this definition will be of exponential size. Then, we know from [31] that Pol(Γ) has the
EGP property, and from [11] that τn can be pp-defined from Γ. Below we will prove that
any pp-definition of σn and τn is of exponential size, as well as the fact that QCSP(Γ) can be
solved in polynomial time. In the following < is the coordinatewise partial order on {0, 1}n

built from 0 < 1. Recall that for a conjunctive formula Φ by Φ(x1, . . . , xn) we denote the set
of all tuples (a1, . . . , an) such that Φ has a solution with (x1, . . . , xn) = (a1, . . . , an).

Lemma 23. Suppose R = Φ(x1, . . . , xn), where Φ is a conjunctive formula over Γ, α ∈
{0, 1}n \R, there exists β ∈ {0, 1}n ∩R such that β < α and there exists β ∈ {0, 1}n ∩R such
that β > α. Then there exists a variable y in Φ, such that for R′ = Φ(x1, . . . , xn, y) we have
the following property

β ∈ {0, 1}n ∧ (β < α) ∧ βd ∈ R′ ⇒ d = 0,

β ∈ {0, 1}n ∧ (β > α) ∧ βd ∈ R′ ⇒ d = 1.

Informally speaking, this lemma says that whenever we have a tuple outside of a relation there
should be a variable in its pp-definition distinguishing between smaller and greater tuples of
the relation.

Proof. For every variable y of Φ let Cy be the set of all elements d such that there exists
β ∈ {0, 1}n ∩ R, β < α and Φ has a solution with y = d and (x1, . . . , xn) = β. Similarly, let
Dy be the set of all elements d such that there exists β ∈ {0, 1}n ∩ R, β > α and Φ has a
solution with y = d and (x1, . . . , xn) = β. Thus, we need to prove that there exists a variable
y such that Cy = {0} and Dy = {1}.

Then we assign a value v(y) to every variable y in the following way: if Cy = {0} then put
v(y) := 0; otherwise, if Cy ⊆ {0, 1} and Dy = {1} then put v(y) := 1; otherwise put v(y) := 2.

If α(i) = 0 then Cxi = {0} and v(xi) = 0. If α(i) = 1 and then Cxi ⊆ {0, 1} Dxi = {1}. If
Cxi = {0} then we found the required variable and we are done; otherwise we have v(xi) = 1.
Since α /∈ R, v cannot be a solution of Φ, therefore v breaks at least one of the relations in
Φ. We consider several cases:

1. The corresponding relation is y = a for some a. If a = 0 then Cy = {0} and v(y) = 0, if
a = 1 then Cy = Dy = {1} and v(y) = 1, if a = 2 then Cy = {2} and v(y) = 2. Thus,
the evaluation v cannot break the relation y = a.
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2. The corresponding relation is Rand,2(y1, y2, y3). Assume that v(y1) = 0 and v(y2) ∈
{0, 1}. Then Cy1 = {0} and Cy2 ⊆ {0, 1}, which means that on all tuples β < α the
value of y3 should be equal to 0. Hence Cy3 = {0} and v(y3) = 0. If v(y1) = 2 or
v(y2) = 2, then we cannot break the relation Rand,2. The only remaining case is when
v(y1) = v(y2) = 1, which means that Cy1 , Cy2 ⊆ {0, 1} and Dy1 = Dy2 = {1}. This
implies that Cy3 ⊆ {0, 1} and Dy3 = {1}. If Cy3 = {0}, then y3 is the variable we were
looking for. Otherwise, the evaluation of y3 is 1, which agrees with the definition of
Rand,2.

3. The corresponding relation is δ(y1, y2). If v(y1) = 0 then Cy1 = {0}, and by the definition
of δ we have Cy2 = {0}, which means that v(y2) = 0. If v(y1) 6= 0, it follows from the
fact that v(y2) cannot be outside of {0, 2}.

We may check that operations s0,2 and g0,2 are polymorphisms of Γ. Moreover, we will
show later that Pol(Γ) = Clo({s0,2, g0,2}). Put

h0,2(x, y, z) =







x, if x = z = 0

x, if x = 1, y = z ∈ {0, 1}

2, otherwise.

.

Since, s2(x, y) = s0,2(y, s0,2(x, y)) and h0,2(x, y, z) = g0,2(s0,2(x, z), s2(y, z)), the operations
s2 and h0,2 are also polymorphisms of Γ.

The following lemma and corollary do not play a role in our main result but we include
them for their intrinsic intriguingness as well as by way of a sanity check.

Lemma 24. Any pp-definition of σn over Γ, where n > 3, has at least 2n variables.

Proof. Let the pp-definition be given by a conjunctive formula Φ such that σn = Φ(x1, . . . , x2n).
By Lemma 23 for any α ∈ {0, 1}2n \ σn there should be a variable y such that if we define the
relation R′ = Φ(x1, . . . , x2n, y), then for every β < α (we consider only tuples from {0, 1}2n)
we have βd ∈ R′ ⇒ d = 0 and for every β > α we have βd ∈ R′ ⇒ d = 1.

Assume that one variable y can be used for two different tuples α1, α2 ∈ {0, 1}2n \ σn. We
consider two cases.

Case 1. Assume that there is i such that α1(i) = α2(i). Without loss of generality we
assume that α1(1) = α2(1) and α1(2n) 6= α2(2n). Let us define tuples β1, β2, β3 ∈ σn.

Put β1(i) =

{

1, if i ∈ {1, 2}

α1(i), otherwise
, β2(i) =

{

1, if i ∈ {3, 4}

α2(i), otherwise
,

β3(i) =

{

α1(i), if α1(i) = α2(i) or i 6 4.

0, otherwise
.

Let us show that h0,2(β1, β2, β3) = β1. In fact, for the first two rows, reading down through
the 2n rows of h0,2(β1, β2, β3), we have h0,2(1, 0, 0) = h0,2(1, 1, 1) = 1. For the next two rows we
have h0,2(0, 1, 0) = 0 and h0,2(1, 1, 1) = 1. For the remaining rows we either use h0,2(0, 0, 0) = 0
and h0,2(1, 1, 1) = 1, or h0,2(0, 1, 0) = 0 and h0,2(1, 0, 0) = 1.

Since β1 > α1, β2 > α2, β3 < α1, by Lemma 23, y should be equal to 1 in any solution
of Φ such that (x1, . . . , x2n) ∈ {β1, β2}, and it should be equal to 0 in any solution of Φ such
that (x1, . . . , x2n) = β3. Since h0,2(β1, β2, β3) = β1, h0,2(1, 1, 0) = 2 and h0,2 is a polymorphism
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of Γ, we get a contradiction to the uniqueness of d in Lemma 23. Case 2. Assume that
α1(i) 6= α2(i) for every i. Put

β1(i) =

{

1, if i ∈ {1, 2}

α1(i), otherwise
, β2(i) =

{

1, if i ∈ {1, 2}

α2(i), otherwise
, β3(i) =

{

1, if i ∈ {1, 2}

0, otherwise
,

β4(i) =

{

1, if i ∈ {3, 4}

α1(i), otherwise
, β5(i) =

{

α1(i), if i ∈ {1, 2}

0, otherwise
.

Since h0,2(1, 1, 1) = h0,2(1, 0, 0) = 1, h0,2(0, 1, 0) = 0, we have h0,2(β1, β2, β3) = β1. Since
β1 > α1 and β2 > α2, by Lemma 23, y should be equal to 1 in any solution of Φ such that
(x1, . . . , x2n) ∈ {β1, β2}. Since h0,2(1, 1, a) = 1 only if a = 1, y should be equal to 1 on β3
(in any solution of Φ such that (x1, . . . , x2n) = β3). Since h0,2(β3, β4, β5) = β3, and y should
be equal to 1 on β4 and equal to 0 on β5, we would obtain h0,2(1, 1, 0) = 1. However, in fact
h0,2(1, 1, 0) = 2, which, since h0,2 is a polymorphism of Γ, contradicts the uniqueness of d in
Lemma 23.

Thus, for every tuple α ∈ {0, 1}2n \ σn there exists a unique variable y, which completes
the proof.

Since σn can be obtained from τn by identification of variables, we have the following
corollary.

Corollary 25. Any pp-definition of τn over Γ has at least 2n variables.

Let us characterize the clone Pol(Γ). First, let us define relations on the set A. Put
ǫ2(x1, x2) = (x1 = 0) ∨ (x1 = 1 ∧ x2 6= 2), ζ2(x1, x2) = (x1 = 0) ∨ (x1 = 1 ∧ x2 = 1),
ǫn+1(x1, . . . , xn, xn+1) = (x1 = 0) ∨ (x1 = 1 ∧ ǫn(x2, . . . , xn+1)), ζn+1(x1, . . . , xn, xn+1) = (x1 =
0) ∨ (x1 = 1 ∧ ζn(x2, . . . , xn+1)). Put ∆ = {{1}, {0, 1}, ǫ2, ǫ3, ǫ4, . . . , ζ2, ζ3, ζ4, . . .}.

Suppose B ⊆ {1, 2, . . . , n}. Suppose ρ ⊆ An can be defined as a conjunction of relations
from ∆ and prB ρ ⊆ {0, 1}|B|. Then we define an operation fB,ρ(x0, x1, . . . , xn) as follows. If
xi = 0 for every i ∈ {0} ∪ B then it returns 0. If x0 = 1 and (x1, . . . , xn) ∈ ρ then it returns
1. In all other cases it returns 2.

By C we denote the set of all operations that can be obtained from fB,ρ for all B and ρ by
a permutation of variables (it is sufficient to move just the first variable). We now begin our
journey towards proving Theorem 29, which says that Pol(Γ) = Clo({g0,2, s0,2}).

Lemma 26. Suppose ρ ⊆ An, (1, 1, . . . , 1) ∈ ρ, and in every (m+ 1)× n-matrix , whose first
m rows are from ρ and all columns are from Rand,m, the last row is also from ρ. Then ρ can
be represented as a conjunction of relations from ∆.

Proof. We prove by induction on the arity of ρ. If n = 1, then ρ ∈ {{1}, {0, 1}, {0, 1, 2}}.
Thus, either ρ ∈ ∆, or ρ is full. Assume that n > 2.

We want to build a conjunction of relations, which we denote by Φ. We start with Φ = ∅.
For every tuple α = (a1, . . . , an) /∈ ρ we add the corresponding constraints to Φ to exclude
this tuple. If we can exclude every tuple then Φ defines ρ.

Let I ⊆ {1, 2, . . . , n} be a minimal subset such that prI(α) /∈ prI(ρ). It is not hard to
see that prI(ρ) satisfies all the assumptions of this lemma. Therefore, if I 6= {1, 2, . . . , n},
then by the inductive assumption prI(ρ) can be represented as a conjunction of relations from
∆. Then, we may add this representation to Φ to exclude α. Thus, we may assume that
I = {1, 2, . . . , n}.

Since I is minimal, there exist b1, . . . , bn such that βj = (a1, . . . , aj−1, bj , aj+1, . . . , an) ∈ ρ
for every j.
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There should be at most one i such that (ai, bi, ai) ∈ Rand,2. Otherwise (if we have i1 and
i2), we build a matrix whose rows are βi1 , βi2, α for different i1, i2. It is not hard to see that
every column of the matrix is from Rand,2, which means that α ∈ ρ. Contradiction. Hence,
there exists at most one i such that (ai, bi, ai) ∈ Rand,2.

Notice that (a, b, a) ∈ Rand,2 if a ∈ {0, 2} or b = 2. Then there should be exactly one i
such that (ai, bi, ai) ∈ Rand,2 (otherwise ai = 1 for every i, which contradicts the fact that
(1, 1, . . . , 1) ∈ ρ). Without loss of generality, let this i be equal to n, then α = (1, 1, . . . , 1, an),
where an ∈ {0, 2}.

Assume that pri(ρ) 6⊆ {0, 1} for every i ∈ {1, 2, . . . , n − 1}, then we consider tuples
b1, . . . ,bn−1 ∈ ρ such that the i-th element of bi is 2, and build a matrix whose rows are
b1, . . . ,bn−1, β1, α. We can check that every column of this matrix is from Rand,n, therefore
α ∈ ρ, which contradicts our assumptions.

Thus, there exists i ∈ {1, 2, . . . , n−1} such that pri(ρ) ⊆ {0, 1}. Without loss of generality
we assume that i = 1. Put δ(x2, . . . , xn) = ρ(1, x2, . . . , xn). Since any tuple from Rand,m start-
ing withm 1s should end with 1, δ satisfies all the assumptions of this lemma. By the inductive
assumption, δ can be represented as a conjunction of relations from ∆. In this representa-
tion we replace ǫs(xi1 , . . . , xis) by ǫs+1(x1, xi1 , . . . , xis), ζs(xi1 , . . . , xis) by ζs+1(x1, xi1 , . . . , xis),
xj ∈ {0, 1} by ǫ2(x1, xj), xj ∈ {1} by ζ2(x1, xj) and add the obtained constraints to Φ. Since
a1 = 1, we excluded the tuple α from the solution set by adding these constraints. Note that
we maintain the property that every tuple β ∈ ρ satisfies Φ. Thus, we can exclude every tuple
α ∈ An \ ρ, which means that Φ defines ρ.

Lemma 27. Pol(Γ) ⊆ C.

Proof. Suppose f ∈ Pol(Γ) is an operation of arity n+ 1. Since σm can be pp-defined from Γ
for every m, f is {0, 2}{1, 2}-projective [31]. Without loss of generality we assume that it is
an {0, 2}{1, 2}-projection to the first variable.

Let B be the set of all i ∈ {1, 2, . . . , n} such that f(a0, . . . , an) = 0 implies ai = 0. Let
a1, . . . , as be all the tuples such that f(a) = 0. Let ω(x1, . . . , xs, z) be defined by

∃x′1 . . .∃x
′
s Rand,s+1(x

′
1, . . . , x

′
s, z) ∧ δ(x1, x

′
1) ∧ · · · ∧ δ(xs, x

′
s).

Let b = (0, b1, . . . , bn) be a tuple such that bi = 0 if i ∈ B. Let us build a matrix whose rows
are tuples a1, . . . , as,b. By the definition of B, every column of this matrix is from ω. Since
f preserves ω, the result of applying f to the matrix (that is (f(a1), . . . , f(as), f(b))) should
be from ω. But the first s elements of the result equal 0, therefore f(b) = 0. Thus, we proved
that if xi = 0 for every i ∈ {0} ∪ B then f(x0, . . . , xn) = 0.

Let ρ be the set of all tuples (a1, . . . , an) such that f(1, a1, . . . , an) = 1. Since f preserves
{1}, we have (1, 1, . . . , 1) ∈ ρ.

Assume that for some tuple a = (a1, . . . , an) ∈ ρ and i ∈ B we have ai = 2. Let
c = (c1, . . . , cn) be the tuple such that cj = 0 if j ∈ B \ {i} and cj = 2 otherwise. Let
d = (d1, . . . , dn) be the tuple such that dj = 0 if j ∈ B and dj = 2 otherwise. It is not
hard to see that the rows a,d, c form a matrix whose columns are from Rand,2. Therefore
(f(1a), f(0d), f(0c)) ∈ Rand,2. Since f(1a) = 1 and f(0d) = 0, we have f(0c) = 0, which
contradicts the definition of B. Thus, prB(ρ) ⊆ {0, 1}|B|.

It remains to prove that ρ can be represented as a conjunction of relations from ∆. Let
us show that ρ satisfies the assumptions of Lemma 26. Consider a matrix whose columns are
from Rand,m and whose first m rows are from ρ. Add a column with 1s in the beginning of
the matrix and apply f . Since f preserves Rand,m, the result should be from Rand,m. Since
the first m elements are equal to 1, the last element should be equal to 1. Therefore, the last
row of the matrix is from ρ. It remains to apply Lemma 26 to complete the proof.
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Lemma 28. C ⊆ Clo({g0,2, s0,2}).

Proof. We need to prove that every operation from C can be built from g0,2 and s0,2. For
B ⊆ {1, 2, . . . , n} by ψ(B) we denote the set of all tuples α ∈ An such that prB(α) ∈ {0, 1}|B|.
The following formulas show how to generate f∅,ǫn, f∅,ζn, and fB,ψ(B) for all n > 2 and B 6= ∅:

f∅,{0,1}(x0, x1) =g0,2(x0, x1),

f∅,{1}(x0, x1) =g0,2(x0, s2(x0, x1)),

f∅,ǫ2(x0, x1, x2) =g0,2(x0, g0,2(x1, x2)),

f∅,ǫn+1
(x0, . . . , xn+1) =g0,2(x0, f∅,ǫn(x1, . . . , xn+1)),

f∅,ζ2(x0, x1, x2) =g0,2(x0, g0,2(x1, s0,2(x2, x1))),

f∅,ζn+1
(x0, . . . , xn+1) =g0,2(x0, f∅,ζn(x1, . . . , xn+1)),

f∅,ψ(∅)(x0, x1, . . . , xn) =x0,

fB,ψ(B)(x0, x1, . . . , xn) =
∨

i∈B

s0,2(x0, xi),

where by
∨

we mean the semilattice operation s2.
It remains to show how to combine such operations. For two relations ρ1, ρ2 ⊆ An, the

following equality holds

f∅,ρ1∩ρ2(x0, x1, . . . , xn) = s2(f∅,ρ1(x0, x1, . . . , xn), f∅,ρ2(x0, x1, . . . , xn)).

Note that adding dummy variables to a relation ρ is equivalent to adding dummy variables to
the operation f∅,ρ.

To finish the proof it is sufficient to show that fB,ρ ∈ Clo({g0,2, s0,2}) for any B ⊆
{1, 2, . . . , n} and ρ ⊆ An such that prB(ρ) ⊆ {0, 1}|B| and ρ is a conjunctions of relations
from ∆. Since for every δ ∈ ∆ we showed how to generate f∅,δ and how to define conjunction
(intersection), f∅,ρ can be generated from g0,2 and s0,2. Then

fB,ρ(x0, x1, . . . , xn)) = s2(f∅,ρ(x0, x1, . . . , xn), fB,ψ(B)(x0, x1, . . . , xn)).

Theorem 29. Pol(Γ) = C = Clo({g0,2, s0,2}).

Proof. The claim follows from the following inclusions

Pol(Γ) ⊆ C ⊆ Clo({g0,2, s0,2}) ⊆ Pol(Γ).

The first inclusion is by Lemma 27, the next inclusion is by Lemma 28, and the last one
follows from the fact that g0,2 and s0,2 preserve Rand,2 and δ.

Below we present an algorithm that solves QCSP2(Γ) in polynomial time (see the pseu-
docode). For an input ∀x1 . . .∀xn∃y1 . . .∃ysΦ, the function Solve1 first checks whether Φ
holds on x = (0, . . . , 0), x = (1, . . . , 1), and on each tuple containing exactly one 1. Then
for every variable yj and every variable xi it calculates the set Di,j of possible values for yj
when x = 1i−101n−i. Finally, it checks another s tuples determined by Di,j. Note that it
would be an exponential algorithm if it just checks all possible x. Moreover, since the rela-
tion ρ omitting exactly one tuple is pp-definable over Γ, the tuples we need to check could
not be found without looking into the formula Φ. By h we denote the operation defined on

subsets of A by h(B) =

{

0, if B = {1}

1, otherwise
. By SolveCSP we denote a polynomial algorithm,

solving constraint satisfaction problem for a constraint language preserved by the semilattice
operation s2: it returns true if it has a solution, it returns false otherwise.
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1: function Solve1(Θ)
2: Input: QCSP2(Γ) instance Θ = ∀x1 . . .∀xn∃y1 . . .∃ysΦ.
3: if ¬SolveCSP(x = (0, . . . , 0) ∧ Φ) then return false ⊲ x = (x1, . . . , xn)

4: if ¬SolveCSP(x = (1, . . . , 1) ∧ Φ) then return false

5: for i := 1, . . . , n do

6: if ¬SolveCSP(x = (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0) ∧ Φ) then return false

7: for j := 1, . . . , s do
8: for i := 1, . . . , n do

9: Di,j := ∅

10: c := (1, . . . , 1
︸ ︷︷ ︸

i−1

, 0, 1, . . . , 1)

11: for a ∈ A do

12: if SolveCSP(x = c ∧ yj = a ∧ Φ) then
13: Di,j := Di,j ∪ {a}

14: if Di,j = ∅ then return false

15: if ¬SolveCSP(x = (h(D1,j), . . . , h(Dn,j)) ∧ Φ) then return false
return true

Lemma 30. Function Solve1 solves QCSP2(Γ) in polynomial time.

Proof. First, let us show that the algorithm actually solves the problem. If the answer is false,
then we found an evaluation of (x1, . . . , xn) such that the corresponding CSP has no solutions,
which means that the answer is correct.

Assume that the answer is true. Let R(x1, . . . , xn) be defined by the formula ∃y1 . . .∃ysΦ.
We need to prove that R is a full relation. Assume the converse. Using the semilattice
operation s2 we can generate An from {0, 1}n, hence {0, 1}n 6⊆ R. Then let α be a minimal
tuple from {0, 1}n \ R. Without loss of generality we assume that α = 1k0n−k. For every i
we put αi = 1i−101n−i. Since α is minimal, all the tuples smaller than α should be in R. We
checked that R contains (0, 0, . . . , 0) and all tuples with exactly one 1, hence α contains at
least two 1s. Then by Lemma 23 there should be a variable y such that for any β < α we
have βd ∈ R′ ⇒ d = 0, for any β > α we have βd ∈ R′ ⇒ d = 1, where R′ = Φ(x1, . . . , xn, y).
Since Di,j 6= ∅ for all i, j, αi ∈ R for every i, and for every i > k we have αid ∈ R′ ⇒ d = 1.
Assume that y = xi for some i. If α(i) = 0 then αi > α and αid ∈ R′ ⇒ d = 1 contradicts
y = xi. If α(i) = 1, then there is a tuple α′ < α such that α′(i) = 1, which contradicts
α′d ∈ R′ ⇒ d = 0. Hence y 6= xi and y = yj for some j.

Let β = 01k−10n−k. Since β < α, we have β0 ∈ R′. Assume that D1,j is equal to {1},
then α1d ∈ R′ ⇒ d = 1. Put γ0 = s0,2(β, α1) = 01k−12n−k. Since s0,2 preserves R′ and
s0,2(0, 1) = 2, we have γ02 ∈ R′. Put γi = g0,2(αk+i, γi−1) for i = 1, 2, . . . , n − k. Since
g0,2(1, 2) = 2, we have γi2 ∈ R′ for every i. Note that γn−k ∈ {0, 1}n. We can check that
g0,2(α11, γn−k2) = α12, which contradicts the fact that D1,j = {1}. In this way we can show
that D1,j, . . . , Dk,j are not equal to {1}. We also know that Dk+1,j, . . . , Dn,j are equal to {1}.
Hence, the tuple (h(D1,j), . . . , h(Dn,j)) = α was checked in the algorithm, which contradicts
the fact that α /∈ R.

It remains to show that the algorithm works in polynomial time. It follows from the fact
that in the algorithm we just solve 3 · s ·n+ s+n+2 CSP instances over a language preserved
by the semilattice operation s2.

Corollary 31. QCSP(Γ) is in P.
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Proof. Since f(x, y, z) = s0,2(x, y) is a 01-stable operation, by Lemma 18 QCSP(Γ) can be
polynomially reduced to QCSP2(Γ), and QCSP2(Γ) can be solved by the function Solve1.

Corollary 32. QCSP(Γ0) is in P for every finite Γ0 ⊆ Inv({g0,2, s0,2}).

Proof. By Theorem 29, Pol(Γ) = Clo({g0,2, s0,2}). Then Pol(Γ0) ⊇ Pol(Γ), which implies
that each relation from Γ0 can be pp-defined from Γ. Therefore, QCSP(Γ0) can be polyno-
mially reduced to QCSP(Γ) (we just replace every relation by its pp-definition). Hence, by
Corollary 31, QCSP(Γ0) is in P.

8 Strange structure 2

In this section we show that QCSP(Γ) is solvable in polynomial time if Γ ⊆ Inv(f0,2). Note
that s0,2(x, y) = f0,2(x, y, y) and s2(x, y) = s0,2(x, s0,2(y, x)).

Suppose R = Φ(x1, . . . , xn), where Φ is a conjunctive formula over a constraint language
Γ ⊆ Inv(f0,2). For a variable y of Φ we define a partial operation Fy(x1, . . . , xn) on A as
follows. If α ∈ R and every solution of Φ with (x1, . . . , xn) = α has y = c, where c ∈ {0, 1},
then Fy(α) = c. Otherwise we say that Fy(α) is not defined. We say that α ∈ R ∩ {0, 1}n is
a minimal 1-set for a variable y if Fy(α) = 1, and Fy(β) = 0 for every β < α (every time we
use < or 6 we mean that both tuples are on {0, 1}).

The following lemma proves that Fy is monotonic.

Lemma 33. Suppose α 6 β, Fy(α) and Fy(β) are defined. Then Fy(α) 6 Fy(β).

Proof. Assume the contrary, then Fy(α) = 1 and Fy(β) = 0. We have s0,2(β0, α1) = β2,
which means that there exists a solution of Φ with (x1, . . . , xn) = β and y = 2, hence Fy(β)
is not defined. Contradiction.

Lemma 34. There is at most one minimal 1-set for every variable y.

Proof. Assume the contrary. Let α1 and α2 be two minimal 1-sets for y. It follows from the
definition that α1 and α2 should be incomparable. Let α = α1 ∧ α2 (by ∧ we denote the
conjunction on {0, 1}). Then f0,2(α11, α0, α21) = α12, which contradicts the fact that Fy is
defined on α1.

Lemma 35. Suppose α ∈ {0, 1}n \R, α contains at least two 1s, and β ∈ R for every β < α.
Then there exists a constraint ρ(z1, . . . , zl) in Φ and B ⊆ {1, . . . , l} such that α =

∨

i∈B αi,
where αi is the minimal 1-set for the variable zi (by ∨ we denote the disjunction on {0, 1}).

Proof. First, to every variable y of Φ we assign a value v(y) in the following way. If Fy(β) = 0
for every β < α then we put v(y) := 0. Otherwise, if Fy(β) ∈ {0, 1} for every β < α then we
put v(y) := 1. Otherwise, put v(y) := 2.

If α(i) = 0 then Fxi(β) = 0 for every β < α, which means that v(xi) = 0. If α(i) = 1
then Fxi(β) ∈ {0, 1} for every β < α. Since α has at least two 1, for some β < α we have
Fxi(β) = 1, which means that v(xi) = 1. Thus we assigned the tuple α to (x1, . . . , xn).

Since α /∈ R the evaluation v cannot be a solution of Φ, therefore it breaks at least one
constraint from Φ. Let us add to Φ all projections of all constraints we have in Φ. Thus, for
every constraint C = ρ(z1, . . . , zl) we add prS C, where S ⊆ {z1, . . . , zl}. Obviously, when we
do this, we do not change the solution set of Φ and stay in Inv(f0,2).

Choose a constraint of the minimal arity ρ(z1, . . . , zl) that does not hold in the evaluation
v, that is, (v(z1), . . . , v(zl)) /∈ ρ. Let (a1, . . . , al) = (v(z1), . . . , v(zl)). Since ρ is a constraint
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of the minimal arity, the evaluation v holds for every proper projection of ρ(z1, . . . , zl), which
means that for every i there exists bi such that (a1, . . . , ai−1, bi, ai+1, . . . , al) ∈ ρ.

Assume that (a1, . . . , al) has two 2, that is ai = aj = 2 for i 6= j. Then the semilattice
operation s2 applied to (a1, . . . , ai−1, bi, ai+1, . . . , al) and (a1, . . . , aj−1, bj , aj+1, . . . , al) gives
(a1, . . . , al), which contradicts the fact that s2 preserves ρ.

Assume that ai = 2 for some i. W.l.o.g. we assume that al = 2. By the definition, there
should be a tuple β < α such that Fzl(β) is not defined. Put ci = Fzi(β) for every i < l,
and cl = 2. By the definition of Fzl(β), there should be a solution of Φ with (x1, . . . , xn) = β
and zl = 2, or two solutions of Φ with (x1, . . . , xn) = β and zl = 0, 1. Since s2 preserves
Γ, in both cases we have a solution of Φ with (x1, . . . , xn) = β and zl = 2. Note that
(z1, . . . , zl) = (c1, . . . , cl) in this solution, therefore (c1, . . . , cl) ∈ ρ. By the definition, ci 6 ai
for every i < l. We apply s0,2 to the tuples (a1, . . . , al−1, bl) and (c1, . . . , cl) to obtain the tuple
(a1, . . . , al), which is not from ρ. This contradicts the fact that s0,2 preserves ρ.

Assume that ai 6= 2 for every i. W.l.o.g. we assume that a1 = · · · = ak = 1 and
ak+1 = · · · = al = 0. If k = 0 and (a1, . . . , al) = (0, . . . , 0), then we consider a solution of
Φ corresponding to (x1, . . . , xn) = (0, . . . , 0). By the definition of Fzi we have (z1, . . . , zl) =
(0, . . . , 0) in this solution. Hence, (0, . . . , 0) ∈ ρ, which contradicts our assumption. Assume
that k > 1. For each i ∈ {1, 2, . . . , k} we define a tuple αi as follows. Since Fzi is defined
on any tuple β < α and Fzi(β) = 1 for some β < α, there exists a minimal 1-set αi 6 β for
zi. Assume that α′ := α1 ∨ · · · ∨ αk < α. Consider a solution of Φ with (x1, . . . , xn) = α′.
Since Fzi(α

′) is defined, Fzi(αi) = 1 and Fzi is monotonic, we have Fzi(α
′) = 1 for every

i ∈ {1, 2, . . . , k}. Therefore, (z1, . . . , zl) = (a1, . . . , al) in this solution, which means that
(a1, . . . , al) ∈ ρ and contradicts the assumption.

Thus, α′ 6< α. Since αi 6 α for every i, we obtain α′ 6 α, and therefore α′ = α, which
completes the proof.

Lemma 36. Suppose α is a minimal 1-set for y, i ∈ {1, 2, . . . , n}, and 2i−102n−i ∈ R. Then
α(i) = 1 if and only if Fy(2

i−102n−i) = 0.

Proof. Assume that α(i) = 0 and Fy(2
i−102n−i) = 0. We have s2(2

i−102n−i0, α1) = 2i−102n−i2,
which means that Φ has a solution with (x1, . . . , xn) = 2i−102n−i and y = 2. This contradicts
the fact that Fy(2

i−102n−i) = 0.
Assume that α(i) = 1 and Fy(2

i−102n−i) is not defined or equal to 1. Then Φ has a solution
with (x1, . . . , xn) = 2i−102n−i and y = c, where c 6= 0. Let β < α be the tuple that differs from
α only in the i-th coordinate. Since f0,2(α, β, 2

i−102n−i) = α and f0,2(1, 0, c) = 2, Φ should
have a solution with (x1, . . . , xn) = α and y = 2, which contradicts the definition of a minimal
1-set.

Example. Let R′
and,2 = Rand,2 \ {(0, 2, 1), (0, 2, 2), (2, 0, 1), (2, 0, 2)} (see Section 7), δ′ =

{(0, 1)}∪ ({1, 2}×{0, 1, 2}), Γ′ = {R′
and,2, δ

′, {0}, {1}, {2}}. We can check that Γ′ is preserved
by f0,2. It follows from the following lemma that Pol(Γ′) has the EGP property.

As in the previous section here we use the notations τn and σn for α = {0, 2} and β = {1, 2}.

Lemma 37. σn can be pp-defined from {R′
and,2, δ

′, {0}}.

Proof. Recursively we define

R′
and,n+1(x1, . . . , xn, xn+1, y) = ∃z R′

and,n(x1, . . . , xn, z) ∧R
′
and,2(xn+1, z, y),

ωn(x1, y1, x2, y2, . . . , xn, yn) = ∃u1 . . .∃un∃z R
′
and,2n(x1, . . . , xn, u1, . . . , un, z)∧

δ′(y1, u1) ∧ · · · ∧ δ′(yn, un) ∧ z = 0.
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It is not hard to see that ωn contains all the tuples but (1, 0, 1, 0, . . . , 1, 0). Then the relation
σn can be represented as a conjunction of 2n relations such that each of them is obtained from
ωn by a permutation of variables.

The following lemma and corollary do not play a role in our main result, but we present
them for further curiosity and another sanity check.

Lemma 38. Suppose Γ ⊆ Inv(f0,2), all relations in Γ are of arity at most k. Then any
pp-definition of σn over Γ, where n > 2, has at least 2n/2k constraints and at least 2n/2k

variables.

Proof. Suppose σn = Φ(x1, . . . , xn), where Φ is a conjunctive formula over Γ. There exist 2n

tuples from A2n \σn and each of them has at least two 1s. By Lemma 35, for each α ∈ A2n \σn
there should be a constraint ρ(z1, . . . , zl) such that α =

∨

i∈B αi for some B ⊆ {1, 2, . . . , l}.
Since every constraint of Φ is of arity at most k, there are at most 2k options to choose B.
Therefore, one constraint of Φ can cover at most 2k tuples from A2n \σn. Thus, Φ has at least
2n/2k constraints.

Similarly, if V is the set of all variables in Φ, then the above argument gives an injection
from the set A2n \ σn of size 2n to the set of all subsets of V of size at most k. This implies
that |V |k > 2n and |V | > 2n−k.

Thus, for a fixed Γ we need exponentially many constraints to define σn.

Corollary 39. Suppose Γ ⊆ Inv(f0,2), all relations in Γ are of arity at most k. Then any
pp-definition of τn over Γ, where n > 2, has at least 2n/2k constraints and at least 2n/2k

variables.

Below we present an algorithm that solves QCSP2(Γ) in polynomial time for Γ ⊆ Inv(f0,2)
(see the pseudocode of the function Solve2). For an input ∀x1 . . .∀xn∃y1 . . .∃ysΦ, the function
Solve2 first checks whether Φ holds on x = (0, . . . , 0) and on each tuple containing exactly
one 1. Then for every variable yj it calculates the minimal 1-set using Lemma 36. Precisely,
for every variable yj it calculates the set Di,j of possible values for yj when x = 2i−102n−i,
and sets the i-th element of the 1-set αj to 1 whenever Di,j = {0}. Note that the minimal
1-set for a variable xi is 0

i−110n−i. Then, for each constraint ρ(z1, . . . , zl) and each subset V
of its variables the algorithm calculates the disjunction of the minimal 1-sets for the variables
from V , and checks that Φ holds on the result. Again, it would be an exponential algorithm
if it just checks all possible x. By SolveCSP we denote a polynomial algorithm, solving
constraint satisfaction problem for a constraint language preserved by a semilattice operation:
it returns true if it has a solution, it returns false otherwise.

Lemma 40. Function Solve2 solves QCSP2(Γ) in polynomial time for a finite constraint
language Γ ⊆ Inv(f0,2).

Proof. First, let us show that the algorithm actually solves the problem. If the answer is false,
then we found an evaluation of (x1, . . . , xn) such that the corresponding CSP has no solutions,
which means that the answer is correct.

Assume that the answer is true. Let R(x1, . . . , xn) be defined by the formula ∃y1 . . .∃ysΦ.
We need to prove that R is a full relation. Assume the converse. Using the semilattice
operation s2 we can generate An from {0, 1}n, hence {0, 1}n 6⊆ R. Then let α be a minimal
tuple from {0, 1}n \ R. Since we checked that (0, 0, . . . , 0) and all tuples having just one 1
are from R, α contains at least two 1. Then, by Lemma 35, there should be a constraint
ρ(z1, . . . , zl) of Φ and a subset V ⊆ {1, 2, . . . , l} such that α is a disjunction of the minimal
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1: function Solve2(Θ)
2: Input: QCSP2(Γ) instance Θ = ∀x1 . . .∀xn∃y1 . . .∃ysΦ.
3: if ¬SolveCSP(x = (0, . . . , 0) ∧ Φ) then return false ⊲ x = (x1, . . . , xn)

4: for i := 1, . . . , n do ⊲ Check all tuples with just one 1
5: c := (0, . . . , 0

︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0)

6: if ¬SolveCSP(x = c ∧ Φ) then return false

7: for j := 1, . . . , s do ⊲ Calculate the minimal 1-set for every yj
8: αj := (0, . . . , 0)
9: for i := 1, . . . , n do

10: Di,j := ∅

11: c := (2, . . . , 2
︸ ︷︷ ︸

i−1

, 0, 2, . . . , 2)

12: for a ∈ A do

13: if SolveCSP(x = c ∧ yj = a ∧ Φ) then
14: Di,j := Di,j ∪ {a}

15: if Di,j = ∅ then return false

16: if Di,j = {0} then

17: αj := αj ∨ (0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0)

18: for a constraint ρ(z1, . . . , zl) of Φ do ⊲ Check all constraints
19: for V ⊆ {1, 2, . . . , l} do ⊲ Check all subsets of variables
20: β := (0, . . . , 0)
21: for j ∈ V do

22: if zj = xi for some i then
23: β := β ∨ (0, . . . , 0

︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0) ⊲ Add the minimal 1-set for xi

24: if zj = yi for some i then
25: β := β ∨ αi ⊲ Add the minimal 1-set for yi
26: if ¬SolveCSP(x = β ∧ Φ) then return false

return true

32



1-sets of zi for i ∈ V . Thus, it is sufficient to find the minimal 1-set corresponding to each
variable and check all the disjunctions.

By Lemma 36, if αj is minimal 1-set for a variable yj then it was correctly found in lines
7-17 of the algorithm. Note that if yj does not have a minimal 1-set then we do not care what
we found. Then, in lines 18-25 we check all constraints of Φ, check all subsets of variables V ,
and calculate the corresponding disjunction. Here we use the fact that the minimal 1-set for
xi is 0i−110n−i. In line 26 we check whether Φ has a solution with (x1, . . . , xn) = α. Thus,
Lemma 35 guarantees that {0, 1}n ⊆ R, and therefore An ⊆ R.

It remains to show that the algorithm works in polynomial time. In the algorithm we
just solve at most 1 + n + s · n · 3 +m · 2r CSP instances over a language preserved by the
semilattice operation s2, where m is the number of constraints in Φ and r is the maximal arity
of constraints in Φ. Since Γ is finite, r is a constant, hence the algorithm is polynomial.

Corollary 41. QCSP(Γ) is in P for every finite Γ ⊆ Inv(f0,2).

Proof. Since f(x, y, z) = s0,2(x, y) is a 01-stable operation, by Lemma 18 QCSP(Γ) can be
polynomially reduced to QCSP2(Γ), and QCSP2(Γ) can be solved by the function Solve2.

9 EGP and WNU on 3-element domain

In this section we consider constraint languages on {0, 1, 2} with constants for which Pol(Γ)
has the EGP property and contains a WNU operation. It can be shown (see the proof
of Theorem 6) that in this case Pol(Γ) contains a semilattice operation. Since adding pp-
definable relations to Γ does not change the complexity of QCSP(Γ), we may assume that k
is the maximal arity of the relations in Γ and Γ contains all pp-definable relations of arity at
most k. Also, EGP implies that there exists α and β, neither equal to A but so that α∪β = A,
so that all operations of Pol(Γ) are αβ-projective [31]. If α ∩ β = ∅, then there can be no
WNU. Hence, we may assume that α = {0, 2} and β = {1, 2}, which implies that {0, 2},
{1, 2}, and {0, 2}2∪{1, 2}2 are in Γ. Thus, in this section we have the following assumptions:

1. Γ is a finite constraint language on A = {0, 1, 2}

2. Γ contains the relations {0}, {1}, {2}, {0, 2}, {1, 2}, {0, 2}2 ∪ {1, 2}2, and the equality
relation

3. Γ is preserved by the semilattice operation s2

4. Pol(Γ) is {0, 2}{1, 2}-projective

5. all relations in Γ are of arity at most k > 4

6. Γ contains all relations of arity at most k that can be pp-defined from Γ

These assumptions will hold up to, but not including, Theorem 60. Similar to a 01-stable
operation, we define 0-stable and 1-stable operations, where f is called c-stable if it is idem-
potent, f(x, c) = x, and f(x, 2) = 2. Note that by adding a dummy variable we can make it
a 01-stable operation.
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9.1 Finiteness of the language

In this subsection we will derive some properties of Γ based on the facts that Γ is finite and
Pol(Γ) is {0, 2}{1, 2}-projective.

For B,C ⊆ A and n > 3 by nunB,C we denote the operation of arity n defined on a tuple
(a1, . . . , an) as follows. If a1 = · · · = an then it returns a1. If a1 = · · · = ai−1 = ai+1 = · · · =
an ∈ B and ai ∈ C for some i, then it returns aj for j 6= i. Otherwise, it returns 2.

Lemma 42. Suppose ρ is a relation of the minimal arity N in Γ that is not preserved by
nu2kB,C. Then, after some permutation of variables, ρ satisfies one of the following conditions:

1. There exist α1, α2 ∈ ρ such that nu2kB,C(α1, α2, α2, . . . , α2) = β /∈ ρ, α2(i) ∈ B and
β(i) = α2(i) 6= 2 for i ∈ {1, . . . , N − 1}, β(N) = 2, and α1(i) 6= α2(i) for every i.
Moreover, if C = A then N = 2, α2(N) /∈ B, and α1 = (2, 2).

2. There exist α1, α2, α3 ∈ ρ such that nu2kB,C(α1, α2, α3, α3, . . . , α3) = β /∈ ρ, β(i) = α3(i) 6=
2 for i ∈ {1, . . . , N − 1}, β(N) = 2, α1(N), α2(N) ∈ C, α3(i) ∈ B for every i, and
α1(i) 6= α3(i) or α2(i) 6= α3(i) for every i. Moreover, if 2 ∈ C, then α1(i), α2(i) ∈
{α3(i), 2} for every i, α1(N) = α2(N) = 2, and N = 3.

Proof. Note that the hypotheses imply that N ≥ 2. Consider tuples α1, . . . , α2k ∈ ρ such
that nu2kB,C(α1, . . . , α2k) = β /∈ ρ. Since ρ is of the minimal arity, nu2kB,C preserves any proper
projection of ρ. For example, nu2kB,C preserves pr1,...,N−1(ρ), therefore

nu2kB,C(pr1,...,N−1(α1), . . . , pr1,...,N−1(α2k)) ∈ pr1,...,N−1(ρ).

Hence, there exists a tuple βN ∈ ρ that differs from β only in the N -th element. Similarly, for
every i there exists a tuple βi ∈ ρ that differs from β only in the i-th element.

Let us consider the matrix M whose columns are α1, . . . , α2k. Assume that for some j we
have α1(j) = · · · = α2k(j). Then if we substitute constant α1(j) for the j-th variable of ρ we get
a relation of smaller arity that is not preserved by nu2kB,C , which contradicts our assumptions.
Therefore in any row of the matrix there should be elements that are not equal. Also, all rows
of the matrix should be different, since otherwise we can identify the corresponding variables
of ρ to obtain a relation of smaller arity that is not preserved by nu2kB,C .

Assume that β has at least two elements equal to 2 and they appear at the i-th and j-th
positions. Then s2(βi, βj) = β, which contradicts the fact that s2 preserves ρ. Assume that
β has no 2. Every row of the matrix must have exactly one element different from all other
elements, and the result of applying nu2kB,C to every row is the most popular element of the
row. Since we have N 6 k rows and 2k columns, there should be a column among α1, . . . , α2k

equal to β, which contradicts our assumptions. W.l.o.g., we assume that β(N) = 2 (otherwise
we just permute variables of ρ).

Put α′
i = pr1,...,N−1(αi) for every i, β ′ = pr1,...,N−1(β). We know that for every i ∈

{1, . . . , N − 1} the i-th row contains exactly one element different from the others. Since
N 6 k, at least k + 1 of the tuples α′

1, . . . , α
′
2k are equal to β ′. W.l.o.g., we assume that

α′
s+1 = . . . = α′

2k = β ′, α′
i 6= β ′ for every i ∈ {1, . . . , s}, where s < N . Since not all elements

of the first row of the matrix are equal, we have s > 1.
Replace the first column of the matrixM by α2k and consider nu2kB,C(α2k, α2, α3, . . . , α2k) =

γ1. Since α′
1 6= β ′, there should be a row in the new matrix whose elements are equal.

Therefore, γ1 ∈ ρ, otherwise we consider α2k, α2, α3, . . . , α2k instead of the original sequence,
and get a contradiction with the fact that every row should contain at least two different
elements. By the definition pr1,...,N−1(γ1) = β ′, therefore γ1(N) 6= 2. This means that at least
2k − 2 among the elements α2(N), . . . , α2k(N) are equal to α2k(N). In the same way we can
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substitute αj instead of αi for any i ∈ {1, . . . , s} and j ∈ {s+1, . . . , 2k} to conclude that 2k−2
elements among the elements α1(N), . . . , αi−1(N), αi+1(N), . . . , α2k(N) are equal to αj(N).
Since β(N) = 2, we also have αi(N) 6= αj(N). This implies that αs+1(N) = · · · = α2k(N),
and one of the following cases holds:

1. s = 1, α2 = · · · = α2k;

2. s = 2, α1(N), α2(N) ∈ C, α3 = · · · = α2k, α3(N) ∈ B.

If s = 1 then α1(i) 6= α2(i) for every i since there should be different elements in every
row. Suppose A = C. Since s2(α1, α2) = (2, . . . , 2) ∈ ρ, we can take α1 = (2, . . . , 2). Since
α2(i) 6= α1(i) and all rows are different, we have N = 2 and α(2)(N) /∈ B.

If s = 2, then α3(i) ∈ B for all i < N since β(i) 6= 2. It remains to get an extra condition
for the case when 2 ∈ C and s = 2. In this case we replace α1 by δ1 = s2(β1, βN ) (see the
definition of β1 and βN above), and α2 by δ2 = s2(β2, βN). Then δ1(i), δ2(i) ∈ {α3(i), 2}
for every i, and nu2kB,C(δ1, δ2, α3, . . . , α3) = β. Note that δ1 can differ from α3 in at most 2
coordinates and one of them is the N -th coordinate. The same is true for δ2. Therefore, since
δ1, δ2, α3 (viewed as a matrix with 3 columns) cannot have equal rows, N should be equal to
3.

Our plan is to apply the above lemma to define relations that will be used to prove hardness
results.

Lemma 43. One of the following cases holds.

1. ({0, 2} × {0, 2} × {0, 2}) \ {(0, 0, 2)} ∈ Γ,

2. ({1, 2} × {1, 2} × {1, 2}) \ {(1, 1, 2)} ∈ Γ,

3. ({0, 2} × {0, 2} × {1, 2}) \ {(0, 0, 2)} ∈ Γ,

4. ({1, 2} × {1, 2} × {0, 2}) \ {(0, 0, 2)} ∈ Γ.

Proof. Since nu2kA,A is not {0, 2}{1, 2}-projective, Γ is not preserved by nu2kA,A. By Lemma 42
there exists a relation ρ ∈ Γ satisfying one of the two cases. The first case is not possible
because nu2kA,A(α1, α2, α2, . . . , α2) = α2 for every α1, α2. Thus, ρ is of arity 3 and there exist
α1, α2, α3 ∈ ρ such that nu2kA,A(α1, α2, α3, α3, . . . , α3) = β /∈ ρ, β(i) = α3(i) 6= 2 for i ∈ {1, 2},
β(3) = 2, α1(i) 6= α3(i) or α2(i) 6= α3(i), α1(i), α2(i) ∈ {α3(i), 2} for every i, α1(3) = α2(3) =
2. Suppose α3 = (a1, a2, a3). We know that (a1, a2, a3), (2, a2, 2), (a1, 2, 2) ∈ ρ (as α3, α1, α2)
and (a1, a2, 2) /∈ ρ (as β). Since the semilattice s2 applied to (a1, a2, 0) and (a1, a2, 1) gives
(a1, a2, 2) /∈ ρ, (a1, a2, c) ∈ ρ implies c = a3.

Since a1, a2, a3 ∈ {0, 1}, at least two of them are equal. We consider three cases:
Case 1. a2 = a3. Put δ(x, y, z) = ∃t ρ(x, a2, t) ∧ ρ(y, t, z). It is not hard to see that

(a1, a1, 2) /∈ δ (we need to put t = a2 = a3 and, therefore, z = a3), (a1, 2, 2), (a1, a1, a3) ∈ δ
(put t = a2 = a3), (2, 2, 2), (2, a1, 2) ∈ δ (put t = 2).

Case 2. a1 = a3. Put δ(x, y, z) = ∃t ρ(a1, x, t) ∧ ρ(t, y, z). It is not hard to see that
(a2, a2, 2) /∈ δ (we need to put t = a1 = a3 and, therefore, z = a3), (a2, 2, 2), (a2, a2, a3) ∈ δ
(put t = a1 = a3), (2, 2, 2), (2, a2, 2) ∈ δ (put t = 2).

Case 3. a1 = a2. In this case we put δ = ρ.
Thus, we have a relation δ ∈ Γ satisfying the following properties: for some a, b ∈ {0, 1}

we have (a, a, b), (2, a, 2), (a, 2, 2), (2, 2, 2) ∈ δ, (a, a, 2) /∈ δ. Since s2 preserves δ, (a, a, c) ∈ δ
implies c = b.

Put δ1 = δ ∩ ({a, 2} × {a, 2} × {b, 2}), δ2(x, y, z) = ∃t δ1(x, y, t) ∧ δ1(x, z, t) ∧ δ1(z, x, t).

35



Assume that (a, a, 2) ∈ δ2. Since we need to set t = b, we have (a, 2, b), (2, a, b) ∈ δ1. Since
s2 preserves δ1 we obtain (2, 2, b) ∈ δ1, which means that δ1 = ({a, 2} × {a, 2} × {b, 2}) \
{(a, a, 2)} and completes this case.

Assume that (a, a, 2) /∈ δ2. We know that (a, a, a) ∈ δ2 (put t = b), (a, 2, 2), (2, a, 2),
(2, 2, a), (2, 2, 2) ∈ δ2 (put t = 2). Put

δ3(x, y, z) = ∃x′∃y′∃z′ δ2(x, x, x
′) ∧ δ2(y, y, y

′) ∧ δ2(z
′, z′, z) ∧ δ2(x

′, y′, z′).

Let us show that δ3 = ({a, 2}× {a, 2}× {a, 2}) \ {(a, a, 2)}. If x = 2, then we put x′ = z′ = 2
and y′ = y. If y = 2 then we put y′ = z′ = 2 and x′ = x. If x = y = z = a, then we put
y′ = z′ = y′ = a. It remains to show that (a, a, 2) /∈ δ3, which follows from the fact that x′

should be equal to a, y′ should be equal to a, z′ should be equal to 2, (a, a, 2) /∈ δ2. Thus,
δ3 = ({a, 2} × {a, 2} × {a, 2}) \ {(a, a, 2)}, which completes the proof.

Lemma 44. One of the following conditions holds.

1. ({0, 2} × {0, 2} × {0, 2}) \ {(0, 0, 2)} ∈ Γ;

2. there exists a relation δ ∈ Γ such that (0, 1), (2, 2) ∈ δ, (0, 2) /∈ δ;

Proof. Since nu2k{0},A is not {0, 2}{1, 2}-projective, Γ is not preserved by nu2k{0},A. By Lemma
42 there exists a relation ρ ∈ Γ satisfying one of the two cases of Lemma 42. Suppose we
have the second case of Lemma 42, where we import that lemma’s notation. Then α3 =
(0, 0, 0), α1 = (2, 0, 2), α2 = (0, 2, 2), β = (0, 0, 2) (or α1 and α2 can be switched). Since s2
preserves ρ, we have (2, 2, 2) ∈ ρ.

Let δ0 = ρ ∩ {0, 2}3. Consider two cases:

Case 1. (2, 2, 0) ∈ δ0. For ǫ(x, y) = δ0(y, y, x) we have ǫ =

(
0 0 2
0 2 2

)

.

Case 2. (2, 2, 0) /∈ δ0. Put ǫ(x, y) = ∃t δ0(t, x, y) ∧ δ0(x, t, y). If (2, 0) ∈ ǫ, then
(0, 2, 0), (2, 0, 0) ∈ δ0, which, using the semilattice s2, implies (2, 2, 0) ∈ δ0. This contradiction

shows that (2, 0) /∈ ǫ and ǫ =

(
0 0 2
0 2 2

)

.

Then the required relation ({0, 2} × {0, 2} × {0, 2}) \ {(0, 0, 2)} can be pp-defined by

δ1(x, y, z) = ∃x′∃y′∃z′ ǫ(x′, x) ∧ ǫ(y′, y) ∧ ǫ(z, z′) ∧ δ0(x
′, y′, z′).

Suppose we have the first case in Lemma 42. Then β = (0, 2), α1 = (2, 2), α2 = (0, 1),
s2(α1, α2) = (2, 2) ∈ ρ. Thus, ρ satisfies the conditions of item 2.

Similarly, if we switch 0 and 1 we get the following lemma.

Lemma 45. One of the following cases holds.

1. ({1, 2} × {1, 2} × {1, 2}) \ {(1, 1, 2)} ∈ Γ

2. there exists δ ∈ Γ such that (1, 0), (2, 2) ∈ δ, (1, 2) /∈ δ

Lemma 46. One of the following cases holds:

1. ({0, 2} × {0, 2} × {0, 2}) \ {(0, 0, 2)}, ({1, 2} × {1, 2} × {1, 2}) \ {(1, 1, 2)} ∈ Γ

2. ({1, 2} × {0, 2} × {0, 2}) \ {(1, 0, 2)}, ({0, 2} × {0, 2} × {0, 2}) \ {(0, 0, 2)} ∈ Γ

3. ({0, 2} × {1, 2} × {1, 2}) \ {(0, 1, 2)}, ({1, 2} × {1, 2} × {1, 2}) \ {(1, 1, 2)} ∈ Γ
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Proof. We apply Lemmas 44 and 45. If we have the first case in both of them, then the first
condition holds and we are done.

Assume that we have the second case in both of them and the corresponding relations are
δ0 and δ1, respectively. Put

δ(x, y) = δ0(x, y) ∧ δ1(y, x) ∧ (x ∈ {0, 2}) ∧ (y ∈ {1, 2}).

It is not hard to see that δ =

(
0 2
1 2

)

. Using this relation we can easily switch 0 and 1 in

relations. By Lemma 43 we have ρ = ({a, 2} × {a, 2} × {b, 2}) \ {(a, a, 2)} ∈ Γ for some
a, b ∈ {0, 1}. If a = b = 1, then we use the relation ρ and the relation defined by the following
pp-definition to satisfy condition 1:

ρ1(x, y, z) = ∃x′∃y′∃z′ ρ(x′, y′, z′) ∧ δ(x, x′) ∧ δ(y, y′) ∧ δ(z, z′).

If a = b = 0 then the same pp-definition, but with the arguments of δ switched, applies.
If a 6= b, and (a, b) = (0, 1), then the relations we need to satisfy condition 1 can be defined

by:
ρ2(x, y, z) = ∃z′ ρ(x, y, z′) ∧ δ(z, z′),

ρ3(x, y, z) = ∃x′∃y′ ρ(x′, y′, z) ∧ δ(x′, x) ∧ δ(y′, y).

If (a, b) = (1, 0) then the same pp-definitions, but with the arguments of δ switched, applies.
Assume that we have the first case in Lemma 44 and the second case in Lemma 45. Thus,

ρ4 = ({0, 2}×{0, 2}×{0, 2})\{(0, 0, 2)} ∈ Γ and there exists δ ∈ Γ such that (1, 0), (2, 2) ∈ δ,
(1, 2) /∈ δ. Put

ρ5(x, y, z) = ∃x′ ρ4(x
′, y, z) ∧ δ(x, x′) ∧ x ∈ {1, 2} ∧ x′ ∈ {0, 2}.

Then ρ4 and ρ5 satisfy the second condition of this lemma.
Assume that we have the second case in Lemma 44 and the first case in Lemma 45. Thus,

ρ6 = ({1, 2}×{1, 2}×{1, 2})\{(1, 1, 2)} ∈ Γ and there exists δ ∈ Γ such that (0, 1), (2, 2) ∈ δ,
(0, 2) /∈ δ. Put

ρ7(x, y, z) = ∃x′ ρ6(x
′, y, z) ∧ δ(x, x′) ∧ x ∈ {0, 2} ∧ x′ ∈ {1, 2}.

Then ρ6 and ρ7 satisfy the third condition of this lemma.

9.2 Connection with Boolean functions

A mapping f : {0, 1}n → {0, 1} is called a Boolean function. We say that a Boolean function
f of arity n is represented by Γ if there exists a relation R of arity n+ 1 pp-definable using Γ
such that for all a1, . . . , an ∈ {0, 1}, b ∈ {0, 1, 2}

(a1, . . . , an, b) ∈ R ⇔ f(a1, . . . , an) = b.

For example, an AND-type relation is a representation of conjunction, an OR-type relation is
a representation of disjunction. A k-ary Boolean function f is monotonic if f(x1, . . . , xk) ≤
f(y1, . . . , yk) whenever xi 6 yi for every i ∈ {1, 2, . . . , k}. A k-ary Boolean function is linear
if it is of the form c1x1 + . . .+ ckxk + c0 for c0, c1, . . . , ck ∈ {0, 1}.

Lemma 47. The set of all Boolean functions represented by Γ is a clone generated by one of
the following sets: {0, 1}, {+, 0, 1}, {∧, 0, 1}, {∨, 0, 1}, {∧,∨, 0, 1} or {∧,¬, 0, 1}.

37



Note that this is true for arbitrary constraint languages containing {0}, {1} and =.

Proof. Notice that constants 0 and 1 are represented by the singleton relations {0} and {1},
which are in Γ, and a projection can be represented by the equality relation, which is assumed
to be in Γ.

Suppose we have Boolean functions g1, . . . , gn of aritym represented by relations R1, . . . , Rn,
respectively. Suppose f is Boolean function of arity n represented by a relation R. Then the
composition h = f(g1, . . . , gn) can be represented by the relation defined by

R′(x1, . . . , xm, z) = ∃y1 . . .∃ynR1(x1, . . . , xm, y1) ∧ · · · ∧Rn(x1, . . . , xm, yn) ∧ R(y1, . . . , yn, z).

Since we are closed under composition and above {0, 1} we can read from Post’s Lattice that
we are one of the clones in the statement of the lemma.

By BoolClo(Γ) we denote the set of all Boolean functions represented by Γ, which is a
clone by Lemma 47.

Let α1, . . . , αN , where N = 2k+1 − 1, be the set of all tuples from {0, 1}k+1 except for the
tuple (1, 1, . . . , 1). Thus, αi can be viewed as a binary representation of the number (i− 1).

Let us define an operation fΓ on A of arity N . If there exists a unique Boolean function
h ∈ BoolClo(Γ) of arity k + 1 such that h(αi) = ai for every i, then put f(a1, . . . , aN ) =
h(1, 1, . . . , 1). Otherwise, put f(a1, . . . , aN) = 2.

Lemma 48. Suppose Boolean functions h1 and h2 of arity n > 2 differ only on the tuple
(1, 1, . . . , 1). Then conjunction can be generated from h1, h2 and constants 0, 1.

Proof. Since the functions h1 and h2 differ just on one tuple, they cannot be both linear. As-
sume that they are monotonic. Since h1(1, 1, . . . , 1) 6= h2(1, 1, . . . , 1), we have h1(x1, . . . , xn) =
0 and h2(x1, . . . , xn) = x1 ∧ · · · ∧ xn (or we should switch h1 and h2). Thus, we generated
conjunction in this case.

Assume that one of the functions h1 and h2 is not monotonic. Then h1, h2, 0, 1 are not
contained in any maximal clone of Boolean functions. Hence, by [27], any function, including
conjunction, can be generated from h1, h2, 0, and 1.

Therefore, if BoolClo(Γ) does not contain conjunction, then the word “unique” can be
removed from the definition of fΓ. Also, since constants 0 and 1 are in BoolClo(Γ), the
operation fΓ is idempotent in this case.

Lemma 49. Suppose BoolClo(Γ) does not contain conjunction, then fΓ is not {0, 2}{1, 2}-
projective.

Proof. Assume that fΓ is a {0, 2}{1, 2}-projection to the i-th coordinate. Let αi have 0 at
the j-th coordinate, and h is the (k+ 1)-ary Boolean projection to the j-th coordinate. Then
fΓ(h(α1), h(α2), . . . , h(αN)) = h(1, 1, . . . , 1) = 1 and h(αi) = 0. Contradiction.

Lemma 50. Suppose the negation Boolean function is represented by Γ, and Γ is preserved
by a 0-stable operation v0. Then v0 is 1-stable.

Proof. Since v0 preserves the relation representing the negation and v0(1, 0) = 1, we have
v0(0, 1) = 0. Combining this with the fact that v0 is idempotent and v0 is a {0, 2}{1, 2}-
projection to the first coordinate, we obtain that v0 is 1-stable.

Theorem 51. Suppose Γ is preserved by a 0-stable operation v0, then Γ contains an AND-type
relation (equivalently BoolClo(Γ) contains conjunction).
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Proof. Assume that BoolClo(Γ) does not contain conjunction.
By Lemma 49, fΓ is not {0, 2}{1, 2}-projective, hence there should be a relation in Γ that

is not preserved by fΓ. Let ρ be a relation of the minimal arity in Γ that is not preserved by
fΓ. Thus, there exists a matrix M whose columns are tuples from ρ such that fΓ applied to
the rows of M gives β /∈ ρ. Let L be the arity of ρ.

Note that each row of the matrix should contain different elements, since otherwise we
could substitute a constant into ρ and reduce the arity of ρ (recall that fΓ is idempotent).
Since ρ is a relation of the minimal arity, for every i there should be a tuple βi ∈ ρ such that
βi differs from β only in the i-th coordinate (otherwise, we consider the projection of ρ to all
coordinates but i-th, which has the same properties as ρ but smaller arity).

Assume that β has at least two elements equal to 2 and they appear at the i-th and j-th
coordinates. Then s2(βi, βj) = β, which contradicts the fact that s2 preserves ρ.

Assume that β contains exactly one 2. W.l.o.g., we assume that β(L) = 2. By the
definition of fΓ for every i ∈ [L − 1] there exists a Boolean function hi ∈ BoolClo(Γ) (not a
constant function) such that the i-th row of M is (hi(α1), . . . , hi(αN)).

Assume that there exists a tuple γ ∈ ρ such that γ(L) = 2 and γ(i) ∈ {0, 1} for i ∈ [L−1].
By Lemma 50, we have two cases:

Case 1. BoolClo(Γ) does not contain negation. It follows from Post’s lattice (see [27])
that all functions in BoolClo(Γ) are monotonic. Thus, hi is a monotonic function that is not
a constant, therefore β(i) = hi(1, 1, . . . , 1) = 1 for every i ∈ [L − 1]. Applying the 0-stable
operation v0 to βL and γ we obtain (1, 1, . . . , 1, 2) = β, which contradicts the fact that v0
preserves ρ.

Case 2. v0 is 1-stable. Applying v0 to βL and γ we obtain β, which contradicts the fact
that v0 preserves ρ.

Thus, we proved that ρ does not contain a tuple whose last element is 2 and the remaining
elements are from {0, 1}. For instance, this means that the matrix M contains only 0 and 1.
Let Ri be a relation pp-definable from Γ representing hi. Define a new relation by

R(x1, . . . , xk+1, z) =

∃y1 . . .∃yL−1 R1(x1, . . . , xk+1, y1) ∧ · · · ∧RL−1(x1, . . . , xk+1, yL−1) ∧ ρ(y1, . . . , yL−1, z).

We can check that for each αi there exists a unique bi ∈ {0, 1} such that αibi ∈ R. Note that
bi is the i-th element of the last row of the matrix. Since (1, 1, . . . , 1, hi(1, 1, . . . , 1)) ∈ Ri and
β(i) = βL(i) = hi(1, 1, . . . , 1) for every i ∈ [L − 1], we have (1, 1, . . . , 1, βL(L)) ∈ R, which
means that R represents the corresponding Boolean function and fΓ(b1, . . . , bN) = βL(L).
This contradicts the fact that β(L) = 2.

It remains to consider the case when β has no 2. Therefore, for every i ∈ [L] there exists
a Boolean function hi ∈ BoolClo(Γ) (not a constant function) such that the i-th row of M is
(hi(α1), . . . , hi(αN )). It follows from Post’s Lattice (see [27]) that we have only the following
two cases.

Case 1. BoolClo(Γ) contains only linear functions. Consider a system of linear equations







h1(x1, . . . , xk+1) = h1(1, . . . , 1)

h2(x1, . . . , xk+1) = h2(1, . . . , 1)

. . .

hL(x1, . . . , xk+1) = hL(1, . . . , 1)

Since L 6 k, there should be a solution of this system of equations different from (1, 1, . . . , 1).
Let this solution be equal to αi for i ∈ [N ]. Therefore, the i-th column of the matrix M is
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equal to (h1(1, . . . , 1), h2(1, . . . , 1), . . . , hL(1, 1, . . . , 1)), which is equal to β. This contradicts
the fact that β /∈ ρ.

Case 2. BoolClo(Γ) is the clone generated by disjunction and constants. Since every
operation hj is monotonic and not constant, β = (1, 1, . . . , 1). Since hj is not a constant for
every j ∈ [L], we can choose nj such that hj(x1, . . . , xk+1) > xnj

. Let αi be the tuple having
1 only on coordinates n1, . . . , nL (such αi exists because L < k+ 1). Then the i-th column of
the matrix M is equal to (1, 1, . . . , 1), which contradicts the fact that β /∈ ρ.

In the same way we can prove the following theorem.

Theorem 52. Suppose Γ is preserved by a 1-stable operation, then Γ contains an OR-type
relation (equivalently BoolClo(Γ) contains disjunction).

9.3 The proof of the EGP classification

Lemma 53. Suppose Pol(Γ) does not have a 0-stable operation. Then Γ contains one of the

two relations

(
0 1 2 0 2
0 0 0 2 2

)

,

(
0 1 2 0 2
1 1 1 2 2

)

.

Proof. Let δ1 and δ2 be the relations generated from

(
1 0
0 2

)

and

(
1 0
1 2

)

using Pol(Γ),

respectively. Note that since s2 ∈ Pol(Γ) we have (2, 2) ∈ δ1 and (2, 2) ∈ δ2. Assume
that (1, 2) ∈ δ1 and (1, 2) ∈ δ2. Then there exist operations f1, f2 ∈ Pol(Γ) such that
f1(1, 0) = f2(1, 0) = 1, f1(0, 2) = f2(1, 2) = 2. Since f1 and f2 are {0, 2}{1, 2}-projective,
they should be {0, 2}{1, 2}-projections to the first coordinate and f1(2, x) = f2(2, x) = 2. Fur-
thermore, f1(0, 2), f2(0, 2) ∈ {0, 2} as f1, f2 preserves {0, 2} ∈ Γ. Put f(x, y) = f1(f2(x, y), y),
then f(1, 0) = 1, f(0, 2) = f(1, 2) = f(2, 0) = 2. Therefore, f is a 0-stable operation.
Contradiction.

Assume that (1, 2) /∈ δ1. Then by Lemma 46, ψ1 = ({0, 2}×{a, 2}×{a, 2})\{(0, a, 2)} ∈ Γ
for some a ∈ {0, 1}. Then one of the two necessary relations is defined by the formula
δ′1(x, y) = ∃z δ1(x, z) ∧ ψ1(z, a, y).

It remains to consider the case when (1, 2) /∈ δ2. Then by Lemma 46, ψ2 = ({1, 2} ×
{a, 2} × {a, 2}) \ {(1, a, 2)} ∈ Γ for some a ∈ {0, 1}. Then one of the two necessary relations
is defined by the formula δ′2(x, y) = ∃z δ2(x, z) ∧ ψ2(z, a, y).

In the same way we can prove the following lemma.

Lemma 54. Suppose Pol(Γ) does not have a 1-stable operation. Then Γ contains one of the

two relations

(
0 1 2 1 2
0 0 0 2 2

)

,

(
0 1 2 1 2
1 1 1 2 2

)

.

Lemma 55. Suppose Pol(Γ) does not have a 01-stable operation, then there exists b ∈ {0, 1}
such that σ0, σ1 ∈ Γ, where

σ0 = {(a1, a2, a3) : a1 ∈ A, a2, a3 ∈ {b, 2}, (a1 ∈ {0, 2} ∨ a2 = a3)},
σ1 = {(a1, a2, a3) : a1 ∈ A, a2, a3 ∈ {b, 2}, (a1 ∈ {1, 2} ∨ a2 = a3)}.

Proof. Let δ0 and δ1 be the relations generated from





0 0 1
1 0 1
0 2 2



 and





0 0 1
1 0 1
1 2 2



 using Pol(Γ),

respectively. Since the semilattice preserves δ0 and δ1, the tuples (0, 2, 2), (2, 1, 2) belong to δ0
and δ1.
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If both δ0 and δ1 contain (0, 1, 2) then there exist operations f0 and f1 in Pol(Γ) such
that f0(0, 0, 1) = f1(0, 0, 1) = 0, f0(1, 0, 1) = f1(1, 0, 1) = 1, f0(0, 2, 2) = f1(1, 2, 2) = 2.
Since f0 and f1 are {0, 1}{0, 2}-projective, f0(2, a, b) = f1(2, a, b) = 2 for all a, b ∈ A. Then
the operation f(x, y, z) = f1(f0(x, y, z), y, z) is a 01-stable operation, which contradicts our
assumptions.

Assume that δ0 does not contain (0, 1, 2). By Lemma 46, for some b ∈ {0, 1} the relation
ψ = ({0, 2} × {b, 2} × {b, 2}) \ {(0, b, 2)} is in Γ. Then σ0 and σ1 can be defined by

σ0(x, y, z) = ∃t δ0(0, x, t) ∧ ψ(t, y, z) ∧ ψ(t, z, y),

σ1(x, y, z) = ∃t δ0(x, 1, t) ∧ ψ(t, y, z) ∧ ψ(t, z, y).

Assume that δ1 does not contain (0, 1, 2). By Lemma 46, for some b ∈ {0, 1} the relation
ψ = ({1, 2} × {b, 2} × {b, 2}) \ {(1, b, 2)} is in Γ. Then σ0 and σ1 can be defined by

σ0(x, y, z) = ∃t δ1(0, x, t) ∧ ψ(t, y, z) ∧ ψ(t, z, y),

σ1(x, y, z) = ∃t δ1(x, 1, t) ∧ ψ(t, y, z) ∧ ψ(t, z, y).

Combining the above lemma with Lemma 17 we obtain the following corollary.

Corollary 56. Suppose Pol(Γ) does not have a 01-stable operation, then QCSP(Γ) is PSpace-
complete.

Lemma 57. Suppose Pol(Γ) does not have a 0-stable or 1-stable operation, then QCSP(Γ) is
co-NP-hard.

Proof. By Lemmas 53 and 54, we have the relations δ0 =

(
0 1 2 0 2
a0 a0 a0 2 2

)

and δ1 =
(
0 1 2 1 2
a1 a1 a1 2 2

)

in Γ for some a0, a1 ∈ {0, 1}. By Lemma 46, for some b0, b1 ∈ {0, 1} the

relations ψ0 = ({a0, 2} × {b0, 2} × {b0, 2}) \ {(a0, b0, 2)}, ψ1 = ({a1, 2} × {b1, 2} × {b1, 2}) \
{(a1, b1, 2)} are in Γ. We define

σ0(x, y, z) = ∃t δ0(x, t) ∧ ψ0(t, y, z) ∧ ψ0(t, z, y),

σ1(x, y, z) = ∃t δ1(x, t) ∧ ψ1(t, y, z) ∧ ψ1(t, z, y).

If b0 = b1 then by Lemma 17 the problem is PSpace-hard, and therefore co-NP-hard.
Since Γ contains {0, 2}2 ∪ {1, 2}2, if b0 = 1 and b1 = 0 then by Lemma 22 the problem is

co-NP-hard. Assume that b0 = 0 and b1 = 1. Put

σ′
1(x, y, z) = ∃z′ σ1(x, 1, z

′) ∧ σ0(z
′, y, z),

σ′
0(x, y, z) = ∃z′ σ0(x, 0, z

′) ∧ σ1(z
′, y, z),

and notice that σ′
0 and σ′

1 are the relations required in Lemma 22 for the proof of co-NP-
hardness.

Lemma 58. Suppose Γ is not preserved by f0,2, and Γ is preserved by s0,2,

(
0 1 1 1 2 2 2
1 0 1 2 0 1 2

)

,

(
0 1 1 1 2 2 2
0 0 1 2 0 1 2

)

,

(
0 1 2 2 2
0 1 0 1 2

)

∈ Γ,

then the relation δ(x, y, z) = (x 6= 0) ∨ (y = z) can be pp-defined from Γ.
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Proof. First, denote the relations from the statement by R1, R2 and R3, respectively. Let

ρ1 be the relation generated from





0 0 2
1 0 0
1 0 1



 using Pol(Γ). Assume that (0, 1, 2) ∈ ρ1, then

there exists a function f ∈ Pol(Γ) such that f(0, 0, 2) = 0, f(1, 0, 0) = 1, and f(1, 0, 1) = 2.
Since f is {0, 2}{1, 2}-projective, f always returns the first variable or 2. Since f preserves R1

and f(0, 0, 2) = 0, we have f(1, 1, a) = 1 for every a. Since f preserves R2 and f(0, 0, 2) = 0,
we have f(0, 0, a) = 0 for every a.

Let us show that f0,2(x, y, z) = f(s0,2(x, y), y, z). If x = y then by the above property
we have f(s0,2(x, y), y, z) = f(x, y, z) = x. Also, if y = z = 0 then since f(1, 0, 0) = 1
and f(0, 0, 0) = 0, we obtain f(s0,2(x, y), y, z) = f(x, y, z) = x. If x = 2 or y = 2 then
f(s0,2(x, y), y, z) returns 2. If x = 0 and y = 1 then s0,2(x, y) = 2 and f(s0,2(x, y), y, z) = 2. If
x = z = 1 and y = 0, then f(s0,2(x, y), y, z) = f(x, y, z) = f(1, 0, 1) = 2. Thus, we considered
all cases and showed that f0,2(x, y, z) = f(s0,2(x, y), y, z), which contradicts the fact that
f0,2 /∈ Pol(Γ). Therefore (0, 1, 2) /∈ ρ1. Put

ρ2(x, y, z) = ∃x′∃y′∃z′ ρ1(x
′, y′, z′) ∧ R2(x, x

′) ∧ R3(y, y
′) ∧R3(z

′, z).

Note that ρ1 ⊆ ρ2, and (0, 1, 2) /∈ ρ2. Since ρ1 is preserved by s2 and s0,2, we have

s2





0 2
0 0
0 1



 =





2
0
2



 ∈ ρ1, s0,2





0 2
1 0
1 2



 =





2
1
2



 ∈ ρ1, s2





2 2
0 1
2 2



 =





2
2
2



 ∈ ρ1. Therefore

ρ2 contains all the tuples (1, a, b), (2, a, b) for every a, b ∈ A (we just put x′ = z′ = 2 in the
definition of ρ2).

Define δ′(x, y, z) = ρ2(x, y, z) ∧ ρ2(x, z, y). By the previous fact, δ′ contains all the tuples
with the first element different from 0. If ρ2 contains (0, 1, 0) then we may apply s2 to
(0, 1, 0) and (0, 1, 1) to obtain (0, 1, 2), which is not from ρ2. Thus (0, 1, 0) /∈ ρ2. Therefore,
(0, 1, 0), (0, 0, 1), (0, 1, 2), (0, 2, 1) /∈ δ′.

Assume that δ′ contains the tuple (0, 0, 2). Then applying s0,2 to (0, 1, 1) and (0, 0, 2) we
get a tuple (0, 1, 2) which contradicts our assumptions. Therefore δ′ = δ, which completes the
proof.

Lemma 59. Suppose Γ is preserved by a 0-stable operation but not preserved by g0,2, and

R =

(
0 1 2 2 2
0 1 0 1 2

)

∈ Γ. Then Γ contains a relation δ ∈

{(
0 2
1 2

)

,

(
0 2 2
1 1 2

)}

.

Proof. Let ρ be the relation generated from





0 2
1 0
1 2



 using Pol(Γ). Assume that (0, 1, 2) ∈ ρ,

then there exists an operation f ∈ Pol(Γ) such that f(0, 2) = 0, f(1, 0) = 0, and f(1, 2) = 2.
Let us check that f = g0,2, which will give us a contradiction. Since f preserves R and
f(0, 2) = 0, we have f(0, a) = 0 for any a. We also know that f(1, 0) = 1, f(1, 1) = 1,
f(1, 2) = 2. It remains to check that f returns 2 if the first variable equals 2. This follows
from the fact that f is {0, 2}{1, 2}-projective.

Therefore (0, 1, 2) /∈ ρ. Since ρ is preserved by a 0-stable operation and (0, 1, 1), (2, 0, 2) ∈
ρ, we have (2, 1, 2) ∈ ρ. Put δ(x, y) = ρ(x, 1, y) ∧ x ∈ {0, 2} ∧ y ∈ {1, 2}. We know that
(0, 1), (2, 2) ∈ δ, (0, 2) /∈ δ, which completes the proof.

Now we are ready to prove the classification of the complexity for constraint languages we
consider in this section.

Theorem 60. Suppose Γ is a finite constraint language on {0, 1, 2} with constants, Γ is
preserved by s2, and Pol(Γ) is {0, 2}{1, 2}-projective. Then QCSP(Γ) is
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1. PSpace-complete, if Pol(Γ) does not contain a 01-stable operation.

2. in P, if Γ is preserved by sa,2 and ga,2 for some a ∈ {0, 1}.

3. in P, if Γ is preserved by fa,2 for some a ∈ {0, 1}.

4. co-NP-complete, otherwise.

Proof. Let r be the maximal arity of relations in Γ, let k = max(4, r). Note that if we add
to Γ all the relations of arity at most k that can be pp-defined from Γ then we do not change
the complexity of QCSP(Γ). Also, adding the equality relation to Γ does not change the
complexity since the equalities can be propagated out. Another important fact is that adding
pp-definable relations and the equality relation to a constraint language does not affect the
set of polymorphisms Pol(Γ). Thus, it is sufficient to prove the claim only for constraint
languages Γ containing all such relations. Additionally, since Pol(Γ) is {0, 2}{1, 2}-projective,
{0, 2}, {1, 2}, and {0, 2}2 ∪ {1, 2}2 are from Γ. Therefore, Γ satisfies all the assumptions we
formulated in the beginning of this section.

Case 1 follows from Corollary 56. Otherwise, Γ is preserved by a 01-stable operation, and
by Lemma 19 the problem QCSP(Γ) is in co-NP.

If Γ is not preserved by a 0-stable or 1-stable operation, then by Lemma 57 QCSP(Γ) is
co-NP-complete.

Then we may assume that Γ is preserved by a 0-stable operation (the 1-stable case can be
considered in the same way). If Γ is preserved by f0,2 then by Corollary 41 QCSP(Γ) is in P.
Similarly, if Γ is preserved by s0,2 and g0,2 then by Corollary 32 QCSP(Γ) is in P. Thus we
assume that f0,2 does not preserve Γ, and s0,2 or g0,2 does not preserve Γ.

By Theorem 51, Γ contains an AND-type relation δ. We can check that δ1(x, y) = δ(x, x, y)

is equal to

(
0 1 2 2 2
0 1 0 1 2

)

(to derive (2, 1) we apply a 0-stable operation to (1, 1) and (2, 0)).

If Γ is also preserved by a 1-stable operation, then by Theorem 52, Γ contains an OR-type
relation, and by Lemma 20, QCSP(Γ) is co-NP-complete.

Thus, we assume that Γ is not preserved by a 1-stable operation. By Lemma 54, Γ contains

a relation δ2 ∈

{(
0 1 2 1 2
0 0 0 2 2

)

,

(
0 1 2 1 2
1 1 1 2 2

)}

. Define

δ3(x, y) = ∃x′∃y′ δ2(x, x
′) ∧ δ(x, x′, y′) ∧ δ1(y

′, y).

We can check that (0, a) ∈ δ3 implies a = 0. Applying s2 to the tuples (1, 1, 1),(1, 0, 0), and
to the tuples (1, 1, 1),(0, 0, 0), we obtain that (1, 2, 2), (2, 2, 2) ∈ δ. Then (1, a), (2, a) ∈ δ3 for

every a (put x′ = y′ = 2 in the definition of δ3), which means that δ3 =

(
0 1 1 1 2 2 2
0 0 1 2 0 1 2

)

.

Assume that a 0-stable operation we have is h0. Since h0 is {0, 2}{1, 2}-projective, it
returns the first variable or 2. If h0(0, 1) = 0, then h0 is also 1-stable operation, which
contradicts our assumptions. Thus h0(0, 1) = 2. If h0(0, 2) = 0 then we get a contradiction
with the fact that h0 preserves δ3. Thus h0 = s0,2, which means that Γ is not preserved by

g0,2. By Lemma 59, Γ contains a relation δ4 ∈

{(
0 2
1 2

)

,

(
0 2 2
1 1 2

)}

. Define

δ5(x, y) = ∃z1∃z2 δ3(x, z1) ∧ δ4(z1, z2) ∧ δ1(z2, y).

We can check that δ5 =

(
0 1 1 1 2 2 2
1 0 1 2 0 1 2

)

∈ Γ. Applying Lemma 58 to δ5, δ3, and δ1,

we derive that the required relation (x 6= 0) ∨ (y = z) can be pp-defined from Γ. Then by
Lemma 21, QCSP(Γ) is co-NP-complete.

43



10 Main result for 3-element domain: proof of Theo-

rem 6

Lemma 61. Suppose Γ is a finite constraint language on {0, 1, 2} with constants, such that
Pol(Γ) has the EGP property and has no WNU. Then QCSP(Γ) is PSpace-complete.

Proof. Since Pol(Γ) has the EGP property, every operation of Pol(Γ) is αβ-projective for some
α and β, strict subsets of {0, 1, 2}, so that α∪β = {0, 1, 2}. If α∩β = ∅, then α×α∪β×β is an
equivalence relation preserved by Pol(Γ) and any operation of Pol(Γ) modulo this congruence
is a projection. It follows therefore from Lemma 5 in [18] and Theorem 5.2 of [5] that QCSP(Γ)
is PSpace-complete.

Otherwise, w.l.o.g. we assume that α = {0, 2} and β = {1, 2}. Since there does not exist
a WNU operation, it is known from [7, 24] that there should be a factor of size at least two
whose operations are projections.

We consider two cases. There exists a congruence σ such that Pol(Γ)/σ has only projec-
tions. This case we have already covered using Lemma 5 in [18] and Theorem 5.2 of [5].

Thus we may assume, there exists a subset B ( {0, 1, 2} of size two such that all operations
on B are projections and B is a subalgebra of Pol(Γ).

Assume that B = {0, 2}. Then δ = {0, 2}3 \{(2, 2, 0), (2, 0, 2)} is preserved by Pol(Γ). Re-
call the relations σ = α2∪β2 and σ2(x1, x2, x3, x4) = σ(x1, x2)∨σ(x3, x4) are pp-definable from
Γ because Pol(Γ) is αβ-projective. We have σ′

0(x, y, z) = ∃x′ σ(x, x′)∧ δ(x′, y, z), σ′
1(x, y, z) =

∃x′ σ2(x, 1, x
′, 1)∧δ(x′, y, z), which by Lemma 17 guarantees PSpace-completeness of QCSP(Γ).

If B = {1, 2}, then we are in a symmetric case to the last and we again apply Lemma 17
(this time b = 1) to prove PSpace-completeness.

If B = {0, 1}, then we can complete the argument in various ways. Note that B is a
subalgebra, and we already know that {0, 2} and {1, 2} are subalgebras too. It follows that
we are in the conservative case, and the result comes from Theorem 4.

Note that the above lemma does not hold on a larger domain. As a counter example on
the 4-element domain we can take the constraint language we build in Corollary 8.

Now, we are ready to prove Theorem 6.

Theorem 6. Suppose Γ is a finite constraint language on {0, 1, 2} with constants. Then
QCSP(Γ) is

1. in P, if Pol(Γ) has the PGP property and has a WNU operation.

2. NP-complete, if Pol(Γ) has the PGP property and has no WNU operation.

3. PSpace-complete, if Pol(Γ) has the EGP property and has no WNU operation.

4. PSpace-complete, if Pol(Γ) has the EGP property and Pol(Γ) does not contain an ab-
stable operation.

5. in P, if Pol(Γ) contains sa,c and ga,c for some a, c ∈ {0, 1, 2}, a 6= c.

6. in P, if Pol(Γ) contains fa,c for some a, c ∈ {0, 1, 2}, a 6= c.

7. co-NP-complete otherwise.

Proof. Suppose Pol(Γ) has the PGP property. We know from Theorem 2 that QCSP(Γ) can
be reduced to a polynomial collection of instances of CSP(Γ). If Γ additionally has a WNU
then it follows from [8, 29] that CSP(Γ), and therefore also QCSP(Γ), is in P. If Pol(Γ) does not
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have a WNU operation, then NP-hardness follows from the identity reduction from CSP(Γ),
whose NP-hardness has long been known (e.g. see again [8, 29]).

Suppose Pol(Γ) has the EGP property. If Pol(Γ) has no WNU operation then by Lemma 61
QCSP(Γ) is PSpace-complete.

Suppose Pol(Γ) contains a WNU operation w. Since Pol(Γ) has the EGP property, all
operations of Pol(Γ) are αβ-projective for some α and β.

If α∩β = ∅, then Pol(Γ) cannot have a WNU operation, which contradicts our assumption.
Suppose α ∩ β 6= ∅. If Pol(Γ) contains an ab-stable operation f , that is f(x, a, b) = x

and f(x, c, c) = c for {a, b, c} = {0, 1, 2}, then, since f is αβ-projective, we have c ∈ α ∩ β.
Similarly, if Pol(Γ) contains sa,c, ga,c, or fa,c, then c ∈ α ∩ β. Since both variables of the
operation f(x, y) = w(x, . . . , x, y) should be αβ-projective, f is the semilattice operation sc.
W.l.o.g. we assume that c = 2, then the remaining part of the classification follows from
Theorem 60.

11 Conclusion

Our demonstration of QCSP monsters suggests that a complete complexity classification of
QCSP(Γ) under polynomial reductions is likely to be exceedingly challenging. Indeed, suppose
P 6= NP, how many equivalence classes of problems QCSP(Γ) are there up to polynomial
equivalence? In this paper we showed that there are at least six of them. Are there any more?
Are there infinitely many? We don’t know the answer.

Meanwhile, the most sensible approach to complexity classification for QCSP(Γ) might
be to try to find those that are in P, in contradistinction to those that are NP-hard under
polynomial Turing reductions (which would thus capture also the co-NP-hardness). Similarly,
someone could ask about a general criteria for the QCSP to be PSpace-hard or to be a member
of a concrete complexity class, which is also a very intriguing question.

As the next step, it seems very natural to work on a classification for constraint languages
on a three-element domain without constants, where the reduction to CSP doesn’t work and
brand new ideas are required.

Even though we consider only finite constraint languages in this paper, we believe our
classification of the complexity for a three-element domain holds for infinite constraint lan-
guages (relations are given by the list of tuples). To prove this stronger result we would need
to add many technicalities, which would make our current proof even more complicated. For
instance, for the algorithm in Section 8 to work in polynomial time we need to enforce that
any constraint relation contains exponentially many tuples on its arity (see line 19 of the pseu-
docode). This can be achieved by showing that any relation preserved by the semilattice can
be decomposed in polynomial time into several relations with exponentially many tuples (see
[30] for such a decomposition). That is why we decided to limit ourselves to finite constraint
languages.
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