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Abstract

In this paper we investigate a model with habit formation and two types of

substitute goods. We are inspired by the classical models in e.g. [COW00] where

on the contrary only one good is considered. Such a family of models, even in

the case of 1 good, are difficult to study since their utility function is not concave

in the interesting cases (see e.g. [BG20]), hence the first order conditions are not

sufficient. We are inspired by the situation in which there is a lockdown in the

economy and one sector closes whereas habits develop on the second good. This

more elaborate model will be the subject of future work. In the present paper, we

carry out a first analysis in the case of no lockdown. We introduce and explain the

model which considers two goods where one of the two is related to habit stock and

where the utility function is expressed as the sum of two utility functions. For this

model, we provide some first results using the dynamic programming approach. We

prove that the value function is a viscosity solution of the Hamilton-Jacobi-Bellman

equation, and also some results on the qualitative behaviour of the value function

are furnished. Such results will form a solid ground over which a deep study of the

features of the solutions can be performed.
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†Università degli Studi di Pavia, Dipartimento di Science Economiche e Aziendali, Pavia, IT. email:

daria.ghilli@unipv.it
‡Economics and Finance Department, LUISS Guido Carli University, Rome, IT. email: fgozzi@luiss.it
§Scuola Normale Superiore, Pisa, IT. email: marta.leocata@sns.it

1



Contents

1 Introduction 2

2 Model Setup 5

3 Some results on a simpler model 7

4 Some results on the optimization problem (4) 11

4.1 Existence and uniqueness of steady state . . . . . . . . . . . . . . . . . . . 11

4.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Conclusion 18

1 Introduction

The main aim of this paper is to formulate and study a growth model with habits

formation which takes into account the presence of two types of different goods. The

model we propose is inspired by similar (classical) models with habits formation studied

in the literature so far, see [COW00, COW97, BG20]. Concerning the above mentioned

literature, our aim is to focus on a main difference, that is, the presence of two different

goods. This case has not been studied so far in the literature on growth models with

habits formation.

We choose to focus on the case of two different goods inspired by the situation in which

there is a lockdown on the economy and the sector producing one good closes whereas

habits develop on the other good. A real-world example of the situation we have in mind

might be the case of one good being cinema and the other good being Netflix. In the case

of a lockdown, the sector producing the first good (cinema) closes and habits develop on

the second good (Netflix). This case has been fully investigated in the paper [BGGL23]

by the authors, with a different utility function. However, in the present paper, we do not

investigate the impact of a lockdown on the economy. This will be the subject of future

works. This paper is a first step towards this more elaborate model, to understand first

what happens in the economy in our different setting in the case of no lockdown.

A major difficulty of the present paper that we aimed at focusing on consists in the

fact that the utility we choose (following [COW00, COW97, BG20]) is not concave. Note

that on the contrary in [BGGL23] the parameters in the utility are chosen for concavity
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to be respected. More in detail, in the previous above mentioned papers, it has been

observed the crucial relation between internal habit formation and increase in savings

in a particular parameters’ set, where the multiplicative utility function is never jointly

concave in consumption and habits. In particular, joint concavity is never possible when

the coefficient of relative risk aversion is bigger than one, i.e. σ > 1, and if the agent’s

weighting habit is less than one, i.e. γ < 1. The lack of concavity makes this class of

model difficult to study, even in the case of one good (see e.g. [BG20, YZ+14, ACCR05,

DN12, KR07]).

This implies that sufficient optimality conditions of maximum principle type are miss-

ing, see page 103 in [SS86].

The aim of the present paper is to investigate the case of non concavity in our setting.

Therefore, in this paper, we address the problem using the dynamic programming

approach. Our methods are inspired by [BG20] where similar methods are used to study

the case of only one good. We emphasize that the advantage of this approach is that

it provides optimality conditions independent of the concavity assumption. Although

this method is a rather powerful tool for providing the uniqueness of the optimal control

strategy, a uniqueness result is not demonstrated in this paper. We plan to present some

results in this direction in some future work.

This approach was developed in the seminal work of Crandall and Lions, see [Lio81,

CL83] and it has found a recent application to macroeconomic problems (see [AHL+22,

FGP+08b, CGL+23]). In this paper, we apply this theory using the homogeneity proper-

ties of the problem (for a similar approach see [FGP+08b, BG20, CS89, BD+97]).

The model under analysis is a variant of the model proposed in [COW00] and later

also studied in [BG20], in particular, we take into account two goods to be consumed, and

only one of them is related to a habit stock. The instantaneous utility function that we

examine for habit-related consumption was introduced in [Abe90], and it is

(
c1
hγ

)1−σ

1− σ
,

while the utility function for the second good is the classical CRRA utility function

(c2)1−σ

1− σ
.

We stress the fact that the utility function composed by the sum of the two utility functions
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above is not strictly concave when σ > 1 and γ < 1.

We decided to focus on this specific utility function since it is a typical utility function

considered classically in economic growth models, in particular in the above mentioned

papers (see in particular [BG20]) which have been our starting point. Indeed, we chose

a model that has been fully motivated in the literature to focus on the two difficulties

we decided to tackle, the presence of two goods and the nonconcavity of the utility. We

think that it would be interesting to try to extend our approach to a more general utility

function not satisfying the concavity property, but this is out of the scope of the present

paper.

Our main contributions are on the line of [BG20] (see Proposition 1 of [BG20]) except

for the fact that, due to our different setting (that is, the presence of two goods), we are

not able to prove the regularity of the value function and then to find the optimal feedback

control. Indeed the formula for the optimal feedback control depends on the gradient of

the value function and hence it is not valuable if the value function is not differentiable.

As a consequence, we cannot find an explicit formula for the optimal feedback control as,

on the contrary, in Theorem 1 of [BG20]. We refer to Section 4, Proposition 6 and related

remarks for further detail.

Before analyzing the complete model, we propose some results on a further simplified

model where the utility of consumption in the second goods is neglected. Then, by

Dynamic Programming, we furnish some results on the complete model: we prove that the

value function is a viscosity solution of the HJB equation, and we derive some properties

on the qualitative behaviour of the value function. We think that such results constitute

a reliable basis for studying satisfactorily the properties of the optimal paths.

Let us just mention that the literature on habits formation models is very large and

varied. One of the very first papers that is worth mentioning introducing the qualitative

peculiarities of the models has been [Bec92]. Later on, the literature spread out and

considered different approaches. Since the papers [COW00, COW97], several authors

have investigated how the usage of “multiplicative” habits can be efficient in several

fields. In [Fuh00], it has been observed that habit formation improves significantly the

effects of spending and inflation on monetary-policy actions; in [DPMRR03] the role of

habit formation in shaping precautionary savings and the wealth distribution in economies

with heterogeneous agents have been studied; finally, (among others) multiplicative habits

appear also in portfolio choice models, for example [GM03] among others. Finally, since

our paper is strongly inspired by [BG20] and by [BGGL23], it is appropriate to refer to the
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introduction of [BG20] for other references related to the particular (nonconcave) problem

we consider and to [BGGL23] for a complete survey of the literature related to growth

models with habits formation and multiple sectors.

The paper is organized as follows. In Section 2, the optimal control problem is intro-

duced. In Section 3, we propose a simplification of the optimal control problem and we

prove that if the set of controls is unbounded, i.e. (c,+∞), then the value function is

trivially null and we furnish some results suggesting that if the set of controls is bounded,

i.e. (c, c̄), then corner solutions are obtained. In Section 4, first, the Maximum Principle is

stated and the existence and uniqueness of the steady state are proven. Then by dynamic

programming approach, we prove that the value function V is a viscosity solution of the

HJB equation and we also derive some qualitative properties of V , namely we prove that

V is negative, decreasing, locally Lipschitz and V (+∞) = −∞.

2 Model Setup

A consumer faces the following problem:

max
c1,c2

∫ ∞
0

e−ρtU(c1(t), c2(t), hc1,h0(t))dt

subject to the following constraints

ḣ = φ(c1 − h) with h(0) = h0 (1)

c1 +Bc2 = 1 (2)

c1 ∈ (c, c̄) (3)

where φ is a parameter related to the velocity of the development of habits. The problem

can be rewritten as

max
c1(·)∈A

∫ ∞
0

e−ρtU(c1(t), B−1(1− c1(t)), hc1,h0(t))dt (4)

where A is the set of admissible controls (which will be specified in the following sections),

subject to the following constraints

ḣ = φ(c1 − h) with h(0) = h0 (5)

c1 ∈ (c, c̄). (6)
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where φ, c, c̄ are positive constants.

We specify the following utility function :

U(c1, c2, h) = u(c1, h) + v(c2) =

(
c1
hγ

)1−σ

1− σ
+

c1−σ
2

1− σ

where γ ∈ (0, 1) and σ > 1. Using the constraint (2) we get

U(c1, B
−1(1− c1), h) ≡ u(c1, h) + v(c1) =

(
c1
hγ

)1−σ

1− σ
+ B̃

(1− c1)1−σ

1− σ

where B̃ ≡ Bσ−1. The parameter γ signifies the importance of habits in the utility

function. When γ = 0, habits have no influence, and utility is solely determined by the

level of consumption. Conversely, when γ = 1, habits matter as much as consumption in

determining utility. For intermediate values of γ, where γ ∈ (0, 1), habits affect utility,

but less than consumption. Our analysis focuses on this last and more realistic case.

This functional form of the utility function was introduced by Carroll et al [COW97]

to solve several issues arising with another popular utility function where habits enter in

a subtractive form. We choose the same type of utility function also for c2 since our aim

is to focus on the models studied in [BG20] so far but in our different settings. We remark

that this utility function is popular in economic growth models.

Notice that u(c1, h) is monotonically increasing in c1 and concave in c1 for any choice

of the parameters, i.e. uc1 > 0 and uc1c1 < 0. On the other hand, u(c1, h) is monotonically

decreasing in the habits, i.e. uh < 0, meaning that habits are harmful.1 Concavity of

u(c1, h) with respect to h, i.e. uhh < 0, implies that

σ > 1 +
1

γ
. (7)

This condition prevents u(c1, h) to be jointly concave in (c1, h) as det(D2u(c1, h)) ≥ 0 if

and only if σ ≤ γ
1−γ (see also [BG20] page 10). Nevertheless, this does not necessarily

imply that the solution to the problem is not a maximum. Finally, v(c2) is monotonically

increasing and concave in c2. To sum up, in all the work we will assume the following

hypothesis holding on the coefficients.

Assumption 1. We assume that σ > 1, γ < 1 and γ(σ − 1) > 1.

1More generally we could assume that γ ∈ (−1, 1) so that in the interval γ ∈ (−1, 0) the habits
becomes beneficial since uh > 0.
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In the core of the text, we will also use the following notation,

u(c1, h) = u1(h)u2(c1)

where u1(h) = hγ(σ−1)

1−σ , u2(c1) = c1−σ
1 .

To stress the relevance of such a utility function, first, we consider a simpler version

where the second term is not considered. In particular, we take

Ũ(c1, h) = u(c1, h) =

(
c1
hγ

)1−σ

1− σ
(8)

3 Some results on a simpler model

The following section deals with a simpler version of our optimization problem, namely

when the second term in the utility function is not considered. This section aims to

help to understand where the problems arise in the use of dynamic programming in the

most complicated model. Moreover, it helps to understand how a dynamic programming

problem works in the case of a ”corner” solution (see Proposition 2).

We consider the following optimal control problem for a typical consumer,

W (h0) = sup
c1(·)∈A

∫ ∞
0

e−ρtŨ
(
c1(t), hh0,c1(t)

)
dt (9)

subject to the following state equation

ḣ = φ(c1 − h) with h(0) = h0 (10)

and where the set of admissible controls is,

A = {c1 ∈ L1
loc(R+) s.t. c1(t) ∈ [c, c̄], and hh0,c1(t) ≥ 0, ∀t ≥ 0}.

Notice that the state constraint prescribed in the definition of the set A is somehow ficti-

tious. Indeed, the state h remains positive for each c1 ∈ L1
loc(R+). The set of admissible

controls can be rewritten simply as

A = {c1 ∈ L1
loc(R+) s.t. c1(t) ∈ [c, c̄]}. (11)

We first study the problem by considering c̄ = +∞.
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Lemma 1. Let W be the value function defined in (9) with Ũ defined in (8). Then

(i) W is negative,

(ii) W is decreasing.

Proof. (i) Since the utility function is negative, W ≤ 0.

(ii) By the linearity of the state equation we get that if h1 < h2, then hh1,c1(t) < hh2,c1(t)

for all t ∈ R+. Since the utility function is decreasing with respect to the variable h, we

conclude that

W (h1)−W (h2) > 0.

Proposition 1. If φ(1 − σ) < ρ and c̄ = +∞, then the value function defined in (9) is

null, i.e. W ≡ 0.

Proof. To prove the result, we just find a sequence of admissible controls, cn, such that

J(cn)→ 0 and cn →∞ for n→∞. By choosing cn = n, one can check that

J(cn) =

∫ ∞
0

e(−ρ+φ(1−σ))t n
1−σ

1− σ

(
h0 + n

eφt − 1

φ

)γ(1−σ)

dt→ 0, n→∞

Remark 1. Notice that if we assume also that c = 0, then the value function W is

(1− γ)(1− σ)-homogenous. Indeed, by the linearity of the state equation, we get that for

each α > 0 and h0 ∈ R+,

W (αh0) = sup
c1(·)∈A

∫ ∞
0

e−ρt
(c1(t))1−σ

1− σ
(
hαh0,c1(t)

)−γ(1−σ)
dt

= sup
c1(·)∈A

∫ ∞
0

e−ρt

(
α c1(t)

α

)1−σ

1− σ

(
hαh0,α

c1
α (t)

)−γ(1−σ)

dt

= sup
c1(·)
α
∈A

∫ ∞
0

e−ρt

(
α c1(t)

α

)1−σ

1− σ

(
hαh0,α

c1
α (t)

)−γ(1−σ)

dt

= sup
c̃1(·)∈A

∫ ∞
0

e−ρt
(αc̃1(t))1−σ

1− σ
(
hαh0,αc̃1(t)

)−γ(1−σ)
dt

= α(1−γ)(1−σ) sup
c̃1(·)∈A

∫ ∞
0

e−ρt
(c̃1(t))1−σ

1− σ
(
hh0,c̃1

)−γ(1−σ)
dt = α(1−γ)(1−σ)W (h0).
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Coherently with the result of Proposition 1, we observe that the only function negative,

decreasing, and (1− γ)(1− σ)-homogenous is the null function.

Note that in the paper by Carroll et al. [COW00], a zero-value function cannot be

a solution because the agents in their model have the opportunity to postpone current

consumption by investing in the capital stock, thereby increasing future utility. This

particular channel is absent in our paper, setting our approach apart from theirs.

If c̄ 6= +∞, the problem is more difficult to study. Although we do not present a

complete study for this problem, we will show some partial results that seem to confirm

that in this framework the optimum is reached at c1(t) ≡ c. In the following proposition,

we prove that, if only constant controls are considered, our conjecture is true.

Proposition 2. Consider c̄ 6= +∞, and as set of admissible control, Ã ⊂ A

Ã = {c1(t) ≡ c1, c1 ∈ [c, c̄]}.

Then the problem

W̃ (h0) = sup
c1(·)∈Ã

∫ ∞
0

e−ρt

(
c1(t)
h(t)γ

)1−σ

1− σ
dt (12)

subject to the state equation (10), attains its maximum for c1 = c̄, i.e. W̃ (h0) = J(c̄).

Proof. The result is a consequence of the monotonicity of the function,

F (c1) =
c1−σ

1

1− σ

[
e−φth0 + φc1

∫ t

0

e−φ(t−s)ds

]γ(σ−1)

.

We notice that

F ′(c1) = c−σ1 (a(t) + b(t)c1)γ(σ−1)

[
a(t) + b(t)c1(1− γ)

a(t) + b(t)

]
,

with a(t) = e−φth0, b(t) = 1− e−φt. Since a(t), b(t) > 0 and γ < 1, we have that F is an

increasing function, and so it is the objective function.

Remark 2. Now we observe that the result stated above can actually be generalized to a

different class of control, in particular a class of unbounded control. Consider as set of

admissible control

Ã = {c(·) : [0,+∞)→ R, c(t) = ket, k ∈ (0,+∞)}.
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For this type of control the integrand of the objective function can be rewritten as

F̂ (k) =
k1−σet(1−σ)

1− σ

[
e−φth0 + φke−φt

∫ t

0

es(φ+1)ds

]γ(σ−1)

.

We have

F̂ ′(k) = k−σ(a(t) + kb(t)γ(σ−1)et(1−σ)

[
a(t) + kb(t)(1− γ)

a(t) + kb(t)

]
.

where a(t) = e−φth0, b(t) = φ
φ+1

(e − e−φt). Since a(t), b(t) > 0 and γ < 1 we have that

F̂ is increasing. As a consequence we deduce the same result as in the simplified version

analysed in Proposition 2. In particular we deduce that the maximum is attained for

k → ∞. Notice that a similar result is not obtained in [BG20] because in [BG20] the

capital is also a state variable, neglected here.

Proposition 3. Let W be the value function defined in (9) with c̄ 6= +∞. Then for

h0 →∞,

a2
(h0 ∧ c̄)γ(σ−1)

1− σ
≤ W (h0) ≤ a1

h
γ(σ−1)
0

1− σ

Proof. First, we observe that

V (h0) ≥
∫ ∞

0

e−ρt
(c̄)1−σ

1− σ
(hh0,c̄(t))−γ(1−σ)dt

=

∫ ∞
0

e−ρt
(c̄)1−σ

1− σ
(e−φt(h0 − c̄) + c̄)−γ(1−σ)dt

Since if h0 ≥ c̄, then c̄ ≤ e−φt(h0− c̄)+ c̄ ≤ h0 and if h0 ≤ c̄, then h0 ≤ e−φt(h0− c̄)+ c̄ ≤ c̄,

we get that

V (h0) ≥ c̄1−σ

1− σ
(h0 ∧ c̄)γ(σ−1)

ρ
.

Since hh0,c1 ≥ h0 and moreover the function
c1−σ1

1−σ is increasing and negative, we have

V (h0) = sup
c1(·)∈Ã

∫ ∞
0

e−ρt
c1(t)1−σ

1− σ
(hh0,c1(t))−γ(1−σ)dt

≤
∫ ∞

0

e−ρt
(c̄)1−σ

1− σ
(h0)−γ(1−σ)dt

=
1

ρ

(c̄)1−σ

1− σ
(h0)−γ(1−σ)
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4 Some results on the optimization problem (4)

We now present some results on the richer model with two consumption goods. We

start with some preliminary analysis based on the Maximum Principle. It is essential to

note that while the steady-state results we will present adhere to the necessary conditions

for optimality, we cannot ascertain whether they also meet the sufficiency conditions.

This issue arises due to the non-concavity of the utility function. Our future purpose is

to investigate whether the dynamic programming approach helps to understand whether

the optimal strategies, trajectories, and costate, coincide with the unique solution of the

Maximum Principle.

4.1 Existence and uniqueness of steady state

To study the existence and uniqueness of the steady state, we derive the current value

Hamiltonian:

HCV (c1, h, µ) ≡ u(c1, h) + v(c1) + µφ(c1 − h) (13)

=

(
c1
hγ

)1−σ

1− σ
+ B̃

(1− c1)1−σ

1− σ
+ µφ(c1 − h) (14)

which is not concave as the utility function u(.) is not jointly concave in (c1, h). We apply

the maximum principle, which we recall in the following.

Proposition 4. Let c1 be a solution of the optimal control problem (4). Then c1 solves

µ̇ = −uh(c1, h) + µ(φ+ ρ) (15)

uc1(c1, h) + vc1(c1) + µφ = 0 (16)

ḣ = φ(c1 − h) (17)

lim
t→+∞

hµe−ρt = 0 (18)

Consider now a stationary steady state of the economy where ḣ = µ̇ = 0. From the

state equation, we have immediately that h = c1 = h∗ with h∗ indicating the steady-state

value.

Proposition 5. A unique steady state h = h∗ always exists.
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Proof. At the steady state, the two first-order conditions of (15) become:

uc1(h
∗) + vc1(h

∗) + µ∗φ = 0 (19)

µ∗ =
uh(h

∗)

φ+ ρ
< 0 (20)

Substituting the latter into the first condition leads to

uc1(h
∗) + vc1(h

∗) +
φ

φ+ ρ
uh(h

∗) = 0

which rewrites as it follows when we consider the CES utility function:

(h∗)−σ(1−γ)−γ − B̃(1− h∗)−σ − φγ

ρ+ φ
(h∗)−σ(1−γ)−γ = 0

or equivalently (rearranging the terms):

(
B̃(ρ+ φ)

ρ+ φ(1− γ)

) 1
σ

(h∗)
σ(1−γ)+γ

σ = 1− h∗

Notice that the LHS of the equation is a function of h∗ which is zero at h∗ = 0 and is

monotonically increasing as long as σ(1−γ)+γ
σ

> 0 or equivalently σ > − γ
1−γ which is always

respected since γ ∈ (0, 1) and σ is positive. On the other hand, the RHS of the equation

is a linear decreasing function having value 1 when h∗ is zero. Therefore there always

exists a unique h∗ when the two functions intersect each other.

4.2 Dynamic Programming

The value function of the problem is

V (h0) = sup
c1(·)∈A(h0)

∫ +∞

0

e−ρtU(c1(t), B−1(1− c1(t)), h(t))dt (21)

subject to the following state equation

ḣ = φ(c1 − h) h(0) = h0, (22)

where A(h0) is defined in (11). The HJB equation associated to the optimal control

problem (4) is

ρV = max
c1∈[c,c̄]

HCV (c1, h,DV ) (23)
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where HCV (c1, h, p) is defined in (13).

We are going to prove that the value function is a viscosity solution to (23). First, we

recall the definition of viscosity solution.

Definition 2. A function u ∈ C([0,+∞)) is a viscosity subsolution of (23) if, for any

φ ∈ C1([0,+∞))

ρV (h0) ≤ max
c1∈[c,c̄]

HCV (c1, h0, Dφ(h0)) (24)

at any local maximum point h0 ∈ [0,+∞) of u − φ. Similarly, u ∈ C([0,+∞)) is a

viscosity supersolution of (23) if, for any φ ∈ C1([0,+∞))

ρV (h0) ≥ max
c1l∈[c,c̄]

HCV (c1, h0, Dφ(h0)) (25)

at any local minimum point h0 ∈ [0,+∞) of V − φ. Finally, u is a viscosity solution of

(23) if it is simultaneously a viscosity sub- and supersolution.

In the following proposition, we will prove some fundamental properties of the value

function, among which that the value function is a viscosity solution of (23). As underlined

in the introduction, in order to find the optimal control in feedback form, we should first

prove the differentiability of the value function. However, we are not able to derive this

result in our setting. Indeed the classical argument to prove regularity used in this class of

problems (as e.g. in [BG20, FGP08a, CS89]) relies on the strict convexity in the gradient

variable µ of the Hamiltonian in the Hamilton-Jacobi-Bellman equation (see equation

(23)). Computing the maximum point in the Hamiltonian gives the following equation in

the consumption c1:

(c1h
−γ)−σh−γ − B̃(1− c1)−σ + µφ = 0

which is not explicitly solvable in c1. Hence we cannot find an explicit expression of

the Hamiltonian in µ and verify the strict convexity. As it is evident from the previous

computation, the argument would work in the case of just one good (as in [BG20]).

Proposition 6. Let V be the value function defined in (21). Then

(i) V is negative, V (0+) > −∞, and V is decreasing and continuous in [0,+∞).

(ii) V is a viscosity solution in (0,+∞) of the HJB equation (23).

(iii) V is locally Lipschitz in (0,+∞).

(iv) V (+∞) = −∞.
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Remark 3. We remark that we did not prove that V is the unique solution to (23) for

technical issues which are out of the scope of the present paper. The reason is that our

Hamiltonian has a (1− σ)-growth, σ > 0, in the control. The literature on uniqueness of

Hamilton-Jacobi-Bellman equations has focused up to now just on the case p-growth with

p > 1 (see [DLL06, DLL11]), and the complementary case appears to be though to tackle.

Proof. (i). Since σ > 1, it is straightforward to see that V < 0. Moreover

V (0+) ≥
∫ +∞

0

e−ρt
(
c1−σ

1− σ
e−φγ(σ−1)t(eφt − 1)γ(σ−1) + B̃

(1− c̄)1−σ

1− σ

)
dt > −∞

from which we conclude the second inequality.

Note first that the set of control A(h0) is independent of h0, since

h(t) = e−φt
[
h0 + φ

∫ t

0

c1(s)eφsds

]
≥ 0

since h0 ≥ 0, φ > 0 and c1 ∈ [c, c̄].

Then, it is easy to see that V (·) is decreasing since the set of controls A(h0) is inde-

pendent of h0 while the utility function decreases (since γ > 0 and σ > 1) in h(t), hence

in h0 as the equation for h(t) is linear. The continuity follows by sequences by using that

U(c1(s), B−1(1− c1(s)), ·) for s > 0 is locally Lipschitz in (0,+∞) since γ(σ− 1) ≥ 1 and

the continuity of h(t) for all t > 0 with respect to the initial datum.

(ii). Note first that the state constraint can be easily proved to hold for every control

c1 since φ > 0 and c > 0. Then the fact that V is a viscosity solution of the HJB

equation (23) follows by standard arguments in viscosity theory (see for example [BD+97]

Chapter III Proposition 2.8). However, differently from the standard case (see [BD+97])

here U(c1(s), B−1(1 − c1(s)), ·) for s > 0 is not uniformly continuous but just locally

Lipschitz in (0,+∞) if γ(σ−1) ≥ 1. We give the proof for completeness. For convenience

of notation, in the following proof we will use the notation hh0,c1 to denote the trajectory

solution to (22). First note that the Dynamic Programming Principle (DPP) can be

proved as in Proposition 2.5 Chapter 3 of [BD+97], that is

V (h0) = sup
c1(·)∈A(h0)

{∫ t

0

U(c1(s), B−1(1− c1(s)), hh0,c1(s))e−ρsds+ V (hh0,c1(t))e−ρt
}
.

Now we prove that the value function is a viscosity solution of (23). First, we prove that

14



V is a subsolution. Let φ ∈ C1([0,+∞)) and h0 be a local maximum point of V −φ, that

is, for some r > 0

V (h0)− V (z) ≥ φ(h0)− φ(z), for all z ∈ B(h0, r) ∩ [0,+∞). (26)

Then for each ε > 0 and t > 0 by the inequality ≤ in the DPP, there exists c̃1 ∈ A(h0)

(depending on ε and t) such that

V (h0) ≤
∫ t

0

U(c̃1(s), B(1− c̃1(s)), hh0,c1(s))e−ρsds+ V (hh0,c1(t))e−ρt + tε. (27)

Since γ(σ − 1) > 1 we have U(c1(s), B−1(1 − c1(s)), ·) is locally Lipschitz in (0,+∞) for

any s ≥ 0. For s enough small we can suppose that hh0,c1(s) ∈ B(h0, r).Then

|U(c̃1(s), B−1(1− c̃1(s)), hh0,c1(s))− U(c̃1(s), B−1(1− c̃1(s)), h0)| ≤ Cr|hh0,c1(s)− h0|

≤ Crr.

Then the integral in the righthand side of (27) can be rewritten as

∫ t

0

U(c̃1(s), B−1(1− c̃1(s)), h0)e−ρsds+ o(t), as t→ 0

where o(t) indicates a function g(t) such that limt→0+
|g(t)|
t

= 0. Then (26) with z =

hh0,c1(t) and (27) give

φ(h0)−φ(hh0,c1(t))−
∫ t

0

U(c̃1(s), B(1− c̃1(s)), h0)e−ρsds+V (hh0,c1(t))(1−e−ρt) ≤ tε+o(t)

(28)

Moreover

φ(h0)− φ(hh0,c̃1(t)) = −
∫ t

0

d

ds
φ(hh0,c̃1(s))ds

= −
∫ t

0

Dφ(hh0,c1(s)) · φ(c̃1(s)− hh0,c̃1(s))ds

= −
∫ t

0

Dφ(h0) · φ(c̃1(s)− hh0,c1(s))ds+ o(t) (29)

15



Plugging (29) into (28) and adding ±
∫ t

0
U(c̃1(s), B−1(1− c̃1(s)), h0)ds we get

∫ t

0

{
−Dφ(h0) · φ(c̃1(s)− hh0,c1(s))− U(c̃1(s), B−1(1− c̃1(s)), h0)

}
ds

+

∫ t

0

U(c̃1(s), B−1(1− c̃1(s)), h0)(1− e−ρs)ds+ V (hh0,c1(t))(1− e−ρt) ≤ tε+ o(t).

The term in brackets in the first integral is estimated below by

min
c1∈[c,c̄]

{
−Dφ(h0) · φ(c1 − h0)− U(c1, B

−1(1− c1), h0)
}

and the second integral is o(t), so we can divide by t and pass to the limit to get

min
c1∈[c,c̄]

{
−Dφ(h0) · φ(c1 − h0)− U(c1, B

−1(1− c1), h0)
}

+ ρV (h0) ≤ ε

where we have used the continuity of V at h0 and of hh0,c1 at 0. Note that the previous

inequality is equivalent to (24). Since ε is arbitrary, the proof that V is a subsolution is

complete.

Now we prove that V is a supersolution to (23). Let φ ∈ C1([0,+∞)) and h0 be a

local minimum point of V − φ, that is, for some r > 0 , V (h0)− V (z) ≤ φ(h0)− φ(z) for

all z ∈ B(h0, r). Fix an arbitrary c1 ∈ [c, c̄] and let hh0,c1(t) be the solution corresponding

to the constant control c1(t) = c for all t. For t small enough hh0,c1(t) ∈ B(h0, r) and then

φ(h0)− φ(hh0,c1(t)) ≥ V (h0)− V (hh0,c1(t)) for all 0 ≤ t ≤ t0.

By using the inequality ”≥” in the DPP, we get

φ(h0)− φ(hh0,c1(t)) ≥
∫ t

0

U(c1, B
−1(1− c1), hh0,c1(s))e−ρsds+ V (hh0,c1(s))(e−ρt − 1).

Therefore dividing by t > 0 and letting t→ 0, we obtain, by the differentiability of φ and

the continuity of V, hh0,c1 and U

−Dφ(h0) · (hh0,c1)′(0) = −Dφ(h0) · φ(c1 − h0) ≥ U(c1, B
−1(1− c1), h0)− ρV (h0).

Since c1 ∈ [c, c̄] is arbitrary, we have proved that

ρV (h0) + min
c1∈[c,c̄]

{
−φ(c1 − h0) ·Dφ(h0)− U(c1, B

−1(1− c1), h0)
}
≥ 0,
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and being the previous inequality equivalent to (25), we get that V is a viscosity super-

solution to (23).

(iii) Let h1 > h2. For every δ > 0, there exists ĉ(·) ∈ A such that

0 ≤ V (h2)− V (h1) ≤
∫ +∞

0

e−ρt [u(h2(t), ĉ(t))− u(h1(t), ĉ(t))] dt+ δ

=

∫ +∞

0

e−ρt
ĉ(t)1−σ

1− σ
[
h2(t)γ(σ−1) − h1(t)γ(σ−1)

]
dt+ δ,

where for convenience of notation we denote by h1(·), h2(·) the trajectories hh1,ĉ(·), hh2,ĉ(·),

respectively. Let

a(t) =

∫ t

0

eφsĉ(s)ds.

Then by the Lagrange theorem there exists ξ ∈ (h2, h1) such that

h1(t)γ(σ−1) − h2(t)γ(σ−1) =
(
e−φt [h1 + a(t)]

)γ(σ−1) −
(
e−φt [h2 + a(t)]

)γ(σ−1)

= eφγ(1−σ)t(ξ + a(t))γ(σ−1)−1(−γ(1− σ))(h1 − h2).

Then we have

h2(t)γ(σ−1) − h1(t)γ(σ−1) ≥ eφγ(1−σ)t(ξ + a(t))γ(σ−1)−1γ(1− σ)(h1 − h2)

≥ eφγ(1−σ)t(h1 + a(t))γ(σ−1)−1γ(1− σ)(h1 − h2)

and then

h2(t)γ(σ−1) − h1(t)γ(σ−1)

1− σ
≤ eφγ(1−σ)t(h1 + a(t))γ(σ−1)−1γ(h1 − h2)

Note

h1 + a(t) ≤ h1 −
c̄

φ
+
c̄

φ
eφt ≤ 2 max

{
h1 −

c̄

φ
,
c̄

φ

}
eφt := aeφt.

Note that a depends on h1. Then

0 ≤ V (h2)− V (h1) ≤
(
c1−σγcγ(σ−1)−1

∫ +∞

0

e−(ρ+φ)tdt

)
(h1 − h2) + δ (30)

Since (30) holds for every δ > 0, we have

0 ≤ V (h2)− V (h1)

h1 − h2

≤ c1−σγ(ρ+ φ)−1cγ(σ−1)−1,
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completing the proof.

(iv) We observe that u1, u2 are increasing functions and v is a decreasing function. So

u1(hh0,ct ) ≤ u1(hh0,c1t ) ≤ u1(hh0,c̄t ), u2(c) ≤ u2(c1) ≤ u2(c̄)

v(c̄) ≤ v(c1) ≤ v(c1)

and then,

u2(c1)u1(hh0,ct ) ≤ u2(c̄)u1(hh0,ct )

We can estimate the value function,

V (h0) ≤
∫ ∞

0

e−ρtu2(c̄)u1(hh0,ct )dt+v(c) =

∫ ∞
0

e−ρtu2(c̄)(e−φt(h0− c)+ c))−γ(1−σ)dt+v(c).

The right-hand side converges to +∞ and we conclude that V (+∞) = −∞.

5 Conclusion

In this paper, we explore an intertemporal optimization problem where a consumer

must decide the consumption levels of two goods, with habit formation occurring with

one of these goods. A key feature of our study is that the utility function is not jointly

concave with respect to the state and control variables. Initially, we simplify the model by

disregarding the utility derived from the consumption of the good without habit formation.

This simplification allows us to comprehensively analyze the dynamics of consumption and

habits.

Subsequently, we tackle the more complex scenario involving both goods. We employ

a dynamic programming approach and establish that the value function is a viscosity

solution to the Hamilton-Jacobi-Bellman (HJB) equation. Additionally, we derive sev-

eral qualitative properties of the value function. These findings are crucial preliminary

steps for future research, where we plan to incorporate a lockdown scenario modelled as

a temporary, random-duration minimum provision of one of the two goods. The insights

gained in this paper are vital not only for the analytical determination of consumption

and habit dynamics but also for any numerical analysis, as the existence of a unique vis-

cosity solution ensures the accuracy and uniqueness of the numerical solution to the HJB

equation. Moreover, the results achieved in the present paper constitute a preliminary

and necessary step to study the more elaborate model where a lockdown of random arrival

18



and length, that is the shutdown of one sector of the economy, is investigated.
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