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Abstract

We investigate problems of convection with double diffusion in a saturated porous
medium, where the saturating fluid is one of viscoelastic type, being specifically
a Navier - Stokes - Voigt fluid, or a Kelvin - Voigt fluid. The double diffusion
problem is analysed for a porous medium with Darcy and Brinkman terms, for
a Navier - Stokes - Voigt fluid, and then for a general Kelvin - Voigt fluid of
order N. The case where N has the value one is analysed in detail. We also
propose a theory where the fluid and solid temperatures may be different, i.e.
a local thermal non-equilibrium (LTNE) theory for a porous medium saturated
by a Kelvin - Voigt fluid. A further generalization to include heat transfer by a
model due to C. I. Christov is analysed in the context of Kelvin - Voigt fluids
in porous media. Finally we examine the question of whether a Navier - Stokes -
Voigt theory should be used for nonlinear flows, or whether a suitable objective
derivative is required.
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1 Introduction

Donald Nield has been responsible for many of the major developments in the theory
of convection in porous media. Rarely can someone have entered an area and produced
a fundamental contribution which has then had such a striking influence on the work

1



which has followed. We mention five areas where he initiated developments which have
motivated me personally, but also countless others. Firstly he developed the theory of
double diffusive convection in a porous medium where convective motion is driven by
a temperature gradient but is simultaneously affected by a gradient of solute, Nield
[1, 2]. The second area where he was instrumental in producing the original article is in
thermal convection in a fluid overlying a saturated porous material, Nield [3]. Donald
Nield was also heavily involved with work in dual porosity, or bidisperse, porous media,
see Nield [4], and much of this was developed with Andrey Kuznetsov, see e.g. Nield
and Kuznetsov [5]. The fourth field in which Donald was at the initial forefront is to
shear flow in a saturated porous medium, Nield [6]. The final area we mention is local
thermal nonequilibrium (LTNE) convection, where Donald was heavily involved, see
Nield [7], Nield and Bejan [8], and much of this was developed alongside Andrew Rees,
Banu and Rees [9], see also the book by Straughan [10]. A very lucid historical account
of LTNE convection is contained in the very readable article by Bidin and Rees [11].

We could list many, many subsequent works which have employed developments
from the original articles of Nield in each of these five areas. For example, in double
diffusive convection, Barletta and Nield [12], Harfash and Hill [13], Kuznetsov et al.
[14], Deepika and Narayana [15], Nield and Kuznetsov [16], Matta et al. [17], Deepika
[18], Kumar et al. [19], Straughan [20], Capone et al. [21], Capone et al. [22], Wang and
Chen [23], Deepika et al. [24]. In two layer convection with a fluid overlying a porous
layer we quote Chen and Chen [25], Chang et al. [26], Hill and Straughan [27, 28],
Payne and Straughan [29], Samanta [30], McCurdy et al. [31], and Mirbod et al. [32].
This is an area with much application to real life, for example, in renewable energy and
the creation of electricity and desalinized water via a solar pond, see e.g. Kumaravel
et al. [33], Mbelu et al. [34], Hill and Carr [35]. Bidispersive convection is now a huge
area, see e.g. Nield and Kuznetsov [36, 37], Kuznetsov and Nield [38], Gentile and
Straughan [39, 40], Capone et al. [41], Capone and Massa [42], Siddabasappa et al.
[43], Bhavyashree et al. [44], Straughan [45], and the many references therein, and in
tridisperse convection, see Kuznetsov and Nield [46], Gentile and Straughan [47]. Shear
flow in a porous channel saturated with a fluid has been analysed by Avramenko et al.
[48], Hill and Straughan [49], Straughan and Harfash [50] and Samanta [51], and many
other references to this still highly active area are contained in these papers. The field
of LTNE is another area which has grown enormously, see e.g. Rees et al. [52], Barletta
and Rees [53], Nield et al. [54], Kuznetsov et al. [14], Eltayeb [55], Capone et al. [56],
Capone and Gianfrani [57], Freitas et al. [58], Shivakumara et al. [59], Shivakumara
and Raghunatha [60], Badday and Harfash [61], Noon and Haddad [62].

Within the realm of a clear fluid, i.e. one which is not occupying a porous medium,
there has been extensive work by the Russian school of mathematics on what might
be termed generalized Navier - Stokes equations. This is aimed at describing certain
classes of fluids with memory, or mixtures of polymers. In particular we are focussing
on the class of fluids known as Kelvin - Voigt fluids of order N, where a particular case
is a Kelvin - Voigt fluid of order zero which is also known as a Navier - Stokes - Voigt
fluid. The aim of this work is to develop and describe double diffusive convection with
a Navier - Stokes - Voigt fluid, or more generally, with a Kelvin - Voigt fluid, where
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this saturates a porous material. The porous material will be of Brinkman - Darcy
type, i.e. it will contain both Brinkman and Darcy terms.

From a mathematical viewpoint Kelvin - Voigt fluids have been extensively studied
with respect to existence and regularity of a solution, and asymptotic properties,
notably by Oskolkov [63, 64, 65, 66, 67, 68], Oskolkov and Shadiev [69], Baranovskii
[70], Berselli and Bisconti [71], Celebi et al. [72], Damázio et al. [73], Di Plinio et al.
[74], Kalantarov and Titi [75, 76], Kalantarov et al. [77], Krasnoschok et al. [78],
Layton and Rebholz [79], Niche [80], Sukacheva [81, 82], Sviridyuk and Sukacheva
[83], Sukacheva and Kondyukov [84], Sukacheva and Matveeva [85], Sukacheva and
Sviridyuk [86], Zvyagin [87, 88].

A model for a type of Navier - Stokes - Voigt fluid which incorporates temperature
effects is developed by Oskolkov [65, 66], and Sukacheva [81] develops this for what is
now called a Navier - Stokes - Voigt fluid, see also the non isothermal development for a
general Kelvin - Voigt fluid by Sukacheva and Matveeva [85, 89]. Explicit quantitative
stability analyses of thermal and double diffusive convection with a Navier - Stokes -
Voigt fluid, not in a porous medium, are given by Straughan [90, 91], and for a Kelvin
- Voigt fluid by Straughan [92, 93].

In the context of a pure fluid the Navier - Stokes - Voigt system of equations
modifies the momentum equation in the Navier - Stokes equations by addition of a
term −λ̂∆∂v/∂t to the acceleration v̇, where vi is the velocity field and a dot denotes

the material derivative. The constant λ̂ > 0 is the Kelvin - Voigt coefficient and ∆
is the Laplacian. In this work we modify these equations to be applicable to flow
through a saturated porous medium. In this way we develop a system of equations
which contains the Darcy friction term and the Brinkman term, both familiar in porous
media analysis, but the saturating fluid is a viscoelastic one of Navier - Stokes - Voigt
type.

2 Navier - Stokes - Voigt model in porous media

Throughout, we employ standard indicial notation together with the Einstein summa-
tion convention. For example,

vi,i =

3
∑

i=1

∂vi
∂xi

=
∂u

∂x
+

∂v

∂y
+

∂w

∂z
,

where v = (u, v, w) ≡ (v1, v2, v3). Also,

vjvi,j =

3
∑

j=1

vj
∂vi
∂xj

= u
∂vi
∂x

+ v
∂vi
∂y

+ w
∂vi
∂z

, i = 1, 2, 3,

and

vjT,j =

3
∑

j=1

vj
∂T

∂xj

= u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
,
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and

vi,jj = ∆vi =
∂2vi
∂x2

+
∂2vi
∂y2

+
∂2vi
∂z2

, i = 1, 2, 3.

We now present the equations for a Navier - Stokes - Voigt theory of flow in a
porous medium with temperature and salt effects present. Let vi(x, t), T (x, t), C(x, t),
p(x, t) denote the pore averaged fluid velocity, temperature, concentration of a dis-

solved salt, and the pressure, at a point x at time t. Let µ,K, µ̃, α, g, κ, κs, λ̂, αs be
positive constants which correspond physically to the dynamic viscosity of the fluid,
the permeability of the porous medium, the Brinkman coefficient, the thermal expan-
sion coefficient of the fluid, gravity, thermal diffusivity, salt diffusivity, the Kelvin -
Voigt coefficient, and the coefficient of salt in the density. We employ a Boussinesq
approximation, see Barletta [94, 95], Breugem and Rees [96], Nield and Barletta [97].
The relevant equations then take the form, cf. Straughan [10, equations (1.101)],

A
∂vi
∂t

− λ̂∆
∂vi
∂t

= −
1

ρ0

∂p

∂xi

−
µ

Kρ0
vi + µ̃∆vi + αgTki − αsgCki ,

∂vi
∂xi

= 0,

1

M

∂T

∂t
+ vi

∂T

∂xi

= κ∆T,

ǫ
∂C

∂t
+ vi

∂C

∂xi

= ǫκs∆C.

(1)

In these equations ρ0 is the constant reference density, ǫ is the porosity, M is defined
in Straughan [10, page 35], and A is the inertia coefficient. The A term is the local

acceleration, the λ̂ term is the viscoelastic contribution due to the Navier - Stokes -
Voigt theory, the µ term is the Darcy contribution, and the µ̃ term arises from the
Brinkman contribution.

Equation (1)1 may be thought of as the momentum equation in the form

ρ0A
∂vi
∂t

= σji,j + ρfi −
µ

K
vi , (2)

where ρ(T,C) is the density and σij is the Cauchy stress. The Cauchy stress would
have form

σij = −pδij + 2µ̃dij + 2λ̂dij,t , (3)

where dij is the symmetric part of the velocity gradient, i.e.

dij =
1

2
(vi,j + vj,i). (4)

Damázio et al. [73] criticize the representation (3) due to the fact that dij,t is not an
objective time derivative. We return to this important point in section 7 but for now
we observe that provided the flow speed in the porous medium is not too large then
(3) should be a reasonably accurate approximation.
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2.1 Double diffusive convection

Here we analyse the problem of double diffusive convection in a horizontal layer of fluid
saturated porous media contained between the planes z = 0 and z = d. The boundaries
are maintained at constant temperatures and concentrations TL, CL when z = 0 and
TU , CU when z = d. We consider the case where TL > TU and CL > CU . Thus, we are
considering the heated and salted below case where heat and salt are giving opposing
contributions to the possibility of convective motion. The salt is stabilizing while the
temperature will destabilize. The steady state is

v̄ ≡ 0, T̄ = −βz + TL , C̄ = −βsz + CL ,

where β = (TL − TU )/d and βs = (CL − TU )/d and they are both positive.
Perturbations are introduced in equations (1) and the perturbations to (v̄i, T̄ , C̄, p̄)

are denoted by (ui, θ, φ, π). The resulting equations are non - dimensionalized with
the scales

xi = x∗

i d, t = t∗T , ui = u∗

iU, θ = θ∗T ♯, φ = φ∗C♯,

π = π∗P, U =
κ

d
, T =

d2

κM
, T ♯ = Ud

√

βµ

καgKρ0
,

C♯ = Ud

√

µ

ǫκsαsgKρ0
, λ =

λ̂Kρ0
µd2T

,

B =
Kρ0µ̃

d2µ
, V a =

µT

AKρ0
, Le =

κ

κs

,

where Le is the Lewis number, V a is the Vadasz number, B is the non-dimensional
Brinkman coefficient, and λ is the non-dimensional Kelvin - Voigt parameter. The
Rayleigh number Ra = R2, and the salt Rayleigh number C2 are given by

R =

√

βαgKd2ρ0
µκ

, C =

√

d2αsgKρ0
µκs

.

Then, omitting stars, the non-dimensional perturbation equations have the form

1

V a
ui,t − λ∆ui,t = −π,i − ui +B∆ui +Rθki − Cφki ,

ui,i = 0,

θ,t + uiθ,i = Rw +∆θ,

MLeφ,t +
Le

ǫ
uiφ,i = Cw +∆φ.

(5)

These equations hold on {(x, y) ∈ R
2}×{z ∈ (0, 1)} for t > 0. The boundary conditions

are
ui = 0, θ = 0, φ = 0, z = 0, 1, (6)
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together with the fact that ui, θ, φ, π satisfy a plane tiling periodicity in the x, y -
plane.

To analyse linear instability we discard the nonlinear terms in (5) and we introduce
a time dependence like eσt, i.e. we put ui = ui(x)e

σt, with similar forms for θ, φ, π.
The pressure is then removed from the resulting equations and one may arrive at the
following system of equations in (w, θ, φ),

−
σ

V a
∆w + λσ∆2w = ∆w −B∆2w −R∆∗θ + C∆∗φ,

σθ = Rw +∆θ,

MLeσφ = Cw +∆φ,

(7)

where ∆∗ is the horizontal Laplacian.
For two stress free surfaces (7) may be solved with a sin series solution and one

finds the stationary convection boundary is given by

R2

stat = C2 +
Λ2

a2
+B

Λ3

a2
, (8)

where Λ = π2 + a2, cf. Rees [98]. The stationary convection instability boundary is
found by minimizing R2 in a2.

To obtain the oscillatory convection boundary one solves the determinant equation
from (7) to show that R2 satisfies the equation

R2 = σ2
Λ̃

a2
+ σ

(Ψ + ΛΛ̃)

a2
+

ΨΛ

a2
+ C2

( σ + Λ

M1σ + Λ

)

, (9)

where

M1 = MLe, Ψ = Λ+BΛ2, Λ̃ =
Λ

V a
+ λΛ2.

Since R2 must be real we put σ = iω and take the real and imaginary parts of (9).
The imaginary part yields the following equation for ω2,

ω2 = −C2
Λa2

M2

1
(Ψ + ΛΛ̃)

+ C2
Λa2

M1(Ψ + ΛΛ̃)
−

Λ2

M2

1

. (10)

The real part then yields

R2

osc = C2

(Λ2 +M1ω
2

Λ2 +M2
1
ω2

)

+
ΨΛ

a2
− ω2

Λ̃

a2
. (11)

To find the critical oscillatory convection thresholds one minimizes R2

osc in a2, checking
from (10) that ω2 > 0 at criticality.

Numerical values for this minimization are given in section 8.
The Soret effect and slip type boundary conditions are considered for thermosolutal

convection in a Navier - Stokes - Voigt fluid by Badday and Harfash [61].
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3 Kelvin - Voigt models in porous media

In this section we describe the problem of double diffusive convection in a porous
medium when the saturating fluid is one of Kelvin - Voigt order L, for L ≥ 0, L an
integer.

As Straughan [93] points out there is a very interesting class of complex (vis-
coelastic) materials associated with the names of Kelvin and of Voigt, cf. Chirita and
Zampoli [99], Layton and Rebholz [79]. This class of fluid was proposed by Oskolkov
[100], and thorough analyses of solvability issues such as existence and regularity are
given in Oskolkov [67, 68], Oskolkov and Shadiev [69], and in Sukacheva [101, 102]. The
work of Sukacheva [102] describes a more complicated model of Kelvin - Voigt fluid
than we consider here, but it is very much of interest in its own right. Kelvin - Voigt
models which incorporate thermal effects are given by Sukacheva [81, 82], Sukacheva
and Matveeva [85], Matveeva [103], Sukacheva and Kondyukov [84].

We now describe the equations for double diffusive convection in a Kelvin - Voigt
fluid of order 0, 1, 2, . . . , L, which saturates a porous medium. The Kelvin - Voigt fluid
of order 0 is exactly the same as the Navier - Stokes - Voigt fluid examined in section
2. This class of fluid is also sometimes known as an Oskolkov fluid, cf. Sviridyuk
[104, 105, 106], Sviridyuk and Sukacheva [107]. The general equations have form

A
∂vi
∂t

− λ̂∆
∂vi
∂t

= −
1

ρ0

∂p

∂xi

−
µ

Kρ0
vi + µ̃∆vi + αgTki − αsgCki +

L
∑

α=1

βα∆Wα
i ,

∂vi
∂xi

= 0,

1

M

∂T

∂t
+ vi

∂T

∂xi

= κ∆T,

ǫ
∂C

∂t
+ vi

∂C

∂xi

= ǫκs∆C,

∂Wα
i

∂t
+ γ̂αWα

i = vi α = 1, . . . , L.

(12)
The difference with the Navier - Stokes - Voigt equations given in (1) are the addition
of the terms in Wα

i in (12)1 and the last line of (12) which essentially defines Wα
i . To

understand this set of equations we observe that the Darcy piece involving vi arises
from a mixture theory of a fluid and a solid as is lucidly explained in Morro [108].
Actually the velocity field here is really the fluid velocity minus the solid velocity so
that the difference velocity is an objective quantity. However, the solid skeleton is
assumed fixed so the fluid flows through the porous body. Oskolkov [67], Oskolkov [68]
shows that effectively the Wα

i terms arise from a stress relation of form

Sij = κ3

∂dij
∂t

+ νdij +

L
∑

β=1

ξβ

∫ t

−∞

exp{−γ̂β(t− s)} dij ds,
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where κ3 > 0 and ξβ > 0 are constants, dij is the symmetric part of the velocity
gradient, and Sij is the Cauchy extra stress tensor.

We set up the double diffusion convection problem in a horizontal layer of saturated
porous medium exactly as in section 2.1. We denote by qαi the perturbations to Wα

i

and non - dimensionalize with the scalings of section 2.1 with, in addition, the extra
scalings

qαi = qα∗i Q, Q = UT , γα = γ̂αT , ǫα =
βαKρ0T

d2µ
.

The steady solution is as in section 2.1 with the additional request that W̄α
i = 0.

When this is done we derive the non - dimensional perturbation equations for double
diffusive convection in a porous medium with a Kelvin - Voigt fluid of order L to be

1

V a
ui,t − λ∆ui,t = −π,i − ui +B∆ui +Rθki − Cφki +

L
∑

α=1

ǫα∆qαi ,

ui,i = 0,

θ,t + uiθ,i = Rw +∆θ,

MLeφ,t +
Le

ǫ
uiφ,i = Cw +∆φ,

qαi,t + γαqαi = ui , α = 1, . . . , L.

(13)

These equations hold on {(x, y) ∈ R
2}×{z ∈ (0, 1)} for t > 0. The boundary conditions

are

ui = 0, θ = 0, φ = 0, qαi = 0, α = 1, . . . , L, z = 0, 1, (14)

together with the fact that ui, θ, φ, π, q
α
i satisfy a plane tiling periodicity in the x, y -

plane.
We do not proceed further with the general case where L is arbitrary. Instead we

now analyse double diffusive convection in a porous medium saturated with a Kelvin -
Voigt fluid of order one. As we shall see the case L = 1 is already somewhat involved.

4 Double diffusive porous convection with a Kelvin
- Voigt model of order one

The basic governing system of equations when L = 1 follows from (12). We commence
with the non - dimensional perturbation equations which one finds from (13) when
L = 1. We simplify notation and put δ = ǫ1, γ = γ1 and qi = q1i . The fully nonlinear
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perturbation equations are then

1

V a
ui,t − λ∆ui,t = −π,i − ui +B∆ui +Rθki − Cφki + δ∆qi ,

ui,i = 0,

θ,t + uiθ,i = Rw +∆θ,

M1φ,t +
Le

ǫ
uiφ,i = Cw +∆φ,

qi,t + γqi = ui .

(15)

To proceed with a linear instability analysis we discard the nonlinear terms in (15)
and seek a time dependence like eσt. This results in having to solve the equations

σ

V a
ui − λσ∆ui = −π,i − ui +B∆ui +Rθki − Cφki + δ∆qi ,

ui,i = 0,

σθ = Rw +∆θ,

M1σφ = Cw +∆φ,

(σ + γ)qi = ui .

(16)

Next remove the pressure from (16) and substitute for qi to derive the system of
equations

−
σ

V a
∆w + λσ∆2w = ∆w −B∆2w −R∆∗θ + C∆∗φ−

δ

(σ + γ)
∆2w ,

σθ = Rw +∆θ,

M1σφ = Cw +∆φ.

(17)

For two stress free surfaces the stationary convection boundary follows from (17) and
one finds

R2

stat = C2 +
Λ2

a2
+
(

B +
δ

γ

) Λ3

a2
(18)

and the critical Rayleigh numbers of stationary convection are derived by minimizing
in a2.

The oscillatory convection boundary may be found for two stress free surfaces from
(17). This leads to the fourth order equation

M1Λ̃σ
4 + σ3

{

M1(γΛ̃ + Ψ) + ΛΛ̃(M1 + 1)
}

+ σ2
{

Λ̃Λ2 +M1δΛ
2 + Λ(M1 + 1)(γΛ̃ + Ψ)

}

σ
{

Λ2(γΛ̃ + Ψ) + Λ(M1 + 1)(γΨ+ δΛ2)
}

+ (γΨ+ δΛ2)Λ2 + C2a2
(

σ2 + σ[γ + Λ] + γΛ
)

= R2a2
(

M1σ
2 + σ[γM1 + Λ] + γΛ

)

.

(19)
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Now put σ = iω in (19) and take the real and imaginary parts. One may arrive at the
equations

M1Λ̃ω
4 − ω2

{

Λ̃Λ2 +M1δΛ
2 + Λ(M1 + 1)(γΛ̃ + Ψ)

}

+ (γΨ+ δΛ2)Λ2 − C2a2ω2 + C2a2γΛ

= −R2a2ω2M1 + R2a2γΛ ,

(20)

and
− ω2

{

M1(γΛ̃ + Ψ) + ΛΛ̃(M1 + 1)
}

Λ2(γΛ̃ + Ψ) + Λ(M1 + 1)(γΨ+ δΛ2)

+ C2a2(γ + Λ) = R2a2(γM1 + Λ) .

(21)

By eliminating ω2 in (20) one arrives at a quadratic equation for R2a2. The critical
oscillatory convection values are then found from the resulting expression by solving
the quadratic for R2 and by carefully minimizing R2 taking care to ensure ω2 > 0,
otherwise the values are meaningless.

Critical values for thermal convection in a Kelvin - Voigt fluid of order one and
of order two are computed in Straughan [93], and for double diffusion in a Kelvin -
Voigt fluid of order one by Straughan [92], and for double diffusion in a Kelvin - Voigt
fluid of order two by Dhumd and Haddad [109], and thermosolutal convection in a
bidisperse porous material is investigated by Badday and Harfash [110].

5 Navier - Stokes - Voigt model with LTNE

Local thermal non-equilibrium (LTNE) models in thermal convection and in double
diffusive convection are discussed in Banu and Rees [9], Bidin and Rees [11], and in the
book by Straughan [10]. We here develop such a theory for a viscoelastic fluid of Navier
- Stokes - Voigt type saturating a porous medium where the temperature in the fluid,
T f , may be different to that in the solid porous skeleton, T s. While we could develop
a model for thermal convection in the presence of a salt field we restrict attention to
thermal convection alone to emphasize the novelty of Navier - Stokes - Voigt theory.

Motivated by equations (1) and the fundamental theory of Banu and Rees [9], we
write the governing equations as

A
∂vi
∂t

− λ̂∆
∂vi
∂t

= −
1

ρ0

∂p

∂xi

−
µ

Kρ0
vi + µ̃∆vi + αgT fki ,

∂vi
∂xi

= 0,

ǫ(ρc)f
∂T f

∂t
+ (ρc)fvi

∂T f

∂xi

= ǫkf∆T f + h(T s − T f),

(1 − ǫ)(ρc)s
∂T s

∂t
= (1 − ǫ)ks∆T s − h(T s − T f),

(22)

where the notation is as in section 2, with additionally (ρc)f being the product of the
fluid density and the specific heat of the fluid at constant pressure, and (ρc)s being
analogous quantities for the solid porous matrix. The coefficients kf and ks are the
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thermal conductivities of the fluid and solid, respectively, and h is a heat transfer
coefficient between the fluid and solid.

System (22) holds in the horizontal layer {(x, y) ∈ R
2} × {z ∈ (0, d)} for t > 0.

The boundary conditions are

vi = 0, z = 0, d; T f = T s = TL , z = 0; T f = T s = TU , z = d;

for TL, TU constants with TL > TU . The steady conduction solution is

T̄ f = T̄ s = −βz + TL , v̄i ≡ 0.

To analyse stability and instability of this solution we introduce perturbations
ui, θ, ϕ, π to vi, T

f , T s, p. These perturbations are non-dimensionalized with the scales

θ = T ♯θ∗ , ϕ = T ♯ϕ∗ , T ♯ = Ud

√

βµcf
ǫkfαgK

, ui = Uu∗

i , xi = x∗

i d ,

t = t∗T , T =
(ρc)fd

2

kf
, U =

ǫkf
(ρc)fd

, π = π∗P, P =
dµU

K
,

V a =
µT

Kρ0A
, λ =

K0ρ0λ̂

d2T µ
, B =

µ̃Kρ0
µd2

,

K1 =
(ρc)s
(ρc)f

kf
ks

, K2 =
( ǫ

1− ǫ

)kf
ks

.

We also define the Rayleigh number Ra = R2 as

Ra =
d2βcfρ0αgK

ǫkfµ
,

and the Rees number H by

H =
d2h

ǫkf
.

Dropping stars the non-dimensional perturbation equations are

1

V a
ui,t − λ∆ui,t = −π,i − ui +B∆ui +Rθki ,

ui,i = 0,

θ,t + uiθ,i = Rw +∆θ +H(ϕ− θ),

K1ϕ,t = ∆ϕ−HK2(ϕ− θ).

(23)

These equations hold on R
2 × {z ∈ (0, 1)} for t > 0. The boundary conditions are

ui = 0, θ = ϕ = 0, z = 0, 1,

and ui, θ, ϕ, π are periodic in x, y.
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One may write equations (23) in the abstract form

AUt = LU +N(U),

where U = (u, v, w, θ, ϕ)T and whereA and L are the linear operators andN represents
the nonlinear term uiθ,i. For equations (23) both operators A and L are symmetric,
for example L is equivalent to

L =















−I +B∆ 0 0 0 0
0 −I +B∆ 0 0 0
0 0 −I +B∆ R 0
0 0 R ∆−H

0 0 0 H
1

K2

∆−H















Then one may show as in Straughan [111] that exchange of stabilities holds and the
linear instability boundary is the same as the global nonlinear stability one. This
is important because now one may infer the stability boundary from the numerical
results in Banu and Rees [9], even when the saturating fluid is one of Navier - Stokes
- Voigt type.

If we write down the analogous model for double - diffusive convection with LTNE
and a Navier - Stokes - Voigt fluid saturating the porous medium, in the heated and
salted below configuration, then the linear operator L is not symmetric and oscillatory
instabilities will occur. In this case the linear instability boundaries will be different
from those when no salt field is present.

6 Navier - Stokes - Voigt - Christov model

Much modern research centres on flow and heat transfer in domains with very small
dimensions, the area of thermofluidic flow. When this flow is through a porous solid
then it may be argued that classical Fourier theory is not sufficient. Christov [112]
presents an argument where one should also consider higher gradients in the heat flux
law. For an isotropic body he begins with a generalization of Fourier’s law of form

−χ2∆qi + qi = −k
∂T

∂xi

+ k2∆
∂T

∂xi

. (24)

The general theory of Christov [112] then gives rise to a heat equation which contains
four spatial derivatives. However, he also allows the possibility of having k2 = 0. Since
the balance of energy in the body has equation

ρc
∂T

∂t
= −

∂qi
∂xi

,
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this particular case gives rise to an equation for the temperature field of form

∂T

∂t
− χ2∆

∂T

∂t
= k∆T , (25)

for coefficients k, χ2 > 0. Clearly, (25) is in some sense analogous to the addition
of the Kelvin - Voigt term in Navier - Stokes - Voigt theory, in that this equation
incorporates a memory effect in the temperature field. In view of the above, we now
develop a model for a porous layer saturated with a Navier - Stokes - Voigt fluid, but
when the temperature equation also has a form analogous to (25). Thus, we commence
with a model deriving from (1) in section 2 and analyse a double diffusion convection
problem analogous to that of equations (5) in section 2.1.

We suppose the fluid saturated porous medium satisfies the equations

A
∂vi
∂t

− λ̂∆
∂vi
∂t

= −
1

ρ0

∂p

∂xi

−
µ

Kρ0
vi + µ̃∆vi + αgTki − αsgCki ,

∂vi
∂xi

= 0,

1

M

∂T

∂t
+ vi

∂T

∂xi

−
χ2

M
∆
∂T

∂t
= κ∆T,

ǫ
∂C

∂t
+ vi

∂C

∂xi

= ǫκs∆C.

(26)

These equations hold in the layer R2×{z ∈ (0, d)} for t > 0. The steady state and the
boundary conditions are the same as in section 2.1. The non-dimensional perturbation
equations are derived as in section 2.1, but now have form

1

V a
ui,t − λ∆ui,t = −π,i − ui +B∆ui +Rθki − Cφki ,

ui,i = 0,

θ,t + uiθ,i − χ∆θ,t = Rw +∆θ,

MLeφ,t +
Le

ǫ
uiφ,i = Cw +∆φ,

(27)

where χ is a non-dimensional form of χ2/M . The boundary conditions on the
perturbations are as (6).

To develop a linear instability analysis one proceeds as in section 2.1 but now the
relevant equations instead of (7) are

−
σ

V a
∆w + λσ∆2w = ∆w −B∆2w −R∆∗θ + C∆∗φ,

σθ − χσ∆θ = Rw +∆θ,

MLeσφ = Cw +∆φ.

(28)
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For two stress free surfaces this leads to the following equation for R2,

R2 =
1

a2
(σΛ̃ + Ψ)(σΛ∗ + Λ) + C2

( σΛ∗ + Λ

σ1M1 + Λ

)

(29)

where

Λ∗ = 1 + χΛ.

The last term in (29) is rearranged and then one recognises R2 has to be real. One
then takes the real and imaginary parts of equation (29). The imaginary part leads to
the following equation for ω2,

ω2 = C2a2
Λ(M1 − Λ∗)

M2

1
(Λ∗Ψ+ Λ̃Λ)

−
Λ2

M2

1

. (30)

The real part of (29) gives the following relation for R2,

R2 = −ω2
ΛΛ∗

a2
+

ΨΛ

a2
+ C2

(Λ2 +M1Λ
∗

Λ2 +M2
1

)

. (31)

The oscillatory convection Rayleigh numbers are found by minimizing (31) in a2,
controlling the fact that ω2 should be positive at criticality by using (30).

7 Fully nonlinear models

We pointed out in section 2 that Damázio et al. [73] argue that (3) cannot, in general,
be correct since dij,t is not an objective derivative. Objective derivatives are discussed
in detail in Morro [113], and in particular in the context of viscoelastic fluids by
Giorgi and Morro [114]. A very detailed account of objective time derivatives with
explicit reference to porous media is given by Morro [108], who develops porous media
theory from a mixture of a fluid and a solid, taking care to ensure the use of objective
derivatives is compatible with the principles of continuum thermodynamics and with
the Clausius - Duhem entropy inequality.

One way around the critiscism is to replace dij,t by a suitable objective deriva-
tive. However, there are many such derivatives as Morro [113] indicates. Morro [108]
precisely points out that (3) could employ a corotational derivative, see his equation
(35). To understand this let a superposed dot denote the material derivative, and let
wij denote the skew-symmetric part of vi,j , i.e.

wij =
1

2
(vi,j − vj,i),

the symmetric part being defined in (4). If we identify dij with the tensor D and wij

with the tensor W , then the corotational derivative of D is

◦

D = Ḋ −WD −DWT . (32)
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Thus, equation (2) would be replaced by

ρ0A
(∂vi
∂t

+vj
∂vi
∂xj

)

= ρfi −
µ

K
vi −

∂p

∂xi

+ µ̃∆vi + λ̂∆
∂vi
∂t

+2λ̂
{ ∂

∂xj

(

vk
∂dij
∂xk

)

−
∂

∂xj

(

wikdkj
)

−
∂

∂xj

(

dikwjk

)

}

.

(33)

Clearly, equation (33) is very different from equation (2). In (33) there are four new
nonlinear terms.

It may well be that for many situations, especially in a dense porous medium
where the porosity is not too high, the nonlinear terms will be small and can be
neglected. Certainly in a linear instability analysis of thermal convection problems
where the steady state is one of zero velocity then these extra terms will not be
present. However, one should be very careful with any nonlinear analysis, be it an
energy stability analysis, weakly nonlinear analysis, or by some other means, it will
be necessary to check the behaviour of the nonlinear terms.

8 Numerical results

We now report on numerical results for the model of section 2.1. Thus, we minimize
in a2 numerically (8) and (11), taking care to employ (10) to ensure ω2 > 0 at the
oscillatory convection threshold. The liquid is water, the solute is salt (NaCl) and
the porous material is sand. The physical values for these materials are taken from
Straughan [115]. The coefficients M and κ are

M =
(ρ0cp)f
(ρ0c)m

, κ =
km

(ρ0cp)f
,

where

(ρ0c)m = ǫ(ρ0cp)f + (1− ǫ)(ρ0c)s , km = ks(1− ǫ) + kf ǫ ,

ǫ being the porosity which we take as ǫ = 0.3. The coefficients ks and kf are the
thermal conductivity of sand and water, respectively. The values we adopt are

kf = kwater = 0.606 W/mK, ks = ksand = 0.25 W/mK,

cpwater = 4187 J/kgC, cp sand = 830 J/kgC,

ρ0water = 998 kgm−3 , ρ0 sand = 1922 kg m−3 ,

and the diffusion coefficient of NaCl in water is

kc = 2.66× 10−9 m2 s−1.

These values yield

Le = 32.1003, M = 2.6194, M1 = 84.0835.
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The numerical results for the transition from stationary to oscillatory convection
are presented in table 1. Figure 1 shows the linear instability curves with Brinkman
number B = 0, Vadasz number V a = 1 and the Kelvin - Voigt parameter λ taking
the values 0, 0.5 and 1. Each curve should be interpreted as linear instability is by
stationary convection until a critical value of C2 = C is reached and the the linear
instability is the oscillatory convection curve which branches thereafter. For example,
when λ = 1 the transition is when C = 128.49 and the critical Rayeligh number is
Ra = 167.968. The stabilizing effect of the Kelvin - Voigt term is clearly evident.

In table 1 the first three lines show the variation in the transition value Rastat =
Raosc as the Brinkman number B varies. The increase of Brinkman number increases
the transition value as one would expect. The values in lines 3,4,5 and 6 show the
variation with the Vadasz number, and this is seen to not be a dominant factor. The
last three lines display the variation of the transition threshold as the Kelvin - Voigt
parameter λ varies. Again, the variation of λ has a relatively strong effect.

9 Conclusions

We have analysed the behaviour of the instability transition to convective motion for
a variety of models of Navier - Stokes - Voigt type or Kelvin - Voigt type when such a
fluid saturates a porous medium. One should note that a Navier - Stokes - Voigt fluid
is also a Kelvin - Voigt fluid of order zero, and is alternatively known as an Oskolkov
fluid. We specifically look at the Navier - Stokes - Voigt model (Kelvin - Voigt of order
0), the Kelvin - Voigt model of order N, the Navier - Stokes - Voigt model when local
thermal non-equilibrium effects are present, the Navier - Stokes - Voigt model when
the heat flux satisfies a Christov relation, and we briefly discuss the implications of
employing an objective time derivative in the Navier - Stokes - Voigt cases.

We have not seen such models presented in the context of porous media flow and
we believe they will be of use in applications of viscoelastic fluids saturating a porous
medium under non - isothermal conditions.
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Table 1 Transition values between stationary and oscillatory
convection

Ra a2
stat

a2
osc

ω2 C λ V a B

6757.86 4.951 4.930 1.022×10−5 138.36 0.5 100 10
769.014 5.094 4.893 1.750×10−4 67.325 0.5 100 1

103.488 9.870 4.669 2.978×10−3 64.01 0.5 100 0
104.198 9.870 4.671 2.938×10−3 64.72 0.5 10 0
103.406 9.870 4.669 2.982×10−3 63.93 0.5 1010 0

103.410 9.870 4.669 2.977×10−3 63.93 0.5 103 0
111.327 9.870 4.685 2.602×10−3 71.85 0.5 1 0
48.955 9.870 8.377 1.396×10−3 9.48 0 1 0

167.968 9.870 4.145 1.822×10−3 128.49 1 1 0
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Fig. 1 Graph of Ra against C with Le = 32.1003, M = 2.6194. The diagonal line running from
the lower left to the upper right represents the stationary convection curve. The transition points to
oscillatory convection are Ra = 48.955, C = 9.48 when λ = 0, Ra = 111.327, C = 71.85 when λ = 0.5,
and Ra = 167.968, C = 128.49 when λ = 1.
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