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Wireless Merged-r LT Coded Computation:
A Low-Latency Design for Non-Linear Tasks
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Abstract—Coded computation has attracted significant atten-
tion because it can eliminate the stragglers’ effect effectively.
Most existing works of coded computation are designed for linear
tasks, such as matrix multiplication. They cannot handle non-
linear tasks directly, leading to high computation, transmission
and decoding latency. This is not suitable for latency-sensitive
services. In this paper, considering a non-linear task in wireless
heterogeneous networks, we propose an efficient merged-r Luby
transform (LT) coded computation scheme based on the rateless
and sparse LT code. First, we give the merged-r LT coding
strategy to reduce the computation and transmission costs. Then,
the maximum degree decoding (MDD) strategy is proposed to
speed up the decoding process. Finally, we analyze the latency
performance for the whole network by designing the optimal
merging parameter and sub-block size. The wireless non-linear
merged-r LT coded computation (WNLMrLTCC) algorithm
minimizes the total latency. Theoretical analysis and numeri-
cal simulation show that our proposed scheme has significant
advantages over the existing ones for non-linear tasks.

Index Terms—Coded computation, maximum degree decoding,
merged-r LT coding, non-linear tasks, wireless heterogeneous
networks.

I. INTRODUCTION

IN distributed computing networks [1], the latency perfor-
mance for performing a large-scale computational task is

bottlenecked by the slow nodes, also known as stragglers.
To mitigate the stragglers’ effect, a novel framework named
coded computation is proposed by introducing the necessary
computation redundancy to reduce the execution time, using
only specific fast nodes.

The simplest coded computation was the repetition coding
scheme [2], where computational tasks were replicated to be
executed in multiple nodes. Since the duplicated tasks led
to huge redundancy, the authors of [3] applied maximum
distance separable (MDS) code to speed up the matrix-vector
multiplication. It could provide a dramatic performance im-
provement in computation latency over the repetition cod-
ing scheme. The authors of [4] extended the MDS coding
scheme to accelerate the matrix-matrix multiplication. For the
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heterogeneous networks with nodes of disparate computation
capabilities, the authors of [5] provided an optimal computa-
tion load allocation for the MDS coding scheme to minimize
the computation latency. Considering the transmission latency
in wireless networks, the authors of [6] analyzed the total
latency and designed the optimal MDS coding scheme with
minimum latency. Furthermore, in order to handle not only
computation stragglers but also transmission stragglers, the
corresponding MDS coding schemes with the optimal trade-off
between computation and transmission latency were studied in
[7] and [8].

Compared to MDS code with a fixed rate and dense encoded
symbols, Luby transform (LT) code is rateless and sparse,
which makes it possible to make full use of the computed
results from stragglers and reduce the coding overhead. Uti-
lizing this rateless property, the authors of [9] proposed the
LT coding scheme based on the sub-block division to exploit
the partial results from all the nodes including stragglers. To
further reduce the encoding and decoding complexity, the work
in [10] presented a LT coding scheme with feedback infor-
mation. Considering transmission overhead and transmission
errors, respectively, the authors of [11] and [12] designed the
corresponding LT coding schemes to balance both computation
and transmission latency for wireless heterogeneous networks.

Coded computation has been studied for different compu-
tational requirements in [13]–[18]. For example, to reduce
the computation latency for sparse matrix multiplication, the
authors of [13] presented several coding schemes that imposed
constraints on the extent to which coding was allowed. Based
on the different sparsity levels for matrixes in different batches,
the authors of [14] designed a novel coding scheme with the
optimal task assignment. To remain information-theoretically
private from nodes, the authors of [15] presented a rateless
coding scheme for the private matrix multiplication. The work
in [16] studied the problem of Byzantine attack identification
in coded computation. In order to protect both the security
and privacy of user data, the work in [17] designed the secure
and private coded computation scheme. Moreover, the work in
[18] presented the approximating coded distributed computing
scheme when the exact computational result was not required.

Using the coding schemes discussed above, coded com-
putation has been implemented in various complex dis-
tributed network scenarios. The authors of [19] considered
a general MapReduce framework and characterized the opti-
mal computation-communication tradeoff in coded distributed
computing. For variability of computing speed in cloud
networks, the authors of [20] designed an optimal coded
computation load allocation strategy to maximize the timely
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computation throughput. Considering a heterogeneous multi-
hop network, the work in [21] proposed a hierarchical coding
scheme to address the stragglers’ effect caused by the slow
worker and relay nodes. The authors of [22] designed a
joint allocation algorithm for a multi-master heterogeneous-
worker coded distributed computing scenario. As for a realistic
hierarchical compute cluster, the work in [23] presented a
fault-tolerant coded computation scheme to achieve the order-
optimal computation. Furthermore, coded computation was
also studied in more practical environments, including mobile
edge computing [24], the Internet of Vehicles (IoV) [25], and
satellite-terrestrial integrated networks [26].

All the above works consider linear tasks, such as matrix
multiplication. But non-linear tasks are more prevalent in
practice, especially in machine learning algorithms. To this
end, several works on coded computation for non-linear tasks
have been conducted. For the polynomial computing problem,
the authors of [27] presented the Lagrange coding scheme
and provided an optimal design for resiliency, security and
privacy. Based on the Lagrange coded computation, the work
in [28] developed a Lagrange coded blockchain model for
private and consortium Internet of Things (IoT) systems. In
order to solve the distributed gradient descent problem without
the stragglers’ effect, the authors of [29] proposed a gradient
coding scheme with the prior knowledge of stragglers. Sub-
sequently, the extensions of coded computation to federated
learning and regression problems were studied in [30] and
[31], respectively. Considering a linearly separable computa-
tion where the desired task could be expressed as a linear
combination of numerous non-linear sub-tasks, the authors of
[32] found the converse bounds for the optimal communication
cost with the minimum computation cost. The authors of [33]
further expanded on the above non-linear computational task
in multi-user scenarios. Moreover, the works in [34] and [35]
presented the corresponding rateless coding schemes to solve
the non-linear computational tasks. However, these existing
works for non-linear tasks are only simple extensions of those
for linear tasks. They disregard the heterogeneity of non-
linear computational tasks and nodes. Hence, for wireless
heterogeneous networks, they cannot provide low latency. To
design efficient coded computation schemes for non-linear
tasks, several challenges need to be addressed.

1) High Computation and Transmission Costs. Because
of the non-additivity for non-linear sub-tasks, the encoding
pre-computation is precluded. This makes the magnitude of
encoded sub-tasks much larger than that of linear tasks. Thus,
the costs of computing and transmitting these encoded sub-
tasks increase significantly. It is essential to reduce these costs
to efficiently complete non-linear tasks.

2) Inefficient Decoding Design. In the existing decoding
design, such as the belief propagation (BP) decoding strategy,
each sub-task is precisely recovered. But for most machine
learning algorithms, such as gradient descent, only the sum of
these non-linear sub-tasks is of interest, making it unnecessary
to decode the exact result of every sub-task.

3) Heterogeneous Sub-Tasks Allocation. Due to the het-
erogeneity of non-linear sub-tasks, the complexities of com-
puting different sub-tasks may also be different. Thus, the

existing computation load allocation strategies for linear com-
putational tasks cannot handle non-linear tasks directly.

To address the above challenges, we propose a merged-
r LT coded computation scheme with novel encoding and
decoding strategies. Specifically, we first present the merged-
r LT coding strategy based on the rateless and sparse LT
code. Then, the maximum degree decoding (MDD) strategy is
given to recover the sum of sub-tasks directly. Finally, through
analyzing and minimizing the computation, transmission and
decoding latency for the whole network, we obtain the optimal
merging parameter and sub-block size. The main contributions
of this paper are summarized as follows:

• Merged-r LT Coding Strategy. To reduce the com-
putation cost of encoded sub-functions, we apply the
rateless and sparse LT code to speed up non-linear tasks.
Based on the idea of merging operations in the encoding
process, the merged-r LT coding strategy is proposed.
The proposed coding strategy can significantly reduce
the transmission overhead and decoding threshold, at the
expense of a slightly higher computation load.

• Maximum Degree Decoding Strategy. In order to re-
cover the desired result efficiently, we give the MDD
strategy by finding the disconnected encoded sub-
functions with the maximum degree constantly. Com-
pared with the classical BP decoding strategy, our MDD
strategy can avoid the unnecessary decoding cost and
reduce at least Θ(lnm/r lnm/r) additions on average,
where r represents the merging parameter and m is the
number of non-linear sub-functions.

• Minimized Total Latency. Considering the computation,
transmission and decoding latency for the whole wireless
network, we propose the wireless non-linear merged-r LT
coded computation (WNLMrLTCC) algorithm based on
the computation complexities of non-linear sub-functions,
the computation and transmission capabilities of workers,
the decoding capability of master, and the channel con-
dition. Using the WNLMrLTCC algorithm, the optimal
merging parameter and sub-block size can be obtained,
and the minimized total latency is achieved.

Organization: The rest of this paper is organized as follows.
In Section II, the wireless distributed networks are described.
Also, the classification of non-linear computational tasks and
the corresponding challenges are discussed. In Section III,
the proposed merged-r LT coding strategy and MDD strategy
are presented for non-linear tasks. Then, the performance of
the new scheme is analyzed in Section IV, in terms of the
computation, transmission and decoding latency. Moreover, the
total latency is minimized by designing the optimal merging
parameter and sub-block size. Simulation results are shown in
Section V and conclusion is finally presented in Section VI.

Notation: The set {1, 2, . . . , n} is denoted as [n] for n ∈ N.
As for non-negative sequences ĝ (n) and ĥ (n), we denote
ĥ (n) = O(ĝ (n)) if there exist constants v > 0 and n0 ∈ N
such that ĥ (n) ≤ v · ĝ (n) for ∀n > n0; ĥ (n) = Θ(ĝ (n)) if
ĥ (n) = O(ĝ (n)) and ĝ (n) = O(ĥ (n)); and ĥ (n) = o(ĝ (n))
if limn→∞ĥ (n) /ĝ (n) = 0. The indicator function is denoted
as 1{·}. The computed results f{ρ} (x), f̃ν̃ (x), f̃dmax (x),
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TABLE I
MAIN NOTATIONS.

Notations Semantics
n Number of workers
m Scale of computational tasks
δν Computation complexity of the νth non-linear sub-function
δ̄ Average computation complexity of non-linear sub-functions
εi Packet erasure probability for worker i
r Merging parameter

dr,ν̃ Degree of the ν̃th encoded sub-function
d̄r Average degree of encoded sub-functions
l Size of computational sub-task
bi Sub-block size of worker i

{fν (·)}m
ν=1 Non-linear sub-functions (internal sub-functions){

f{ρ} (·)
}m/r

ρ=1
Merged sub-functions

{f̃ν̃ (·)}αm/r
ν̃=1 Encoded sub-functions

{f̃(i)
ν̃i

(·)}l
ν̃i=1 Computational sub-task of worker i

{f̃(i,j)
ν̃i,j

(·)}bi
ν̃i,j=1 The jth sub-block of worker i

µcmp
i Computation straggling parameter of worker i

acmp
i Computation shift parameter of worker i
µtrn
i Transmission parameter of worker i

µdec Decoding straggling parameter of master
adec Decoding shift parameter of master

f̃ ′dmax
(x) and fbs (x) are denoted as f{ρ}, f̃ν̃ , f̃dmax

, f̃ ′dmax

and fbs respectively for convenience. For ease of reading, we
summarize the main notations used throughout this paper in
Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a classical wireless master-worker network to
perform distributed computing [3], as shown in Fig. 1. The
whole network consists of a single master and n workers that
own different computation and transmission capabilities. The
goal is to complete a non-linear computational task wirelessly
at the master with the help of these workers. This large-scale
computational task can be decomposed into several small-scale
ones [36], denoted as

F (x) = f̂ (f1 (x) , . . . , fm (x)) , (1)

where x is the input data that is broadcast to each worker by
the master, f̂ (·) is the external function, {fν (·)}mν=1 are the
internal sub-functions, and F (x) is the desired output result.
One sees from Eq. (1) that the system model is co-determined
by the external function and internal sub-functions, which are
pre-stored in this network.

In practice, these m internal sub-functions may be hetero-
geneous. This means the complexities of calculating different
sub-functions may also be different. We use a normalized
vector δ = [δ1, δ2, . . . , δm]

T relative to the corresponding
linear tasks to evaluate the complexities of sub-functions, i.e.
δν = E [Tfν/TL] , ν ∈ [m], where Tfν is the time to calculate
φfν (x), TL is the time to calculate the linear task φx, and
φ is a constant. For example, the complexities of calculating
φf1 (x) = φxTxx and φf2 (x) = φex are different. We
assume the expected time spent on calculating φf1 (x) and
φf2 (x) is respectively 4 times and 25 times more than that of
φx. Then, the normalized computation complexities for these
two non-linear sub-functions can be given as δ = [4, 25]

T.
As for the wireless transmission in this network, time-

division is assumed so that only one worker can transmit

its packet to the master at each time1. Also, the worker that
finishes the computation early can transmit this result early
and the next one has to wait until the previous worker finishes
its transmission. Due to channel fading, outage of workers
and so on, transmission failure may occur. We model these
failures as an erasure channel with a fixed packet erasure
probability εi for worker i. To guarantee successful decoding,
the corresponding packet will be re-transmitted in case of a
transmission failure. Because of the limited bandwidth of wire-
less channel, a uniform maximum number of packets that can
be transmitted successfully from each worker is pre-allocated
to avoid too much overhead, which is denoted as a constant k1.
Furthermore, the maximum number of transmission for each
packet is limited to k2, where k2 is also a constant. In other
words, each worker can send up to k1 packets to master and
each packet can be re-transmitted at most k2 times to prevent
excessive occupation of channel resources.

Due to the composition of f̂ (·) and {fν (·)}mν=1, it is hard
to analyze the properties of F (·) directly. In the following, we
divide the non-linear computational tasks into three categories
based on the features of external and internal functions2.

• Category 1: Both external and internal functions are
linear. In this case, the computational task degenerates to a
linear task and a representative task is matrix multiplication
F (x) = Ax [3], [4], where A is the system matrix. Utilizing
the classical coded matrix multiplication algorithm, the task
can be solved efficiently, as shown in Fig. 1a.

• Category 2: The external function is non-linear, while the
internal functions are linear. These tasks include the activation
functions in deep neural networks (DNN) [37], the non-affine
non-linear systems in control theory [38], and the non-linear
feature transforms in machine learning [39] with multivariate
non-linear functions F (x) = f̂ (A1x, . . . ,Amx) where the
sub-matrixes {Aν}mν=1 represent the system model. In order
to obtain the computed result efficiently, the internal linear
functions are completed by workers with coded distributed
computing and the external non-linear function is calculated
by the master directly, as shown in Fig. 1b.

• Category 3: The external function is linear, while the
internal functions are non-linear. These tasks can be seen
as the linearly separable computation F (x) = aTf (x) [32],
where a = [a1, . . . , am]

T is the coefficient vector and f (·) =
[f1 (·) , . . . , fm (·)]T consists of non-linear sub-functions. For
example, the non-linear sub-function fi (·) can be regarded as
the ith convolution filtering operation in convolutional neural
networks (CNN) [1], the ith partial gradient in batch gradient
descent algorithm [29], the ith decision tree in random forests
[40], the kernel function between the ith training point and
the test point in kernel methods [41] and so on. To speed up
the calculation, coded computation is applied by treating a

1The proposed merged-r LT coded computation scheme (Alg. 1) and Alg.
2 can also be readily expanded to the case where workers are able to transmit
data simultaneously, since the transmission latency analyzed in this work can
be regarded as the upper bound in another case.

2When the external and internal functions are both non-linear, coded com-
putation cannot be utilized directly since the exact composition relationship
between external and internal functions is unclear. One way to solve these
tasks is to approximate them as tasks in Category 3 using Taylor expansion.
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(a) Category 1: matrix multiplication. (b) Category 2: multivariate non-linear function. (c) Category 3: linearly separable computation.

Fig. 1. Distributed coded computation for non-linear tasks in wireless networks with three cases. A total of one master and three workers complete together
the calculation of the non-linear function F (x). Worker 2 is a straggler, which slows down the whole network. With the help of coded computation, the
master can recover F (x) from the computed results of worker 1 and worker 3.

TABLE II
CLASSIFICATION OF NON-LINEAR COMPUTATIONAL TASKS.

Category Specific Example Applications

1 Ax
(Fig. 1a)

Matrix-Vector Multiplication [3];
Matrix-Matrix Multiplication [4].

2 f̂ (A1x, . . . ,Amx)
(Fig. 1b)

Activation Functions [37];
Non-affine Non-Linear Systems [38];
Non-linear Feature Transforms [39].

3 aTf (x)
(Fig. 1c)

Convolution Filtering Operations [1];
Batch Gradient Descent [29];

Random Forests [40];
Kernel Methods [41].

non-linear sub-function as a single source symbol, as shown
in Fig. 1c.

The above classification is summarized in Table II. There
are many schemes to complete the tasks in Categories 1 and
2 with coded computation. Due to the space limitation, the
reader is referred to [3], [4], [5], [7] and [9] for details. For
Category 3, the sub-tasks allocated to workers are non-linear,
heterogeneous and non-additive, which are quite different from
the linear tasks in Categories 1 and 2. The following challenges
emerge when dealing with these non-linear tasks.

1) The computation and transmission costs are high. Com-
pared with the linear tasks, the magnitude of encoded sub-
functions is much larger because the non-additivity of non-
linear sub-functions precludes the pre-computation for en-
coding process. This leads to the high computation and
transmission costs. For example, the costs of computing and
transmitting a1xTxx+a2e

x are significantly higher than those
of

(
aT1 + aT2

)
x. Also, the encoded sub-functions covering

more non-linear sub-functions will result in a higher com-
putation latency. In other words, computing the encoded sub-
function f1 (x)+f2 (x)+f3 (x) is more time-consuming than
computing the encoded sub-function f1 (x)+f2 (x). This also
implies that dense codes like MDS code are infeasible for
non-linear tasks. Thus, it is critical to reduce these costs by
designing an efficient coding strategy for non-linear tasks.

2) The existing decoding strategy is inefficient. For linear
tasks, the existing BP strategy is applied to decode each inner
product precisely. For the non-linear tasks in Category 3, the
goal is to recover the sum, so the existing decoding strategy is

inefficient and brings huge unnecessary decoding costs, which
is intolerable for latency-sensitive services. A new decoding
strategy to avoid these unnecessary costs is needed.

3) The non-linear sub-functions are heterogeneous. Non-
linear tasks consist of various sub-functions. The complexities
of computing different non-linear sub-functions may also be
different. For example, the computation costs of a1xTxx and
a2e

x are totally different. Hence, it is essential to provide an
optimal allocation strategy based on the disparate computation
complexities of non-linear sub-functions.

III. PROPOSED MERGED-r LT CODED COMPUTATION

In this section, we will propose a new merged-r LT coded
computation scheme to solve the non-linear computational
tasks efficiently. The typical large-scale linearly separable
computation with non-linear sub-functions F (x) = aTf (x)
(Category 3) will be considered. To be more specific, we
will first present the merged-r LT coding strategy to reduce
the high computation and transmission costs. Then, the MDD
strategy will be given to improve the decoding efficiency.

A. Merged-r LT Coding Strategy

To speed up the non-linear computational tasks and avoid
the stragglers’ effect in distributed wireless networks, the
merged-r LT coding strategy is proposed based on the rateless
and sparse LT code. The specific process can be described as
follows.

1) Master Performs Merge Operation: For the non-linear
sub-functions, the merge operation is applied before the encod-
ing process. Specifically, master treats r different non-linear
sub-functions as a source symbol, which can be given as

F (·) = a1f1 (·) + a2f2 (·) + . . .+ amfm (·)

=

r∑
ν=1

aνfν (·) + . . .+

m∑
ν=m−r+1

aνfν (·) =
m/r∑
ρ=1

f{ρ} (·), (2)

where f{ρ} (·) =
∑ρr

ν=ρr−r+1 aνfν (·), ρ ∈ [m/r] is the
merged sub-function, and r is the merging parameter repre-
senting the number of non-linear sub-functions in f{ρ} (·).
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2) Master Performs Encoding: The merged sub-functions
are encoded by the master with LT code to obtain the encoded
sub-functions {f̃ν̃ (·)}αm/r

ν̃=1 as

f̃ν̃ (·) =
∑

ρ̃∈S
dr,ν̃
ν̃

f{ρ̃} (·), ν̃ ∈
[αm
r

]
, (3)

where α > 1 is the encoding parameter, and the set Sdr,ν̃

ν̃

represents the corresponding dr,ν̃ merged sub-functions with
uniform random selection in f̃ν̃ (·). Moreover, dr,ν̃ is the de-
gree in merged-r LT coding strategy representing the number
of merged sub-functions in an encoded sub-function f̃ν̃ (·) and
reflecting the sparsity of code. The degree is determined by the
robust soliton degree distribution so that the average degree of
encoded sub-functions d̄r is linear with lnm/r [10], [42] as

d̄r = w1 ln
m

r
+ w2, (4)

where w1 and w2 are constants determined by the degree
distribution.

3) Master Performs Sub-Block Division: After the encoding
process, in order to carry out computations in a distributed
manner by workers, through dividing {f̃ν̃ (·)}αm/r

ν̃=1 equally
and uniformly, the computational sub-task for each worker
{f̃ (i)ν̃i

(·)}lν̃i=1, i ∈ [n] can be obtained by the master, where
l = αm/rn represents the number of encoded sub-functions in
each computational sub-task. Each sub-task should possess the
similar total degree and computation complexity3. To utilize
the rateless property of LT code and the partial works done
by stragglers, the computational sub-task for worker i ∈ [n] is
divided again by the master into sub-blocks of the same size
as {f̃ (i,j)ν̃i,j

(·)}biν̃i,j=1, j ∈ [l/bi], where bi denotes the sub-block
size, i.e., each sub-block includes bi encoded sub-functions
or

∑bi
ν̃i,j=1 rdr,ν̃i,j

non-linear sub-functions to be calculated.
Similarly, each sub-block should ideally possess the same
average degree and computation complexity. In other words,
the master ensures

bi∑
ν̃i,j=1

dr,ν̃i,j

bi
≈
r
αm/r∑̃
ν=1

dr,ν̃

αm
, (5)

bi∑
ν̃i,j=1

rdr,ν̃i,j∑
ν=1

δν

bi∑
ν̃i,j=1

dr,ν̃i,j

≈

αm/r∑̃
ν=1

rdr,ν̃∑
ν=1

δν

αm/r∑̃
ν=1

dr,ν̃

, (6)

when generating sub-blocks3. Then, the master sends the sub-
blocks and input to the corresponding workers.

3As a feasible way to perform the sub-task and sub-block division, the
master first classifies all the encoded sub-functions into four categories based
on their deviation from the average degree and computation complexity: (i)
large degree and high computation complexity; (ii) small degree and low
computation complexity; (iii) large degree and low computation complexity;
(iv) small degree and high computation complexity. Then, the master can
combine encoded sub-functions (i) with encoded sub-functions (ii), and
encoded sub-functions (iii) with encoded sub-functions (iv), respectively,
to generate sub-tasks and sub-blocks with the similar average degree and
computation complexity. Besides, for sub-block division, if the sub-block
size is large, the master will preferentially choose the encoded sub-functions
that deviate from the average; if the sub-block size is small, the master will
preferentially choose the encoded sub-functions around the average.

Fig. 2. The workflow of BP strategy. BP strategy is performed in an
iterative fashion. In each iteration, master decodes the degree one encoded
sub-functions, and subtracts the decoded results from all other encoded
sub-functions connected to those decoded results. Using BP strategy, every
computed result of merged sub-function is recovered exactly. NBP

dec = 4.

4) Workers Perform Computing and Transmitting: Workers
will begin calculating once receiving x. When a sub-block is
computed completely, workers will transmit the corresponding
result to the master as soon as possible.

5) Master Performs Decoding: Based on the rateless prop-
erty of LT code, the master can decode F (x) successfully
after only receiving (1 + ηLT)m/r computed results of en-
coded sub-functions, where ηLT is a small decoding overhead4

(ηLT → 0 as m→∞).
According to the preceding analysis, we can observe that

the proposed coding strategy can significantly reduce the high
computation costs of encoded sub-functions caused by non-
linearity, because the sparsity of LT code limits the magnitude
of encoded sub-functions. Moreover, the merge operation
can reduce not only the transmission overhead but also the
decoding threshold, possibly at the expense of a slightly higher
computation load. It implies that the merging parameter r
has a significant impact on the computation, transmission and
decoding latency for the whole network. Thus, it is essential
to choose r carefully. This will be discussed in Section IV-D.

B. Maximum Degree Decoding Strategy

For the decoding process, the classical BP strategy recovers
each non-linear sub-function fν (x) , ν ∈ [m] exactly through
iterative peeling algorithm [42], as shown in Fig. 2. This
incurs a huge amount of unnecessary decoding costs in BP
strategy, which may cause severe performance degradation for
the whole network. Thus, based on the property of non-linear
tasks in Category 3, we propose the MDD strategy to speed
up the decoding process, as shown in Fig. 3. To facilitate
the understanding, we first give the following definition and
example.

Definition 1 (Connection). For the proposed merged-r LT
code, the connection of f{ρ} (x), denoted as ψρ, is the total
number of encoded sub-functions which cover this merged
sub-function. If the computed results of two different encoded
sub-functions do not cover the same merged sub-function,
these two encoded sub-functions are disconnected with each
other. On the other hand, if they share at least one same merged

4In this paper, the value of ηLT is assumed to be fixed, since a large-scale
computational task is considered.
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Fig. 3. The workflow of MDD strategy. In order to reduce the decoding cost
of non-linear coded computation, not every computed result of merged sub-
function is recovered exactly. NMDD

dec = 1.

sub-function, they are connected with each other. Moreover,
the more same merged sub-functions they share, the stronger
connections they can achieve.

Example 1. As illustrated in Fig. 3, there are four computed
results f{1}+ f{3}, f{1}, f{2}+ f{3}, f{1}+ f{2}+ f{3}. The
connection of f{1} is ψ1 = 3 and the connection of f{2} is
ψ2 = 2. f{1} is disconnected with f{2} + f{3}, while f{1} +
f{3} and f{2} + f{3} are connected with each other.

Then, the specific process of MDD strategy can be described
as follows:

Step 1: Choose the computed result of encoded sub-
function with the maximum degree f̃dmax

as a base function
fbs. If f̃dmax

is unique, fbs = f̃dmax
. If f̃dmax

is not unique,
choose the one covering a merged sub-function with a lower
connection. For example, when deg(f̃1) = deg(f̃2) = dmax,
fbs = f̃1 if min{ψρ| ρ ∈ Sdmax

1 } < min{ψρ′ | ρ′ ∈ Sdmax
2 };

Step 2: Find the computed result of encoded sub-function
with the maximum degree f̃ ′dmax

that is disconnected with fbs.
Then, add f̃ ′dmax

to fbs, i.e. fbs ← fbs + f̃ ′dmax
. Similarly, if

f̃ ′dmax
is not unique, choose the one covering a merged sub-

function with a lower connection. Repeat until there is no
computed result of encoded sub-function that is disconnected
with fbs. Then, if fbs covers all the results of merged sub-
functions, the desired result F (x) = fbs will be recovered;
otherwise, continue to Step 3;

Step 3: Utilize iterative peeling algorithm to recover the re-
manent results of merged sub-functions that are not covered by
fbs. In other words, based on the low-degree received results,
decrease the degree of encoded sub-functions covering the
remanent merged sub-functions until all the remanent merged
sub-functions are recovered. Add these remanent merged sub-
functions to fbs, the desired result F (x) is recovered.

The following example of MDD strategy is given to facili-
tate the understanding.

Example 2. As illustrated in Fig. 4, the desired non-
linear computational task is F (x) =

∑10
ν=1 aνfν (x). Using

the merged-r LT coding strategy in Section III-A, the cor-
responding encoded sub-functions are generated, where the
merging parameter is chosen as r = 2. After computation
and transmission, the master receives six computed results of
encoded sub-functions. They are f{4}, f{1}+f{2}+f{3}+f{4},
f{1} + f{3} + f{4} + f{5}, f{2} + f{5}, f{3}, and f{3} +
f{4} + f{5}. Then, the decoding process begins, which can
be described as follows:

1) Master chooses f{1} + f{2} + f{3} + f{4} with degree
dr,ν̃ = 4 as the base function fbs. Although the degree of

Fig. 4. A simple example of merged-r LT coding strategy and MDD strategy
with the desired result F (x) =

∑10
ν=1 fν (x) = f{1} + f{2} + f{3} +

f{4}+f{5} (r = 2). From six received results, f{1}+f{2}+f{3}+f{4} is
chosen as the base function. Due to no disconnected encoded sub-function, the
remanent merged sub-function f{5} is decoded by iterative peeling algorithm.
Hence F (x) is recovered. NMDD

dec = 3.

f{1}+f{3}+f{4}+f{5} is also dr,ν̃ = 4, f{1}+f{2}+f{3}+
f{4} covers two merged sub-functions whose connections are
both two, i.e. f{1} and f{2}. Since f{1} + f{3} + f{4} + f{5}
only covers f{1}, it is not chosen as fbs;

2) Master then tries to find the computed results of encoded
sub-functions that are disconnected with fbs. In this example,
there is no result disconnected with f{1}+f{2}+f{3}+f{4};

3) Master uses iterative peeling algorithm to recover the
remanent f{5} that is not covered by fbs. To be more specific,
master decreases the degree of f{3}+f{4}+f{5} based on the
received results f{3} and f{4} with degree dr,ν̃ = 1. Hence
f{5} is obtained;

4) Finally, master adds f{5} to fbs, and the desired result
f{1} + f{2} + f{3} + f{4} + f{5} is recovered.

We denote NBP
dec and NMDD

dec as the total number of decoding
operations to recover the desired result F (x) for BP strategy
and MDD strategy, respectively. For example, NBP

dec = 4 in Fig.
2, while NMDD

dec = 1 in Fig. 3. Observe that NBP
dec and NMDD

dec

are only determined by the received results. To show the
advantages of the proposed decoding strategy intuitively, the
complexities of BP strategy and MDD strategy are compared
in the following.

Lemma 1. For a non-linear computational task with the
merged-r LT coding strategy and BP strategy, E

[
NBP

dec

]
can

be given as

E
[
NBP

dec

]
=
m

r

(
w1 ln

m

r
+ w2

)
− 1. (7)

Proof. Through iterative peeling algorithm, BP strategy de-
creases the degrees of encoded sub-functions in each iteration.
For every degree reduction of each encoded sub-function,
master needs one addition. When the degree of encoded sub-
function is reduced to one, the corresponding merged sub-
function is recovered. It means that there are d̄r − 1 additions
to decode a merged sub-function from the expected point
of view. For recovering m/r merged sub-functions, master
needs a total of m

(
d̄r − 1

)/
r additions. At last, master sums

these merged sub-functions up to obtain the desired result,
which needs m/r − 1 additions. Thus, there is an average of
md̄r

/
r − 1 additions in total.
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Different from BP strategy, the decoding operations in the
proposed MDD strategy are closely related to the received
results. To visually illustrate the superiority of MDD strategy,
we will conduct an analysis in the worst case as follows.

Lemma 2. For a non-linear computational task with the
merged-r LT coding strategy and MDD strategy, E

[
NMDD

dec

]
is bounded by

E
[
NMDD

dec

]
≤

(m
r
− w1 ln

m

r
− w2

)(
w1 ln

m

r
+ w2

)
. (8)

Proof. In the worst case, there is no encoded sub-function
disconnected with the base function, like Example 2. At this
point, every merged sub-function is recovered through iterative
peeling algorithm except the one covered by base function. In
other words, there are a total of m/r − d̄max merged sub-
functions that need to be recovered through iterative peeling
algorithm from the expected point of view, where d̄max is the
expectation of maximum degree in (1 + ηLT)m/r encoded
sub-functions. Similarly, in order to decode these merged sub-
functions successfully, master needs

(
m/r − d̄max

) (
d̄r − 1

)
additions. Then, the sum of these m/r − d̄max merged sub-
functions and base function is obtained to recover the de-
sired result. Thus, for the worst case, there is an average
of

(
m/r − d̄max

)
d̄r additions during the whole decoding

process, which yields Eq. (8).

Then, the following proposition is given to show the per-
formance gain of MDD strategy.

Proposition 1 (Performance Gap between MDD Strategy
and BP Strategy). For a non-linear task with the merged-r LT
coding strategy, MDD strategy can decrease at least an average
of d̄2r − 1 additions compared with BP strategy, i.e.,

E
[
NBP

dec

]
− E

[
NMDD

dec

]
≥ Θ

(
ln
m

r
ln
m

r

)
. (9)

Proof. Based on Lemma 1 and Lemma 2, Eq. (9) can be
obtained by subtracting Eq. (8) from Eq. (7).

Corollary 1 (Worst Point of View). From the worst point
of view, the performance gap between MDD strategy and BP
strategy can be given as

NBP
dec,b −NMDD

dec,b = Θ
(m
r
ln
m

r

)
, (10)

where NBP
dec,b and NMDD

dec,b are the total number of decoding
operations to recover the desired result F (x) for BP strategy
and MDD strategy, respectively, from the worst point of view.

Proof. See Appendix A.

In order to thoroughly illustrate the superiority of MDD
strategy, the performance comparisons of different decoding
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Fig. 5. Performance comparisons between IAD strategy [43], sOFG strategy
[44], BP strategy, and MDD strategy with m, where r = 100, µdec = 500,
and adec = 0.002.

strategies are presented in Fig. 55 (decoding latency will
be discussed in Sec. IV-C). From both calculated amount’s
and latency’s points of view, the decoding performance gap
between MDD strategy and the other decoding strategies
will widen as the scale of computational tasks m increases.
Moreover, MDD strategy even in the worst case performs
better than BP strategy, which confirms the above theoretical
analysis.

We summarize our proposed merged-r LT coded computa-
tion scheme including merged-r LT coding strategy and MDD
strategy as Alg. 1.

IV. LATENCY ANALYSIS AND OPTIMIZATION

For the non-linear computational tasks in Category 3, dif-
ferent coding and decoding strategies lead to significantly
different latency performance in wireless networks. In this
section, we will first analyze the computation, transmission
and decoding latency of the proposed merged-r LT coded
computation. Also, the factors that influence the latency will
be discussed. At last, in order to minimize the total latency,
the merging parameter and sub-block size will be optimized.

5The inactivation decoding (IAD) strategy was thoroughly analyzed in [43],
and the soft on-the-fly Gaussian elimination (sOFG) decoding strategy was
proposed in [44]. In IAD strategy, the iterative decoding algorithm is applied
first, resulting in some computed results that cannot be recovered. At the end
of the decoding process, these unrecovered results are solved using Gaussian
elimination algorithm. IAD strategy can reduce ηLT at the expense of a
higher decoding cost. Moreover, sOFG strategy is also designed based on
Gaussian elimination algorithm, which can further decrease ηLT. In sOFG
strategy, although the master can perform some decoding pre-processing while
receiving computed results, it still leads to an increased decoding cost. In
general, IAD strategy and sOFG strategy can achieve good performance when
m is small, while BP strategy is more effective for large-scale computational
tasks.

6The optimal merging parameter r∗ and sub-block size
{
b∗i
}n

i=1
are

obtained by Alg. 2.
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Algorithm 1 Merged-r LT Coded Computation Scheme6

Require: The coefficient vector a = [a1, . . . , am]
T, non-

linear sub-functions f (·) = [f1 (·) , . . . , fm (·)]T, and
input data x.

Ensure: The desired output result F (x).
1: procedure Merged-r LT Coded Computation Scheme
2: Master performs Merged-r LT Coding Strategy:
3: Obtain the merged sub-functions f{ρ} (·) in Eq. (2)

for ρ ∈ [m/r];
4: Obtain the encoded sub-functions f̃ν̃ (·) in Eq. (3)

for ν̃ ∈ [αm/r];
5: Obtain the sub-blocks {f̃ (i,j)ν̃i,j

(·)}biν̃i,j=1 based on the
division strategies (5) and (6) for j ∈ [l/bi] and i ∈
[n];

6: Send sub-blocks to workers;
7: Master broadcasts x to workers;
8: Workers computes {f̃ (i,j)ν̃i,j

(x)}biν̃i,j=1, j ∈ [l/bi] , i ∈
[n], and transmits these results to master;

9: if master receives more than (1 + ηLT)m/r computed
results of encoded sub-functions then

10: Master performs MDD Strategy:
11: Obtain fbs according to Step 1;
12: repeat
13: Obtain f̃ ′dmax

according to Step 2;
14: Set fbs ← fbs + f̃ ′dmax

;
15: until no disconnected encoded sub-function;
16: Recover the remanent uncovered results according

to Step 3;
17: return F (x) by adding these remanent uncovered

results to fbs.
18: end if
19: end procedure

A. Computation Latency

As for the non-linear tasks with merged-r LT coded com-
putation, the following definition is given to evaluate the
computation latency for the whole network.

Definition 2 (Computation Latency). For the non-linear
computational tasks using the proposed merged-r LT coding
strategy and MDD strategy, the computation latency, denoted
as Tcmp, is the time spent on calculating (1 + η)m/r encoded
sub-functions for the whole network, where η is the extra
overhead caused by LT decoding and transmission failure. It
is a random variable, given as:

Tcmp = max
i∈[n]

T cmp
i , (11)

where T cmp
i is also a random variable representing the total

computation time for worker i, and all the random variables
{T cmp

i }ni=1 are assumed to be mutually independent.

Based on the sub-block division strategies (5) and (6), we
assume that the computation load for each sub-block is directly

proportional to its size to facilitate the analysis, i.e.,

bi∑
ν̃i,j=1

rdr,ν̃i,j∑
ν=1

δν = bird̄r δ̄, j ∈
[
l

bi

]
, i ∈ [n] , (12)

since the average degree and computation complexity of sub-
blocks for all the n workers are the same, where δ̄ is the
average computation complexity of non-linear sub-functions.
This implies the cost of computing a single sub-block is
equal to that of computing bird̄r non-linear sub-functions
with the same computation complexity δ̄, for worker i. Then,
the time of computing j sub-blocks for worker i, i.e. jbi
encoded sub-functions, is denoted as a random variable T cmp

i,j .
The cumulative distribution function (CDF) of T cmp

i,j can be
described as a shifted exponential distribution [3]:

Pr
[
T cmp
i,j ≤ t

]
= 1− e−

µ
cmp
i

jbiδ̄rd̄r
(t−jbiδ̄rd̄ra

cmp
i ), (13)

for t ≥ jbiδ̄rd̄ra
cmp
i and j ≤ k1, where µcmp

i and acmp
i are

the straggling and shift parameters, respectively, representing
the computation capability of worker i. Assume that ci is the
number of sub-blocks computed by worker i completely before
completing a total of (1 + η)m/r encoded sub-functions in
the networks. Then, according to Eq. (13), we can observe
that

T cmp
i = cibiδ̄rd̄r

(
T̂ cmp
i + acmp

i

)
, (14)

where the random variable T̂ cmp
i represents the initial setup

time at worker i before actually beginning the calculation, fol-
lowing an exponential distribution with rate parameter µcmp

i .
Due to the sub-block division and limited transmission

rounds, the number of sub-blocks calculated by worker i with
a given computation time t, denoted as xi (t), is given by

xi (t) =


0, if t < T cmp

i,1 ,

j, if T cmp
i,j ≤ t < T cmp

i,j+1, j ∈ [k1 − 1] ,

k1, if t ≥ T cmp
i,k1

.

(15)

Thus, through the definition of the mean, Eq. (13) and Eq.
(15), the expected number of sub-blocks calculated by worker
i can be derived as

E [xi (t)] =

k1∑
j=0

j × Pr [xi (t) = j]

=

k1−1∑
j=1

j × Pr
[
T cmp
i,j ≤ t < T cmp

i,j+1

]
+ k1 × Pr

[
t ≥ T cmp

i,k1

]

=

k1−1∑
j=1

j ×
(
Pr

[
T cmp
i,j ≤ t

]
− Pr

[
T cmp
i,j+1 ≤ t

])
+ k1 × Pr

[
T cmp
i,k1
≤ t

]
=

k1∑
j=1

Pr
[
T cmp
i,j ≤ t

]
=

k1∑
j=1

(
1− e−

µ
cmp
i

jbiδ̄rd̄r
(t−jbiδ̄rd̄ra

cmp
i )

)
. (16)
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Based on ci = xi (Tcmp), we can obtain

E [ci] =

k1∑
j=1

(
1− e−

µ
cmp
i

jbiδ̄rd̄r
(Tcmp−jbiδ̄rd̄ra

cmp
i )

)
. (17)

For the heterogeneous distributed networks with merged-r
LT coded computation, the order statistics cannot be used to
describe the computation latency directly because of sub-block
division and disparate capabilities of workers, so the exact
expression of E [Tcmp] is hard to obtain. Hence, we discuss the
bounds of computation latency in the following proposition.

Proposition 2 (The Bounds of Computation Latency). Using
merged-r LT coding strategy and MDD strategy for non-linear
tasks, the expected upper and lower bounds of computation
latency for the whole network can be given respectively as

E [Tcmp] ≤ δ̄d̄r
(αm
n

+ r
)( 1

µcmp
b

+ acmp
b

)
, (18)

E [Tcmp] ≥
(1 + ηLT)m(
1− εk2

g

)
n
δ̄d̄r

( 1

nµcmp
g

+ acmp
g

)
, (19)

where {µcmp
b , acmp

b } = argmaxi (1/µ
cmp
i + acmp

i ), εg =
miniεi and

{
µcmp
g , acmp

g

}
= argmini (1/µ

cmp
i + acmp

i ) for
i ∈ [n].

Proof. See Appendix B.

B. Transmission Latency

As for the non-linear tasks with merged-r LT coded com-
putation, the following definition is given to evaluate the
transmission latency for the whole network.

Definition 3 (Transmission Latency). For the non-linear
computational tasks using the proposed merged-r LT coding
strategy and MDD strategy, the transmission latency, denoted
as Ttrn, is the time spent on transmitting all the computational
tasks calculated by n workers completely for the whole
network, i.e. (1 + η)m/r computed results of encoded sub-
functions. It is a random variable that is highly related to
computation latency, given as:

Ttrn =

n∑
i=1

T trn
i , (20)

where T trn
i represents the total transmission time for worker

i including re-transmission.

Due to the instability and limited bandwidth of wireless
channel, workers may re-transmit the computed encoded sub-
function many times. It is assumed that the time spent on
transmitting the result of the j′th encoded sub-function during
the κth transmission for worker i, denoted as T trn

i,j′,κ, follows
a mutually independent exponential distribution [6], i.e.,

Pr
[
T trn
i,j′,κ ≤ t

]
= 1− e−µtrn

i t, (21)

where the rate parameter µtrn
i represents the transmission

capability of worker i. Then, the total transmission time for
worker i can be obtained by

T trn
i =

cibi∑
j′=1

Ktrn
i∑

κ=1

T trn
i,j′,κ =

cibi∑
j′=1

T trn
i,j′ , (22)

where T trn
i,j′ =

∑Ktrn
i

κ=1 T
trn
i,j′,κ is the total time for the result

of the j′th encoded sub-function transmitted by worker i, and
Ktrn

i is the number of the corresponding total transmission
times, which can be given as

Pr
[
Ktrn

i = κ
]
=

{
εκ−1
i (1− εi) , if κ ∈ [k2 − 1] ,

εk2−1
i , if κ = k2.

(23)

Hence, we can describe the transmission latency for the whole
network in the following proposition.

Proposition 3 (Transmission Latency). Using merged-r LT
coding strategy and MDD strategy for non-linear tasks, the
expected transmission latency for the whole network can be
given as

E [Ttrn] =

n∑
i=1

(
1− εk2

i

)
bi

(1− εi)µtrn
i

E [ci]. (24)

Proof. See Appendix C.

C. Decoding Latency

As for the non-linear tasks with merged-r LT coded com-
putation, the following definition is given to evaluate the
decoding latency for the whole network.

Definition 4 (Decoding Latency). For the non-linear com-
putational tasks using the proposed merged-r LT coding
strategy and MDD strategy, the decoding latency, denoted as
Tdec, is the time spent on decoding (1 + ηLT)m/r computed
results of encoded sub-functions and recovering the desired
result F (x) for the master. It is a random variable, given as:

Tdec = NMDD
dec T ′

dec, (25)

where T ′
dec is also a random variable that represents the time

of a single addition for the master during the decoding process.

According to [23], T ′
dec can be described as a shifted

exponential distribution with the straggling and shift parameter
tuple {µdec, adec}, which represents the decoding capability of
the master. Then, the CDF of Tdec can be given as

Pr [Tdec ≤ t] = 1− e
− µdec

NMDD
dec

(t−NMDD
dec adec)

. (26)

Hence, we can describe the decoding latency for the whole
network in the following proposition.

Proposition 4 (Decoding Latency). Using merged-r LT
coding strategy and MDD strategy for non-linear tasks, the
expected decoding latency for the whole network is given as

E [Tdec] =
( 1

µdec
+ adec

)
E
[
NMDD

dec

]
. (27)

For the worst decoding case, E [Tdec] is bounded by

E [Tdec] ≤
( 1

µdec
+ adec

)(m
r
− d̄r

)
d̄r. (28)

Proof. E [Tdec] can be obtained by taking the expectation
of Eq. (25). For the worst decoding case, the upper bound of
E [Tdec] is obtained by substituting Eq. (8) into Eq. (27).

To confirm the theoretical analysis of latency, Fig. 6 shows
the expected latency versus the merging parameter for merged-
r LT coded computation. It is observed that Monte Carlo
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Fig. 6. Latency versus merging parameter r, where n = 100, m = 5000,
α = 1.25, k1 = 4, k2 = 5, bi = αm/k1rn, µcmp

i ∼ U (125, 150),
acmp
i ∼ U (0.009, 0.01), µtrn

i ∼ U (20, 25), εi ∼ U (0, 0.5), µdec = 500,
adec = 0.002, and δν ∼ U (1, 7), for i ∈ [n] and ν ∈ [m].

simulation results are in good agreement with the theoretical
ones. As r increases, computation latency will vary, as a
single encoded sub-function comprises variable non-linear
sub-functions. Concurrently, transmission latency and decod-
ing latency will decrease due to the reduction in decoding
threshold and degree. It implies that there exists a trade-off
between Tcmp, Ttrn and Tdec for different r.

In order to achieve the optimal trade-off between com-
putation, transmission and decoding latency, we consider
designing the merging parameter and sub-block size, and
reducing the total latency for the whole network as much
as possible. Referring to [24], the total expected latency is
E [Ttot] = E [Tcmp + Ttrn + Tdec]. It is challenging to solve
the optimization problem with merging parameter and sub-
block size jointly because r and {bi}ni=1 are coupled with
each other in the exact expression of E [Ttot]. Similar to [8],
the two-step optimization strategy is implemented. First, we
design the optimal merging parameter in the worst case. It
implies that the upper bound of E [Ttot] is considered since the
decrease in the upper bound still leads to a decrease in the total
latency. Based on the obtained optimal r∗, we then formulate
an optimization problem of minimizing the total latency to
design the optimal sub-block size.

D. Optimal Merging Parameter

To get the optimal merging parameter, we analyze the upper
bound of the total expected latency and reduce it as much as
possible. As a result, r∗ is given in the following proposition.

Proposition 5 (The Optimal Merging Parameter). Using
merged-r LT coding strategy and MDD strategy, the optimal
merging parameter r∗ can be obtained by

r∗ =


1, if fmin = fo (1),

r̃, if fmin = fo (r̃),

m, if fmin = fo (m),

(29)

where fmin = min {fo (1) , fo (r̃) , fo (m)}, and fo (r) is the
upper bound of E [Ttot], which is given as

fo (r) = sdec
(m
r
− d̄r

)
d̄r + δ̄

(αm
n

+ r
)
d̄rs

cmp
b

×
(
1 +

n∑
i=1

1− εk2
i

δ̄rd̄rs
cmp
i (1− εi)µtrn

i

)
, (30)

where scmp
b = 1/µcmp

b +acmp
b , scmp

i = 1/µcmp
i +acmp

i , sdec =
1/µdec + adec, and r̃ ∈ [m] satisfies dfo (r)/dr |r=r̃ = 0 .

Proof. See Appendix D.

E. Optimal Sub-Block Size

Since the decoding latency is not affected by the sub-block
size {bi}ni=1, we can formulate the optimization problem as

Pmain: min
b

E [Tcmp + Ttrn]

s.t. Pr
[ n∑
i=1

cibi ≤ (1 + η)
m

r

]
= o

( 1

n

)
, (31)

where the constraint (31) ensures that the desired result can
be recovered with high probability. For any given µcmp

i > 0,
acmp
i > 0, µtrn

i > 0, 0 ≤ εi < 1, µdec > 0, adec > 0 and
δ̄ ≥ 1, Pmain is always feasible because there exists at least
one feasible solution, i.e., bi = l/k1 for i ∈ [n], satisfying the
constraints of Pmain.

Due to the limited transmission rounds, as for a sub-
block transmitted by worker i, we denote the probability of
transmission failure after k2 transmissions as pf,i = εk2

i and
the corresponding probability of successful transmission as
ps,i = 1 − εk2

i . Then, on average, the constraint (31) can
be rewritten as

∑n
i=1 biE [ci] ps,i ≥ (1 + ηLT)m/r to ensure

that F (x) can be recovered successfully. However, due to the
heavy relation between computation and transmission latency
for each worker, it is still challenging to obtain the exact
expression of E [Tcmp + Ttrn], which makes this problem hard
to solve. According to [5, Section III-A], we can reformulate
the optimization problem as follows:

P1: min
tcmp,ttrn,b

tcmp +

n∑
i=1

ttrni

s.t. ttrni µtrn
i

1− εi
1− εk2

i

≤bi
k1∑
j=1

(
1− e−

µ
cmp
i

jbiδ̄rd̄r
(tcmp−jbiδ̄rd̄ra

cmp
i )

)
,∀i ∈ [n] (32)

n∑
i=1

ttrni µtrn
i (1− εi) ≥ (1 + ηLT)

m

r
, (33)

where the variable tcmp is introduced to relax the term
E [Tcmp] and the set ttrn = {ttrni }

n
i=1 is also the slack variable

representing the transmission time of each worker. ttrni satisfies
ttrni ≤ (1 − εk2

i )biE [xi (tcmp)] / (1− εi)µtrn
i to ensure that

the number of transmitted sub-blocks is no more than the
number of computed sub-blocks, which leads to the constraint
(32). The constraint (33) implies that the sufficient computed
results of non-linear sub-functions are aggregated to decode
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Algorithm 2 Wireless Non-Linear Merged-r LT Coded Com-
putation
Require: The parameter tuple {µcmp

i , acmp
i , µtrn

i , εi} for each
worker i ∈ [n], {µdec, adec} for master and δ̄ for the non-
linear computational task.

Ensure: The merging parameter r∗ and sub-block size b∗i for
the worker i ∈ [n].

1: procedure WNLMrLTCC
2: Obtain the optimal r∗ in Eq. (29);
3: Obtain γi in Eq. (37) and λ′i in Eq. (38) for the worker

i ∈ [n];
4: Obtain the optimal t∗cmp in Eq. (34);
5: return r∗ and b∗i = t∗cmp

/
γi · 1{λ′

i>0} for the worker
i ∈ [n].

6: end procedure

successfully. The solution to P1 is provably asymptotically
optimal when n becomes very large according to [7].

For P1, the objective function and the constraint (33)
are linear functions with respect to tcmp and ttrn, and the
constraint (32) can be rewritten as a convex exponential cone.
Thus, P1 is a convex problem and the Karush-Kuhn-Tucker
(KKT) conditions can be applied. Then, the optimal time can
be obtained as follows:

t∗cmp =
(1 + ηLT)m

r
n∑

i=1

1−ε
k2
i

γi
hi · 1{λ′

i>0}
, (34)

ttrn∗i =
t∗cmp

(
1− εk2

i

)
γi (1− εi)µtrn

i

hi · 1{λ′
i>0}, i ∈ [n] , (35)

where

hi = k1 −
k1∑
j=1

e
−

µ
cmp
i

γi
jδ̄rd̄r

+µcmp
i acmp

i , (36)

γi is the positive solution to the equation

−k1 +
k1∑
j=1

(
1 +

µcmp
i γi
jδ̄rd̄r

)
e
−

µ
cmp
i

γi
jδ̄rd̄r

+µcmp
i acmp

i = 0 (37)

and λ′i is the straggling factor that indicates whether the worker
i is a straggler or not, which satisfies

λ′i = (1− εi)µtrn
i −

n∑
i′=1

gi′ +

n∑
i′=1

(1− εi)µtrn
i gi′

(1− εi′)µtrn
i′

, (38)

where

gi =
(
1− εk2

i

) k1∑
j=1

µcmp
i e

−
µ
cmp
i

γi
jδ̄rd̄r

+µcmp
i acmp

i

jδ̄rd̄r
. (39)

Moreover, the optimal sub-block size can be obtained by

b∗i =
t∗cmp

γi
· 1{λ′

i>0}, i ∈ [n] . (40)

Then, substituting the optimal merging parameter r∗ into the
solution to P1, WNLMrLTCC is provided as Alg. 2.

Using the closed-form expression of r∗ and {b∗i }
n
i=1, the

WNLMrLTCC algorithm can be carried out in the constant

time. It implies that the proposed Alg. 2 is low-complexity
compared with iterative optimization algorithms like interior-
point methods.

Corollary 2 (Unlimited Transmission Rounds). When the
maximum number of sub-blocks transmitted from each worker
is unlimited, i.e. k1 is large enough, if µcmp

i · acmp
i and l are

also large, the straggling factor can be rewritten as

λ′′i = δ̄rd̄r (1− εi)µtrn
i −

n∑
i′=1

1− εk2

i′

acmp
i′

+ (1− εi)µtrn
i

n∑
i′=1

1− εk2

i′

(1− εi′)µtrn
i′ a

cmp
i′

, i ∈ [n] . (41)

At this time, if worker i is not a straggler, i.e. λ′′i > 0,
the smaller sub-block size will lead to the better latency
performance. In other words, the sub-block size obtained by
WNLMrLTCC is given as b∗i = 1, which degenerates to the
fine-grained LT coding scheme [9]. Moreover, if each sub-
block can be re-transmitted unlimitedly, i.e. k2 → ∞, η will
be reduced to ηLT.

Proof. See Appendix E.

Corollary 3 (Performance Error). Assume that µcmp
i ·acmp

i

is large. When there is an error ∆δ̄ between the average
computation complexity obtained by the master δ̄ and the
actual value δ̄′, i.e. ∆δ̄ = δ̄′ − δ̄, the latency error can be
given as

∆t∗tot =
∆δ̄d̄r∗ (1 + ηLT)m

n∑
i=1

1−ε
k2
i

acmp
i

, (42)

if all n workers are not stragglers. On the other hand, we
denote r′∗ as the merging parameter obtained by minimizing
the exact total latency. Assume that the error between r∗

obtained by Eq. (29) and r′∗ is ∆r∗ = r′∗ − r∗. Then, the
corresponding sub-block size error caused by ∆r∗ can be
given as

∆b∗i =
( 1

r∗ +∆r∗
− 1

r∗

) (1 + ηLT)m

k1a
cmp
i

n∑
i′=1

1−ε
k2
i′

acmp

i′

, i ∈ [n] , (43)

when all n workers are not stragglers. Moreover, the relative
errors of the straggling factor caused by ∆δ̄ and ∆r∗, denoted
as ϵλ′′

i,∆δ̄
and ϵλ′′i,∆r∗ , can be given as

ϵλ′′i,∆δ̄ =
∆δ̄r∗d̄r∗ (1− εi)µtrn

i

λ′′
i,δ̄′

, (44)

ϵλ′′i,∆r∗ =δ̄ (1− εi)µtrn
i

×
w1

(
r′∗ ln m

r′∗ − r
∗ ln m

r∗

)
+ w2∆r

∗

λ′′i,r′∗
, (45)

for worker i ∈ [n], where λ′′
i,δ̄′

and λ′′i,r′∗ are straggling factors
obtained by δ̄′ and r′∗, respectively.

Proof. See Appendix F.

Remark 1 (Special Cases of Merging Parameter and Sub-
-Block Size). The generalization of the existing works is shown
as follows:
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• When r∗ = 1, the merged-r coded computation de-
generates to the classical LT coding scheme. Moreover, if
b∗i = 1, i ∈ [n], the degradation leads to the fine-grained LT
coding scheme [9]; if {b∗i }

n
i=1 are obtained by [11, Alg. 1],

the degradation leads to the block-design based wireless LT
coded computation [11].

• When r∗ = m, the merged-r coded computation degen-
erates to the classical m-replication coding scheme [2].

Remark 2 (Trade-off between Computation, Transmission
and Decoding Latency). For merged-r LT coded computation,
both r and {bi}ni=1 affect Tcmp and Ttrn, while Tdec is only
affected by r. WNLMrLTCC realizes a trade-off between
computation, transmission and decoding latency. For example,
if the computation capability of each worker is the same, i.e.
µcmp
i = µcmp and acmp

i = acmp for i ∈ [n], the weaker
transmission and decoding capability for the whole network
will lead to the larger r∗ obtained by WNLMrLTCC to reduce
the transmission and decoding latency. Moreover, the workers
with more powerful transmission capability and better channel
condition will calculate more sub-functions. In other words,
the larger µtrn

i and the smaller εi lead to the larger kb∗i in
WNLMrLTCC for worker i.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we will show the performance of our
proposed merged-r LT coded computation.

In order to show the superiority of the proposed scheme, a
non-linear computational task in Category 3 F (x) = aTf (x)
is considered. Similar to [5] and [8], we choose the number
of non-linear sub-functions in F (·) as m = 5000, the number
of workers as n = 100, the maximum number of sub-blocks
that can be transmitted by each worker as k1 = 4, and the
maximum number of re-transmissions for each sub-block as
k2 = 5. Also, we assume the encoding parameter of LT code
as α = 2. Based on [11] and [45], the degree and decoding
parameter can be determined as w1 = 1.3129, w2 = 1.6511
and ηLT = 0.0326, respectively. Moreover, the decoding
capability of master in both BP strategy and MDD strategy
is chosen as µdec = 100 and adec = 0.017. The schemes
studied are described as follows:

1) UUA (Uniform Uncoded Allocation). Each worker is
assigned the same number of non-linear sub-functions
without sub-block division, i.e., bi = m/n, ∀i ∈ [n];

2) MG-LTCA (Maximum-Grained LT Coding Ap-
proach). Each worker is assigned the same number
of encoded sub-functions with maximum-grained sub-
block division [9, Sec. 3.2] based on LT code, i.e.,
bi = αm/k1n, ∀i ∈ [n]. The BP strategy is applied;

3) BD-WLTCC (Block-Design Based Wireless LT Coded
Computation). With the given {µcmp

i , acmp
i , µtrn

i , εi},
each worker is assigned the sub-block size bi, ∀i ∈ [n]
based on [11, Alg. 1]. The BP strategy is applied;

7The unit of 1
/
µcmp
i and acmp

i is milliseconds per non-linear sub-function.
The unit of µtrn

i is the number of computed results for encoded sub-functions
per millisecond. And the unit of 1/µdec and adec is milliseconds per
computed result of encoded sub-function.

TABLE III
PARAMETERS OF THREE SCENARIOS.

Scenario 1
δ∼U(1, 7)

Group 1: 20 workers Group 2: 40 workers
µcmp
i = 300, acmp

i = 0.02, µcmp
i = 200, acmp

i = 0.05,
µtrn
i = 100, εi = 0 µtrn

i = 100, εi = 0

Group 3: 30 workers Group 4: 10 workers
µcmp
i = 100, acmp

i = 0.06, µcmp
i = 0.25, acmp

i = 0.5,
µtrn
i = 100, εi = 0 µtrn

i = 100, εi = 0

Scenario 2
δ∼U(1, 7)

Group 1: 20 workers Group 2: 40 workers
µcmp
i = 300, acmp

i = 0.02, µcmp
i = 200, acmp

i = 0.05,
µtrn
i = 2, εi = 0.05 µtrn

i = 10, εi = 0.15

Group 3: 30 workers Group 4: 10 workers
µcmp
i = 100, acmp

i = 0.06, µcmp
i = 0.25, acmp

i = 0.5,
µtrn
i = 5, εi = 0.1 µtrn

i = 1, εi = 0.2

Scenario 3
δ∼U(20, 30)

100 workers
µcmp
i ∼ U (0.1, 500), acmp

i ∼ U (0.005, 0.5),
µtrn
i ∼ U (0.5, 10), εi ∼ U (0, 0.5)

4) MDD-WLTCC (Maximum Degree Decoding Based
Wireless LT Coded Computation). With the given
{µcmp

i , acmp
i , µtrn

i , εi}, each worker is assigned the sub-
block size bi, ∀i ∈ [n] based on [11, Alg. 1]. The MDD
strategy is applied;

5) MG-MrLTCA (Maximum-Grained Merged-r LT
Coding Approach). Each worker is assigned the same
number of encoded sub-functions with maximum-grained
sub-block division [9, Sec. 3.2] based on merged-r LT
code, i.e., r is obtained by setting the first derivative of the
upper bound of total latency to zero and bi = αm/k1rn,
∀i ∈ [n]. The BP strategy is applied;

6) WNLMrLTCC. The merging parameter r and sub-block
size bi, ∀i ∈ [n] can be obtained by Alg. 2 with the given{
δ̄, µcmp

i , acmp
i , µtrn

i , εi, µdec, adec
}

. The MDD strategy
is applied.

Among them, WNLMrLTCC is our proposed scheme. In
order to compare the performance of different schemes, three
scenarios are considered, as shown in Table III7. For Scenario
1, without considering transmission failure, 100 workers are
divided into four groups with the different computation capa-
bilities and the same transmission capabilities, whereas each
group in Scenario 2 has disparate computation capabilities,
transmission capabilities and channel conditions. In these two
scenarios, the workers of Group 4 are considered as stragglers.
Scenario 3 is the case of heterogeneous wireless networks
where the parameters of each worker are drawn from the cor-
responding random sources. Besides, Scenario 1 and Scenario
2 have low-complexity task, where δν ∼ U (1, 7) , ν ∈ [m],
while the complexity of desired computational task in Scenario
3 is much higher as δν ∼ U (20, 30) , ν ∈ [m].

Performance comparisons in the above three scenarios be-
tween the implemented schemes are shown in Fig. 7. It can
be observed that WNLMrLTCC can achieve an optimal trade-
off between computation, transmission and decoding latency
and reduce the total latency as much as possible due to the
more efficient coding and decoding strategy for non-linear
tasks compared with other schemes. Furthermore, the upper
bound of total latency changes over r are simulated in Fig.
8 within these three scenarios. From Fig. 8, there is a value
of r that makes the upper bound achieve the minimum, and
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Fig. 7. Latency comparisons between WNLMrLTCC and five benchmarks in
three different scenarios.
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Fig. 8. The upper bound of total latency fo (r) versus r, where the marker
‘*’ represents the optimal r∗ chosen in WNLMrLTCC.

WNLMrLTCC can always obtain this optimal r∗.
For Scenario 2, the changes of r∗ and E [Ttot] over

{µdec, adec} are shown in Fig. 9 and Fig. 10. We can observe
that the total latency will increase as the decoding capability
of master becomes weaker because of the increase in the
decoding latency. At this moment, the performance of the
whole network is straggled by the poor decoding capability.
In order to balance the computation, transmission and de-
coding latency, the merging parameter r∗ in WNLMrLTCC
will increase. This reduces the decoding threshold and also
transmission overhead, which leads to a much lower total
latency. Especially, a smaller µdec or a larger adec can result
in a higher performance gain compared with other schemes.

Fig. 11 and Fig. 12 show the effect of δ̄ on r∗ and E [Ttot]
respectively. We can note that the computation latency will
increase when δ̄ increases, which may lead to severe latency
performance degradation caused by computation stragglers. At
this moment, r∗ in WNLMrLTCC will decrease to balance
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Fig. 9. The optimal r∗ chosen in WNLMrLTCC versus the decoding
capability of master {µdec, adec}, where the parameters of workers are
chosen from Scenario 2.
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Fig. 10. The total expected latency E [Ttot] versus the decoding capability
of master {µdec, adec}, where the parameters of workers are chosen from
Scenario 2.

the total latency so that each sub-block consists of fewer non-
linear sub-functions. Then, the computation latency will also
be reduced to achieve better performance. In particular, more
significant latency performance improvements will be achieved
by WNLMrLTCC as δ̄ becomes larger.

VI. CONCLUSION

In this paper, we have proposed the merged-r LT coded
computation scheme for non-linear tasks. First, in order to
reduce the high computation and transmission costs, the
merged-r LT coding strategy has been presented. Then, the
efficient MDD strategy has been given without recovering
the individual non-linear sub-functions. We have also shown
the advantages of the proposed strategies from a theoretical
perspective. Finally, to complete these heterogeneous sub-tasks
with low latency, we have analyzed and optimized the total
latency including computation, transmission and decoding
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Fig. 11. The optimal r∗ chosen in WNLMrLTCC versus the average
computation complexity of non-linear sub-functions δ̄, where the parameters
of workers are chosen from Scenario 2.
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Fig. 12. The total expected latency E [Ttot] versus the average computation
complexity of non-linear sub-functions δ̄, where the parameters of workers
are chosen from Scenario 2.

process. The WNLMrLTCC algorithm has been presented to
obtain the optimal merging parameter and sub-block size. The
simulation results have also verified the superiority of our
proposed scheme.

APPENDIX A
PROOF OF COROLLARY 1

For BP strategy, only a single merged sub-function can be
recovered in each iteration from the worst point of view. At
this point, the degree of the encoded sub-functions presents a
characteristic of constant difference. To recover m/r merged
sub-functions, master needs a total of (m/2r) (m/r − 1) ad-
ditions. At last, master sums these merged sub-functions up
to obtain the desired result, which needs m/r − 1 additions.
Then,

NBP
dec,b =

(m
2r

+ 1
)(m

r
− 1

)
.

For MDD strategy, from the worst point of view, there is
no encoded sub-function disconnected with the base function,
and the maximum degree in received results can be iden-
tified as dmax = d̄r. In other words, there are a total of
m/r − d̄r merged sub-functions that need to be recovered
through iterative peeling algorithm. Similarly, master needs
at most

(
m/2r − d̄r

/
2
) (
m/r − d̄r + 1

)
additions to decode

these merged sub-functions successfully in this case. Then, the
sum of these m/r−d̄r merged sub-functions and base function
is obtained to recover the desired result, which yields

NMDD
dec,b =

1

2

(m
r
− d̄r

)(m
r
− d̄r + 3

)
.

Thus, Eq. (10) can be derived as

NBP
dec,b −NMDD

dec,b =
m

r
d̄r +

3

2
d̄r −

1

2
d̄2r −

m

r
− 1

=Θ
(m
r
ln
m

r

)
.

APPENDIX B
PROOF OF PROPOSITION 2

When the computation capability tuple for all n work-
ers is {µcmp

b , acmp
b }, the computation performance of the

whole network achieves the worst case. It implies that the
heterogeneous networks are reduced to the corresponding
homogeneous networks consisting of n workers with the same
computation capability {µcmp

b , acmp
b }. At this point, we can

know that T cmp
i = cibiδ̄rd̄r(T̂

cmp
i,b + acmp

b ) for i ∈ [n], where
the random variable T̂ cmp

i,b is exponentially distributed with
rate parameter µcmp

b . Then,

Tcmp ≤ (ci′ + 1) bi′ δ̄rd̄r
(
T̂ cmp
i′,b + acmp

b

)
, i′ ∈ Wcs,

where Wcs represents the set of workers that have not
completed all their computational sub-tasks until Tcmp, i.e.
Wcs = {i |cibi < αm/rn, ci < k1, i ∈ [n]}. Summing over all
i′ ∈ Wcs, we can get∑
i′∈Wcs

Tcmp ≤
∑

i′∈Wcs

(ci′ + 1) bi′ δ̄rd̄r
(
T̂ cmp
i′,b + acmp

b

)
≤

∑
i′∈Wcs

δ̄rd̄r
(
T̂ cmp
i′,b + acmp

b

)
max
i′∈Wcs

(ci′ + 1) bi′

≤
(αm
rn

+ 1
) ∑
i′∈Wcs

δ̄rd̄r
(
T̂ cmp
i′,b + acmp

b

)
,

⇒ Tcmp ≤
(αm
rn

+ 1
)
δ̄rd̄r

( ¯̂
T cmp
b + acmp

b

)
,

where ¯̂
T cmp
b =

∑
i′ T̂

cmp
i′,b /

∑
i′ 1, i

′ ∈Wcs. Thus, the expected
upper bound (18) can be obtained.

On the other hand, when the computation capability tuple
for all n workers is

{
µcmp
g , acmp

g

}
, the heterogeneous net-

works are reduced to the corresponding homogeneous net-
works with the best computation performance. It implies that
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T cmp
i = cibiδ̄rd̄r(T̂

cmp
i,g + acmp

g ) for i ∈ [n], where T̂ cmp
i,g is an

exponential random variable with rate parameter µcmp
g . Then,

Tcmp = max
i∈[n]

T cmp
i = max

i∈[n]
cibiδ̄rd̄r(T̂

cmp
i,g + acmp

g )

≥ max
i∈[n]

cibiδ̄rd̄r min
i∈[n]

(T̂ cmp
i,g + acmp

g )

≥ (1 + ηLT)m

(1− εk2
g )n

δ̄d̄r(T̂
cmp
(1) + acmp

g ),

where T̂ cmp
(1) is the first order statistic of {T̂ cmp

i,g }ni=1. Thus, the
expected lower bound (19) can be obtained.

APPENDIX C
PROOF OF PROPOSITION 3

Using Eq. (23) and the definition of the mean, we obtain

E
[
Ktrn

i

]
=

k2−1∑
κ=1

κεκ−1
i (1− εi) + k2ε

k2−1
i

= (1− εi)
∂

∂εi

(k2−1∑
κ=1

εκi

)
+ k2ε

k2−1
i =

1− εk2
i

1− εi
.

Then, based on Eq. (22) and Wald’s lemma [46], we can get

E
[
T trn
i,j′

]
= E

[Ktrn
i∑

κ=1

T trn
i,j′,κ

]
= E

[
Ktrn

i

]
E
[
T trn
i,j′,κ

]
=

1− εk2
i

(1− εi)µtrn
i

.

Similarly, E [T trn
i ] can be given as

E
[
T trn
i

]
= E

[ cibi∑
j′=1

T trn
i,j′

]
= biE [ci]E

[
T trn
i,j′

]
.

Thus, Eq. (24) can be obtained.

APPENDIX D
PROOF OF PROPOSITION 5

Based on Eq. (11), Eq. (14), Proposition 2, Proposition 3
and Proposition 4, the upper bound of E [Ttot] can be derived
as

E[Ttot] = E [Tcmp] +

n∑
i=1

E [cibi]E
[
T trn
i,j′

]
+ E [Tdec]

≤ E [Tcmp] +

n∑
i=1

E [Tcmp]E
[
T trn
i,j′

]
E[δ̄rd̄r(T̂ cmp

i + acmp
i )]

+ E [Tdec]

≤ δ̄
(αm
n

+ r
)
d̄rs

cmp
b

(
1 +

n∑
i=1

1− εk2
i

δ̄rd̄rs
cmp
i (1− εi)µtrn

i

)
+ sdec

(m
r
− d̄r

)
d̄r = fo (r) .

Because fo (r) , r ∈ [m] is a continuous function, the mini-
mum of the upper bound can be obtained when r = 1, r = r̃
or r = m, which yields Eq. (29).

APPENDIX E
PROOF OF COROLLARY 2

When µcmp
i · acmp

i is large, based on Euler-Maclaurin
formula, Eq. (36), Eq. (39) and Eq. (37) can be rewritten as

hi = k1 − eµ
cmp
i acmp

i (k1e
−

µ
cmp
i

γi
k1 δ̄rd̄r − e−

µ
cmp
i

γi
δ̄rd̄r − µcmp

i γi
δ̄rd̄r

Ẽi),

gi = (1− εk2
i )eµ

cmp
i acmp

i
µcmp
i

δ̄rd̄r
Ẽi,

− k1 + eµ
cmp
i acmp

i (k1e
−

µ
cmp
i

γi
k1 δ̄rd̄r − e−

µ
cmp
i

γi
δ̄rd̄r ) = 0,

where Ẽi = Ei1(µ
cmp
i γi/k1δ̄rd̄r) − Ei1(µ

cmp
i γi/δ̄rd̄r), and

Ei1 (x) =
∫∞
x
e−y/ydy is the exponential integral. As µcmp

i ·
acmp
i becomes large, we notice e−(k1−1)µcmp

i acmp
i → 0. Then,

the solution to Eq. (37) and Ẽi are reduced to

γi = k1δ̄rd̄ra
cmp
i , Ẽi =

e−µcmp
i acmp

i

µcmp
i acmp

i

− e−k1µ
cmp
i acmp

i

k1µ
cmp
i acmp

i

.

Thus, we can get hi = k1 and gi = (1− εk2
i )

/
δ̄rd̄ra

cmp
i ,

respectively. According to Eq. (34), Eq. (38) and Eq. (40), set
λ′′i = δ̄rd̄rλ

′
i, and we can obtain Eq. (41) and

b∗i =
t∗cmp

γi
=

(1 + ηLT)m

k1ra
cmp
i

n∑
i′=1

1−ε
k2
i′

acmp

i′

→ 1,

since k1 and l are large. It implies that the sub-block size
obtained by WNLMrLTCC should be small when the trans-
mission rounds are unlimited. Moreover, as k2 →∞, we can
observe pf,i = εk2

i → 0. At this point, η is only decided by
the LT decoding process. It means that η is reduced to ηLT.

APPENDIX F
PROOF OF COROLLARY 3

According to Appendix E, the optimal time and sub-block
size, and the corresponding straggling factor can be given as

t∗cmp =
δ̄d̄r∗ (1 + ηLT)m
n∑

i=1

1−ε
k2
i

acmp
i
· 1{λ′′

i >0}
,

ttrn∗i =
t∗cmp

(
1− εk2

i

)
δ̄r∗d̄r∗a

cmp
i (1− εi)µtrn

i

· 1{λ′′
i >0}, i ∈ [n] ,

b∗i =
(1 + ηLT)m

k1r∗a
cmp
i

n∑
i′=1

1−ε
k2
i′

acmp

i′
· 1{λ′′

i′>0}
· 1{λ′′

i >0}, i ∈ [n] ,

λ′′i =δ̄r∗d̄r∗ (1− εi)µtrn
i −

n∑
i′=1

1− εk2

i′

acmp
i′

+ (1− εi)µtrn
i

n∑
i′=1

1− εk2

i′

(1− εi′)µtrn
i′ a

cmp
i′

, i ∈ [n] ,
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when µcmp
i ·acmp

i is large. Since δ̄ does not affect the decoding
latency, when all n workers are not stragglers, the latency error
can be given as

∆t∗tot =t
′∗
cmp +

n∑
i=1

t′trn∗i −
(
t∗cmp +

n∑
i=1

ttrn∗i

)
=t′∗cmp − t∗cmp

+

(
t′∗cmp

δ̄ +∆δ̄
−
t∗cmp

δ̄

) n∑
i=1

1− εk2
i

r∗d̄r∗a
cmp
i (1− εi)µtrn

i

=t′∗cmp − t∗cmp =
∆δ̄d̄r∗ (1 + ηLT)m

n∑
i=1

1−ε
k2
i

acmp
i

,

where t′∗cmp and t′trn∗i are the computation time and the
transmission time obtained by δ̄′, respectively. This implies
∆δ̄ only affects the computation latency. Besides, the relative
error of the straggling factor caused by ∆δ̄ is derived as

ϵλ′′i,∆δ̄ =
λ′′
i,δ̄′
− λ′′i

λ′′
i,δ̄′

=
∆δ̄r∗d̄r∗ (1− εi)µtrn

i

λ′′
i,δ̄′

.

Similarly, the sub-block size error caused by ∆r∗ can be given
as

∆b∗i =b′∗i − b∗i

=
(1 + ηLT)m

k1 (r∗ +∆r∗) acmp
i

n∑
i′=1

1−ε
k2
i′

acmp

i′

− (1 + ηLT)m

k1r∗a
cmp
i

n∑
i′=1

1−ε
k2
i′

acmp

i′

=
( 1

r∗ +∆r∗
− 1

r∗

) (1 + ηLT)m

k1a
cmp
i

n∑
i′=1

1−ε
k2
i′

acmp

i′

,

where b′∗i is the sub-block size obtained by r′∗. Moreover, the
relative error of the straggling factor caused by ∆r∗ is derived
as

ϵλ′′i,∆r∗ =
λ′′i,r′∗ − λ′′i
λ′′i,r′∗

= δ̄ (1− εi)µtrn
i

r′∗d̄r′∗ − r∗d̄r∗
λ′′i,r′∗

=δ̄ (1− εi)µtrn
i

w1

(
r′∗ ln m

r′∗ − r
∗ ln m

r∗

)
+ w2∆r

∗

λ′′i,r′∗
.

REFERENCES

[1] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Proc. Adv. Neural Inf. Proces. Syst.
(NIPS), vol. 25, 2012, pp. 1223–1231.

[2] D. Wang, G. Joshi, and G. W. Wornell, “Efficient straggler replication
in large-scale parallel computing,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 4, no. 2, apr 2019.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[4] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theor. (ISIT), 2017, pp.
2418–2422.

[5] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Trans. Inf. Theory,
vol. 65, no. 7, pp. 4227–4242, 2019.

[6] D.-J. Han, J.-Y. Sohn, and J. Moon, “Coded wireless distributed com-
puting with packet losses and retransmissions,” IEEE Trans. Wireless
Commun., vol. 20, no. 12, pp. 8204–8217, 2021.

[7] F. Wu and L. Chen, “Latency optimization for coded computation
straggled by wireless transmission,” IEEE Wireless Commun. Lett.,
vol. 9, no. 7, pp. 1124–1128, 2020.

[8] L. Chen, K. Han, Y. Du, and Z. Wang, “Block-division-based wireless
coded computation,” IEEE Wireless Commun. Lett., vol. 11, no. 2, pp.
283–287, 2022.

[9] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” Proc. ACM Meas. Anal. Comput. Syst., vol. 3,
no. 3, dec 2019.

[10] X. Yang, M. Jiang, and C. Zhao, “LT codes with feedback: Accelerate
the distributed matrix-vector multiplication with stragglers,” in Proc.
IEEE Int. Perform. Comput. Commun. Conf. (IPCCC), 2019, pp. 1–6.

[11] B. Fang, K. Han, Z. Wang, and L. Chen, “Latency optimization for
luby transform coded computation in wireless networks,” IEEE Wireless
Commun. Lett., vol. 12, no. 2, pp. 197–201, 2023.

[12] B. Fang, L. Chen, Y. Chen, C. You, X. Chen, and W. Wang, “Wireless
coded computation with error detection,” IEEE Trans. Commun., vol. 72,
no. 3, pp. 1273–1289, 2024.

[13] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation
schemes that leverage partial stragglers,” IEEE Trans. Inf. Theory,
vol. 68, no. 6, pp. 4156–4181, 2022.

[14] J.-A. Lin, Y.-C. Huang, M.-C. Lee, and P.-N. Chen, “Coded distributed
multiplication for matrices of different sparsity levels,” IEEE Trans.
Commun., vol. 72, no. 2, pp. 633–647, 2024.

[15] R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Adaptive private dis-
tributed matrix multiplication,” IEEE Trans. Inf. Theory, vol. 68, no. 4,
pp. 2653–2673, 2022.

[16] S. Hong, H. Yang, and J. Lee, “Hierarchical group testing for byzantine
attack identification in distributed matrix multiplication,” IEEE J. Sel.
Areas Commun., vol. 40, no. 3, pp. 1013–1029, 2022.

[17] C. Hofmeister, R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Secure
private and adaptive matrix multiplication beyond the singleton bound,”
IEEE J. Sel. Area. Inf. Theory, vol. 3, no. 2, pp. 275–285, 2022.

[18] T. Jahani-Nezhad and M. A. Maddah-Ali, “Codedsketch: A coding
scheme for distributed computation of approximated matrix multipli-
cation,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 4185–4196, 2021.

[19] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, 2018.

[20] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely coded comput-
ing,” in Proc. IEEE Int. Symp. Inf. Theor. (ISIT), 2019, pp. 2798–2802.

[21] H. Zhu, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu, “Hierar-
chical coded matrix multiplication in heterogeneous multihop networks,”
IEEE Trans. Commun., vol. 70, no. 6, pp. 3597–3612, 2022.

[22] Y. Sun, F. Zhang, J. Zhao, S. Zhou, Z. Niu, and D. Gündüz, “Coded
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