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Flow induced vibration (FIV) of a pentagonal cylinder with high mass-damping ratio
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• Flow induced vibration of a pentagonal cylinder with a high mass ratio is studied experimentally.

• VIV found to be dominant in most incidence angles for the pentagonal cylinder in low flow velocities.

• VIV in a pentagonal cylinder could be larger than a circular cylinder with a same mass ratio.

• Galloping is dominant in high incoming flow velocities and is maximum for incidences where VIV is negligible.
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Abstract

In this study, fluid structure interactions of a fixed and oscillating pentagonal cylinder are studied using experimental
approaches. Specifically, flow induced vibration (FIV) of a pentagonal cylinder is studied with six different incidence
angles (α) in a recirculating wind tunnel at fixed mass damping ratios. A series of free oscillation experiments are
carried out in order to explore galloping behaviour as well as the lock-in region for vortex induced vibration (VIV).
It is found that VIV for a pentagonal cylinder is substantially stronger than for a circular cylinder with a similar
mass ratio. VIV maximum amplitude changes non-monotonically with incidence angle, and is smaller for incidences
where galloping is dominant. Also, galloping was found to be substantially stronger where the stiffness of the system
is lower.
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1. Introduction

Flow Induced Vibration (FIV) of various structures is of great interest in different kinds of engineering practices
e.g, ocean, aerospace and civil engineering. This phenomena may cause destructive vibrations or on the other hand
produce useful motions. Riser tubes on oil rigs in the middle of the ocean may vibrate due to oscillating waves or
tidal currents. Airplane slender wings may flutter in certain speeds. Bridge structures may also experience galloping
in case that the frequency of oscillation matches the natural frequency of the structure (Blevins, 1977). Tacomma
Narrows bridge catastrophic incident was a result of destructive FIV on a bridge in result of high wind speeds (Billah
and Scanlan, 1991). While the interest in FIV has historically been associated with preventing damage to structures,
looking forward, it provides an opportunity for energy harvesting at a range of scales from the microscale through to
tidal currents. These potential future applications make geometries which enhance FIV of new interest.

Nomenclature

α Static incidence angle
α∗ Dimensionless static incidence angle
α∗i Dimensionless dynamic incidence angle
δ0 Structural logarithmic decrement
δt Total logarithmic decrement
Λ Strouhal frequency energy content
ν Kinematic viscosity of the fluid
ωn Angular natural frequency of the mass-spring system
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ωv Angular vibration frequency of the mass-spring system
ρ Fluid density
ρs Cylinder density
ζ Damping coefficient with incoming flow velocity
ζ0 Structural damping coefficient
ζt Damping coefficient in still air U∞ = 0
A∗ Dimensionless time averaged vibration amplitude
A∗t Dimensionless instantaneous vibration amplitude
A∗max Maximum dimensionless vibration amplitude
Av Vibration amplitude
CL Lift coefficient
cm Mechanical damping of the system
CL,rms Root-mean-square of the lift coefficient
D Diameter of circular cylinder
Di Internal diameter of pentagonal cylinder
f ∗ Frequency ratio f ∗ = fv/ fn
fn Natural frequency of the mass-spring system
fS t Strouhal frequency
fv Vibration frequency
ks Spring stiffness
m Mass of cylinder
m∗ Mass ratio
m∗ζ0 Mass damping paramter
ma Added mass of cylinder
md Displaced mass of cylinder
mL Mass of a cylinder per one meter length
P( f ) Power spectral density
S G Skop-Griffin parameter
t∗ Dimensionless time scale t∗ = tD/U∞
U′hw Fluctuating component of Uhw

U∗ Reduced velocity
US T D

hw Standard deviation of Uhw

U∞ Incoming flow velocity
Uhw Flow velocity measured with hot wire anemometer
Vc Volume of cylinder
OHR Overheat ratio of hot wire anemometer
Re Reynolds number
St Strouhal number

Extensive research has been conducted on flow around a flexibly mounted circular cylinder (e.g., Bearman (1984);
Blevins (1977); Sarpkaya (2004); Williamson and Govardhan (2004); Bearman (2011); Vandiver (2012)). Typically,
studies in this field involve subjecting a flexibly mounted rigid circular cylinder to water or air flow. As the frequency
of vortex shedding synchronizes with the system’s natural frequency, an observable region of substantial amplitude
oscillations, known as the lock-in region emerges. This phenomenon is known as Vortex-Induced Vibration (VIV)
and was firstly found in a pioneering study by Feng (1968). Vibrations in VIV occur in limited range of the incident
flow velocity and are mostly in a direction normal to the free stream velocity (Bearman, 1984).

However, research extends further to asymmetric shapes, where the structural symmetry is disrupted. In such
cases, the incidence angle plays a pivotal role in determining the system’s response. Beyond VIV-type responses, these
systems may exhibit galloping or flutter type responses characterized by large amplitude oscillations at low frequencies
(Parkinson and Smith (1964); Paı̈doussis et al. (2010)). Hartog (1932) was the first who proposed his criterion for
galloping of ice-covered cables. Structures with square, rectangular, triangular, or D-shaped cross-sections, among
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others, are particularly susceptible to galloping instability when asymmetry is introduced. Galloping and flutter are
self-excited vibrations in the conventional sense that the vibration exciting force vanishes with the motion (Blevins,
1977). Flutter is an aerospace terminology for coupled torsion-plunge instability of airfoil structures, while galloping
is the term favored by ocean and civil engineers for one degree of freedom instability of bluff structures in wind
or ocean currents (Blevins, 1977). Galloping is driven by the instantaneous incidence angle between the body and
the flow, β = tan−1(ẏ/U∞), producing an asymmetric pressure distribution. Since the amplitude of the oscillation in
galloping and flutter increases continuously with the flow velocity, they could be very catastrophic. A comprehensive
review of investigations into galloping phenomena can be found in Paı̈doussis et al. (2010).

There are no systematic studies on FIVs of pentagonal cylinders, however other polygons such as equilateral
triangular cylinders and square cylinders are widely studied in the literature (e.g. Parkinson and Smith (1964); Obasaju
et al. (1990); Naudascher and Wang (1993); Deniz and Staubli (1997); Alonso et al. (2005); Su et al. (2007); Srigrarom
and Koh (2008); Wang et al. (2011); Nemes et al. (2012); Alonso et al. (2012); Zhao et al. (2013); Alawadhi (2013);
Tu et al. (2014); Zhao et al. (2014); Seyed-Aghazadeh et al. (2017); Li et al. (2019); Chen et al. (2020, 2023)).
Parkinson and Smith (1964) showed the existence of galloping instability in a square cross-section at face orientation
which corresponds to the case where the flat face of the square is placed perpendicular to the flow. Later on, in an
experimental study Bokaian and Geoola (1984) discussed the existence of mixed modes of VIV and galloping in such
structures. Obasaju et al. (1990) conducted an investigation into the flow over square cylinders at various angles of
incidence while experiencing free oscillations in the streamwise direction. The study reported on amplitude-dependent
vortex shedding modes and identified multiple sources of excitation. Wang and Zhou (2005) determined resonance
modes for an elastic square cylinder with fixed supports across a wide velocity range. Nemes et al. (2012) examined
the influence of incidence angle of a square section cylinder on the cylinder’s FIV, where the direction of the vibration
is transverse to the oncoming flow. Their amplitude response analysis showed that the transition between galloping and
VIV occurs over a narrow range of angle of incidence. However, they reported that vortex shedding modes remain very
similar to those found previously in VIV studies. Zhao et al. (2014) later however, doing more precise experiments for
three distinct incidence angles, found a higher branch in FIV response of a square prism. They stated that this higher
branch has caused by a sub-harmonic synchronization between the vortex shedding and the body oscillation frequency
where two cycles of vortex shedding occur over one cycle of oscillation. A numerical study which allowed motion
in both the transverse and streamwise directions, found a similar high-amplitude response regime (Zhao et al., 2013).
Li et al. (2019) studied mode competition in the galloping of a square cylinder in laminar flow. They demonstrated
that at large reduced velocities the wake vortices shed alternately at a relatively high frequency close to the vortex-
shedding frequency of a stationary square cylinder, while the structure oscillates at a relatively low frequency close to
the natural frequency of the structure.

While the FIV of a square prism have been extensively studied, less attention has been focused on the FIV of an
equilateral triangular cylinder. Wang et al. (2014) numerically studied the FIV of a triangular prism at three different
incidence angles i.e. α = 0, 30◦, 60◦ where α = 0 corresponds to corner orientation, where one of the corners is facing
toward the flow, and α = 60◦ to face orientation. They explained that at α = 0, 30◦ VIV with small amplitude could
be observed while at α = 60◦ only galloping is observable. Using a fine increment, they found that the galloping
response occurs when α > 40◦. Zhang et al. (2016) experimentally studied the FIV of a triangular prism in face
orientation. According to the variations of the amplitude and vibration frequency, they divided the responses into
three different regions: VIV region, transition region and galloping region. In the transition region the vibration
amplitude increases rapidly while the vibration frequency drops, deviating from the Strouhal number. Similar results
were also reported in Ding et al. (2015). Seyed-Aghazadeh et al. (2017) carried out an experimental study of a
flexibly mounted triangular prism with low mass ratio allowed to oscillate in the cross-flow direction, covering the
entire range of incidence angles. They explained that for α < 30◦ the prism does not oscillate but for larger values,
two patterns in the response are observed and for values of α > 35◦ the VIV-type and galloping type responses
were connected with no separating distinct regions. Chen et al. (2020) using the immersed boundary method (IBM)
studied the FIV of an equilateral triangular prism in various incidence angles. They found three different response
regimes i.e. VIV dominated, galloping dominated and combined galloping/VIV response. They reported that in the
VIV dominated regime, the vibration amplitude is approximately independent of incidence angle while in galloping
regime the vibration amplitude monotonically increases with reduced velocity. Chen et al. (2023) numerically studied
the effect of mass ratio (m∗) on VIV response of an equilateral triangular cylinder at Re= 200 using IBM. They
explained that at α = 10◦, VIV dominates and increasing m∗ will result in the shrinkage of the large-amplitude
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region, and lock-in moving to higher reduced velocities. At α = 40◦, the response varies with increasing mass
ratio. The response types observed are combined VIV and galloping at m∗ = 2, separated galloping at m∗ = 5, and
wavy galloping at m∗ = 10, 20. Using Dynamic Mode Decomposition (DMD) analysis, they pointed out that the
VIV vortex shedding mode and the galloping vortex shedding mode coexist with the scale of the galloping mode
increasing with increasing amplitude while the VIV mode remains unaffected. In a recent study, Mousavisani et al.
(2024) experimentally studied a flexible equilateral triangular cylinder allowed to oscillate in the cross-flow, inline
and torsional direction in three different incidence angles α = 0, 30◦, 60◦. They stated that in the corner orientation,
both VIV and galloping could be observed in the response amplitude of the cylinder, however in face orientation,
only galloping type responses are observed due to non-synchronised vortex shedding and oscillation frequency of the
cylinder.

There are some studies on flow around stationary polygonal cylinders, including a pentagonal cylinder (Xu et al.,
2017; Wang et al., 2020; Masoudi et al., 2021, 2023; Cheng et al., 2024). However, no specific study has delved
into the FIV of these bluff bodies. To address this research gap, the current study is centered on exploring the FIV
of a pentagonal cylinder (a polygon with side number N = 5) in wind tunnel facilities. For this purpose pneumatic
probes as well as hot wire anemometers has been utilized to measure the flow in the wake of the cylinder. Initially,
the experimental setup is detailed, allowing for the installation of both fixed and oscillating cylinders. Subsequently,
preliminary results regarding the Strouhal numbers of the fixed cylinders are presented and compared with other
numerical and experimental studies. Finally, the oscillatory behaviour of the pentagonal cylinder is investigated at
various incidence angles and compared to a circular cylinder with a similar mass ratio. The present study focuses on
cross-flow FIV only. In complex flow fields with two degrees of freedom systems, optimizing the natural frequency
ratio between the two directions may either enhance or suppress vibration responses. Aligning one or both natural
frequencies with the Strouhal frequency can amplify VIV, although the effect of the cross-flow natural frequency is
typically more significant. Studies by Jauvtis and Williamson (2003, 2004) show that even at very low mass ratios,
in-line oscillation has minimal impact on response branches, forces, and vortex wake modes.

2. Experimental setup and data collection

Most studies in the existing literature employ similar experimental setups to study VIV, typically utilising air
bearings to minimise the damping coefficient (Vandiver, 2012). In contrast, here a novel system that deviates from
the conventional approach is utilised by eliminating the use of bearing systems and associated mass. This alterna-
tive approach helps mitigate potential increases in system damping. Inspired by the Watt linkage system, a unique
mass-spring system is designed for this purpose. The Watt linkage system, named after its inventor James Watt, is
a linkage mechanism widely used in various engineering applications. It consists of a four-bar linkage mechanism
composed of three interconnected bars or links with the fourth bar being the foundation that anchors the links. The
design of the Watt linkage allows for linear motion, without reliance on any sliding elements. The proposed system
allows adjustment of damping and stiffness, although it remains generally linear, with constant values for each test.
Introducing nonlinear factors, such as variable stiffness or damping, could increase the system’s adaptability to vari-
able flow conditions and enhance energy harvesting efficiency (Vandiver, 2012; Garcia and Bernitsas, 2018; Zhang
et al., 2024).

Figure 1 illustrates the the proposed mass-spring system as well as the definition of the incidence angle. The
system incorporates three sets of carbon fiber squares arranged to form the mechanism consisting of a longitudinal
leg positioned at the front and rear of the system, along with a transverse leg situated in the middle. The connection
between these legs is achieved through the use of 0.5 mm thick spring steel flexures. These flexures are used for the
pivots in order to eliminate friction in the system. The system is supported by a rectangular box made of an Item
Aluminium extrusion measuring 40×40 mm, which serves as a sturdy framework and facilitates the connection of
various components. To measure the movement of the cylinder during vibration, a Baumer laser displacement sensor
with a response time of less than 10 ms and an accuracy of approximately ±0.2 mm is utilised. A small piece of rigid
card is attached to the midpoint of the transverse leg, serving as the target for the laser beam. This card is positioned at
a distance of 70 mm from the laser, which falls within the acceptable measurement range of the laser, spanning from
30 mm to 130 mm.

The system can be adjusted for stiffness by adding two springs. To facilitate the attachment of flexures to both
the Items and legs, flexure adaptors are employed. To ensure smooth airflow over the model, a 10 mm thick acrylic
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Figure 1: Schematic of the mass-spring experimental set up based on Watt linkage and the pentagonal cylinder indicating the incidence angle (α)
definition.

panel is connected to the plywood with an additional 8 mm spacer. This configuration allows the internal side of the
test section to be flush, promoting unhindered airflow. A slot is laser cut on the acrylic panel to allow for cylinder
oscillation. However, this slot may contribute to air leakage into or from the test section. To prevent this air leakage,
a transparent cover is specifically designed to fit onto the Item structure. The cover is assembled by utilising various
laser-cut panels, which are securely glued together. Considering the significance of the cylinder’s weight in FIV,
carbon fibre was chosen as the material for manufacturing a pentagonal cylinder. Among the various methods for
producing carbon fibre tubes, the prepreg carbon fibre lamination technique was selected to fabricate the cylinder
in-house. The carbon fiber pentagonal cylinder with Di = 30 mm then was cut to a length of 593 mm for assembly in
the experimental setup. Note that Di refers to the in-circle diameter of the pentagonal cylinder.

Additionally, a circular cylinder with similar diameter D = 30 mm is also supplied for testing alongside the
pentagon. Note that considering the size of the wind tunnel test section, this leaves 1 mm gap between the cylinder
and bottom of the test section. This falls in the gap recommended for VIV experiments (Williamson and Govardhan,
2004) which is Bg = 0.04D. The immersed length to diamter ratio for the cylinders is Ls/D = 18.3, which is similar to
that in the work of Seyed-Aghazadeh et al. (2017) for a polygon with N = 3. Aluminum cylinder inserts, with dowel
holes for incidence angle adjustment, were used to connect the cylinders to the transverse leg in the experimental
setup (Figure 1). The angles on the insert for the pentagonal cylinder correspond to α∗ = 0, 0.2, 0.4, 0.6, 0.8, 1 at
neutral position, where α∗ = α/36. This enables comparison between the experimental findings and the numerical
investigation of the fixed pentagonal cylinder presented in Masoudi et al. (2021, 2023). Note that for an oscillating
polygon, the incidence angle is changing with the motion. The mass ratio of the cylinders are defined as

5



m∗ =
m
md
, (1)

where m is the mass of the cylinder plus other moving parts and md = ρ × Vc is the displaced mass of the cylinder, Vc

is the volume of each cylinder and ρ is the density of air. Based on the designed experimental setup and the cylinders,
the mass ratio m∗ of the system is calculated as m∗ ≈ 744 for the pentagonal cylinder and m∗ ≈ 741 for the circular
cylinder.

The experiments were carried out in the subsonic recirculating wind tunnel facilities at Durham university. The
configuration of the wind tunnel involve a closed-circuit system utilising a belt-driven NICTORA Gebhardt centrifu-
gal fan (ADH-k-1000) to generate fluid pressure. The fan is rated for a shaft input power of 30 kW with air intakes
positioned on opposite sides of the fan. The tunnel includes a honeycomb and a screen in the plenum before contrac-
tion, aiding in achieving minimal flow angularity and high-quality flow uniformity within the test section. The nozzle
features a contraction ratio of 7.1:1 over a length of 1.84 m. The test section within the tunnel measures 550 mm ×
560 mm × 2440 mm in which the flow is capable of reaching speeds up to 45 m/s. The data is acquired using the
National Instruments USB-6218 data acquisition system (DAQ).

The calibration process of devices and instruments used in this study included the calibration of pressure trans-
ducers, the 5-Hole probe, nozzle and the hot wire anemometer. Two sets of pressure transducers used which were
responsible to measure the readings from the taps representing total and static pressure on the wind tunnel as well as
the 5-Hole probe. These were calibrated using a manual liquid silicon based manometer. The nozzle then calibrated
using a pitot-static tube positioned on the test section. The 5-Hole probe calibration is carried out in a dedicated
calibration facility which consisted of a fan connected to a long diffuser and then a nozzle with a diameter of 102 mm
and a traverse that rotates about two axes. A TSI Flow-Point 1500 constant temperature anemometer (CTA) unit is
employed for hot wire measurements. While the 5-Hole probe mostly used for velocities of U∞ > 5 m/s, the hot wire
was used for measuring turbulence where the high frequency measurements are needed or lower velocities where the
dynamic pressure is not high enough. The flow uniformity and angularity was measured using a 5-Hole probe. It was
found that the flow exhibits minimal angularity (±1◦) along the y-z plane and a consistent and uniform behaviour in
the y direction within 1–4% of U∞ across all examined heights. Furthermore, turbulent intensity of the airflow within
the test section was measured using the hot wire anemometer and confirmed to be less than 0.5% in a wide range of
incoming flow velocities in all locations.

3. Results and discussion

3.1. Strouhal number of the fixed cylinders

To facilitate the examination of the fixed cylinders, two blocks were manufactured and utilised in the experimental
arrangement described in Section 2. These blocks were placed within the setup on the both sides of the transverse leg
(see Figure 1) connecting the linkage to the Item. This configuration enables the secure fixation of the cylinder into
position. The spacing between the hot wire probe head and the cylinder was established at 6D. For the pentagonal
cylinder the spacing was 6Di. It should be noted that the hot wire overheat ratio was OHR= 1.7 for all the tests.
The free stream velocity was set to U∞ = 17.5 m/s. This establishes the Reynolds number as 3.5 × 104. Note that
Re= U∞D/ν for circular cylinder and Re= U∞Di/ν for pentagonal cylinder, where ν is the kinematic viscosity of air.
The z plane chosen for the measurements corresponds to the mid-span (z = 0).

Figure 2 (a,b) illustrates the velocity profile Uhw/U∞ and the standard deviation of the velocity U′hw = US T D
hw /U∞

over the range −4 ≤ y/D ≤ 4. It should be noted that the measured velocity Uhw is dominated by x-component of the
velocity u but is influenced by all three velocity components (u, v,w). The familiar bell-shaped velocity distribution
behind the circular cylinders is clearly evident. Additionally, Figure 2 (b) reveals that the maximum unsteadiness
occurs at |y|/D ≈ 0.6. This indicates the location of the strongest vortex shedding in the y-direction, which, as
observed here, should be symmetric for a circular cylinder. Figure 2 (c) demonstrates that the dominant Strouhal
number within the range 0.4 ≤ y/D ≤ 3.8 and −3.8 ≤ y/D ≤ −0.4 falls within the range of 0.2 ≤ St ≤ 0.21. These
values align with those reported in the literature (Williamson, 1996; Xu et al., 2017). The Strouhal number is defined
as St= fstD/U∞ for the circular cylinder and St= fstDi/U∞ for the pentagonal cylinder. Here fst is the vortex shedding
frequency (or Strouhal frequency) based on Uhw signal. Figure 2 (d) illustrates the power density of the Fast Fourier
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Figure 2: (a) Velocity profile (Uhw/U∞), (b) the standard deviation of the velocity (U′hw = US T D
hw /U∞), (c) Strouhal number (St) and (d) the power

of the frequency spectrum in the wake of the circular cylinder at Re= 3.5 × 104 measured over −4 ≤ y/D ≤ 4 and z = 0.

Transform (FFT) of the velocity signal (Uhw) at various y-positions. It is evident that the maximum power density
occurs at approximately |y|/D ≈ 0.6. This peak value corresponds to the y-coordinate where the vortex shedding is
strongest, aligning well with Figure 2 (b).

Similar to the circular cylinder, the pentagonal cylinder is studied fixed into the setup. The aim was to investigate
the Strouhal number on the fixed pentagonal cylinder at different incidence angles and various Reynolds numbers.
For analysing the frequency of vortex shedding, the probe was fixed at z = 0, which corresponds to the mid-span,
and y/Di = 1, equivalent to y = 30 mm and x/Di = 6. After completing the test for one incidence, the incidence
angle on the pentagon was adjusted, and the setup was mounted again to conduct the same test with the new incidence
angle. Incidences corresponding to α∗ = 0 − 1 with ∆α∗ = 0.2 were tested, similar to the numerical study presented
in Masoudi et al. (2023). Note that α∗ = 0 corresponds to corner orientation, while α∗ = 1 corresponds to face
orientation. Figure 3 illustrates the results of these test series.

Firstly, it is evident that the Sts of α∗ = 0.8 and α∗ = 1 are substantially larger than other incidences. This aligns
with findings of the numerical study of Masoudi et al. (2021). The discrepancy could be due to the behaviour of the
separation points and the phenomena of the flapping motion. As described in Masoudi et al. (2021), the separated
shear layers from the Primary Separation Points (PSP), reattach to the surface of the cylinder due to flapping motion of
the separated shear layer and detach again from the downstream corner or Secondary Separation Point (SSP). In this
context, PSP refers to the corner where the flow separate initially from the cylinder and SSP refers to the subsequent
corner from which the flow separates from the cylinder for good. The SSP is the corner downstream of the PSP. This
behaviour of the shear layer is reported for two cases of α∗ = 0.8 and α∗ = 1. This also leads to longer time-mean
shear layer length and weak flapping motion amplitude (Masoudi et al., 2023). Also, as can be seen in Figure 3 (a)
the St remains relatively constant and independent of Re for all α∗s. This behaviour occurs because the separation
points are fixed on the corners of polygonal cylinders (Xu et al., 2017). In subcritical regimes, the variation in vortex
shedding frequency is negligible for polygonal cylinders at their principal orientations (Xu et al., 2017). Figure 3 (a)
confirms that this is the case for all other incidence angles for a pentagonal cylinder. Also includes the test results
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Figure 3: (a) Dependence of St on Re for the fixed pentagonal cylinder in various incidence angles. Also included the results from Xu et al. (2017)
for the case of 5F (corresponding to α∗ = 1) and 5C (corresponding to α∗ = 0); and (b) St comparison between the present experimental study and
numerical results from Masoudi et al. (2021) for the fixed pentagonal cylinder at Re= 104 for various incidence angles.

from Xu et al. (2017) for the 5F case (corresponding to α∗ = 1) and the 5C case (corresponding to α∗ = 0) of the fixed
pentagonal cylinder. It is evident that the results for the 5C case are fairly comparable. However, for the 5F case, the
St found here is slightly higher than those reported in Xu et al. (2017). This however match better with numerical
results presented in Masoudi et al. (2021). To provide a more clear comparison between numerical and experimental
findings, Figure 3 (b) is presented, focusing on Re= 104. As can be observed, the results exhibit a fairly comparable
trend.

3.2. Free decay tests (pluck tests)

3.2.1. Tests with U∞ = 0
The free decay test, also referred to as the pluck test, is a widely employed experimental technique to analyse the

behaviour of a mass-spring systems in VIV studies. In this test, the system is initially displaced from its equilibrium
position and then released to freely oscillate. The subsequent motion is recorded and analysed to determine important
parameters such as the logarithmic decrement and damping coefficient. The logarithmic decrement δ is a measure
of the rate at which the system’s energy dissipates over time (Meirovitch, 2010). It is calculated by determining the
natural logarithm of the amplitude ratio of two successive periods of the oscillations. A higher logarithmic decrement
indicates stronger damping, showing that the system dissipates energy more rapidly, resulting in quicker damping of
its oscillations. Conversely, a lower logarithmic decrement suggests less damping, indicating that the system’s oscil-
lations persist for a longer duration. The damping coefficient ζ, on the other hand, quantifies the amount of damping
in the mass-spring system. It is typically determined using the logarithmic decrement and the known characteristics
of the system, such as the mass and stiffness. By performing free decay tests and calculating the logarithmic decre-
ment and damping coefficient, it is possible to determine the mass damping parameter m∗ζ, which is a crucial and
informative parameter for understanding the VIV of cylinders.

The system damping is obtained by measuring the logarithmic decrement δt, as the cylinder is vibrating in still air,
and can be expressed as (Brika and Laneville, 1995)

δt = δA + δB, (2)

where δB is the base damping of the system which is independent of the vibration amplitude and δA is the portion of δt
that is proportional to the square of the vibration amplitude. δB can be estimated from the recordings of the cylinder
vibrating at small amplitudes. It is made up of the structural damping δ0, and the aerodynamic viscous damping. For
a circular cylinder, this can be written as (Sarpkaya, 1979)
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Figure 4: (a) The pluck test results sample for the circular cylinder at ks = 2182 N/m and (b) the total logarithmic decrement vs. dimensionless
vibration amplitude (Av/D) for the circular cylinder corresponding to pluck tests with ks = 2182 N/m.

δB = δ0 +
ρ

ρs

√
32ν
ωnD2

π

1 − (d/D)2 , (3)

where ωn = 2π fn, d = 27 mm is the internal diameter of the circular cylinder and ρs is the density of the circular
cylinder that is ρs = 4mL/π(D2 − d2), where mL = 0.194 kg/m is the mass per unit length of the circular cylinder.
According to Sarpkaya (1979), structural damping (δ0) may be determined by first vibrating the structure in still air,
at a relatively high frequency (high ks) and at very small amplitudes, so as to determine δB, and then subtracting the
aerodynamic viscous damping through the use of equation 3. For evaluating δB, ks = 2182 N/m is considered which
corresponds to fn = 10.75± 0.05 Hz. The natural frequency of the system was evaluated to be fn = 3.85± 0.05 Hz for
ks = 220 N/m and fn = 8.75 ± 0.05 Hz for ks = 1244 N/m. Figure 4 illustrates the sample test results for pluck test in
still air of the circular cylinder with ks = 2182 N/m and the corresponding δB. Note that as Av/D→ 0, δt = δB. Hence,
δB = 0.0072, determined by an arbitrary exponential fitting curve as illustrated in Figure 4. According to equation 3,
the aerodynamic viscous damping for the circular cylinder is ≈ 1.2 × 10−3 which accounts for ≈ 16.3% of δB. This
means that the structural damping of the system is δ0 = 0.006 and hence ζ0 = 0.000955. This leads to m∗ζ0 = 0.7105
for the pentagonal cylinder and m∗ζ0 = 0.7076 for the circular cylinder. These values are larger than that used in
studies on the square cylinder (Zhao et al., 2014) with m∗ζ0 = 0.0068 and the equilateral triangular cylinder (Seyed-
Aghazadeh et al., 2017) with m∗ζ0 = 0.0526, both conducted in water tunnels. It is well established that lower m∗ζ0
results in a stronger VIV response in general (Khalak and Williamson, 1999; Williamson and Govardhan, 2004). A
comprehensive list of VIV studies with corresponding m∗ζ0 values is available in Williamson and Govardhan (2004)
and Masoudi (2024). It should be noted that the mechanical damping of the system, denoted as cm and ζ are related
as below (Nemes et al., 2012)

ζ0 =
cm

2
√

ks(m + ma)
(4)

where m and ma are the mass and added mass of the cylinder respectively. Added mass usually considered to be near
zero for cylinders oscillating in air. Therefore for the case shown in Figure 4, cm = 5.646 × 10−4 N.s/m. System
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damping for some electromagnetic devices, where damping arises from forces between levitated magnets and induced
coil currents, can also be determined using the free decay test in principle, although specialized testing usually is
necessary to obtain accurate damping coefficients (Pancharoen et al., 2017; Hasani and Rahaghi, 2022). In practice,
environmental factors, for instance biofouling in ocean environment, and fairings could alter system damping and
mass ratio, and consequently the structure natural frequency over time (Kiu et al., 2011; Yu et al., 2015; Xie et al.,
2015; Jadidi and Zeinoddini, 2020).

3.2.2. Tests with U∞ > 0
One way to identify possible energy input from the wind to the cylinders is to carry out pluck tests in incoming

flow velocities, U∞ > 0 and study its effect on damping coefficient. For carrying out pluck tests in flow for the circular
cylinder, three different spring stiffness values were considered. Each of the cases involved ten distinct incoming flow
velocities in a range of 0 < U∞ ≤ 3.5 m/s corresponding to fst/ fn ≤ 4. Since the experiments were at low tunnel
velocities, hot wire anemometer is more accurate than a pressure-based velocity measurement. U∞ was measured at
y/D ≈ 4 and at x/D = 6 before giving the cylinder the initial incitation, while the vibration amplitude was recorded
using the displacement sensor. Note that according to Figure 2, at y/D ≥ 2.5, Uhw ≈ U∞ for circular cylinder. For the
pentagonal cylinder, based on Masoudi et al. (2021) and Wang et al. (2019), the wake width is at most approximately
1.3 times larger than that of the circular cylinder and therefore at y/D ≥ 3.5, Uhw ≈ U∞. The location of the probe
head was also limited based on test section window arrangement and the traverse movability. Four pluck tests were
conducted for each U∞, and the average of measurements was considered as the final result. The standard deviation
of the measurements was typically less than O (1 × 10−4) for ζ.

In contrast to conducting pluck tests in still air (where U∞ = 0), pluck tests performed in flow may not result in the
vibration amplitude reaching zero. To ensure a fair comparison of damping coefficients, two different methods were
employed to calculate ζ. The first method involved calculating ζ within a range of vibration amplitudes Av, while the
second method involved calculating ζ within a range of cylinder vibration velocities (Av fn/D). This approach was
taken to ensure that the conclusions drawn would hold true regardless of the chosen method for calculating ζ. Figure 5
illustrates the results. The solid lines represent the results obtained using the first method, with 0.04 ≤ Av/D ≤ 0.4,
while the dashed line represents the results obtained using the second method, with 1 ≤ Av fn/D ≤ 4. Figure 5 (a)
shows the actual ζ values, while Figure 5 (b) displays (ζ−ζt)/ζt as a percentage value, where ζt represents the damping
coefficient in still air (see equation 2). The horizontal axis in both graphs represents fst/ fn, which is a well-established
parameter in studying VIV (Sarpkaya, 2004).

The results depicted in Figure 5 (a) clearly indicate that as fst/ fn approaches 1, the damping coefficient ζ reaches
a minimum for all cases. This observation holds true regardless of the value of ks or the method used to calculate
ζ. Therefore, it can be concluded that irrespective of the occurrence of VIV on a cylinder, there is an energy input
from the wind to the cylinder when fst/ fn is approximately equal to 1. It is worth noting that the specific incoming
flow velocity associated with this condition varies across different ks cases. Additionally, the precise value of fst/ fn
at which ζ reaches its minimum is slightly above unity (around 1.1). This finding is consistent with numerous other
studies on VIV (Sarpkaya, 2004; Williamson and Govardhan, 2004). Examining Figure 5 (b), it can be concluded that
the data collapses reasonably well when plotted as (ζ − ζt)/ζt. It becomes evident that the maximum reduction in ζ
occurs for the case with ks = 1244 N/m, which amounts to approximately − 63%. This particular case also exhibits
the lowest actual value of ζ according to Figure 5 (a). In terms of the reduction in ζ, the case with ks = 220 N/m shows
the smallest reduction. However, in terms of the absolute values of ζ, the case with ks = 2182 N/m exhibits the highest
values. The structural damping coefficient ζ0 is illustrated in Figure 5 too. It is clear that only a few data points fall
below ζ0, suggesting the highest likelihood of VIV occurrence for those cases. This also suggests that even though the
trends in both method (amplitude bound and vibration velocity bound) to calculate ζ are quite similar, using different
methods could predict different conclusions for VIV occurrence.

The same set of experiments were also carried out for the pentagonal cylinder. According to the results for the
case of the circular cylinder, it was decided to only do the experiments with ks = 1244 N/m. Because this is the case
that led to the lowest value of ζ and highest energy absorption from the flow (lowest (ζ − ζt)/ζt). Also, since both
methods of measuring ζ in Figure 5, had similar trends, it was decided to go ahead with the amplitude bound method
for the pentagonal cylinder. For all of the incidences, a similar vibration amplitude bound of 0.4 ≤ Av/Di ≤ 0.9 is
considered for calculating ζ. It should be noted that the lower bound had to be large enough since in some cases,
consistent vibrations were observed after carrying out the pluck tests. This generally leads to getting higher values
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Figure 5: The pluck test results for the circular cylinder with incoming flow velocities of 0 < U∞ ≤ 3.5 m/s presented as (a) damping coefficient
ζ, and (b) the drop in damping coefficient compared to pluck tests in still air (ζ − ζt)/ζt %. Solid lines are results based on method 1 (amplitude
bound: 0.04 ≤ Av/D ≤ 0.4) and the dashed lines are results based on method 2 (vibration velocity bound:1 ≤ Av fn/D ≤ 4) for calculating damping
coefficient ζ. Three different spring stiffness are considered (ks = 220 N/m, ks = 1244 N/m and ks = 2182 N/m).

for absolute ζ. Similar to the circular cylinder, ten different incoming flow velocities in a range of 0 < U∞ < 5 m/s
corresponding to fst/ fn < 3 were considered for each experiment case (incidence angle). On each velocity, four pluck
tests were carried out and the average values of ζ and fn were considered as the final results. Note that the incidence
angle here, refer to the static incidence angle (when Av = 0). The results are shown in Figure 6. Figure 6 (a) illustrates
the pluck test vibration signal for α∗ = 1 (face orientation) at U∞ = 0.73 m/s. This corresponds to Re≈ 1500 and
fst/ fn ≈ 1.17. The region for which ζ is calculated is plotted as red while it is clear that the vibration signal converge
to a value of Av/Di ≈ 0.1 after many oscillation cycles.

Observing Figure 6 (b,c), intriguing patterns emerge in the behaviour of the damping coefficient. Firstly, since
these results are solely for ks = 1244 N/m, the graphs depicted in (b) and (c) exhibit considerable similarity (opposite
to Figure 5 (a,b)). Secondly, similar to the case of the circular cylinder (Figure 5), as fst/ fn approaches 1 in α∗ = 0, 0.2,
ζ declines. However, in other cases (α∗ = 0.4−1), ζ behaviour is more complex. In the case of α∗ = 0.4, ζ increases as
fst/ fn approaches 1. Nevertheless, it manifests negative (ζ − ζt)/ζt values for the majority of the examined cases. The
behaviour of ζ for α∗ = 0.6− 1.0 is notably similar. Initially, starting from zero velocity, there is a gradual decrease in
ζ until approximately fst/ fn ≈ 0.8. Subsequently, ζ consistently increases with rising incoming flow velocities. The
scenario with α∗ = 1 yields the lowest ζ values (among α∗ = 0.6−1.0 ) at fst/ fn = 1, corresponding to an approximate
16% reduction in ζ compared to ζt. Evidently, among all scenarios, α∗ = 0 and α∗ = 0.2 display the most reduction in
ζ at fst/ fn = 1. For these scenarios, the (ζ − ζt)/ζt ratio reaches -57% and -48% respectively.

Given the relatively high lower bound of Av/Di = 0.4, the calculated damping ratio ζ in Figure 6 is predominantly
influenced by aerodynamic damping components, especially δA, which changes dramatically with increasing vibration
amplitude. Consequently, ζ values tend to be much higher compared to ζ0. In summary, data presented in Figure 5 and
Figure 6 demonstrate that when fst/ fn → 1, there is an energy input to the circular cylinder. For pentagonal cylinder
there is an energy input from the air to the cylinder at fst/ fn → 1 for most cases but specially at α∗ = 0, 0.2.

3.3. Free oscillation tests
To conduct the free oscillating tests, a specific incoming flow velocity (U∞) was set, and the cylinder was allowed

to oscillate freely. Sufficient time was recorded for each case to ensure that the vibration had ample time to develop.
In line with various other VIV studies, such as Brika and Laneville (1993), initial incitation was also applied to assess
its impact on the results. In all cases, identical outcomes were obtained, leading to the conclusion that allowing
enough time for the vibration to develop and stabilize yielded the same results as providing the cylinder with an
initial incitation. The free oscillation tests were carried out for the pentagonal cylinder at six different initial incidence
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Figure 6: The pluck test results for the pentagonal cylinder at different incidence angles and with incoming flow velocities (0 < U∞ < 5 m/s). (a)
is the pluck test vibration signal for α∗ = 1 at U∞ = 0.7 m/s, (b) is the damping coefficients ζ, and (c) is the drop in damping coefficient compared
to pluck tests in still air (ζ − ζt)/ζt %. ks = 1244 N/m and 0.4 ≤ Av/Di ≤ 0.8 for calculating ζ.

angles and for the circular cylinder. The spring stiffness was set to ks = 1244 N/m, consistent with the stiffness used
in pluck tests with the flow. For each case, several values of U∞ were considered to ensure that the tests adequately
covered both the VIV and galloping regimes. The results of the free oscillation tests are presented in Figure 7, where
U∗ = U∞/ fnD for the circular cylinder and U∗ = U∞/ fnDi for the pentagonal cylinder. Note that Re varies in all
tests with U∗, and the lock-in region (and its corresponding Re) is governed by fn. For the circular cylinder with low
m∗ζ, Re has a significant effect (Bearman, 2011). The influence of Re on the circular cylinder with high m∗ζ and on
polygonal cylinders requires further investigation.

The dimensionless amplitude is defined as A∗ = Av/Di for the pentagonal cylinder and A∗ = Av/D for the circular
cylinder with Av being the averaged vibration amplitude in many vibrations cycles. Note that in galloping for the
pentagonal cylinder, a mean value was observed in the vibration amplitude response in off-principal orientations, and
was deducted from Av. The VIV and galloping regions (Blevins, 1977) can clearly be identified in Figure 7. In the
following subsections VIV and galloping behaviour of the cases in Figure 7 are discussed.

3.3.1. VIV responses
The VIV response for the pentagonal cylinder in various initial incidence angles can be observed in Figure 7 at

U∗ ≈ 5 − 10, which corresponds to fst/ fn ≈ 1 for St= 0.1 − 0.2. Notably, the circular cylinder experiences VIV with
a maximum amplitude of A∗max = 0.04. This corresponds to U∗ = 6.41, which aligns with fst/ fn = 1.04. This A∗max
is significantly smaller than ones reported in other VIV studies conducted in wind tunnels (Feng, 1968; Brika and
Laneville, 1995), probably due to higher m∗ζ0 used in this study. Moreover, as evident from the results, the circular
cylinder does not experience galloping, which is not surprising. According to the definition of galloping, only non-
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Figure 7: Free oscillating test results for the pentagonal cylinder (m∗ζ0 = 0.7105) as well as the circular cylinder (m∗ζ0 = 0.7076) at ks = 1244 N/m
in various incoming flow velocities (0 < U∞ < 35 m/s)

circular cross sections are susceptible to this phenomenon (Paı̈doussis et al., 2011). Figure 7 also provides insight into
the influence of initial incidence angles on VIV and galloping for a pentagon. The A∗max values (VIV) for incidences
ranging from α∗ = 0 to α∗ = 1 are 0.25, 0.32, 0.24, 0.17, 0.01, and 0.1, respectively. Notably, these values do not
exhibit a monotonic relationship with respect to α∗. The corresponding U∗ values for these peak values are 9.51, 8.94,
7.43, 6.27, 7.64, and 3.5, respectively. These values primarily align with the Strouhal frequencies, confirming that
A∗max occurs when fst/ fn ≈ 1. Figure 7 includes a zoomed in graph which provides a frequency domain representation
of the results for the lock-in region. It is evident that the graphs converge around fst/ fn ≈ 1, indicating a collapse
of the responses. It is clear that due to the limited resolution of the wind tunnel facility, only a few data points with
high amplitude responses are available for each case. The width of the lock-in region appears narrow in all cases,
potentially attributed to the relatively high m∗ζ0 of the system (Khalak and Williamson, 1997).

Upon comparing the FIV data presented in Figure 7 to Figure 6, one can observe a connection between the
behaviour of VIV and the damping coefficient ζ. Firstly, the occurrences of A∗max coincide with cases where ζ is
minimal. The cases of α∗ = 0 and α∗ = 0.2 which had the lowest ζ and lowest (ζ − ζt)/ζt, show the highest maximum
VIV amplitude response. Additionally, the case of α∗ = 0.8, which exhibits the highest (ζ − ζt)/ζt for most fst/ fn
values, demonstrates negligible VIV response amplitudes. It is also noticeable that according to Figure 6, while α∗ = 1
exhibits lower ζ compared to α∗ = 0.4 and α∗ = 0.6, it possesses a smaller A∗max. This could be due to using a large
lower amplitude bound Av/Di = 0.4 for calculating ζ in Figure 6. In high vibration amplitudes, the δA term of the
total damping (which is a function of incidence angle) is dominant (Equation 3) and therefore the energy input is not
large enough to overcome it. Coming to lower vibration amplitudes δA falls dramatically, and the energy input to the
cylinder is large enough to overcome the damping and hence larger vibration amplitude could be observed.

As described in section 3.2, the mass damping parameter for the circular cylinder is calculated as m∗ζ0 = 0.7076.
This value surpasses the values reported by Feng (1968) as well as many other studies conducted in water channels.
As described in Williamson and Govardhan (2004), the mass damping parameter plays a critical role in achieving high
amplitude responses for VIV. Lower mass damping parameters result in higher amplitude responses, and vice versa, a
relationship known as the Griffin plot. The Griffin plot is illustrated in Figure 8 (a). Here the Skop-Griffin parameter
is defined as (Skop and Griffin, 1975)

S G = 2π3St2m∗ζ0 (5)

The best fit for the Griffin plot is proposed by Sarpkaya (1978) as A∗max = C1/
√

C2 + S 2
G where C1 = 0.385

and C2 = 0.120. As it is clear in Figure 8 (a), this fit is not reliable in very low S G values. Figure 8 (b) proposed
by Williamson and Govardhan (2004) also demonstrate how data could collapse better (only in low S G) by plotting
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Figure 8: (a) The Griffin plot and (b) the mass damping parameter graph presented in Williamson and Govardhan (2004) both for maximum VIV
response amplitude. The x-axis in both graphs are log scaled. The fitting relationship for the Griffin plot is adopted from Sarpkaya (1978). Also
presented the data from Williamson and Govardhan (2004) for tests in water and air for various circular cylinders alongside the data from Khalak
and Williamson (1999); Govardhan and Williamson (2000); Griffin (1980); Feng (1968) for circular cylinders with various m∗ζ0. Data from other
studies concerning VIV in polygonal cylinders: Zhao et al. (2014) the case of α∗ = 0 (corner orientation) of a square cylinder; Seyed-Aghazadeh
et al. (2017) the cases of α∗ = 0, 0.16, 0.25, 0.33, 0.41, 0.5, 0.58 for an equilateral triangular cylinder and Yang et al. (2024) for the the case of
α∗ = 0 for a polygon with 18 sides. The results from this study are marked as for the pentagonal cylinder and ⊕ for circular cylinder.

against (m∗ + CA)ζ0 where CA is the potential added mass coefficient of the cylinder. In Figure 8 the results from
this study is plotted alongside some other studies in literature on circular and polygonal cylinders. In Figure 8 (a) the
data provided by Williamson and Govardhan (2004) are presented for tests carried out in water and air. In Figure 8
(b) the data presented by Khalak and Williamson (1999); Govardhan and Williamson (2000); Griffin (1980) and Feng
(1968) pertains to circular cylinders under various mass-damping conditions. Additionally, Figure 8 depicts data from
other studies concerning VIV in polygonal cylinders with different orientations. Specifically, from Zhao et al. (2014)
results are for the case of α∗ = 0 (corner orientation) of a square cylinder, from Seyed-Aghazadeh et al. (2017) results
are for the cases of α∗ = 0, 0.16, 0.25, 0.33, 0.41, 0.5, 0.58 for an equilateral triangular cylinder and from Yang et al.
(2024) results are for the the case of α∗ = 0 for a polygon with 18 sides. Note that incidences presented from Zhao
et al. (2014), Seyed-Aghazadeh et al. (2017) and Yang et al. (2024) are reported to be VIV dominated. The cases
of α∗ = 0, 0.16, 0.25, 0.33 from Seyed-Aghazadeh et al. (2017) are corresponding to A∗ ≈ 0. Note that in Figure 8,
Di is used for polygons as the characteristic length in A∗max and St, also all incidence angles were adjusted based on
the definition in this study. The added mass coefficient for the triangular and square cylinders were considered as
CA = 1.5, 1.4 respectively (Zhao et al., 2014; Seyed-Aghazadeh et al., 2017) while for the other cases CA = 1. For the
cases in this study, since m∗ is very high, CA would only have a negligible effect.

While Figure 8 (b) approximately predicts the A∗max of the circular cylinder presented here, Figure 8 (a) suggests
that it is notably lower compared to other data points. Additionally, for the pentagon, while α∗ = 0, 0.2, 0.4, 0.6, 1
align reasonably well with the data points in Figure 8 (a), the case of α∗ = 0.8, characterized by minimal observed
VIV, diverges significantly from the predicted values. It is evident that the Griffin plot and the mass-damping graph,
originally intended for circular cylinders, and may not be suitable for evaluating VIV performance in polygons. For
instance, Seyed-Aghazadeh et al. (2017) showed that in α∗ = 0, 0.16, 0.25, 0.33, no noticeable VIV can be observed
for an equilateral triangular prism while log(S G) < 1 for these cases. Notably, the mass-damping graph (Figure 8
(b)) fails to consider cylinder orientation/Strouhal number effect. While such considerations may not be critical for
circular cylinders, they are imperative for polygons like the pentagonal cylinder, where m∗ζ0 remains constant across
all incidences despite vastly differing VIV behaviour.

According to Figure 7 it is remarkable that despite the high m∗ζ0 value, noticeable VIV responses were captured
for the pentagonal cylinder, with A∗max reaching as high as 0.3. Based on Figure 8 (b) for the pentagonal cylinder
where m∗ζ0 ≈ 0.7, the A∗max should be approximately 0.06. This discrepancy can likely be attributed to differences
in separation behaviour between polygonal and circular cylinders. In circular cylinders, flow separation occurs due
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Figure 9: VIV signal for the pentagonal cylinder at α∗ = 0.2 in (a) U∗ = 4.5, (b) U∗ = 8.2 and (c) U∗ = 8.9. The FFT power is illustrated for each
case in (d,e,f). P′f = P f × 10−5, f ∗ = fv/ fn and t∗ = tDi/U∞

to the adverse pressure gradient when the surface is curved, leading to a negative velocity gradient on the surface.
However, in polygonal cylinders with sharp corners (small enough N values), separation always occurs at the corners,
and it seems that the separated boundary layer possesses greater strength Masoudi et al. (2021). This could explain
the observed flapping motion in the separated shear layers of polygonal cylinders, while it is not commonly reported
for circular cylinders (Masoudi et al., 2023). Stronger separated shear layers correspond to stronger vortex shedding,
which, in turn, promotes the onset of VIV. Polygons (especially with low side numbers) however, undergo galloping
which could interact with VIV in low U∗ values. This means having stronger shear layer strength does not necessarily
lead to higher VIV amplitudes.

Figure 9 depicts the VIV vibration amplitude for the pentagonal cylinder at α∗ = 0.2 for three different U∗ values.
The parameters P′f and f ∗ are defined as P′f = P f × 10−5 and f ∗ = fv/ fn, respectively. Here, P f represents the
FFT spectrum of the vibration signal, and fv corresponds to the vibration frequency. In Figure 9 (a) and (d), where
U∗ = 4.5, no noticeable vibration is observed in the cylinder’s behaviour, and there is no dominant frequency evident
in the FFT spectrum of the signal. Moving on to Figure 9 (b) and (e), at U∗ = 8.2, a small amplitude vibration is
observed on the cylinder, resulting in the emergence of a dominant frequency. Subsequently, in Figure 9 (c) and (f), at
U∗ = 8.9, a large amplitude vibration is evident on the cylinder. Notably, the corresponding P f value is significantly
higher than that at U∗ = 8.2, indicating a greater strength of vibration in this case. It is worth noting that in Figure 7, it
was demonstrated that during large amplitude vibrations, fst/ fn ≈ 1. Similarly, in Figure 9, it is shown that this region
also corresponds to f ∗ = fv/ fn ≈ 1. This alignment between frequencies is a typical observation in VIV studies,
where the three frequencies ( fst, fv, and fn) exhibit synchronization (lock-in) with each other.

The incidence angle of the pentagonal cylinder is not constant during VIV. Development of VIV on the cylinder
results in forming a cylinder velocity normal to the flow and therefore the resultant flow velocity is changing in
magnitude and direction at each point of the vibration cycle. The VIV signal presented in Figure 9 can be expressed
as y = Av sin (ωvt + ϕ), in which ωv = ωn is the vibration angular frequency and ϕ is the phase angle. Therefore, the
cylinder velocity in reduced form can be expressed as V∗ = V/ fnDi = Avωv cos (ωvt + ϕ) / fnDi. This then can be used
to evaluate the instantaneous incidence angle as
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Figure 10: (a) Instantaneous incidence angle (α∗i ) and (b) reduced normal to flow velocity (V∗ = Avωvcos(ωvt + ϕ)/ fnDi) for the VIV signal of the
pentagonal cylinder at α∗ = 0.2 when U∗ = 8.9.

α∗i = α
∗ +

180
π

tan−1
(

V
U∞

)
, (6)

The instantaneous incidence angle for the pentagonal cylinder undergoing VIV at α∗ = 0.2 and U∗ = 8.9, that is
displayed in Figure 9 (c), is illustrated in Figure 10 (a). The cylinder velocity normal to the flow is also presented in
Figure 10 (b). It is obvious that the α∗i and V∗ are in phase and both have π/2 phase difference to the vibration signal
(Figure 9 (c)). When the cylinder is at its maximum amplitude A∗t = A∗max ≈ 0.33, the V∗ ≈ 0 and α∗i ≈ 0.2. Also, it
can be seen that the average V∗ is zero while the average α∗i is α∗ = 0.2. Figure 10 is important since it determines how
the incidence angle changes during vibration, which in turn gives information about the flow, considering flow around
fixed cylinders. For the case presented in Figure 10, one can conclude that 0 ≤ |α∗i | ≤ 0.5. According to Masoudi et al.
(2023) the strength of the flapping motion of the separated shear layers is a monotonic function of α∗ in pentagonal
cylinders with maximum occurring for α∗ = 0. This in particular means that the cases with initial incidence angles
of 0, 0.2 in this study have instantaneous incidences in a range where flapping motion of the separated shear layer
is generally high, and this could be the reason why these two cases have maximum VIV amplitude too. Conversely,
evaluating α∗i for the cases of α∗ = 0.8, 1 shows that α∗i mostly falls in a range where the shear layer flapping motion
is minimum and hence the maximum VIV amplitudes for these cases are small.

Figure 11 (a) illustrates the variation of various parameters with respect to the initial incidence angle for the
pentagonal cylinder. A∗max values are extracted from Figure 7, while the lift coefficient CL and its root mean square
(CL,rms) for a fixed pentagonal cylinder are obtained from the numerical study of Masoudi et al. (2023). The theoretical
value for A∗max of a circular cylinder, CL,rms/2S G, is also plotted alongside other parameters using CL,rms and S G of a
pentagonal cylinder. It is evident that all parameters exhibit non-monotonic behaviour with respect to α∗. CL,rms/2S G

follows a similar trend to A∗max and CL,rms, reaching its maximum at α∗ = 0.2. At α∗ = 0.8 and α∗ = 1, the lowest values
of CL,rms and CL,rms/2S G are observed. This is reflected in the experiments, where these incidence angles correspond
to the lowest A∗max. The behaviour of CL,rms for α∗ ≥ 0.2 is monotonic, while A∗max experiences another increase
at α∗ = 1. Considering previous studies on polygonal cylinders (Zhao et al., 2014; Seyed-Aghazadeh et al., 2017),
it becomes evident that cases corresponding to face orientation (α∗ = 1) are consistently reported to be galloping
dominated. Zhao et al. (2014) demonstrated that in some incidence angles for the square cylinder, vibrations at low
U∗ could be a combination of galloping and VIV. Having this in mind and assuming that the case of α∗ = 1 is
galloping dominated, one can find better data correlation in the results, as depicted in Figure 11 (b). It is evident that
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Figure 11: (a) The lift coefficient CL and CL,rms for a fixed pentagonal cylinder, the present A∗max and evaluated CL,rms/2S G in various incidence
angles α∗ (b) the fitting relationship between CL,rms and A∗max and (c) the fitting relationship between shear layer penetration length (xδ) and flapping
motion strength (Λ) for a fixed pentagonal cylinder with A∗max. Data for fixed pentagonal cylinder are taken from numerical study on polygonal
cylinders (Masoudi et al., 2023)

by assuming A∗max ≈ 0 for α∗ = 1, A∗max could be calculated as follows:

A∗max =
CL,rms − 0.314

2.7
, (7)

As explained above, the behaviour of vortex shedding and the separated shear layers could have direct impact
on the VIV behaviour of the cylinder. Masoudi et al. (2023) showed that the separated shear layer strength for
a pentagonal cylinder is maximum when α∗ = 0, 0.2. They also showed that the shear layer strength only drops
dramatically when α∗ = 0.8, 1. While the α∗ could change during VIV, it can be shown that for α∗ = 0, 0.2, the α∗i
envelope mostly stays in a range corresponding to high seperated shear layer strength (see Figure10). Stronger vortex
shedding should result in higher fluctuations in lift and therefore higher forces on the cylinder. This could result to
higher VIV amplitudes. To examine this, Figure 11 (c) is illustrated. Here, xδ is the shear layer penetration distance
which can be calculated by choosing a vorticity threshold (ωzDi/U = 3) in the time averaged spanwise vorticity field
of a fixed cylinder. Also, Λ is the shear layer flapping motion strength quantified by the energy content of the spectrum
peak X( fd) where X( f ) is the energy spectrum (arbitrary unit) of fluctuating streamwise velocity component u′(t) as
below

Λ =
1

U∞

∫ fd+∆ f

fd−∆ f
X ( fd) d f , (8)

where ∆ f Di/U∞ = 0.02. Both xδ and Λ are taken from the numerical study on fixed polygons (Masoudi et al., 2023).
It is clear from Figure 11 (c) that increasing Λ results in an exponential increase in A∗max while increasing xδ results
in lowering the A∗max. The data collapse better with the arbitrary fitting functions assuming that the case of α∗ = 1 is
galloping dominated and A∗max ≈ 0. Figure 11 (c) simply states that having shorter separated shear layers results in
more energy content in the flapping motion and that results in higher A∗max. Figure 12 shows the space-time contours
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Figure 12: Space-time contours of the dimensionless spanwise vorticity ωzDi/U at x = 0.6Di and −1 ≤ y/Di ≤ 1 for a fixed pentagonal cylinder at
mid-span. Here (a-f) corresponds to α∗ = 0, 0.2, 0.4, 0.6, 0.8, 1 respectively. Data for fixed pentagonal cylinder are taken from numerical study on
polygonal cylinders (Masoudi et al., 2023)

of the mid-span vorticity ωzDi/U for a fixed pentagonal cylinder at α∗ = 0 − 1 corresponding to (a-f) respectively.
Data is sampled temporally over the range after the wake is fully developed, and spatially over −1 ≤ y/Di ≤ 1, and at
x = 0.6Di, the streamwise distance before vortices roll up and detach from the shear layer in a time mean sense for
all cases (Masoudi et al., 2021). For the case of α∗ = 0.2 undergoing VIV at U∗ = 8.9 (see Figure 9), 0 ≤ α∗i ≤ 0.5
as shown in Figure 10. Here in Figure 12 it can be seen that the separated shear layer has highest fluctuations in these
cases for the fixed pentagonal cylinder. Figure 12 also shows that the amplitude of the shear layer flapping motion
decreases as α∗ increases with minimum amplitude for α∗ = 0.8 and α∗ = 1. This could justify why the cases of
α∗ = 0.8, 1 exhibit the lowest maximum VIV amplitudes. These cases have more stable shear layers with less flapping
motion of the separated shear layer as shown in Figure 12 (e,f).

3.3.2. Galloping responses
By examining the galloping responses in Figure 7, it becomes evident that the amplitude response exhibits a linear

relationship with respect to U∗. However, the gradients of these lines are relatively small, generally ≤ 0.002. This
could be attributed to the high mass damping ratio of the system. Moreover, it is noticeable that the gradients of the
lines are quite similar, with only slight variations among different incidences. In most tested velocities, the symmetric
cases of α∗ = 1 and α∗ = 0 demonstrate the lowest galloping amplitudes. The slope of the galloping response is
comparatively larger for α∗ = 0.8 and α∗ = 0.6. It is generally expected to observe higher galloping amplitudes for
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Figure 13: (a) Galloping response amplitude A∗ for the pentagonal cylinder in various incidence angles and spring stiffness and (b) the correspond-
ing frequency ratio f ∗ = fv/ fn. Red, blue and brown markers correspond to ks = 220 N/m, ks = 1244 N/m and ks = 2182 N/m.

asymmetric cases compared to symmetric cases, since the asymmetry in the cross-section allows for the generation of
unbalanced fluid forces, promoting the galloping.

The galloping response of the pentagonal cylinder can be further examined by varying the spring stiffness. Fig-
ure 13 illustrates the galloping response amplitude A∗ for the pentagonal cylinder at different incidence angles and
corresponding frequency ratios f ∗ = fv/ fn. Three different spring stiffness values are used for each incidence angle,
represented by the red (ks = 220 N/m), blue (ks = 1244 N/m), and brown (ks = 2182 N/m) markers in Figure 13. The
closest linear fit for each incidence angle is also demonstrated in this Figure. It is evident that decreasing the spring
stiffness results in larger galloping response amplitudes. This can be attributed to the weaker restoring force provided
by the spring. With a lower spring stiffness, the lift force from the fluid flow can more easily overcome the weakened
restoring force, leading to larger amplitude oscillations. This observation is consistent with the understanding that a
weaker spring allows for a greater displacement of the structure and a more pronounced fluid-structure interaction.

Similar to Figure 7, it can be observed that the incidence angle α∗ = 0.8 exhibits the highest galloping responses,
while α∗ = 0 and α∗ = 0.2 show the lowest responses. Previous research by Nemes et al. (2012) indicates that for a
square cylinder, galloping becomes dominant for incidence angles α∗ > 0.8, with no VIV observed even at very low
U∗ values. In the case of a pentagonal cylinder in this study, a similar trend is observed for α∗ = 0.8, where no VIV
is noticeable. However, in contrast to a square cylinder, the behaviour for the pentagonal cylinder is non-monotonic,
with VIV dominating at α∗ = 1. It is however, shown in Section 3.3.1 that the VIV data collapse better with data from
fixed cylinders if the VIV amplitude for α∗ = 1 is zero. Furthermore, Figure 13 (b) reveals that, similar to VIV, the
frequency ratio f ∗ for galloping is approximately equal to 1. This observation aligns with previous studies (Bearman
et al., 1987; Parkinson, 1989), confirming that f ∗ ≈ 1 for galloping. It is important to note that unlike VIV, fst/ fn is
not unity. The galloping amplitude increases linearly with increasing flow velocity, and the slope of this relationship
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Figure 14: Galloping signal for the pentagonal cylinder at α∗ = 0.2 where U∞ = 25.5 m/s (a) ks = 220 N/m, (b) ks = 1244 N/m and (c) ks = 2182
N/m. The FFT power is illustrated on the left for each case in (d,e,f). P′f = P f × 10−5.

depends on the cross-section geometry, mass damping parameter, and spring stiffness.
Figure 14 depicts the galloping vibration amplitude for the pentagonal cylinder and α∗ = 0.2 at three different U∗

values. The incoming flow velocity for all the cases is U∞ = 25.5 m/s. The spring stiffness are (a) ks = 220 N/m, (b)
ks = 1244 N/m and (c) ks = 2182 N/m. One noticeable difference between Figure 14 and Figure 9 is the shape of
the signal. In Figure 9, the signal appears clean with minimal noise or response overshoot. Conversely, in Figure 14,
the signal demonstrates a higher level of noise with significant variation in A∗t . This difference can be attributed to
the nature of VIV, which typically occurs at lower velocities with lower turbulence levels. In galloping, the vortex
shedding frequency fst moves in and out of phase with the vibration frequency fv, which can result in variation in A∗t .

Another observation, particularly evident in Figure 14 (a), is that during galloping, the signal exhibits a non-zero
mean value. This is a result of the asymmetric cross-section of the polygon in this orientation, which causes a non-
zero lift to be applied to the cylinder. The mean value approaches zero as the spring stiffness increases, as seen in
Figure 14 (b) and (c). Additionally, Figure 14 demonstrates how increasing the spring stiffness (ks) leads to a decrease
in the galloping response amplitude (while increasing the vibration frequency). This behaviour can be understood as
a consequence of the stronger restoring force provided by the stiffer spring, which resists the displacement caused by
the fluid forces and reduces the amplitude of the galloping motion. On the right-hand side of the signals in Figure 14
(d), (e), and (f), the corresponding vibration frequencies are illustrated. These vibration frequencies align with the
natural frequency of the system. However, as the signal weakens due to the increased spring stiffness (ks), the FFT
power decreases, which is not surprising.

4. Conclusions

This study presents experimental investigations into vortex-induced vibration (VIV) and galloping phenomena
in oscillating cylinders, specifically the circular cylinder and the pentagonal cylinder both having a mass damping
parameter of m∗ζ0 ≈ 0.7. A low-damping mass-spring system was designed to capture these phenomena in the
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transverse (cross-flow) direction within a recirculating wind tunnel. The following conclusions can be drawn from
this study:

• Firstly, Strouhal numbers was determined for flow around the circular cylinder and the pentagonal cylinder at
six incidence angles, both in fixed position. Results are found to be consistent with previous experimental and
numerical studies.

• The pluck tests with incoming flow velocity U∞ > 0 showed complex behaviour. It was observed that at U∞
corresponding to fst/ fn ≈ 1, a drop in the value of the damping coefficient (ζ) is noticed, indicating energy input
from the airflow to the mass-spring system. For the circular cylinder, this drop was most significant when the
spring stiffness was 1244 N/m compared to other stiffness values tested in this study (220 N/m and 2182 N/m).
For the pentagonal cylinder, the pluck tests resulted in ζ drop in some incidences at U∞ corresponding to
fst/ fn ≈ 1, while in other cases, an increase in ζ was observed.

• In free oscillation tests, it was found that the circular cylinder exhibited VIV with the maximum amplitude
A∗max = 0.04, consistent with the predicted value based on the mass damping plot. For the pentagonal cylinder,
both VIV and galloping were observed for most incidence angles, with VIV amplitude reaching up to A∗max =

0.33 in some cases. This highlights the potential of using the pentagonal cylinder as an option to harvest flow
energy.

• The galloping behaviour of the pentagonal cylinder was also investigated for various spring stiffness values, ks.
As expected, galloping amplitude increased as the ks value decreased. Additionally, the dominant frequency in
the galloping spectrum matched the natural frequency of the system in all cases, while the Strouhal frequency
was generally much larger than both. This behaviour contrasts with VIV, where the Strouhal frequency fst,
natural frequency fn, and vibration frequency fv align.

• The vibration signals in galloping mode exhibited higher noise levels, likely due to more turbulence at higher
flow velocities or to the asynchronous interaction of vibration frequency with vortex shedding frequency. VIV
signals remained relatively clean.
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