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Predicting effective quenching of stable pulses in slow-fast excitable media
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We develop a linear theory for the prediction of excitation wave quenching—the construction of minimal
perturbations which return stable excitations to quiescence—for localized pulse solutions in models of excitable
media. The theory accounts for an additional equivariance compared to the homogeneous ignition problem, and
thus requires a reconsideration of heuristics for choosing optimal reference states from their group representation.
We compare predictions made with the linear theory to direct numerical simulations across a family of perturba-
tions and assess their accuracy for several models with distinct stable excitation structures. We find that the theory
achieves qualitative predictive power with only the effort of continuing a scalar root, and achieves quantitative
predictive power in many circumstances. Finally, we compare the computational cost of our prediction technique
to other numerical methods for the determination of transitions in extended excitable systems.
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I. INTRODUCTION

In the simplest case, ventricular and atrial cardiac tissues
are modeled as a continuous excitable medium, and fibril-
lation is understood as a chaotic excitation driven by the
presence of several interacting electrical excitation waves.
Since fibrillation lowers the efficacy of the heart at moving
oxygenated blood, it is imperative that the normal rhythm
is restored, i.e., through defibrillation. During defibrillation,
an electric field is imposed across the tissue to recruit new
excitations from repolarized—excitable—tissue regions. New
excitations destructively interfere with some proportion of
the extant excitation wave fronts, thus reducing the pro-
portion of tissue which is fibrillating. To completely halt
fibrillation, multiple pulses are applied with a particular de-
lay, which lowers the energy requirement both per-pulse and
overall, while maintaining efficacy [1,2]. In this sense, the
quenching of excitation waves in fibrillation is considered
in terms of ignition—the creation of new excitations; the
electric field is applied to the whole tissue, and is only ef-
fective for the repolarized regions—a relative minority of the
overall tissue during the initial phase of defibrillation. Devel-
oping techniques which can accurately predict the outcome of
direct intervention into the propagation of excitation waves—
quenching—may reveal potential for improving the efficacy
of defibrillation techniques by affecting the depolarized re-
gions of the tissue. The brute-determination of quenching for
excitation waves is untenable, and thus this study aims to
determine whether similar semianalytical linear techniques
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to those employed in the prediction of ignition for excitable
media may be used for the prediction of quenching.

If cardiac arrhythmia is understood as the presence of
undesirable excitations in the heart muscle, then the devel-
opment of defibrillation techniques are targeted investigations
of quenching in a specific context (i.e., cardiac arrhythmia
with uncertain states). The literature covering suppression of
electrical excitation waves in cardiac tissue is vast, cf. Ref. [3]
and citations therein. Numerous methods are presented in
the mathematical—rather than medical—literature, as well
[1,4,5], focusing on the transience of the fibrillating state.
The suppression of stable traveling waves in low-dimensional
settings is less well-studied. Reference [6] investigated the
quenching (“successful suppression”) of stable pulses in
slow-fast excitable media through the application of time-
dependent control to the slow variable; they formalize this
approach as the imposition of a lag on the wavefront such that
the distance between the wavefront and the waveback of the
excitation shrinks to zero in finite time. This approach makes
intuitive sense, and reflects one of the dominant pathways for
wave break observed in models of cardiac electrical excitation
[7]. However, this approach relies on the application of control
to components of the state which are typical inaccessible—
i.e., the ionic gates of the cells, rather than the potential across
the cellular membrane—and may over-suppress for models
with realistic dissipation of waves expected to be relevant for
cardiac electrical excitations [8,9]. Semianalytic techniques
which incorporate details of the underlying physics typically
improve efficiency over general numerical approaches by spe-
cializing to a particular mechanism [10].

Phenomenological and detailed ionic models of excitable
media possess, at minimum, a stable rest state ū represent-
ing the quiescent state to which unstimulated tissue relaxes.
Given the application of a sufficiently large (in amplitude
and extent) perturbation to that rest state, the medium locally
excites and extends the excited region by recruiting the energy
stored in the quiescent excitable medium ahead of the front. In
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mathematical models, these fronts may persist indefinitely, or
the medium may recover in finite time so that the front devel-
ops into a localized pulse which transiently recruits the energy
of the medium. Front or pulse solutions are center-stable
traveling wave solutions of the underlying partial differen-
tial equation (PDE) model of the medium dynamics, and
the minimal perturbation which stably transitions the system
from the rest state to the excited state is the critical ignition
perturbation. Likewise, the minimal perturbation which stably
transitions the system from the excited state to the rest state is
the critical quenching perturbation.

Throughout this study, models of excitable media will take
the form of a reaction-diffusion PDE,

∂t u − D∂2
x u = f (u), (1)

where u = [u1, . . . , um](t, x) and f = [ f1, . . . , fm]. The reac-
tion term f encodes the change in the state of a cell in terms
of the electrical potential across the cellular membrane—the
transmembrane potential u1—and the activation and inacti-
vation of the ionic gates in the cell u2, . . . , um restricting or
enabling the flow of ionic currents, e.g., sodium and potassium
ions. The diffusion term is modulated by D = diag(1, 0, . . . )
to restrict diffusion to the transmembrane potential—the fast
component—u1, requiring that the remaining components are
nondiffusive. By contrast, the slow components u2, . . . , um are
typically inhibitory, and they represent the ability of a cell to
be excited—refractoriness.

The excitable system has a unique spatially uniform rest
state denoted ū, which satisfies f (ū) = 0, from which the ig-
nition of excitations has been investigated previously [10–18].
The uniform rest state is said to be quiescent and corresponds
to a state in which the tissue or cell is able to be excited;
driving fibrillating tissue toward this state is desirable, as it
permits the reassertion of the normal rhythm [3]. In a frame
moving with speed c, Eq. (1) becomes

0 = Du′′ + cu′ + f (u), (2)

where u′ = du/dξ , and ξ = x − ct . For sufficiently large do-
mains, two solutions of Eq. (2) persist for c > 0, with the
slower (c = ĉ < č) corresponding to an unstable traveling
wave solution (û) and the faster (c = č > ĉ) corresponding to
a stable traveling wave solution (ǔ) [19]. When the slow wave
has a single unstable mode, the center-stable manifold sepa-
rates the stable rest state from the stable wave configuration in
the whole state space.

Linearizing about the stable wave solution provides min-
imal dynamical information—the leading mode corresponds
to the equivariance of the state, and the rest are contract-
ing. Linearizing about the unstable wave solution defines the
comoving-frame operator L(û, ĉ), with left and right eigen-
modes satisfying

v̂iσi = L(û, ĉ)v̂i, ŵ†
jσ

∗
j = L†(û, ĉ)ŵ†

j , (3)

such that the left eigenfunctions (ŵi) are the unique projec-
tors of the right eigenfunctions (v̂i). Though the solutions
of Eq. (3) are formally scale-free, the left and right sets of
eigenfunctions satisfy a biorthogonality condition defined by
the inner product, δi j = 〈ŵ j |v̂i〉 = ∫ +∞

−∞ dξ ŵ†
j (ξ )v̂i(ξ ). The

eigenvalues, σi, determine the growth of each eigenmode v̂i

FIG. 1. (a) Supercritical, (b) subcritical, and (c) unperturbed dy-
namics for the FitzHugh-Nagumo model stable pulse in a comoving
frame with speed č. For panels (a), (b), the quenching perturbation
is a rectangular envelope in the u1 channel, centered at x = 1, with
width substantially smaller than the pulse (∼5%), and amplitudes
U ±

q = −18.8314 ∓ 10−4 for the super- and subcritical perturbations,
respectively.

over time. Generally, L(û, ĉ) is not self-adjoint, and the left
and right eigenfunctions are distinct. For the unstable pulse
solution, σ1 > 0 while σ2 = 0, the latter corresponding to
the translational equivariance of the unstable pulse. While
other choices for the basis describing the linear dynamics are
possible, the eigenbasis has unique utility as it diagonalizes
the operator and the leading (right) modes possess simple
interpretations (instability, symmetry).

As the stable pulse is linearly stable, any quenching is
due to finite-size perturbations to the state; for sufficiently
small amplitudes, these perturbations are effectively linear
and thus ineffective, while for larger amplitudes the pertur-
bations quench the pulse. Figure 1(a) demonstrates quenching
by direct numerical simulation (DNS); for supercritical am-
plitude perturbations to the stable excitation wave, the state
approaches quiescence, limt→∞ u(t, x) → ū. For subcritical
amplitude perturbations the stable excitation wave recovers,
shown in Fig. 1(b). The subcritical perturbation has the net
effect of introducing some net displacement δ > 0 in the
progression of the wave relative to the unperturbed stable
excitation wave, cf., Figs. 1(b) and 1(c), limt→∞ u(t, x) →
ǔ(x − čt+δ). The essence of the quenching prediction is the
determination of the critical quenching amplitude for a given
perturbation envelope.

II. THEORY

In this section we develop the theoretical groundwork for
theory of quenching used in this study. We first describe the
essential ingredients of the classical linear ignition theory,
and unify the methods for selecting a representative from the
translational symmetry group using heuristics motivated by
notions of distance in infinite-dimensional spaces. We then
extend the ignition theory to nonuniform stable states and
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detail the computation of the critical quenching amplitude in
this new context. The final portion of this Section derives and
simplifies the analogous heuristics from the linear ignition
theory for the quenching problem, and develops a unique-
ness argument based on the asymptotic properties of the
perturbation.

A. Ignition

The classical ignition problem [10–17] considers the criti-
cal perturbation to the quiescent state for which the dynamics
asymptotically approaches the stable excitation wave. Iden-
tifying the initial condition as a perturbation from the rest
state u(0, x) = ū + h̄(x), and equating this configuration to
a perturbed reference state selected from the group orbit of
the unstable wave, û(ξ ) + ĥ(ξ ), where ξ = x − s and s an
appropriate shift,

u(0, x) = û(ξ ) + ĥ(ξ ) = ū + h̄(x), (4)

allows us to use information about the exact solution û(ξ ) to
predict the long-term dynamics of u(0, x). We may predict the
minimal amplitude of a localized perturbation to the rest state
which successfully “ignites” the medium by taking an appro-
priate inner product with ŵ1(ξ ) and requiring the excitation of
the unstable mode to vanish. As the rest state is uniform and
invariant with respect to translations, and the unstable wave
is equivariant under translations, for a prescribed perturbation
envelope X̄(x) the amplitude of the perturbation to the rest
state may only be determined up to the the reference shift s,
so that h̄(x) = Ū (s)X̄(x). Rearranging gives a compact equa-
tion for the critical ignition amplitude Ū (s) for a prescribed
perturbation envelope X̄(x),

Ū (s) = 〈ŵ1(ξ )|û(ξ ) − ū〉
〈ŵ1(ξ )|X̄(ξ + s)〉 , (5)

where the appropriate shift s is determined by a constraint
equation, 0 = 〈�̄l (ξ )|X̄(ξ + s)〉. The constraint functional
�̄l (ξ ) derives from heuristic considerations for the optimal
reference frame, by extremizing a heuristic for the projective
distance in the tangent space of the unstable pulse, which
we will consider again in the application to quenching. We
include the frame selectors for the classical ignition problem
for completeness,

�̄1(ξ ) = 〈ŵ1|û − ū〉ŵ′
1(ξ ),

�̄2(ξ ) = 〈ŵ1|û − ū〉v̂2(ξ ) − 〈v̂2|û − ū〉ŵ1(ξ ),

�̄3(ξ ) = 〈ŵ1|û − ū〉ŵ2(ξ ) − 〈ŵ2|û − ū〉ŵ1(ξ ),

noting that each �̄l (ξ ) is formed explicitly from the available
rest-state, unstable wave, and the leading left and right eigen-
functions of the unstable wave. The frame selectors provide
competing methods to determine an optimal reference shift s
for the ignition problem, by measuring projective distance in
the tangent space of the unstable pulse solution. The constraint
equation may be expressed as a function of the shift alone,
μ̄l (s) = 〈�̄l (ξ )|X̄(ξ + s)〉, where the inner product is evalu-
ated over all x by the cross-correlation integral of two vector
functions with an implicit sum over the variable indices. The
critical excitation frame is determined by an appropriate root,

μ̄l (s∗) = 0, which can be assumed unique based on the slow-
fast scaling of the left and right eigenfunctions [18], which
uniquely determines the value of Eq. (5). We adapt the critical
ignition argument to quenching in the next section.

B. Quenching

Given a stable pulse solution, ǔ(x − čt ), we can consider
an initial configuration u(0, x) expressed as a perturbation to
the stable pulse,

u(0, x) = ǔ(x) + ȟ(x − θ ; xs), (6)

will relax to the rest state (i.e., limt→∞ u(t, x) → ū) for a
prescribed perturbation ȟ(x − θ ; xs) centered at x = θ with
width xs. Much like the linear theory for ignition, effective
predictions of quenching require the selection of a reference
frame for the unstable pulse. However, when considering ǔ(x)
in place of ū, the construction of frame-determining functions
requires additionally considering the spatial variation of the
state. When the state is uniform, the perturbation may always
be arbitrarily shifted to the same coordinate frame as the
state; when the state is nonuniform, the perturbation has an
induced parametric shift in frame, denoted θ , which describes
the origin of the perturbation.

The linear theory considers the linearization about the
unstable solution, selected from along its group orbit,
exp(+t ĉ∂x )û(x − ĉt − s) = û(x − s) for all times t � 0. We
rewrite the initial configuration as the unstable solution plus a
perturbation,

u(t, x) = û(x − s) + ǔ(x) + ȟ(x − θ ; xs) − û(x − s),

which identifies ĥ(x − s) = ǔ(x) + ȟ(x − θ ; xs) − û(x − s).
The construction of the theory is such that markedly different
slow and fast waves limit the accuracy of the perturbation
argument. Linearizing about û(x − s) and computing the ex-
citation of the leading eigenmode,

〈ŵ1(x − s)|ǔ(x) − û(x − s) + ȟ(x − θ ; xs)〉,
which we require to vanish at time t = 0, to not excite the
unstable mode, i.e., criticality. Rearranging, we find

〈ŵ1(x − s)|ȟ(x − θ ; xs)〉 = 〈ŵ1(x − s)|û(x − s) − ǔ(x)〉,
i.e., that the negative projected deviation of the stable pulse
from the reference pulse onto the leading mode is precisely
the same as the perturbation to the stable pulse, itself. Defin-
ing ȟ(x − θ ; xs) = Ǔ (s; θ, xs)X̌(x − θ ; xs) gives a parametric
expression for the critical amplitude of the perturbation in s
and θ ,

Ǔ (s; θ, xs) = 〈ŵ1(ξ )|û(ξ ) − ǔ(ξ + s)〉
〈ŵ1(ξ )|X̌(ξ + s − θ ; xs)〉 . (7)

Compare Eq. (7) with Eq. (5), and the explicit coordinate
parameter θ is immediately identifiable as a relative phase
for the perturbation along the stable wave. Equation (7) is a
function of the reference frame shift s, and parameterized by
the perturbation envelope center θ and width xs.

We now apply each heuristic to derive the quenching
problem shift selectors, �̌l (ξ, s), which define the reference
frame as the root of a parameterized inner product with the
perturbation, i.e., μ̌l (s∗) = 0. In the ignition case, the first
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heuristic minimizes the amplitude of the perturbation to ū
over all frames s by extremizing the numerator of Eq. (5),
which simplifies to 0 = 〈ŵ′

1(x − s)|h̄(x − s)〉, as ∂xū = 0.
For the quenching problem, ∂xǔ(x) 
= 0, the extremization of
Eq. (7) with respect to s is determined by 0 = ∂sǓ (s; θ, xs),
whose numerator expands to

0 = 〈ŵ1(x − s)|û(x − s) − ǔ(x)〉〈ŵ′
1(x − s)|ȟ(x − θ ; xs)〉

− 〈ŵ1(x − s)|ȟ(x − θ ; xs)〉(〈ŵ′
1(x − s)|û(x − s) − ǔ(x)〉

+ 〈ŵ1(x − s)|û′(x − s)〉).

Rearranging to form �̌1(x − s; s),

�̌1(x − s; s) = 〈ŵ1(x − s)|û(x − s) − ǔ(x)〉ŵ′
1(x − s)

− 〈ŵ′
1(x − s)|û(x − s) − ǔ(x)〉ŵ1(x − s),

where we have used 〈ŵ1(x − s)|û′(x − s)〉 = 〈ŵ1(x −
s)|v̂2(x − s)〉 = 0, guaranteed by the biorthogonality of
the eigenmodes.

The second heuristic minimizes the L2-distance between
the perturbed solution and the unstable reference solution over
all choices of frame parameterized by the shift s,

s2 = arg min
s

〈u(x) − û(x − s)|u(x) − û(x − s)〉,

for which a necessary condition is that the L2 norm of u(x) −
û(x − s) is extremal, i.e., ∂s〈u(x) − û(x − s)〉2 = 0, which
simplifies using v̂2(x − s) = −∂sû(x − s),

0 = 〈v̂2(x − s)|ǔ(x) + ȟ(x − θ ; xs) − û(x − s)〉,
from which we rearrange to identify �̌2(x − s; s),

�̌2(x − s; s) = 〈ŵ1(x − s)|û(x − s) − ǔ(x)〉v̂2(x − s)

− 〈v̂2(x − s)|û(x − s) − ǔ(x)〉ŵ1(x − s).

The third heuristic requires that the perturbation be or-
thogonal to the space spanned by the first and second right
eigenfunctions; as the first eigenmode appears in the con-
straint in the derivation of Eq. (7), this is satisfied by the
projection onto the second left eigenmode, i.e., the transla-
tional response function,

0 = 〈ŵ2(x − s)|ǔ(x) + ȟ(x − θ ; xs) − û(x − s)〉,
which may be rearranged to form �̌3(x − s; s),

�̌3(x − s; s) = 〈ŵ1(x − s)|û(x − s) − ǔ(x)〉ŵ2(x − s)

− 〈ŵ2(x − s)|û(x − s) − ǔ(x)〉ŵ1(x − s),

which we identify as �̌2(x − s; s) where the second right
eigenfunction (v̂2(ξ )) is replaced with its projector (ŵ2(ξ )).

The frame-selectors deviate from the ignition problem for-
malism, as �̌l (x − s; s) transforms with s as the product of
vectors with (x − s) dependence, weighted by scalars with s
dependence,

�̌l (x − s; s) = φl,1(s)al,1(x − s) + φl,2(s)al,2(x − s). (8)

This change in the transformation of �̌l (x − s; s) from the
ignition formalism informs a new approach to frame selec-
tion, as the utility of the projector formalism is limited. For
simplicity, we form the scalar functions

μ̌l (s; θ, xs) = 〈�̌l (x − s; s)|X̌(x − θ ; xs)〉, (9)

which reduces over the spatial coordinate x and the variable
index, and whose root(s) define potential reference frame(s)
for a particular perturbation envelope X̌(x − θ ; xs). The ques-
tion of identifying a unique frame amounts to selecting a
single root of Eq. (9) for each heuristic.

Indeed, we have no strong guarantees for the uniqueness
of the roots, for the general case. We may, however, motivate
a procedure which guarantees a unique root for all viable xs

provided a unique root exists for xs → ∞. We assume the per-
turbation envelope is parameterized such that for sufficiently
large xs, it asymptotically approaches a constant vector of
length m with unit L∞-norm,

lim
xs→∞ ‖X̌(x − θ ; xs)‖∞ → 1,

implying ∂θǓ (s; θ, xs) = ∂xsǓ (s; θ, xs) = 0 in the limit. For
simplicity, we assume that the asymptotically wide per-
turbation is entirely in the u1-channel of the state, i.e.,
limxs→∞ X̌(x − θ ; xs) → [1, 0, . . . ]. This comports with the
typical interpretation of u1 as the transmembrane potential,
and thus observable (with micro-electrode measurements) and
controllable (with current stimulus). In the asymptotically
wide regime, we require a means of identifying a unique root
s∗ of Eq. (9), which we take to be the most strongly negative
option of Eq. (7). For limxs→∞ Ǔ (s; θ, xs) < 0, we rearrange
Eq. (7) and require

〈ŵ1(ξ )|û(ξ ) − ǔ(ξ + s)〉〈ŵ1(ξ )|X̌(ξ + s − θ ; xs)〉 < 0.

The second factor can be guaranteed positive due to the
biorthogonality of the eigenfunctions, and the first may be
asserted negative based on the construction of the slow and
fast waves and the triangle inequality; therefore we may
select a shift s which extremizes 〈ŵ1(ξ )|ǔ(ξ + s)〉 while
leaving 〈ŵ1(ξ )|û(ξ )〉 constant. Given the asymptotic solution
limxs→∞ Ǔ (s; θ, xs), we may trace the branch of solutions to
smaller perturbation widths until the solution vanishes, and
thus construct a unique prediction for the critical quenching
amplitude for all viable xs through continuation.

We have published example code and data for the linear
theory prediction of critical quenching perturbations online
[20]. This code only requires the location of files containing ū,
ǔ, û and v̂1, v̂2, ŵ1, and ŵ2, on a consistent domain. The code
performs estimation of the error of the method by comparing
the construction of μ̌l (s; θ, xs) using spectral cross-correlation
against 〈�̌l (x − s; s)|X̌(x − θ )〉, where the latter is computed
by explicit translation of the vector components.

III. METHODS

The essential ingredients of the application of the ex-
tended linear theory to a prescribed perturbation envelope
X̌(x − θ ; xs) are the stable solution ǔ, the unstable solu-
tion û, the leading two left eigenfunctions ŵ1 and ŵ2, and
their associated derivatives. The solutions themselves are
computed approximately using continuation within the AUTO-
07P [21] framework. The solutions are then refined using
a global spectral expansion, and the refined solutions used
as nonconstant-coefficient fields in the forward and adjoint
eigenproblems (3), using the DEDALUS2 [22] framework.
From these quantities, any of the μ̌l (s; θ, xs) may be formed
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by computing cross-correlation integrals, likewise the pre-
diction of Ǔ (s; θ, xs) using the formalism laid out in in the
previous section. The continuation of a root s∗ for large xs

to small xs is done using so-called "natural continuation,"
and thus avoids the complexity of bifurcations of the roots at
the expense of under-resolving regions where the dependence
with xs is significant.

To verify the linear theory predictions, we form initial
conditions parameterized by perturbation amplitude Uq < 0,
and perturbation envelope X̌(x − θ ; xs) width xs and position
θ ,

u(0, x) = ǔ(x) + UqX̌(x − θ ; xs),

and solve the resulting initial-value problem using direct nu-
merical simulation. For the purposes of testing the predictions
of the linear theory, the perturbation is defined by a top-hat
function centered at θ ,

X̌(y; xs) = [1, 0, . . . ] H (y + xs/2) H (xs/2 − y), (10)

where where y = x − θ and H (z) = (1 + sign(z))/2 approx-
imates the Heaviside distribution. The shape is defined such
that ‖X̌1(x − θ ; xs)‖∞ = 1 and ‖X̌1(x − θ ; xs)‖1 = xs, so that
the perturbation is restricted to the voltage channel, or fast
variable of the excitable model. This choice of perturbation
envelope is chosen for its simplicity; the methods described in
this study are not specific to this envelope or parameterization.

We solve the initial-boundary-value problem (1) with ini-
tial condition u(0, x) and periodic boundary conditions over
x ∈ [0, L) and a fixed time interval t ∈ [0, T ] with T =
L/(2č), using the DEDALUS2 framework initial-value problem
(IVP) solver [23]. We simultaneously track the state over
time, u(t, x), and compare the final state, using an appropriate
measure, to the exact solutions. This procedure amounts to the
solution of a one-dimensional root-finding problem for each
width and shift pair for the critical quenching amplitude.

We track the development of the perturbed stable wave over
time by computing the absolute-valued deviation of the fast
variable from the corresponding rest value,

ψ (t ) =
∫ L

0
dx |u1(t, x) − ū1|, (11)

and compare the final value ψ (T ) to the respective evaluation
at ū1, û1, and ǔ1, which we designate by ψ̄ ≡ 0, ψ̂ , and ψ̌ ,
respectively. The form of the diagnostic function (11) was
chosen to test whether it was necessary to used the same norm
as the definition of the left eigenfunctions (3), and whether
partial state information precludes accurate determination of
the state. The critical amplitude then is defined by the root of
the function,

ϕ(Uq) = lim
t→∞ ψ (t ;Uq) − ψ̂, (12)

and limt→∞ ψ (t ;Uq) ∈ {ψ̄, ψ̂, nψ̌ − (n − 1)δ̌} where the last
option accounts for the possibility of transient back-ignition
(n ∈ N denotes the number of stable pulses) and δ̌ is the
overlap deformation correction to ψ (T ) from the presence of
multiple stable pulses on the same domain. As the integration
interval T → ∞, the probabilities of ψ (T ;Uq) taking on these
values approaches {Pq, 0, 1 − Pq}, where Pq is the probability
that Uq is quenching for a provided (xs, θ ) pair. While no

FIG. 2. Space-time dynamics of the fast variable u1(t, x) for
(a) Supercritical and (b) subcritical perturbations to the stable pulse
of the FitzHugh-Nagumo model (13) corresponding to Figs. 1(a)–
1(c) their diagnostic function ψ (t ) for the (dots) supercritical and
(dash) subcritical dynamics.

diagnostic function is able to uniquely determine the ultimate
attractor of any arbitrarily configured state, in a large neigh-
borhood centered on each of the exact stable solutions, this
intuition holds. We ensure that our final states are in such a
neighborhood by solving the IVP over a sufficiently long time
interval.

Figures 2(a) and 2(b) depict the super- and subcriti-
cal space-time dynamics for the quenching perturbations
along with Fig. 2(c) their diagnostic function ψ (t ). While
ψ (0) is very close between the two solutions, |ψ−(0) −
ψ+(0)| ≈ |(U −

q − U +
q )xs| = 3 × 10−4, they diverge after t ≈

100, which corresponds to the close passage of the state to the
unstable pulse solution, û(x − s′), and corresponding measure
ψ̂ . After t ≈ 200, the two solutions have diverged and are
very similar to the two stable states, ū and ǔ(x − s′′), in
Figs. 2(a) and 2(b), respectively. Further refinement of the
critical perturbation amplitude for this (xs, θ ) pair may be
attained using a bisection root-finding algorithm, limited only
by the error of the time-stepping.

IV. RESULTS

In this section, we first introduce an excitable model, and
remark on its inclusion and relevance to the task at hand.
We proceed to describe the relevant linear theory ingredients
and the efficacy of these ingredients in predicting the critical
quenching amplitude, across a range of perturbation widths
and positions. We finish the discussion of each model by
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FIG. 3. Nullclines of the FitzHugh-Nagumo model (black; f1 =
0 solid, f2 = 0 dashed) and the stable pulse solutions for γ ∈
{0.025, 0.020, 0.010, 0.001}.

comparing the direct numerical simulation (DNS) results and
linear theory predictions, and detail any limitations of the
latter for predicting the former.

A. FitzHugh-Nagumo model

The FitzHugh-Nagumo model is archetypal of excitable
media, and arises from a simplification of squid axon signal
dynamics [24]. The FitzHugh-Nagumo model simplifies a
Hodgkin-Huxley-type model, and represents the fast dynam-
ics of the transmembrane potential in u1 and the slow recovery
dynamics of sodium and potassium channel deactivation in u2

[25]. The applicability of the model to cardiac excitation is
tenuous, but remains essential for testing new approaches to
the study of the fundamental properties of excitation waves.
The model consists of two nondimensional state variables
interacting in a slow-fast system,

f1 = u1(1 − u1)(u1 − β ) − u2, f2 = γ (αu1 − u2), (13)

where we identify u1 as the fast component and u2 as the slow
component, based on the timescale separation γ � 1. For the
purposes of this study we fix α = 0.37 and β = 0.131655,
and vary γ , to consider morphologies of the fast and slow
waves which are aligned with and counter to the underlying
assumptions of the linear method. We choose the timescale
separation γ ∈ {0.001, 0.010, 0.020, 0.025} to explore differ-
ences in the morphology of the fast and slow pulses, cf. Figs. 3
and 4, respectively. In the limit of γ → 0, the slow pulse speed
vanishes, limγ→0 ĉ → 0, forming a critical nucleus; mean-
while, in the same limit, the fast pulse loses post-excitation
recovery, developing into a stable propagating front with finite
speed limγ→0 č > 0. As γ increases, the fast and slow waves
converge until coincidence for γc ≈ 0.026.

Figure 3 depicts periodic stable pulse solution for each
choice of γ over the nullclines of the model. Each stable
solution is interpolated using M = 4096 Chebyshev modes
on a periodic domain of length L = 2700 with dealiasing
factor N/M = 2. These solutions are resolved with projective
boundary conditions and are approximately homoclinic (to
deviations smaller than 10−13). To our knowledge there exists
no generally applicable exact solution for the fast pulse on
unbounded domains with nonvanishing slow-fast timescale
separation parameter [26], but appropriate asymptotics hold
approximately [19].

FIG. 4. Linear theory ingredients for the FitzHugh-
Nagumo model. (Top row) Unstable pulse solution û for
γ ∈ {0.001, 0.010, 0.020, 0.025}, with (second row) v̂1, (third
row) v̂2, (fourth row) ŵ1, and (fifth row) ŵ2. The first component of
each variable is the solid (blue) curve, and the second component is
shown as dashed (orange).

The scaling of the critical pulse and the leading eigen-
modes was investigated in a previous work [18], which is most
relevant for γ → 0. In the range 10−3 � γ < γc, the scal-
ing of the components of the pulse and eigenmodes change
slowly, but the components of the pulse and eigenmodes
change shape significantly as γ varies. The unstable solu-
tions and their associated eigenfunctions are resolved with
the same discretization and to the same maximal deviation as
the stable pulses. The linear theory ingredients are depicted in
Fig. 4. The pulses are oriented such that the peak of the fast
component occurs precisely at the origin: 0 = arg max û1(x),
for all γ , matching the orientation of the fast pulse solutions
[i.e., 0 = arg max ǔ1(x)]. The left and right eigenfunctions are
depicted such that the appropriate pairs satisfy 〈ŵi|v̂i〉 = 1 for
i = 1, 2, and oriented such that v̂

(1)
1 (0) > 0 and ∂x v̂

(1)
2 (0) < 0,

for consistency with the interpretation as leading instability
and translational modes, respectively.

We present direct numerical simulation results for a large
number of realizations of the quenching problem in Fig. 5
as an exploration of the bounds of quenching in terms of the
perturbation parameters and verification of the spectral initial-
value problem solver. For this exploration, (1) with (13) is
solved on an interval of 0 � t � L/(2č) with an N = 1 + 213

point spatial discretization and O(h12) centered-difference ap-
proximation of the diffusion operator, where h = L/(N − 1),
using CVODE in the Sundials package [27–29] with a matrix-
free GMRES solver for the linear system. These numerical
parameters reproduce the constant ψ (t ) for a stable pulse over
the T = L/(2č) interval to a tolerance of |ψ (T ) − ψ (0)| <

10−5. For these large finite-difference approximations, we
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FIG. 5. Critical quenching perturbations sampled over the (xs, θ ) plane, for (a) γ = 0.001, (b) γ = 0.010, (c) γ = 0.020, and (d) γ =
0.025. In all cases, the perturbation quenching amplitude Uq determines the red color and blue denotes regions in which Eq. (12) has no
solution for all bounding samples [cf. black dots in Figs. 6(a)–6(d)]. The |β − 1| asymptotic estimate contour is denoted by a solid black curve
and the linear bounding region between successful and unsuccessful quenching searches is denoted by black dashed lines.

focus on the root-finding problem over a bounded region of
the (xs, θ ) plane.

Figure 5 shows the DNS results of the quenching problem
for the stable pulses shown in Fig. 3. Note that the perturbation
width is positively valued, and perturbations with unresolv-
able widths, i.e., xs < 2L/N , are restricted. The perturbation
parameter θ is chosen to position the perturbation behind
(θ < 0) or ahead (θ > 0) of the peak for the stable pulse. The
color designates the solution to Eq. (12): Either a solution
to the bisection problem is found (oranges) or no solution
is found (blue) for Uq ∈ [−103, 0). A narrow gap (white)
between the successful and unsuccessful regions exists as
the triangulation for both regions is conservative. While it
is possible that Uq → −∞ in the white region, we expect
that actually the finite cutoff is real in the sense that the
largest amplitude for a successful quenching is substantially
smaller than the root-finding limit. That is, if we expect that
Uq diverges for some (xs, θ ), then we should find saturation
of Uq ≈ −10+3 near the bounds of the effective quench-
ing regions. We do not observe this in the data, as |Uq| �
2 × 10+2, across the entire range of γ , and |Uq| < 10+1 for
γ = 0.001.

The successful quenching parameters are bounded in the
(xs, θ ) plane by lines with slope approximately ±1/2, which
intersect at (x0

s , θ
0) coordinates which correspond to the

quenching perturbation with minimal width and correspond-
ing optimal position. We compute the slopes and intercepts
using an exterior penalty method and find the deviation in
the discriminator slopes from ±1/2 is <5 × 10−3. For suf-
ficiently small timescale separation parameter, γ < 0.02, we
find that the minimal width is finite, corresponding to x0

s ≈ 79
and x0

s ≈ 2 for γ = 0.001 and γ = 0.010, respectively, cf.
Figs. 6(a) and 6(b). For γ � 0.020, we find that the lin-
ear bounding estimate for the minimum quenching width
vanishes; i.e., the linear bounds of the successful quench-
ing parameters intersect at x0

s < 0. The successful quenching
numerics fall short of resolving infinitesimally thin perturba-
tions, bounded from below by the grid spacing L/(N − 1) ≈
0.33, but they confirm this bound up to the discretization limit,
cf. Figs. 6(c) and 6(d). The reproduction of the limited region
of quenching possibility is an important test for the predictive
quenching theory.

Predictions of the critical quenching amplitude (color
dashes) and DNS results (black ◦) are compared in Fig. 7, for
θ ∈ {−10,−5, 0, 5, 10}, and for xs ∈ [2L/N, L/2]. The linear
theory predictions agree with the DNS results across one or
more decades of xs, for some values of θ , for most choices
of heuristic l and γ . The prediction is most effective when the
stable and unstable pulses are close in shape, as the γ = 0.025
quenching amplitudes are reliably predicted across a wider
range of θ , xs, and U (s; θ, xs) than for γ = 0.020, as explained
in the theory construction. For γ = 0.025, perturbations cen-
tered at or immediately ahead of the peak of the stable pulse
(θ � 0) are able to quench the excitation for smaller per-
turbation widths and smaller amplitudes, while perturbations
centered behind the peak of the pulse (θ < 0) are successful
over a smaller range of perturbation widths and the rate at
which the critical quenching amplitude grows is significantly
faster, cf. Figs. 7(d) and 7(t). This is expected—as a narrow

FIG. 6. Critical quenching perturbations near the smallest
quenching perturbation width for γ ∈ {0.001, 0.01, 0.02, 0.025} in
panels (a)–(d), respectively. Colors are as in Figs. 5(a)–5(d), with
black dots representing sampled quenching parameters.
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FIG. 7. Critical quenching predictions for the FitzHugh-Nagumo model (color) using selectors μ̌1(s; θ, xs ) (blue), μ̌2(s; θ, xs ) (orange),
and μ̌3(s; θ, xs ) (green) compared to the quenching computed using DNS of the perturbed stable pulse (black, ◦).

perturbation appears at θ > 0 and t = 0, the stable pulse ef-
fectively runs into the perturbation by time (θ − xs/2)/č �
L/2č, which drives the dynamics away from the stable solu-
tion. Meanwhile, for narrow perturbations which are centered
behind the peak of the wave, only the main excited region and
tail of the stable pulse are affected—in this sense it is the front
which controls the effectiveness of quenching perturbations.
The intuition that front recovery in FitzHugh-Nagumo models
is robust thus appears correct, at least for sufficiently small
γ or large timescale separation [8]. However, this important
feature is not reflected in the predicted quenching amplitudes,
which are approximately invariant with respect to perturbation
width to much smaller xs.

The separation between the slow and fast wave morphol-
ogy impacts the asymptotic critical amplitude. This is easiest
to see for γ = 0.001, where the steep wave front and wave
back of the stable pulse lend itself to a rectilinear approxima-
tion. The stable pulse ǔ1(x) crosses zero at x ≈ xa and x ≈ xb,

and 0.8 � ǔ1(x) � 1 in the excited region. This indicates that
for θ ≈ (xa + xb)/2 and xs � |xb − xa|, all quenching pertur-
bations should succeed with U (s; θ, xs) � β − 1 (the maximal
distance between the unstable and excited f1 = 0 nullclines).
In Figs. 7(a), 7(e), 7(i), 7(m), and 7(q), the critical quenching
amplitude has |U (s; θ, xs)| ≈ 0.8 which is comparable to 1 −
β ≈ 0.86. Likewise, Fig. 5(a) shows there is little variation in
the value of |Uq| within the successful region, and that the re-
gion is approximately bounded by |β − 1|. Unexpectedly, the
critical amplitude varies with the timescale separation param-
eter γ , as β is held consistent throughout. This indicates that
our expectation from the asymptotic solution, Uq → β − 1, is
not relevant for timescale separations as small as γ � 0.01.
The parameter value γ = 0.01 corresponds to a bifurcation
for the stable rest state—changing the relaxation dynamics
from a stable node to a stable spiral—however this bifurcation
is not relevant for the quenching problem, as we consider per-
turbations to states only where they are far from the rest state.
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FIG. 8. Nullclines of the Mitchell-Schaeffer model ( f1 = 0
black, solid; f2 = 0 black, dashed) and the stable pulse train solutions
for L = 500 for ε ∈ {0.002, 0.01, 0.02, 0.025}.

B. Mitchell-Schaeffer model

The Mitchell-Schaeffer model [30] is a simplified model
of cardiac cell excitation, combining two state components
to produce a realistic description of action potential shape
and restitution. It is derived from an asymptotic reduction
of the Fenton-Karma model [31] of atrial excitation by the
adiabatic elimination of the fastest processes. The model
is known to reproduce important features of cardiac action
potential excitations from more complex cardiac models,
and exhibit dynamical features relevant to cardiac modeling
such as subcritical alternans. The Mitchell-Schaeffer model
preserves multiple decay timescales [32], which we recom-
bine to form an explicit timescale separation and slow-fast
system,

f1 = u2
1(1 − u1)u2 − u1τi/τu,

f2 = ε((1 − u2)Hk (ug − u1)τc/τo − u2Hk (u1 − ug)), (14)

where the fast variable u1 again represents the potential
across the cell membrane, the slow variable u2 controls the
activation and inactivation of ionic gates necessary for the
functioning of the cell, and we have introduced Hk (x) =
(1 + tanh(kx))/2. The standard parameter values are τi =
0.3 ms, τo = 120 ms, τu = 6 ms, τc = 150 ms, ug = 0.03, and
k = 100. We keep τi/τu = 0.05 and τc/τo = 1.25 fixed, while
allowing the nondimensional ratio of the longest and shortest
timescales, ε, to vary.

Additionally, we have treated the Mitchell-Schaeffer model
differently from the FitzHugh-Nagumo model and consid-
ered pulse train solutions of the model instead of homoclinic
solutions. This ultimately assesses the ability of the linear
theory to predict quenching perturbations for pulses which
are not isolated, i.e., in analogy to tachycardia-like scenar-
ios. Figure 8 shows the nullclines of the model with the
stable pulse train solutions on a ring of length L = 500, for
ε ∈ {0.002, 0.01, 0.02, 0.025}. We choose ε � τi/τc to im-
prove the stiffness of the model while permitting the study of
quenching for fast solutions which are close, in an L2-sense,
to their slow counterparts. All states and eigenfunctions are
posed on a periodic domain of length L = 500, so that for
ε > 0.01 the stable wave is effectively isolated, while for
ε = 0.002 the stable pulse train does not relax to the quiescent
state—i.e., does not pass through the rest state—while the
unstable wave is isolated for all ε considered.

FIG. 9. Linear theory ingredients for the Mitchell-
Schaeffer model. (Top row) Unstable pulse solution û for
ε ∈ {0.002, 0.010, 0.020, 0.025}, with (second row) v̂1, (third row)
v̂2, (fourth row) ŵ1, and (fifth row) ŵ2. The first component of
each variable is the solid (blue) curve, and the second component is
shown as dashed (orange).

Figure 9 shows the linear theory ingredients for the
Mitchell-Schaeffer model. Surprisingly, the scaling of the
leading eigenfunctions is still affected by the variation in
ε, such that, for ε = 0.002, similar considerations about the
predictive power of the method should be taken into account
relative to ε = 0.025. We supply the linear theory ingredients
to the prediction program to estimate the necessary quenching
amplitude for a variety of perturbation widths and positions,
and likewise determine the critical quenching amplitude by
direct numerical simulation for verification.

The critical quenching predictions for the Mitchell-
Schaeffer model are shown in Fig. 10 for θ ∈ {−10,

−5, 0, 5, 10}. Similar to Fig. 2, the predictions transition
from quasiconstant regions of perturbation amplitude when
xs is large to quickly growing critical quenching ampli-
tude for smaller widths. The sensitivity to the position of
the perturbation is more subtle in the Mitchell-Schaeffer
model, i.e., we do not see substantial variation in the lower
bound of xs across θ , and the sensitivity to the differ-
ence between the fast and slow waves (i.e., ε) is more
severe. In particular, for small timescale separation (ε =
0.025) we observe a finite (soft) lower bound for xs in
both the DNS and linear predictions, distinct from FitzHugh-
Nagumo. Likewise, the transition to growing quenching
amplitudes for small xs is rarely relevant; instead nearly every
prediction is within a tight tolerance of the asymptotic pre-
diction, and the DNS quenching results only show growing
quenching amplitudes for very small regions of the (xs, θ )
plane.

It is for the more similar pairs of waves (e.g., ε = 0.025)
that the difference between the heuristics is most clear,
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FIG. 10. Critical quenching amplitude predictions for the Mitchell-Shaeffer model using selectors μ̌1(s; θ, xs ) (blue), μ̌2(s; θ, xs ) (orange),
and μ̌3(s; θ, xs ) (green) compared to the quenching amplitude computed using DNS of the perturbed stable pulse (black, ◦).

especially in the asymptotic xs → ∞ regime. The predic-
tions for large xs are only accurate for μ̌3(s; θ, xs); while
μ̌2(s; θ, xs) systematically under-estimates the magnitude of
the perturbation, and μ̌1(s; θ, xs) over-estimates the quenching
amplitude specifically for large xs. Of particular note is that for
ε � 0.020, the transition from the asymptotic regime to larger
quenching amplitudes is effectively captured by the linear
theory [using μ̌3(s; θ, xs)], such that the linear theory may
accurately predict quenching applied solely to the wavefront,
an essentially nonlinear effect. The success of determining
the transition length indicates that the linear prediction theory
would benefit significantly from a consideration of higher-
order effects, such that the applicability of the theory to larger
timescale separations could capture the linear-to-nonlinear
transition for quenching, and predict successful quenching of
the wavefront for ionic models.

V. DISCUSSION

Some combinations of heuristic and parameters leads to
considerably less accurate predictions; notably μ̌2(s; θ, xs)
with γ = 0.01 for the FitzHugh-Nagumo model (cf. Fig. 2),
where the prediction for the critical quenching amplitude
differs by a factor of roughly 10× compared to μ̌1(s; θ, xs)
and μ̌3(s; θ, xs). Consider the similarity of �̌3(x − s; s) and
�̌2(x − s; s); i.e., the two correspond precisely for self-adjoint
problems where ŵ j ≡ v̂ j . With no further effort we may
confidently blame the nonnormality of the critical wave lin-
earization and concomitant scaling of the components of the
unstable pulse and eigenfunctions, similar to the ignition
problem as γ → 0 [18]. We seek the dominant contribution
to μ̌2(s; θ, xs) − μ̌3(s; θ, xs) in the neighborhood of s = s∗

3 :
μ̌3(s∗

3; θ, xs) = 0. As the perturbation envelope is unaffected
by the details of this expansion, we consider the �̌l (x − s; s)
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directly,

�̌2(x − s; s) − �̌3(x − s; s)

= �̌2(x − s∗
3 − δ; s∗

3 + δ) − �̌3(x − s∗
3 − δ; s∗

3 + δ),

≈ �̌2(x − s∗
3; s∗

3 ) + δ × ∂s(�̌2(x − s; s)

− �̌2(x − s; s))|s=s∗
3
+ O(δ2),

where we have dropped the term �̌3(x − s∗
3; xs) as it will not

contribute to the inner product with the perturbation envelope,
by construction. We elect to consider the O(δ) term directly,
dropping the implicit dependence of the unstable pulse and
eigenfunctions on ξ = x − s where unambiguous, and simpli-
fying the derivative factor,

δ−1(�̌2(x − s; s) − �̌3(x − s; s) − �̌2(x − s∗
3; s∗

3 ))

= 〈v̂2|û − ǔ(ξ + s∗
3 )〉ŵ1

+ 〈ŵ2 − v̂2|û − ǔ(ξ + s∗
3 )〉∂xŵ1

+ 〈ŵ1|û − ǔ(ξ + s∗
3 )〉∂x(ŵ2 − v̂2). (15)

Since we are interested in the perturbation magnitude in the
large-width limit, we take δ ≡ s∗

2 − s∗
3 and take the inner

product of X̌(x − θ ; xs) with Eq. (15) in the large-width limit
limxs→∞,

lim
xs→∞ δ−1(−μ̌3(s∗

2; θ, xs) − μ̌2(s∗
3; θ, xs))

= 〈v̂2|û − ǔ(ξ + s∗
3 )〉〈ŵ1|X̌(x − θ ; xs)〉. (16)

That is, in the large-width limit the inner products with dif-
ferentials of the eigenfunctions become the eigenfunctions
evaluated at their endpoints; for pulse solutions, these are
equal, leaving only the term proportional to ŵ1. We estimate
the magnitude of δ by inverting Eq. (16),

δ ≈ − μ̌3(s∗
2; θ, xs) + μ̌2(s∗

3; θ, xs)

〈v̂2|û − ǔ(ξ + s∗
3 )〉〈ŵ1|X̌(x − θ ; xs)〉 ,

and note that generically the numerator will be small (but
typically nonzero), while the denominator will be large. If
we assume that ∂sǓ (s∗

3 ) = 0 [i.e., μ̌3(s; θ, xs) extremizes the
perturbation amplitude], then

|Ǔ (s∗
2 ) − Ǔ (s∗

3 )| ≈ δ2

2

∣∣∂2
s Ǔ (s∗

3 )
∣∣, (17)

which may be comparable to |Ǔ (s∗
3 )|, even if δ is small

(cf. Appendix A 2 for numerical details). We may then
conclude that for a severely nonnormal linearization about
the unstable pulse—the generic case for excitable media
models—heuristics which do not rely on the right eigenspace
are more reliable indicators for frame selection in the quench-
ing predictions.

The potential for the techniques developed here to improve
the efficacy of multiphase defibrillation approaches should
be considered carefully. In principle, a technique which af-
fects the depolarized tissue directly during early defibrillation
phases—when depolarized tissue makes up the majority of
the tissue—should improve the efficacy of initial stimulus
pulses aimed at restoring the tissue to a quiescent state, and
thus reestablishing the normal rhythm. However, the results
presented in this study indicate a particular weaknesses of

this approach: that the energy cost to quenching an excitation
wave is substantially higher than the energy cost of ignition.
Therefore, quenching requires both a larger energy cost per
excitation wave, and over a larger tissue region, and thus
may require significantly more energy for effective use than
current ignition-based multiphase defibrillation techniques,
i.e., low-energy atrial pacing [1,2]. A thorough accounting of
the energy requirements for the present method in a realistic
defibrillation setting is beyond the scope of this study, but
is nonetheless essential for determining the relevance of the
method in a clinical setting.

A similar quenching effect was investigated numeri-
cally in the modified three-component Oregonator, and
experimentally using optical control methods in the Belousov-
Zhabotinskii reaction [33]. That work considered specifically
time-distributed controls in the comoving frame of the pulse,
i.e., those of form X̌′(x − θ − čt ; xs)�(t ), which differs from
those investigated in this study X̌(x − θ ; xs)δ(t ). Nonetheless,
the ingredients are the same; their ‘dev’ is analogous to our θ ,
their dirrad is analogous to our xs, and their εirrad is analogous
to our |Uq|. A direct comparison requires an extension of the
quenching theory to comoving perturbations.

Finally, we return to the question of how to best measure
the inter-state distance for the selection of an appropriate
frame; i.e., how should we construct μ̌l (s; θ, xs) using the
ingredients of the stable and unstable state for the purposes
of predicting quenching? In contrast to the ignition case,
for quenching we can make a strong argument for the third
heuristic, which chooses a frame in which the projection
onto the center-stable eigenmode of the unstable pulse is
identically zero. It is simple to see that if the L2-distance is
already small—when the fast and slow pulses are similarly
shaped—then μ̌3 determines a frame which is close to the
one in which the perturbation minimally excites the transla-
tional mode of the stable wave in addition to the unstable
wave, thus the perturbation generated from the third heuristic
may be seen as more efficient for quenching. However, the
numerical evidence suggests that no single frame selector is
uniquely prescient—for FitzHugh-Nagumo and γ > 0.01, all
three predictors give nearly indistinguishable results for all
cases; while for γ = 0.01 and the Mitchell-Schaeffer model,
μ̌2(s; θ, xs) is uniquely poor. For γ = 0.001, no heuristic
accurately captures the lower bound of xs for effective quench-
ing observed in the DNS. This suggests a different criterion
by which to consider the frame selectors: what heuristic
produces the fewest smaller-amplitude predictions in the pa-
rameter ranges over which DNS results show that quenching is
possible? For the FitzHugh-Nagumo and Mitchell-Schaeffer
models, μ̌2(s; θ, xs) is unambiguously worst by this metric,
as it systematically underestimates the quenching amplitude.
To put such predictions into practice would fail to quench an
excitation—which in a medical context could be disastrous.

VI. CONCLUSIONS

Given a stable propagating solution and a family of pertur-
bations parameterized by their width xs and position θ , we
are able to predict the critical quenching amplitude which
corresponds to the cessation of propagation. The method
is effective in the archetypal FitzHugh-Nagumo model with
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isolated pulse solutions and the Mitchell-Schaeffer model
with pulse train solutions. We find that the linear theory
achieves qualitative accuracy with minimal insight, and quan-
titative accuracy in regimes where the linear assumptions of
the perturbation theory are valid and the leading adjoint eigen-
functions are "small" in a sense preserved by the norm. The
method is sufficiently fast and parsimonious to be useful in
optimization searches, and thus opens new avenues for the
selection of optimal positions θ and widths xs in addition
to the prediction of the critical amplitude for such pairings.
Finally, we find the predominant shortcoming of the applica-
tion of the linear theory is the determination of the correct
reference frame, as no generally applicable uniqueness results
are available, though in practice we resolve such difficulties
through continuation. We expect that additional heuristics, in
analogy with the critical ignition problem, may be reasonably
considered, but have focused primarily on the numerical re-
sults in this study.

We have not treated the construction of optimal perturba-
tions in this study, in either the linear [34] or the nonlinear
[35] cases. Likewise, we have not considered the more general
case of optimal control of cardiac excitation patterns using,
e.g., adjoint flow optimization of a stimulating current or ap-
plied electric field [36]. However, we may make some general
comments on the relative cost of the approach detailed in this
study compared to these alternative methods. The construction
of the linear optimal perturbations requires a significant num-
ber of leading eigenmodes and subsequent formation of all
inner products of these modes for the prediction of transient
amplification [37], while the nonlinear optimal perturbation
requires the solution of the adjoint flow in concert with the for-
ward nonlinear PDE in a repeated optimization pass [38]. In
contrast, for this study only two pairs of leading eigenmodes
are needed for the calculation of the quenching perturbation,
and we need only solve the underlying PDE system in cases
of verification—i.e., sparingly. The only remaining computa-
tional cost of the method is the calculation of the fast Fourier
Transform, i.e., comparable to a single time-step in the PDE
solve. In the most generous case, we estimate that the method
proposed in this study represents a computational savings over
the linear and nonlinear optimal perturbation approaches of
skipping all eigenfunction calculations after the first two, or
skipping the entire PDE solve and optimization loop after
the first time-step, respectively. The parsimony of the method
yields a significant reduction in computational cost, requir-
ing fewer eigenmodes or fewer PDE solves, making it an
asset for quenching predictions. The efficiency of the method
presents opportunities for embedding these calculations into
larger or on-line computations, e.g., the determination of
model parameter values driven by observations of real
tissue.

We consider two natural extensions of the present work.
First, an extension of the current approach to account for front
solutions—solutions ǔ of Eq. (2) where limx→+∞ ǔ(x) 
=
limx→−∞ ǔ(x). The asymptotic arguments presented in this
study rely on the far-field values of the eigenfunctions and
state; since front solutions also have reasonably localized
leading eigenfunctions, it is only the latter presents an issue
for the theory. Indeed much of the numerical work may be
trivially extended using fast algorithms for the computation of

the Fourier extension [39] and enable the treatment of front
quenching similarly to pulse quenching.

Second, the application of the present theory to excitable
media with heterogeneity—i.e., most physical systems. With-
out a homogeneous medium, the system does not possess
translational symmetry and the selection of the reference
frame loses meaning. However, cardiac systems exhibit very
little sensitivity to perturbations far from the salient features
of the state; in the one-dimensional context this is the critical
wave peak, and in higher dimensions this is a topological
feature of the state (i.e., spiral origins or scroll wave filaments)
[40–42]. Similar considerations for the sensitivity of spiral
waves to localized medium heterogeneity [43–45] suggest this
hurdle can be overcome by treating ‘small’ deviations from
homogeneity as perturbative.

The results of this study indicate that the quenching
of pulses in excitable media—which are not amenable to
investigation through direct linearization—are nonetheless
predictable with a small amount of model insight. Addition-
ally, we have shown that the predictions may be evaluated
efficiently (especially compared to competing general tech-
niques for the prediction of transitions in nonlinear systems)
and accurately, to determine the necessary conditions of
quenching excitable pulses. Finally, we have argued that
quenching may be relevant for realistic multiphase defibril-
lation techniques, though the results indicate that the energy
costs of the approach may be prohibitive compared to existing
ignition-based approaches.
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APPENDIX

1. Traveling wave continuation and eigenproblems

As mentioned in the main text, we compute families of
excitation pulses using AUTO-07P [21]. This involves casting
Eq. (1) into first-order form in u1, u2, and u3 ≡ ∂xu1:

u′
1 = u3,

u′
2 = − f2(u1, u2)/c,

u′
3 = −(cu3 + f1(u1, u2) + J )/D, (A1)

where c > 0 and D > 0. An initial condition correspond-
ing to the quiescent state, ū, appended with an extra zero
corresponding to the first derivative of ū1, serves as initial
condition. The system is then continued in the stimulation
current J to a Hopf bifurcation, at which point the solver
switches to the family of periodic orbits emanating from the
bifurcation, now in (J, c). When states of sufficient length
are found, the periodic solutions are continued until J = 0,
and the resulting solution serves as a starting point for the
continuation to generate an interesting family of solutions;
e.g., for FitzHugh-Nagumo, in (γ , c) as depicted in Fig. 1. In
the experiments presented in this work, we use NTST = 1000
and NCOL = 4, leading to a 4001-element discretization of
the pulse at each (γ , c) pair. The solutions generated by this
process are then written to file, along with their parameters.
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We use the AUTO-07P generated solutions as initial es-
timates for a boundary value problem (BVP) posed on a
Chebyshev domain with M basis modes, and N = 2M grid
points; when N > M, the calculation of nonlinear terms is
more accurate due to dealiasing of the underlying nodal in-
tegrals. The BVP is constructed in DEDALUS2 [22], as well
as the eigenvalue (EVP) and initial-value problems (IVP).
As DEDALUS2 requires casting the system to first order in
Chebyshev-basis spatial derivatives, we arrive at system (A1);
as a third order system in two (primary) variables, to avoid
asymmetric boundary conditions (which will, typically, pol-
lute the eigenspectrum of the pulse) [46,47]. We shall also
note that the implementation in DEDALUS2 uses an implicit
τ method, which is equivalent to dropping the rows in the
discretization corresponding to the highest frequency modes
in the Chebyshev expansion and replacing those rows with the
boundary conditions. Thus, our BVP, EVP, and IVP solutions
are technically only correct to the leading M − 3 modes. More
general τ methods are available in DEDALUS3 through explicit
inclusion of τ terms [48].

The boundary conditions used in the solution of this BVP
are projective [18], which permits the finite expansion to
approximate the homoclinic orbit rather than the periodic
wave-train solution (which would be used with the periodic
boundary conditions of the AUTO-07P periodic orbits). We
refine the solution on the dealiased Chebyshev grid using a
Newton solver for the system until the maximum of the New-
ton updates is smaller than 5 × 10−15 and the Newton update
contains all the energy in the dealiased modes (i.e., modes
larger than M). For the FitzHugh-Nagumo model, M = 212,
which we found to be sufficient on a domain of size L = 2700.
Likewise, as the domain is significantly larger than the critical
pulse, the projective boundary conditions effectively satisfy
periodic boundary conditions up to an error in the deviation
of the endpoints from the rest state; in our experience, this is
smaller than 10−13, but there is no known guarantee for the ex-
actness of this approximation for the Chebyshev-T expansion
on Gauss-quadrature nodes.

The refined BVP solution is then passed to an EVP solver,
which constructs the linearized system about the solution us-
ing (analytical) expressions for fi jk ≡ ∂i∂ j fk , i, j, k ∈ {1, 2}:

0 = σv1 − (Dv′
3 + cv3 + f101v1 + f011v2),

0 = σv2 − (+cv3 + f102v1 + f012v2),

0 = v3 − v′
1, (A2)

for the eigenvalue σ , on the same Chebyshev domain as was
used in the BVP (with the datatype elevated to complex128,
to account for complex-valued modes). The EVP solver like-
wise inherits the projective boundary conditions from the BVP
solver. However, the EVP solver may be used to compute
the left or right eigenmodes by appropriate substitutions in
the formation of the eigenproblem, especially the boundary
conditions.

Finally, we consider the IVP used in the direct numerical
simulation of perturbed stable waves. Since we already have a
preponderance of solutions computed using a finite-difference
method and adaptive time-stepping, we treat the spectral solu-
tion of the IVP as a verification of the results. This calculation
reuses the same the M-mode solutions of the BVP solver

to form the initial condition. In general, one should treat
the extension from the BVP solution with projective bound-
ary conditions to the IVP with periodic boundary conditions
carefully. The former is a segment of the infinitely long ho-
moclinic orbit solution, while the latter is a periodic orbit
“close” to the homoclinic for sufficiently large L, M, and N . In
practice, we treat the extension as both a check that we have
sufficiently resolved the tails of the solution in the homoclinic
case (by comparing the difference in the state variables at the
endpoints), and an effective limit to our solution accuracy for
the periodic problem. The initial condition is then perturbed
according to the perturbation bisection problem detailed in
the text, which makes the initial condition nonsmooth; for
this reason we do not dealias the state for the IVP (N =
M) to account for the sharp features of the perturbations to
the state for the quenching problem. Given the nonsmooth
initial condition, we found it was necessary to make small
timesteps initially, which we manage by multiplying the base
time step δt by a power of 2 based on the progress of the
simulation. That is, at time 0 � ti � T , log2((ti+1 − ti )/δt ) =
min([max([�log2(ti/T + 2−12)�,−12]), 0]); so initially, the
simulation makes 212 times more time-steps per unit time
than at the end of the simulation. This stabilizes the already
strongly dissipative SBDF4 method [49] when Uq is large and
negative, i.e., Uq ∼ −102). The root-finding problem for the
amplitude is solved to a tolerance of 10−10 for each (xs, θ ) pair
by repeatedly calling the IVP with perturbed initial conditions
within a bisection procedure, with early exit from the IVP in
the case that ‖u(t, x) − ū‖1 < 10−10 and t < T = L/(2č).

2. Root-finding and continuation

As the determination of the optimal frame is posed in terms
of a scalar root-finding problem, cf. (9), and μ̌l (s; θ, xs) is
generally an unknown but very complicated function, signifi-
cant care in the identification, refinement, and interpretation of
roots must be taken. Of particular relevance for the predictions
of the linear theory, we have no strong guarantees of unique-
ness for the roots of μ̌l (s; θ, xs) for every given perturbation
envelop X̌(x − θ ; xs), nor for any model-supplied û(ξ ), ŵ1(ξ ),
ŵ2(ξ ), and ǔ(ξ + s).

As part of the published linear theory code [20], we con-
struct μ̌l (s; θ, xs) two ways: using the convolution approach
detailed in the main text, and through explicit reconstruction
and shifting of �̌l (x − s, s) to form

μ̌!
l (s; θ, xs) ≡ 〈�̌l (x − s, s)|X̌(x − θ ; xs)〉 (A3)

for 28 test shifts sampled uniformly from [0, L). Deviations
are on the order of |μ̌l (s; θ, xs) − μ̌!

l (s; θ, xs)| � 10−6 for the
problems considered, which is sufficient for the linear theory
predictions; we note the maximum error as tol such that 1 �
tol > 0.

Indeed, the leading issue with the direct application of
the linear theory (instead of the continuation from asymptoti-
cally large widths) is not the inaccuracy of scalar root-finding
(this would imply that the optimal frame is adjacent to ex-
tremely suboptimal frames), but rather the often extremely
large number of roots computed resulting from oscillations
in the input fields. The linear prediction code interpolates
the input fields onto a Fourier grid of fixed size to speed up
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FIG. 11. Continuation to xs = 25 for the quenching problem with θ = 0 applied to the FitzHugh-Nagumo pulse with γ = 0.025. Note in
the depiction of the denominator of Ǔ (s; θ, xs ) that the traced root is larger than the asymptotic (dotted line).

the convolutions; typically 213 is sufficient for our purposes,
as the number of grid points only affects the resolution of
the predictions for very small perturbation widths. However,
the Fourier expansion guarantees that the number of roots
of μ̌l (s; θ, xs) = 0 is an even number. For the 213 Fourier
expansion, we will typically find between 2 and 2 × 103

prospective roots without additional insight; thus, the near-
uniqueness of the asymptotic perturbation is essential for
tractability.

Unfortunately, the continuation requires the solution of all
intermediate problems for small perturbation widths, which
is inefficient compared to a direct computation for any sin-
gle xs. In principle, the direct computation may compute the
correct asymptotic branch, but does not determine it uniquely;
it is unclear whether a filtering process applied to the roots
specifically may discriminate the asymptotic branch without
computing the asymptotic solution. For numerical reasons, the
direct (noncontinuation) calculation requires the introduction
of filters based on the value of tol determined by the compar-
ison of μ̌!

l (s; θ, xs) and μ̌l (s; θ, xs), cf. discussion surrounding
Eq. (A3). Often distinct roots yield very similar traces [recall
that for each (xs, θ ), Ǔ (s; θ, xs) is a one-dimensional function
of s, cf. Figs. 2 and 11]. Finally, we note that none of the
filtering steps explicitly filter on the sign of the perturbation—
each frame selector will, in most circumstances, have roots
which correspond to positive-valued quenching perturbations.
We refer the interested reader to the public repository and
comments therein [20].

We initialize the continuation problem seeking solutions
(xs, Ǔ (s; θ, xs)) while controlling xs, where θ is held constant.
The continuation problem begins from the asymptotic case so
that we may identify limxs→∞ Ǔ (s; θ, xs) uniquely. By treating
the continuation with natural parametrization (i.e., not pseu-
doarclength) we do not track solutions around curves where
x′

s = 0; this is desirable since reversals in the branch would
make the prediction of the critical amplitude nonunique for
some xs.

An additional benefit of the continuation approach is the
comparison of subexpressions from the asymptotic case to
smaller perturbation widths. In Fig. 11, we show a diagnos-
tic figure generated during the continuation process, which
shows the perturbation, stable and unstable solutions, and the
leading unstable left eigenfunction (left-most column), and a
four-by-three block of diagnostic computations from the con-
tinuation. In the remainder of the figure we show μ̌l (s; θ, xs)
for each l (line, top row), and the roots of this function
(black dots), while highlighting the asymptotic branch (col-
ored dot). The second row shows the numerator of Ǔ (s; θ, xs),
likewise highlighting the roots of μ̌l (s; θ, xs). The third row
shows the denominator of Ǔ (s; θ, xs), highlighting the roots
of μ̌l (s; θ, xs) and the asymptotic value. The final row shows
the value of Ǔ (s; θ, xs), highlighting the roots, and oscillating
wildly for xs � L due to the division by near-zero values,
i.e., 〈ŵ1(ξ )|X̌(ξ + s − θ ; xs)〉 ≈ 0. An animation of the con-
tinuation sequence is available here. However, in practice the
asymptotic root is far from the regions where the denominator
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of Eq. (7) oscillates around 0, by construction, and the pre-
dictions do not suffer from numerical inaccuracies because
of these far-field effects. Rather, as explained in the main

text [Eq. (17)], we find some sensitivity to the curvature of
Ǔ (s; θ, xs) for μ̌2(s; θ, xs) about s∗

3; estimates of this factor
are |∂2

s U (s∗
3 )| ∼ 10+2 and −10+5 in some cases.
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