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Abstract
For a set of graphsH, a graph G isH-subgraph-free if G does not contain any graph
from H as a subgraph. We propose general and easy-to-state conditions on graph
problems that explain a large set of results forH-subgraph-free graphs.Namely, a graph
problemmust be efficiently solvable on graphs of bounded treewidth, computationally
hard on subcubic graphs, and computational hardness must be preserved under edge
subdivision of subcubic graphs. Our meta-classification says that if a graph problem�

satisfies all three conditions, then for every finite setH, it is “efficiently solvable” onH-
subgraph-free graphs ifH contains a disjoint unionof one ormore paths and subdivided
claws, and � is “computationally hard” otherwise. We apply our meta-classification
on many well-known partitioning, covering and packing problems, network design
problems and width parameter problems to obtain a dichotomy between polynomial-
time solvability and NP-completeness. For distance-metric problems, we obtain a
dichotomy between almost-linear-time solvability and having no subquadratic-time
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algorithm (conditioned on some hardness hypotheses). Apart from capturing a large
number of explicitly and implicitly known results in the literature, we also prove a
number of new results. Moreover, we perform an extensive comparison between the
subgraph framework and the existing frameworks for the minor and topological minor
relations, and pose several new open problems and research directions.

Keywords Forbidden subgraph · Complexity dichotomy · Meta-classification ·
Treewidth

1 Introduction

Algorithmic meta-theorems are general algorithmic results applying to a whole range
of problems, rather than just a single problem alone [73]. An algorithmicmeta-theorem
is a statement saying that all problems sharing some property or properties P , restricted
to a class of inputs I , can be solved efficiently by a certain form of algorithm. Probably
the most famous algorithmic meta-theorem is that of Courcelle [31], which proves
that every graph property expressible in monadic second-order logic is decidable in
linear time if restricted to graphs of bounded treewidth (see Sect. 3 for a definition
of treewidth). Another example is that of Seese [90], which proves that every graph
property expressible in first-order logic is decidable in linear time when restricted
to graphs of bounded degree. A third example comes from Dawar et al. [36], who
proved that every first-order definable optimisation problem admits a polynomial-
time approximation scheme on any class of graphs excluding at least one minor. There
is a wealth of further algorithmic meta-theorems (see, for example, [16, 38, 45]),
many of which combine structural graph theory (e.g. from graph minors) with logic
formulations or other broad problem properties (such as bidimensionality).

An extension of an algorithmic meta-theorem can produce a so-called algorithmic
meta-classification. This is a general statement saying that all problems that share some
property or properties P admit, over some classes of input restrictions I , a classification
according to whether or not they have property S. If the input-restricted class has
property S, then this problem is “efficiently solvable”; otherwise it is “computationally
hard”. Throughout,we let these two notions depend on context; for example, efficiently
solvable and computationally hard could mean being solvable in polynomial time and
being NP-complete, respectively.

Algorithmicmeta-classifications are less common than algorithmicmeta-theorems,
but let us mention two famous results. Grohe [57] proved that there is a polynomial-
time algorithm for finite-domain constraint satisfaction problems whose left-hand
input structure is restricted to C if and only if C has bounded treewidth modulo homo-
morphic equivalence (assuming W[1] �= FPT). Bulatov [25] and Zhuk [105] proved
that every finite-domain CSP(H) is either polynomial-time solvable or NP-complete,
omitting any Ladner-like complexities in between.

Two well-known meta-classifications apply to the classes of H-minor-free graphs
and H-topological-minor-free graphs. For a set H of graphs, these are the class of
graphs G where, starting from G, no graph H ∈ H can be obtained by a series of
vertex deletions, edge deletions, and edge contractions, respectively a series of vertex
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deletions, edge deletions, and vertex dissolutions (see Sect. 2 for full definitions). Both
are a consequence of a classic result of [87]; we refer to Appendix A for proof details,
but see also e.g. [72].

Theorem 1 Let � be a problem that is computationally hard on planar graphs, but
efficiently solvable for every graph class of bounded treewidth. For any set of graphsH,
the problem � on H-minor-free graphs is efficiently solvable if H contains a planar
graph (or equivalently, if the class of H-minor-free graphs has bounded treewidth)
and is computationally hard otherwise.

Theorem 2 Let � be a problem that is computationally hard on planar subcubic
graphs, but efficiently solvable for every graph class of bounded treewidth. For any
set of graphs H, the problem � on H-topological-minor-free graphs is efficiently
solvable if H contains a planar subcubic graph (or equivalently, if the class of H-
topological-minor-free graphs has bounded treewidth) and is computationally hard
otherwise.

Later in our paper, we will discuss many problems that satisfy the conditions of
Theorems 1 and 2. We refer, for example, to [46, 82] for a number of problems
that satisfy the conditions of Theorem 2, and thus also of Theorem 1, and that are
NP-complete even for planar subcubic graphs of high girth.

On the other end of the spectrum lie the classes ofH-free graphs (or hereditary graph
classes). A graph G is H-free if, starting from G, no graph H ∈ H can be obtained
by a series of vertex deletions. Hereditary graph classes are much more complex
in structure than the classes of H-minor-free graphs and H-topological-minor-free
graphs, for which powerful structure theorems exist [58, 88]. However, there exist
many infinite antichains under the induced subgraph relation (e.g. the set of cycles)
that are not antichains under theminor and topological minor relations. This makes the
task of finding algorithmic meta-classifications much harder. In fact, even algorithmic
meta-theorems are difficult to obtain for the induced subgraph relation, even for a
single forbidden graph H . Indeed, complexity dichotomies for H -free graphs are rare
and only known for specific problems (see e.g. [15, 55, 67, 68]).

Despite the above, some attempts have been made to study complexity boundaries,
e.g. through the notion of boundary graph classes [5] (see also [6, 72, 82]). However,
the induced subgraph relation is far from being understood. For example, after more
than forty years of research on Independent Set for H -free graphs starting from the
work ofAlekseev [5], currently only a trichotomy is knownbetween being polynomial-
time solvable, quasi-polynomial-time solvable and NP-complete (see the recent work
of Gartland et al. [52]). We do not yet know how to obtain the dichotomy between
polynomial-time solvable and NP-complete we believe this implies (see [59] for the
most recent progress).Manyother fundamental problems are still far frombeing settled
for H -free graphs with infinitely many open cases even when H is a connected graph.

BetweenH-minor-free graphs andH-topological-minor-free graphs on the one side
and H-free graphs on the other side, lies the class of H-subgraph-free graphs. These
are the graphs G where, starting from G, no graph H ∈ H can be obtained by a series
of vertex or edge deletions. In general, for every setH of graphs, the following holds
(see also Fig. 1 for some small examples):
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Fig. 1 The left example shows that the C4 is not P4-subgraph-free (the red edges correspond to a P4
subgraph), but it is P4-free. The right example shows that the net is not K1,3-minor-free (the vertex sets
indicated in blue correspond to a K1,3 minor), but it is K1,3-topological-minor-free (Color figure online)

H-minor-free graphs ⊆ H-topological-minor-free graphs ⊆ H-subgraph-free graphs
⊆ H-free graphs.
Forbidden subgraphs represent many rich graph classes. To explain this, let Cr , Kr

and Pr denote the path, complete graph and cycle on n vertices, respectively, and let
Kp,q denote the complete bipartite graph whose two partition classes each have size
p and q, respectively. It is readily seen that, for example:

– The classes of graphs of maximum degree at most r and K1,r+1-subgraph-free
graphs coincide;

– The class of graphs with girth larger than g for some integer g ≥ 3 coin-
cides with the class of (C3, . . . ,Cg)-subgraph-free graphs (and with the class
of (C3, . . . ,Cg)-free graphs);

– A class of graphs G has bounded treedepth if it is a subclass of Pr -subgraph-free
graphs for some constant r , and vice versa [84]; and

– For every class G of degenerate or nowhere dense graphs [83], there exists an
integer t such that every G ∈ G is Kt,t -subgraph-free (see [95] for a proof).

Moreover, H -free graphs and H -subgraph-free graphs coincide if and only if H = Kr

for some integer r ≥ 1. This leads to a rich structural landscape.
A substantial body of work has studied the parameterized complexity of graph

problems on a restricted set of subgraph-free graph classes (notably through the
lens of sparsity, see e.g. [91]). However, H-subgraph-free graphs have been signifi-
cantly less studied in the context of classical complexity theory than the other classes,
despite capturing many natural graph classes. This warrants a more in-depth look at
H-subgraph-free graphs.

Adding to this, H-subgraph-free graphs seem to exhibit extreme and unexpected
jumps in problem complexity. For example, there exist problems that are PSPACE-
complete in general but constant-time solvable for every H-free graph class [78]
and thus for every H-subgraph-free graph class, where H is any (possibly infinite)
nonempty set of graphs. Another example is the Clique problem, which is to decide
for a given integer k and graph G, if G contains a clique (set of pairwise adjacent

123



Algorithmica

vertices) of size at least k. The Clique problem is well-known to be NP-hard. (see
[51]). However, for H-subgraph-free graphs, the situation drastically changes. The
reason is that the size of a largest clique is bounded by the number of vertices of a
smallest graph in H and hence, one can just apply brute force to find a largest clique
in anH-subgraph-free graph in polynomial time. Hence, the following holds.

Observation 1 For every set of graphs H, Clique is polynomial-time solvable for
H-subgraph-free graphs.

In contrast to H-free graphs, some work has pointed to more complex dichotomy
results being possible. Kamiński [67] gave a complexity dichotomy for Max- Cut

restricted toH-subgraph-free graphs, whereH is any finite set of graphs. Twenty years
earlier,Alekseev andKorobitsyn [7] did the same for Independent Set,Dominating
Set andLong Path; see [56] for a short, alternative proof (similar to the oneof [67] for
Max- Cut) for the classification for Independent Set for H -subgraph-free graphs.
In [55] the computational complexity ofList Colouring forH-subgraph-free graphs
has been determined for every finite set of graphsH. More recently, Bodlaender et al.
[17] determined the computational complexity of Subgraph Isomorphism for H -
subgraph-free graphs for all connected graphs H except the case where H = P5, and
they reduced all open “disconnected” cases to either H = P5 or H = 2P5. However,
even for a classical problem such asColouring, a complete complexity classification
for H -subgraph-free graphs is far from settled [56]. Many more problems have not
been studied in this context at all.

Our Focus. Motivated by our apparent lack of understanding of H-subgraph-free
graphs, we embark on a deeper investigation of the computational complexity of
graph problems restricted to H-subgraph-free graphs. In this way, we will pio-
neer a new meta-classification of H-subgraph-free graphs, which is only the third
meta-classification for graph containment apart from Theorems 1 and 2. Besides the
aforementioned complexity dichotomies from [7, 56, 67], we will show that many
other problems are covered by this meta-classification. To do this, we will survey and
apply known results from the literature and also prove new results.

1.1 TheMeta-Classification forH-subgraph-free graphs

Before we define our framework, we first give some terminology. A class of graphs
has bounded treewidth if there is a constant c such that every graph in it has treewidth
at most c. Recall that a graph is subcubic if every vertex has degree at most 3. For an
integer k ≥ 1, the k-subdivision of an edge e = uv of a graph replaces e by a path
of length k + 1 with endpoints u and v (and k new vertices). The k-subdivision of a
graph G is the graph obtained from G after k-subdividing each edge (see Fig. 2 for an
example of a 2-subdivision). For a graph class G and an integer k, let Gk consist of the
k-subdivisions of the graphs in G.

Note that a problem that is hard for a classGmay be efficiently solvable for infinitely
many G p, while it may be computationally hard for infinitely many other G p (see also
Sect. 6.2). In order to capture this behaviour appropriately we introduce the follow-
ing condition. A graph problem � is computationally hard under edge subdivision
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Fig. 2 Left: An example of a graph in S (the graph S3,3,3 + P2 + P3 + P4); also note that S3,3,3 is the 2-
subdivision of K1,3. Right: the graphsH1 andH3,whereH1 is the “H”-graph, formed by an edge (themiddle
edge) joining the middle vertices of two P3s, and Hi (i ≥ 2) is obtained from H1 by (i − 1)-subdividing
the middle edge

of subcubic graphs if for every integer j ≥ 1, there is an integer � ≥ j such that:
if � is computationally hard for the class G of subcubic graphs, then � is computa-
tionally hard for G�. Commonly, we can prove that the condition holds by showing
that computational hardness is maintained under k-subdivision for a small integer k
(e.g. k = 1, 2, 3, 4) and then repeatedly apply the k-subdivision operation.

Our framework contains every graph problem � satisfying the following three
conditions (recall that the notions of efficiently solvable and computational hardness
depend on their context):

C1. � is efficiently solvable for every graph class of bounded treewidth;
C2. � is computationally hard for the class of subcubic graphs; and
C3. � is computationally hard under edge subdivision of subcubic graphs.

A problem � that satisfies conditions C1–C3 is called a C123-problem. Note that if a
problem does not satisfy C2, then C3 is implied. As mentioned, we refer to Sect. 6.2
for some reasons why we cannot simplify condition C3. In the same section we also
explain why being subcubic is important in condition C3.

For some p, q, r ≥ 1, the subdivided claw Sp,q,r is obtained from the claw (the
4-vertex star K1,3) after (p − 1)-, (q − 1)-, and (r − 1)-subdividing its three edges
respectively. The disjoint union G1 + G2 of two vertex-disjoint graphs G1 and G2
is the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We now define the set S, which is
well-known in the literature (see, for example, [6, 15, 76]) and also plays an important
role in our paper; see the left side of Fig. 2 for an example of a graph that belongs to
S.

Definition 1 The set S consists of all non-empty disjoint unions of zero or more
subdivided claws and paths.

Our main result is the following theorem that can be seen as the “subgraph variant” of
Theorems 1 and 2. Note that it suggests, just like Theorems 1 and 2, that boundedness
of treewidth might be the underlying explanation for the polynomial-time solvability.

Theorem 3 Let � be a C123-problem. For any finite set of graphs H, the problem
� on H-subgraph-free graphs is efficiently solvable if H contains a graph from S
(or equivalently, if the class of H-subgraph-free graphs has bounded treewidth) and
computationally hard otherwise.

We prove Theorem 3 in Sect. 3. The proof of the “efficient” part of Theorem 3 uses a
well-known path-width result [11]. To prove the “hard” part of Theorem 3, we show
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that every problem satisfying C2 and C3 is hard for (C3, . . . ,Ci , K1,4,H1, . . . ,Hi )-
subgraph-free graphs for every integer i ≥ 3 (see the right side of Fig. 2 for some
examples of a subdivided “H”-graphHi ). As such, the proof is similar to the proofs for
Max- Cut [67] and List Colouring [55] and Independent Set for H -subgraph-
free graphs [56] for finite sets of graphsH, which aswewill see are all C123-problems.
The original proofs from Alekseev and Korobitsyn [7] for Independent Set, Dom-
inating Set and Long Path, restricted toH-free graphs for finite sets of graphsH,
are different and do not involve any direct path-width arguments.

1.2 Impact

The impact of the subgraph framework is three-fold. These impacts follow from the
broad overview of the literature provided in this paper on problems that exhibit zero
or more of the properties C1, C2, C3.

First Impact. First and foremost, we are able to provide a complete dichotomy for
many problems on H-subgraph-free graphs by showing they are C123-problems.
In this way, we obtain a dichotomy between polynomial-time solvability and NP-
completeness for many well-known partitioning, covering and packing problems,
network design problems and width parameter problems.

We first show in Sect. 4 that computing the path-width and treewidth of a graph
are C123-problems. We do the same for a number of covering and packing prob-
lems: (Independent) Odd Cycle Transversal, P3- Factor and two variants
of the Dominating Set problem, namely Independent Dominating Set and
Edge Dominating Set; the latter is polynomially equivalent to Minimum Maxi-

mal Matching [61].We also show that Independent Set (or equivalently,Vertex
Cover) and Dominating Set are C123, and thus we recover the known classifica-
tions of [7]. Moreover, we show that List Colouring is C123, and thus we re-obtain
the classification of [55].

Next we prove (still in Sect. 4) that the following network design problems are all
C123-problems: Edge/Node Steiner Tree, (Induced) Disjoint Paths, Long
(Induced) Cycle, Long (Induced) Path, Max- Cut and Edge/Node Multi-

way Cut. Hence, we recover the classification of [7] for Long Path restricted to
H-subgraph-free graphs. We also include a reference to a subsequent result of [43],
in which it was shown that Perfect Matching Cut is C123.

We then consider in Sect. 5, the polynomial-time solvable problems Diameter

and Radius. These problems are studied in fine-grained complexity. Here, Theo-
rem 3 gives a distinction between almost-linear-time solvability versus not having a
subquadratic-time algorithmunder theOrthogonalVectorsConjecture [99] andHitting
Set Conjecture [1], respectively. The Orthogonal Vectors conjecture is implied by the
Strong Exponential Time Hypothesis (SETH) [99] and by the Hitting Set Conjecture
[1]; we refer to [100] for more context on both conjectures.

The above applications of Theorem 3, as well as a number of applications of
Theorem 1 and 2, are summarized in Table 1. A detailed comparison is deferred
to Sect. 7.
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Second Impact. The second impact of our framework is that we uncover several
complexity gaps in the literature. We subsequently resolve them in this and other
work. First, an important and difficult open question turned out to be the complexity
of Edge/Node Multiway Cut, for which the classic results of Dahlhaus et al. [33]
shows NP-completeness of the unweighted variant for planar graphs of maximum
degree 11 (and claims an improved bound of 6). In a companion paper [65], we
show NP-completeness for Edge/Node Multiway Cut on planar subcubic graphs,
besting the earlier degree bound and showing these problems satisfy C2. We note that
the NP-completeness for planar subcubic graphs instead of only for subcubic graphs
is also helpful in proving that a problem belongs to the minor and topological minor
frameworks.

Second,we prove, as new results, thatList Colouring,Odd Cycle Transver-

sal, Independent Odd Cycle Transversal, and C5- Colouring are NP-
complete for planar subcubic graphs, and thus satisfy C2. For the following problems
we give explicit proofs to show that they satisfy C3: Path- Width, Tree- Width,
Edge/Node Steiner Tree, Edge/Node Multiway Cut and Diameter. Hence,
our framework on H-subgraph-free graphs shows the way towards new results.

Third Impact. The third impact of our framework is that it enables a structured
investigation into complexity dichotomies for graph problems that do not satisfy some
of the conditions, C1, C2 orC3, particularlywhen only one is not satisfied.We call such
problems C23, C13, or C12, respectively. This direction leads to many interesting new
research questions.Weare currently trying to determine newcomplexity classifications
for a number of relevant problems in follow-upwork that includes three papers labelled
as Complexity Framework For Forbidden Subgraphs II [75], III [66] and IV [18]. We
consider C12-problems in [75]; C13-problems in [66]; and C23-problems in [18].
This led to new insights into the complexity of well-studied problems such as the
C12-problem Hamilton Cycle [75], the C13-problem Feedback Vertex Set

[66], and the C23-problem Steiner Forest [18]. For all these problems and several
more [18, 66, 75], the complexity classifications are currently incomplete and will be
different from the one in Theorem 3. Hence, our framework has the potential to open
a new and rich research area.

1.3 Organization

We start with some preliminaries in Sect. 2. We prove Theorem 3 as a consequence of
a stronger result In Sect. 3. Next, in Sects. 4 and 5, we apply our subgraph framework
to a wealth of problems as described above. We provide a discussion on limitations of
the framework in Sect. 6, and an extensive comparison of the applicability of the three
meta-classifications (Theorem 1, 2, and 3) in Sect. 7. Finally, we conclude our paper
with a list of open problems and research directions in Sect. 8.
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2 Preliminaries

A graph G contains a graph H as a subgraph if G can be modified to H by a sequence
of vertex deletions and edge deletions; if not, then G is H -subgraph-free. A graph G
contains H as an induced subgraph if G can be modified to H by a sequence of only
vertex deletions; if not, then G is H-free. The girth of a graph G that is not a forest is
the length (number of edges) of a shortest cycle in G.

The contraction of an edge e = uv in a graph replaces u and v by a new vertex that
is made adjacent precisely to the former neighbours of u and v in G (without creating
multiple edges). If v had degree 2 and its two neighbours in G are non-adjacent, then
we also say that we dissolved v and call the operation the vertex dissolution of v. A
graph G contains H as a topological minor (or as a subdivision) if G can be modified
to H by a sequence of vertex deletions, vertex dissolutions and edge deletions; if not,
then G is H -topological-minor-free. A graph G contains H as a minor if G can be
modified to H by a sequence of vertex deletions, edge deletions and edge contractions;
if not, then G is H -minor-free.

For a set H of graphs, a graph G is H-subgraph-free if G is H -subgraph-free for
every H ∈ H. If H = {H1, . . . , Hp} for some integer p ≥ 1, we also say that G is
(H1, . . . , Hp)-subgraph-free. We also define the analogous notions of being H-free,
H-topological-minor-free and H-minor-free. A class of H-free graphs is also said to
be hereditary.

A tree decomposition of a graph G = (V , E) is a pair (T ,X ) where T is a tree
and X is a collection of subsets of V called bags such that the following holds. A
vertex i ∈ T is a node and corresponds to exactly one bag Xi ∈ X . The tree T has
the following two properties. First, for each v ∈ V , the nodes of T that contain v

induce a non-empty connected subgraph of T . Second, for each edge vw ∈ E , there
is at least one node of T that contains both v and w. The width of (T ,X ) is one less
than the size of the largest bag in X . The treewidth of G is the minimum width of
its tree decompositions. If we require T to be a path, then we obtain the notions path
decomposition and path-width.

A graph parameter p dominates a parameter q if there is a function f such that
p(G) ≤ f (q(G)) for every graph G. If p dominates q, but q does not dominate p,
then p is more powerful than q. If p dominates q and vice versa, then we say that p
and q are equivalent. Note that every graph of path-width at most c has treewidth at
most c. However, the class of trees has treewidth 1, but unbounded path-width (see
[40]). Hence, treewidth is more powerful than path-width.

3 The Proof of Theorem 3

We present a stronger result that will imply Theorem 3. A graph class closed under
edge deletion is also called monotone [6, 21, 72]. For a set of graphs H, the class of
H-subgraph-free graphs is finitely defined if H is a finite set. We say that a problem
� is C1′D if � satisfies the following two conditions (see Fig. 2 for examples of the
subdivided “H”-graphs Hi ):
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C1′. � is efficiently solvable for every finitely defined monotone graph class of
bounded path-width;

D. For every i ≥ 3, � is computationally hard for the class of
(C3, . . . ,Ci , K1,4,H1, . . . ,Hi )-subgraph-free graphs.

Our first theorem shows that the class of C1′D-problems is a proper superclass of the
class of C123-problems.

Theorem 4 Every C123-problem is C1′D, but not every C1′D-problem is C123.

Proof Let � be a C123-problem. Then � satisfies C1 and thus C1′. To show
condition D, let i ≥ 3, and let Gi be the class of (C3, . . . ,Ci , K1,4,H1, . . . ,Hi )-
subgraph-free graphs. As � satisfies C2, � is computationally hard for the class G
of subcubic graphs, that is, K1,4-subgraph-free graphs. As � satisfies C3, there exists
an integer � ≥ i + 1, such that � is computationally hard for G�. We note that G� is
a subclass of Gi . Hence, � is computationally hard for Gi and thus satisfies D. We
conclude that � is a C1′D-problem.

To show that the reverse statement does not necessarily hold,wedefine the following
(artificial) example problem. Let B be the set of all graphs obtained from a cycle
after adding a new vertex made adjacent to precisely one vertex of the cycle. Then
the problem B- Modified List Colouring takes as input a graph G with a list
assignment L and asks whether G simultaneously has a colouring respecting L and
has a connected component that is a graph from B.

We now prove that B- Modified List Colouring is not C123 but is C1′D. We
distinguish between “being polynomial-time solvable” and “being NP-complete”. We
first observe that B satisfies the following four properties:

1. For every integer p, the p-subdivision of any graph in B is not in B.
2. We can recognize whether a graph belongs to B in polynomial time.
3. Every graph in B admits a 3-colouring.
4. For every finite setH disjoint from S, there is an H-subgraph-free graph in B.

Due to Property 1, B- Modified List Colouring does not satisfy C3. Hence, B-
Modified List Colouring is not a C123-problem.We will prove that B- Modified

List Colouring is C1′D. As List Colouring is C123 by Theorem 11, it satisfies
C1 and thus C1′. By Property 2, we can check in polynomial time if a graph has
a connected component in B. Hence, B- Modified List Colouring satisfies C1′.
Below we prove that it also satisfies condition D.

Let i ≥ 3, and let Gi be the class of (C3, . . . ,Ci , K1,4,H1, . . . ,Hi )-subgraph-
free graphs. As List Colouring is C123, it follows from the first statement
that it is also C1′D. Hence, List Colouring is NP-complete on Gi . Let (G, L)

be an instance of List Colouring where G is a graph from Gi . We note that
{C3, . . . ,Ci , K1,4,H1, . . . ,Hi )} ∩ S = ∅. Hence, by Property 4, there is an H-
subgraph-free graph B ∈ B. Let G ′ = G + B. Extend L to a list assignment L ′
by giving each vertex of B list {1, 2, 3}. We claim that (G, L) is a yes-instance of
List Colouring if and only if (G ′, L ′) is a yes-instance of B- Modified List

Colouring.
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First suppose G has a colouring respecting L . By Property 3, B is 3-colourable. As
vertices of B have list {1, 2, 3}, G ′ has a colouring respecting L ′. As G has B ∈ B as a
connected component, (G ′, L ′) is a yes-instance of B- Modified List Colouring.
Now suppose that (G ′, L ′) is a yes-instance ofB- Modified List Colouring. Then,
G ′ has a colouring respecting L ′, and thusG has a colouring respecting L .We conclude
that B- Modified List Colouring satisfies D and is thus a C1′D-problem. As we
already showed that B- Modified List Colouring is not C123, this proves the
second statement of the theorem. �

We also need a theorem from Bienstock, Robertson, Seymour and Thomas.

Theorem 5 ([11]) For every forest F, all F-minor-free graphs have path-width at
most |V (F)| − 2.

We now prove a result, which shows that the conditions C1′ and D are both necessary
and sufficient.

Theorem 6 Let � be a problem. Then the following two statements are equivalent:

(i) � is C1′D; and
(ii) for any finite set of graphs H, the problem � on H-subgraph-free graphs is

efficiently solvable if H contains a graph from S and computationally hard
otherwise.

Proof First assume that� is C1′D. LetH be a finite set of graphs. First suppose thatH
contains a graph H from S. Let G be aH-subgraph-free graph. As G isH-subgraph-
free, G is H -subgraph-free. It is known (see e.g. [55, 56]) that, for any graph H ′ ∈ S,
a H ′-subgraph-free graph is also H ′-minor-free. Hence, G is H -minor-free. So by
Theorem 5, G has constant path-width at most |V (H)| − 2, meaning we can solve �

efficiently by C1′.
Now suppose that H contains no graph from S. Let H ∈ H. As H /∈ S, H has a

connected component containing a K1,4 (or equivalently, a vertex of degree at least 4);
or a cycle Ch for some h ≥ 3; or a graph Hi for some i ≥ 1. Hence, the class of
H -subgraph-free graphs contains the K1,4-subgraph-free graphs; or Ch-subgraph-
free graphs for some h ≥ 3; or Hi -subgraph-free graphs for some i ≥ 1, each
of which contains the (C3, . . . ,C j(H), K1,4,H1, . . . ,H j(H))-subgraph-free graphs,
where j(H) = max{h, i}. Hence, the class of H -subgraph-free graphs contains the
(C3, . . . ,C j(H), K1,4,H1, . . . ,H j(H))-subgraph-free graphs. Consequently, the class
ofH-subgraph-free graphs contains the (C3, . . . ,C j∗ , K1,4,H1, . . . ,H j∗)-subgraph-
free graphs, where j∗ = maxH∈H j(H) (note that j exists, asH is finite). As � satis-
fies D, we find that � is computationally hard for (C3, . . . ,C j∗ , K1,4,H1, . . . ,H j∗)-
subgraph-free graphs, and thus for H-subgraph-free graphs.

Now assume that for any finite set of graphs H, the problem � on H-subgraph-free
graphs is efficiently solvable if H contains a graph from S and computationally hard
otherwise. We first prove C1′. LetH be a finite set, such that the class ofH-subgraph-
free graphs has bounded path-width. Recall that the latter holds if and only if H
contains a graph from S [86]. Hence, � satisfies C1′.
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We now prove that condition D holds. Let i ≥ 3, and let Gi be the class of H-
subgraph-free graphs, where H = {C3, . . . ,Ci , K1,4,H1, . . . ,Hi }. Then H contains
no graph from S. Hence, � is computationally hard for H-subgraph-free graphs.
Consequently, � satisfies D. �

We are now ready to prove Theorem 3, which we restate below.

Theorem 3 (restated). Let �be a C123-problem. For any finite set of graphs H, the
problem � on H-subgraph-free graphs is efficiently solvable if H contains a graph
fromS (or equivalently, if the class ofH-subgraph-free graphs has bounded treewidth)
and computationally hard otherwise.

Proof The result follows from combining Theorems 4 and 6, and the well-known fact
that for a finite set of graphsH, a class ofH-subgraph-free graphs has bounded path-
width if and only if it has bounded treewidth if and only if H contains a graph from
S [86] (see e.g. [21, 32], for an explanation with respect to the more powerful param-
eter clique-width, and hence, replacing “bounded pathwidth” in C1′ by “bounded
treewidth” or “bounded clique-width” yields the same equivalence as in Theorem 6).

�


Remark. We emphasize that we are not aware of any natural C1′D-problem that is
not C123. As the conditions C1–C3 are more intuitive, we have therefore chosen to
present our subgraph framework in terms of the C1–C3 conditions instead of the C1′-D
conditions.

4 Application to NP-Complete Problems

We provide a complete dichotomy between polynomial-time solvability and NP-
completeness for many problems on H-subgraph-free graphs by showing they are
C123-problems. In Sect. 4.1, we give examples of width parameter problems that are
C123. In Sect. 4.2 we give examples of partitioning, covering and packing problems
that are C123. In Sect. 4.3 we show the same for a number of network design prob-
lems. In fact we do a bit more. Namely, we also show that these problems belong to
the minor and topological minor frameworks whenever the relevant NP-completeness
result applies to subcubic planar graphs, as reflected in Table 1. We will not explicitly
remark this in the remainder of the section.

4.1 Width Parameter Problems

Let Path- Width and Tree- Width be the problems of deciding for a given integer k
and graph G, if G has path-width, or respectively, treewidth at most k. We observe
that it is unclear whether a path-width bound is maintained under subdivision, and
thus proving property C3 for Path- Width is non-trivial. We show a more specific
result that is sufficient for our purposes. For Tree- width, we can follow amore direct
proof.
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Theorem 7 Path- Width is a C123-problem.

Proof Path- Width is linear-time solvable for every graph class of bounded treewidth
[19] so satisfies C1. It is NP-complete for 2-subdivisions of planar cubic graphs [81]
so satisfies C2. It also satisfies C3, as we will prove the following claim:

Claim. A graph G = (V , E) that is a 2-subdivision of a graph G ′′ has path-width k if
and only if the 1-subdivision G ′ of G has path-width k.

First suppose that G = (V , E) that is a 2-subdivision of a graph G ′′ has path-width k.
We use the known equivalence of path-width to the vertex separation number [69].
We recall the definition. Let L be a bijection between V and {1, . . . , |V |}, also called
a layout of G. Let

VL(i) = {u | L(u) ≤ i and ∃v ∈ V : uv ∈ E and L(v) > i}.

Then vsL(G) = maxi∈{1,...,|V |}{|VL(i)|} and vs(G) = minL{vsL(G)} is the vertex
separation number of G.

As shown by Kinnersley [69], G has a layout L such that vsL(G) = k since G has
path-width k. In a 2-subdivision, such as G, any edge uv of the original graph (G ′′ in
this case) gets replaced by edges ua, ab, and bv, where a and b are newvertices specific
to the edge uv. In a standard layout L for G, L(a) = L(b) − 1 and L(u) < L(a) for
each such edge uv of G ′′. By applying the transformation of Ellis, Sudborough and
Turner [41, Lemma 2.3] if necessary, we may assume that L is a standard layout and
still vsL(G) = k.

For some edge uv of G ′′ and its 2-subdivision into ua, ab, bv in G, consider a
further subdivision of each of these three edges. Let x , y, z be the newly created
vertices respectively. Modify L by placing x directly before a, y between a and b, and
z directly after b. Let L ′ denote the new layout. For simplicity and abusing notation,
we use L ′(x) = L(a) − 1

2 , L
′(y) = L(a) + 1

2 = L(b) − 1
2 and L ′(z) = L(b) + 1

2 to
denote the positions of x , y and z in the new layout respectively. For any i < L(a)− 1

2 ,
VL ′(i) = VL(i), because L(a) > i and L ′(x) > i . Next, we observe that

VL ′(L ′(x)) = VL ′(L(a) − 1

2
) = (VL(L(a)) \ {a}) ∪ {x},

becauseb follows aftera in L andnowa follows after x in L ′.Hence,VL ′(L ′(x))has the
same size as VL(L(a)), so size at most k. Similarly, we can observe that VL ′(L(a)) =
VL(L(a)) (note that L ′(u) = L(u) < L(a)), VL ′(L(a)+ 1

2 ) = (VL(L(a))\{a})∪{y},
and VL ′(L(b)) = (VL(L(a))\{a})∪{b}, which all have size atmost k.We then observe
thatVL ′(L(b)+ 1

2 ) is equal toVL (L(b))withb replacedby z ifb ∈ VL(L(b)). Similarly,
for any i > L(b), if b ∈ VL(i), we can replace b by z to obtain VL ′(i); otherwise,
VL ′(i) = VL(i). Note that a is never part of VL(i) for i > L(b). In all cases, the
size remains bounded by k. Hence, vsL ′ ≤ k and by the aforementioned equivalence
between path-width and vertex separation number [69], G ′ has path-width at most k.

Now suppose that G ′ has path-width k. As subdivision cannot decrease path-width
(or consider the converse, contraction cannot increase it), G has path-width at most k.

123



Algorithmica

From the above, we conclude that G has path-width k if and only if G ′ has path-
width k. Hence, the claim, and thus C3, is proven. This finishes the proof of Theorem 7.

�

Theorem 8 Tree- Width is a C123-problem.

Proof Tree- Width is linear-time solvable for every graph class of bounded treewidth
[13]. Very recently, it was shown that Tree- Width is NP-complete for cubic graphs
[14] so the problem satisfiesC2. It also satisfiesC3,which is awell-knownobservation;
see [101] for an explicit proof (see also, for example, [70]).Hence, the theorem follows.

�


4.2 Partitioning, Covering and Packing Problems

TheVertex Cover problem is to decide if a graph has a vertex cover of size at most k
for some given integer k. The Independent Set problem is to decide if a graph has an
independent set of size at least k for some given integer k. Note that Vertex Cover

and Independent Set are polynomially equivalent. In the following theorem we
recover the classification of [7].

Theorem 9 Vertex Cover and Independent Set are C123-problems.

Proof Both are linear-time solvable for graphs of bounded treewidth [9] so satisfy C1.
Both are NP-complete for 2-connected cubic planar graphs [80] so satisfy C2. They
also satisfy C3, as a graph G on m edges has an independent set of size k if and only
if the 2-subdivision of G has an independent set of size k + m [85]. �

A set D ⊆ V is dominating a graph G = (V , E) if every vertex The (Independent)
Dominating Set problem is to decide if a graph has an (independent) dominating
set of size at most k for some integer k. A set F ⊆ E is an edge dominating set
if every edge in E \ F shares an end-vertex with an edge of F . The corresponding
decision problem isEdge Dominating Set. Recall that this problem is polynomially
equivalent toMinimum Maximal Matching [61].

The following theorem shows that both problems are C123, just like Dominating
Set; hence, we recover the classification of [7] for the latter problem.

Theorem 10 Dominating Set, Independent Dominating Set and Edge Dom-

inating Set are C123-problems.

Proof Dominating Set [9], Independent Dominating Set [94] andEdge Dom-

inating Set [8] are linear-time solvable for graphs of bounded treewidth so satisfy
C1. Dominating Set [51], Independent Dominating Set [30] and Edge Dom-

inating Set [104] are NP-complete for planar subcubic graphs so satisfy C2. For
showing C3 we use the following claim (see for example [27]) for a proof). A graph
G withm edges has a dominating set, independent dominating set or edge dominating
set of size k if and only if the 3-subdivision of G has a dominating set, independent
dominating set or edge dominating set, respectively, of size k + m. �
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For a graph G = (V , E), a function c : V → {1, 2 . . .} is a colouring of G if c(u) �=
c(v) for every pair of adjacent vertices u and v. If c(V ) = {1, . . . , k} for some integer
k ≥ 1, then c is also said to be a k-colouring. Note that a k-colouring ofG partitions V
into k independent sets, which are called colour classes. The 3- Colouring problem
is to decide if a graph has a 3-colouring. A list assignment of a graph G = (V , E)

is a function L that associates a list of admissible colours L(u) ⊆ {1, 2, . . .} to each
vertex u ∈ V . A colouring c of G respects L if c(u) ∈ L(u) for every u ∈ V . The List
Colouring problem is to decide if a graph G with a list assignment L has a colouring
that respects L . An odd cycle transversal in a graph G = (V , E) is a subset S ⊆ V
such that G − S is bipartite. If S is independent, then S is an independent odd cycle
transversal. The (Independent) Odd Cycle Transversal problem is to decide
if a graph has an (independent) odd cycle transversal of size at most k for a given
integer k. Note that a graph has an independent odd cycle transversal of size at most k
if and only if it has 3-colouring in which one of the colour classes has size at most k.

Recall that 3-Colouring is not a C123-problem, as it does not satisfy C2 (see
also Table 1). Indeed, because of Brooks’ theorem [24], it is polynomial-time solvable
on subcubic graphs. This is in contrast to the situation for List Colouring, Odd
Cycle Transversal and Independent Odd Cycle Transversal: we show
that all three problems are C123, and in this way recover the classification of [55] for
List Colouring. Our proof shows in particular that all three problems are in fact
NP-complete for planar subcubic graphs.

Theorem 11 List Colouring,Odd Cycle Transversal and Independent Odd

Cycle Transversal are C123-problems.

Proof Jansen and Scheffler [64] proved that List Colouring can be solved in linear
timeongraphs of bounded treewidth, so satisfiesC1.BothOdd Cycle Transversal

and Independent Odd Cycle Transversal are linear-time solvable for graphs
of bounded treewidth [8, 44] so satisfy C1.

To prove C2 for all three problems, we modify the standard reduction to 3-

Colouring for planar graphs, which is from Planar 3- Satisfiability (we use
the reduction from Proposition 2.27 of [54]). This enables us to prove that all three
problems are NP-complete even for planar subcubic graphs.

The problem Planar 3- Satisfiability is known to be NP-complete even when
each literal appears in at most two clauses (see Theorem 2 in [35]). It is defined as
follows. Given a CNF formula φ that consists of a set X = {x1, x2, ..., xn} of Boolean
variables, and a set C = {C1,C2, ...,Cm} of two-literal or three-literal clauses over
X , does there exist a truth assignment for X such that each C j contains at least one
true literal? If such a truth assignment exists, then φ is satisfiable.

Let φ be an instance of Planar 3- Satisfiability on n variables and m clauses.
From φ we construct a graph G as follows:

– For i = 1, . . . , n, add the literal vertices xi and xi and the edge xi xi .
– Add a path P of 2m vertices. The odd vertices represent false and the even vertices
true.

– For each clause C j , add a clause gadget as in Fig. 3 with three labelled vertices
c j1 , c j2 , c j3 as well as an output vertex labelled c j .
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Fig. 3 The clause gadget that was also used in the reduction from (Planar) 3-Satisfiability to 3-
Colouring, drawn with an edge connecting the output node to a vertex of the path P representing false.
The property that the gadget enforces is that not all of the three input nodes ci1 , ci2 , ci3 may be coloured
the same as the vertex representing false

– Fix an order of the literals x j1 , x j2 , x j3 of each three-literal clause C j and for
h = 1, . . . , 3, identify x jh with c jh .

– Fix an order of the literals x j1 , x j2 of each two-literal clause C j and for h =
1, . . . , 2, identify x jh with c jh .

– Add an edge between ci and the i th odd vertex (representing false) of P .
– Add an edge between any unused input ci3 and the i th even vertex (representing
true) on P .

Note that G is subcubic. Let us argue that G is also planar. In Planar 3-
Satisfiability, the bipartite incidence graph of clauses with variables is planar. We
build G so as to be planar in the following way. Uppermost we place the literals
assigned to the inputs of the clause gadgets in just the manner prescribed in the bipar-
tite incidence graph. Lowermost, we place the path of length 2m that will be joined
on the odd vertices to the output nodes of the clause gadgets.
We will first prove that G has an independent odd cycle transversal of size 2m if and
only if φ is satisfiable. First suppose that G has an independent odd cycle transver-
sal S = {v1, . . . , v2m} of size 2m. As G contains 2m triangles, two in each clause
gadget, T1, . . . , T2m , we may assume without loss of generality that vi ∈ V (Ti ) for
every i ∈ {1, . . . , 2m}. Note that G − S is bipartite by the definition of an odd cycle
transversal. Thus we can find a 3-colouring of G by colouring every vertex of S with
colour 1 and colouring every vertex of G − S with colours 2 and 3. As each literal
vertex belongs to G − S, it is assigned either colour 2 or colour 3, just like each vertex
of P . Let us assume, without loss of generality, that the odd vertices on this path are
coloured 3. Hence, 2 represents true and 3 false. But now, by construction of the clause
gadget, at least one of the vertices c j1 , c j2 and c j3 is coloured 2 and is identified with
a literal for j = 1, . . .m, and therefore we deduce that φ is satisfiable.

Now suppose thatφ is satisfiable. Colour the vertices of P alternatinglywith 3 and 2.
In each clause, colour each true literalwith colour 2 and each false or unused literalwith
colour 3. Then, by construction of the clause gadget,we can extend this to a 3-colouring
of G. Let S be the set of vertices of G coloured 1. Then S ⊆ V (T1) ∪ · · · ∪ V (T2m).
Since we created a proper colouring, S consists of exactly one vertex of each Ti and
its vertices are pairwise non-adjacent. So S is an independent odd cycle transversal of
G of size 2m.
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To prove C2 for List Colouring, we use exactly the reduction above, with the
literal vertices, any unused input ci3 and the vertices of P assigned the list {2, 3}, but
all other vertices permitted to be any of the three colours. Hence, as every list will be
a subset of {1, 2, 3}, this result even holds for List 3- Colouring.

We now show C2 for Independent Odd Cycle Transversal and C3 for Odd
Cycle Transversal and Independent Odd Cycle Transversal. To show C3
forOdd Cycle Transversal, we can just use the following claim (see for example
[26] for a proof):

Claim. The size of a minimum odd cycle transversal of G is equal to the size of a
minimum odd cycle transversal of the 2-subdivision of G.

We now prove C2 and C3 for Independent Odd Cycle Transversal by proving
that Independent Odd Cycle Transversal is NP-complete for 2p-subdivisions
of subcubic planar graphs. Consider the subclass of planar subcubic graphs that cor-
respond to instances of Planar 3-Satisfiability as defined in our proof for C2 for
Odd Cycle Transversal. We now apply the above Claim sufficiently many times.
In the graphG ′ resulting from the 2p-subdivision, any minimum odd cycle transversal
will also be an independent odd cycle transversal (by inspection of the proof for C2
for Odd Cycle Transversal, because the cycles that were once triangles become
further and further apart).

By inspection of the proof of Lemma 3 in [55], also List Colouring satisfies
C3. �

A P3-factor or perfect P3-packing of a graph G = (V , E) with |V | = 3k for some
integer k ≥ 1 is a partition of V into subsets V1, . . . , Vk , such that each G[Vi ] is either
isomorphic to P3 or K3. The corresponding decision problem, which asks whether
a graph has such a partition, is known as P3- Factor or Perfect P3- Packing. We
show that P3-Factor is a C123-problem, a result which is essentially due to [6].

Theorem 12 P3-Factor is a C123-problem.

Proof This follows from combining Proposition 1 of [6] for showing C1 with
Lemma 12 of [6] for showing C2 and C3 (with k = 3). Recently, Xi and Lin [102]
proved that P3- Factor isNP-complete even for claw-free planar cubic graphs, which
also proves C2. �


4.3 Network Design Problems

A (vertex) cut of a graphG = (V , E) is a partition (S, V \S) of V . The size of (S, V \S)

is the number of edges with one end in S and the other in V \S. TheMax- Cut problem
is to decide if a graph has a cut of size at least k for some integer k. By combining the
next result with Theorem 3, we recover the classification of [67].

Theorem 13 ([67])Max- Cut is a C123-problem.

Proof Max- Cut is linear-time solvable for graphs of bounded treewidth [8] and
NP-complete for subcubic graphs [103] so satisfies C1 and C2. A cut C of a graph
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G is maximum if G has no cut of greater size. Kamiński [67] proved that a graph
G = (V , E) has a maximum cut of size at least c if and only if the 2-subdivision of
G has a maximum cut of size at least c + 2|E |. This shows C3. �

Let G = (V , E) be a graph. A set M ⊆ E is a perfect matching if no two edges in M
share an end-vertex and moreover, every vertex of the graph is incident to an edge of
M . A set M ⊆ E is an edge cut of G if it is possible to partition V into two sets B
and R, such that M consists of all the edges with one end-vertex in B and the other
one in R. A set M ⊆ E is a perfect matching cut of G if M is a perfect matching
that is also an edge cut. The Perfect Matching Cut is to decide if a graph has
a perfect matching cut. Lucke et al. [43] recently showed that Perfect Matching

Cut is C123.

Theorem 14 ([43]) Perfect Matching Cut is a C123-problem.

Proof Le and Telle [74] observed that Perfect Matching Cut is polynomial-time
solvable for graphs of bounded treewidth. In the same paper [74], they also proved that
for every integer g ≥ 3, it isNP-complete even for subcubic bipartite graphs of girth at
least g. Hence, Perfect Matching Cut satisfies C1 and C2. The NP-completeness
proof in [74] implicitly showed that to get C3 we may take k = 4 (see also [43]).

We note that C2 also follows for Perfect Matching Cut from a recent result of
Bonnet, Chakraborty and Duron [22], who proved that Perfect Matching Cut is
NP-complete even for 3-connected subcubic planar graphs. �

Given a graphG and a set of terminals T ⊆ V (G), and an integer k, the problemsEdge
(Node) Steiner Tree are to decide if G has a subtree containing all the terminals
of T , such that the subtree has at most k edges (vertices). We give explicit proofs that
Node Steiner Tree and Edge Steiner Tree are NP-complete on planar subcubic
graphs and that this is maintained under subdivision, leading to these two problems
being C123-problems.

Theorem 15 Edge and Node Steiner Tree are C123-problems.

Proof As the two variants are equivalent (on unweighted graphs), we only consider
Edge Steiner Tree, which is linear-time solvable for graphs of bounded treewidth
[8] so satisfies C1. For showing C2, we reduce from Edge Steiner Tree, which is
NP-complete even for grid graphs [48], and thus for planar graphs.

Let (G, T , k) be an instance, where G is a planar graph with |V (G)| = n. We build
a planar subcubic graph G ′ where we replace each node v in G with a rooted binary
tree Tv in which there are n leaf vertices (so the tree contains at most 2n nodes and is of
depth �log n�). For each edge e = uv of G, add to G ′ a path e′ of length 4n2 between
some a leaf of Tu and a leaf of Tv (ensuring that each leaf is incident with at most one
such path). If v in G is in T , then the root vertex of Tv is a terminal in G ′ (and these
are the only terminals in G ′ and form the set T ′). We note that G is planar subcubic,
and we claim that (G, T , k) is a yes-instance if and only if (G ′, T ′, 4n2 · k + 2n2) is
a yes-instance.

First suppose G has a Steiner tree S with at most k edges. We build a Steiner tree
S′ in G ′: if e = uv is in S, then we add to S′ a path that comprises e′ and paths that
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join the roots of Tu and Tv to e′. The sum of the lengths of these paths, additional to
the 4n2 · k, is bounded above by 2 · n · log n ≤ 2n2.

Now suppose G ′ has a Steiner tree S′ with at most 4n2 · k + 2n2 edges. We build
a tree S in G: if e = uv and e′ is in S′, we add e to S. Then S is a Steiner tree in G.
As the length of a path from Tu to Tv is 4n2, the sum of the lengths of all such paths
in S′ is a whole multiple of 4n2, so |E(S)| ≤ k.

Finally, to prove C3, it suffices to show the following claim:

Claim.A graph G has an edge Steiner tree for terminals T of size at most k if and only
if the 1-subdivision of G has an edge Steiner tree for terminals T of size at most 2k.

In order to see this, let G ′ be the 1-subdivision of G. Let e1 and e2 be the two edges
obtained from subdividing an edge e ∈ E(G). Given a Steiner tree S of G with at
most k edges, we obtain a Steiner tree of G ′ with at most 2k edges by replacing each
edge e of S with e1 and e2. Given a Steiner tree S′ of G ′ with at most 2k edges, we
may assume that for any edge e of G, either neither or both of e1 and e2 are in S′; if
S′ contains only one it can safely be discarded. To obtain a Steiner tree of G with at
most k edges, include each edge e if both e1 and e2 are in S′. �

In the Edge Multiway Cut problem, also known asMultiterminal Cut, we are
given an input graph G = (V , E), a subset T of its vertices, and an integer k. The
goal is to decide whether there exists a set S ⊆ E such that |S| ≤ k and for any pair
of vertices {u, v} ∈ T , G\S does not contain a path between u and v. In the Node

Multiway Cut problem, we ask for a set S ⊆ V \ T such that |S| ≤ k and for any
pair of vertices {u, v} ∈ T , G\S does not contain a path between u and v.

Theorem 16 Edge and Node Multiway Cut are C123-problems.

Proof Edge Multiway Cut is linear-time solvable for graphs of bounded treewidth
[39] (also following [8]) and NP-complete for planar subcubic graphs [65] so satisfies
C1 and C2. It satisfies C3 as well, as we will prove the following claim:

Claim. A graph G has an edge multiway cut for a set of terminals T of size at most k
if and only if the 1-subdivision of G has an edge multiway cut for T of size at most k.

In order to see this, let G ′ be the 1-subdivision of G. For each edge e in G, there exist
two edges inG ′. If an edge ofG is in an edgemultiway cut forG and T , then it suffices
to pick only one of the two edges created from it in G ′ to disconnect the paths e lies
on. Vice versa, if an edge e′ of G ′ is in an edge multiway cut for G ′ and T , then it
suffices to pick the unique corresponding edge in G to disconnect the paths e′ lies on.
Wenow turn toNode Multiway Cut, which is linear-time solvable for graph classes
of bounded treewidth [8] (it is an extended monadic second-order linear extremum
problem) and NP-complete for planar subcubic graphs [65] so satisfies C1 and C2. It
satisfies C3, as we will prove the following claim:

Claim. A graph G has a node multiway cut for a set of terminals T of size at most k
if and only if its 1-subdivision has a node multiway cut for T of size at most k.

In order to see this, let G ′ be the 1-subdivision of G. We observe that subdividing any
edge of a graph does not create new connections between terminals. Moreover, we
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can assume that none of the newly introduced vertices of the subdivision are used in
some optimal solution for G ′ and T . �


Given a graph G and disjoint vertex pairs (s1, t1), (s2, t2), . . . (sk, tk), the Disjoint

Paths problem is to decide if G has k pairwise vertex-disjoint paths from si to ti for
every i . We obtain the Induced Disjoint Paths problem if the paths are required
to be mutually induced; a set of paths P1, . . . , Pk is mutually induced if P1, . . . , Pk

are pairwise vertex-disjoint and there is no edge between a vertex of some Pi and a
vertex of some P j if i �= j .

Theorem 17 Disjoint Paths and Induced Disjoint Paths are C123-problems.

Proof The Disjoint Paths problem is linear-time solvable for graphs of bounded
treewidth [89] and NP-complete for planar subcubic graphs [79] so satisfies C1 and
C2. The Induced Disjoint Paths problem is solvable in polynomial time for graphs
of bounded mim-width [63] and thus for bounded treewidth [97], so it satisfies C1.
Let G ′ be the 1-subdivision of a subcubic graph G and let T be a set of disjoint vertex
pairs. Then, (G, T ) is a yes-instance of Disjoint Paths if and only if (G ′, T ) is a
yes-instance of Disjoint Paths if and only if (G ′, T ) is a yes-instance of Induced
Disjoint Paths. Hence, C2 is satisfied for Induced Disjoint Paths as well and
C3 is satisfied for both problems. �


The Long Path and Long Induced Path are to decide for a given graph G and
integer k, whether G contains Pk as a subgraph or induced subgraph, respectively.
The Long Cycle and Long Induced Cycle problems are defined similarly. By
combining the next result with Theorem 3, we recover the classification of [67] for
Long Path. The classification of Long Cycle was not made explicit in [6], but is
implicitly there (combine Proposition 1 of [6] with Lemma 12 of [6]).

Theorem 18 Long Path,Long Induced Path,Long Cycle andLong Induced

Cycle are C123-problems.

Proof Bodlaender [12] proved that Long Path and Long Cycle are polynomial-
time solvable for graphs of bounded treewidth. Hence, Long Path and Long Cycle

satisfy C1. As Hamilton Path (so Long Path with k = |V (G)|) and Hamilton

Cycle (so Long Cycle with k = |V (G)|) are NP-complete for subcubic planar
graphs [49], Long Path and Long Cycle satisfy C2.

LetG ′ be the 1-subdivision of a subcubic graphG. Now the following holds: (G, k)
is a yes-instance of Long Path if and only if (G ′, 2k) is a yes-instance of Long
Path if and only if (G ′, 2k) is a yes-instance of Long Induced Path. Hence, C2
is satisfied for Long Induced Path as well, and C3 is satisfied for both Long

Path and Longest Path. Moreover, Long Induced Path satisfies C1; it is even
polynomial-time solvable for graphs of bounded mim-width [63]. We can make the
same observations for Long Cycle and Long Induced Cycle. �
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5 Application to Polynomial-Time Solvable Problems

We give two examples of polynomial-time solvable problems where Theorem 3 gives
a distinction between almost-linear-time solvability versus not having a subquadratic-
time algorithm (conditional under appropriate hardness hypotheses). Let d(u, v)

denote the distance between u and v in a graph G. The eccentricity of u ∈ V is
e(u) = maxv∈V d(u, v). The diameter of G is the maximum eccentricity and the
radius the minimum eccentricity. TheDiameter and Radius problems are to find the
diameter and radius, respectively, of a graph. We need a lemma.

Lemma 1 Let G ′ be the 2-subdivision of a graph G with diameter d. Let d ′ be the
diameter of G ′. Then 3d ≤ d ′ ≤ 3d + 2.

Proof Under edge-subdivision, the shortest path between two original vertices does
not change, it is only of longer length. As the path between two adjacent vertices in
G gets length 3 in G ′, use any diametral pair in G to find that d ′ ≥ 3d.

Let u and v be two vertices of V ′. If u and v belong to G, then they are of distance
at most 3d in G ′. If one of them, say u, belongs to V and the other one, v, belongs
to V ′ \ V , then they are of distance at most 3d + 1 in G ′, as any vertex in V ′ \ V
is one step away from some vertex in V and the diameter is d in G. If u and v both
belong to V ′ \ V , then u is adjacent to some vertex wu ∈ V and v is adjacent to some
vertex wv ∈ V . As the diameter is d in G, vertices wu and wv lie at distance at most
3d from each other in G ′. Hence, in this case, d(u, v) ≤ 3d + 2 in G ′. To summarize,
the diameter of G ′ is at most 3d + 2. �

Theorem 19 Both Diameter and Radius are C123-problems.

Proof Both are solvable in n1+o(1) time for graphs of bounded treewidth [1] and thus
satisfy Condition C1. Both also satisfy C2. Evald and Dahlgaard [42] proved that for
subcubic graphs, no subquadratic algorithm exists forDiameter under theOrthogonal
Vectors Conjecture [99], and no subquadratic algorithm exists for Radius under the
Hitting Set Conjecture [1]. From the construction in the proof of Evald and Dahlgaard
[42], we observe that any constant subdivision of all edges of the graph does not
affect the correctness of the reduction, i.e., the parameter p in the construction can
be increased appropriately to account for the subdivisions of the other edges. Hence,
Radius satisfies C3. By Lemma 1, Diameter satisfies C3 as well. �


6 Limitations of our Framework

We give two limitations of our framework.

6.1 Forbidding an Infinite Number of Subgraphs

We observe that in Theorems 1 and 2, the set of graphs H is allowed to have infinite
size. However, the set of graphs H in Theorems 3 and 6 cannot be allowed to have
infinite size. This is because there exist infinite sets H such that
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1. H contains no graphs from S.
2. All C123-problems are efficiently solvable onH-subgraph-free graphs.

To illustrate this, we give two examples. See, e.g. [67], for another example.

Example 1. Let H be the set of cycles C. No graph from C belongs to S. Every C-
subgraph-free graph is a forest and thus has treewidth 1. Hence, every C123-problem
is efficiently solvable on the class of C-subgraph-free graphs (as it satisfies condition
C1).

Example 2. Let H = {H1,H2, . . .}; see also Fig. 2. No graph from H belongs to S.
EveryH-subgraph-free graph G is H1-minor-free. By Theorem 5, G has path-width,
and thus treewidth, at most 4. Hence, every C123-problem is efficiently solvable on
the class of H-subgraph-free graphs.

6.2 Relaxing Condition C3

In C3 we require the class G to be subcubic. In this way we are able to show in
Theorem 4 that every C123-problem � satisfies condition D, that is, for every i ≥ 3,
� is computationally hard for the class of (C3, . . . ,C�, K1,4,H1, . . . ,H�)-subgraph-
free graphs.1 If we allow G to be any graph class instead of requiring G to be subcubic,
then we can no longer show this, and hence the proof of Theorem 3 no longer holds in
that case. That is, following the same arguments we can only construct a graph class
that due to C2, is either K1,4-subgraph-free (or equivalently, subcubic) or, due to C3,
is (C3, . . . ,C�,H1, . . . ,H�)-subgraph-free. Consequently, in that case, we can only
obtain the dichotomy for H-subgraph-free graphs if |H| = 1. This relaxation could
potentially lead to a classification of more problems. However, so far, we have not
identified any problems that belong to this relaxation but not to our original framework.

We also note that the integers k for which k-subdivision maintains computational
hardness is highly problem-specific. For instance, the 1-subdivision of any graph
is bipartite and some computationally hard problems, such as Independent Set,
become efficiently solvable on bipartite graphs. In the proofs in Sect. 4, k takes on
values 1, 2, 3 and 4.

7 Comparison between the Three Frameworks

In this section, we provide an extensive discussion and comparison of the three
frameworks in this paper: Theorem 1, 2, and 3. See also Table 1.

7.1 Problems that Belong to all Three Frameworks

Apart from Max- Cut and possibly Tree- Width, all C123-problems from Sect. 4
are NP-complete for planar subcubic graphs, and thus also satisfy the conditions of

1 The aforementioned papers [46, 82] show a number of problems to be NP-complete for planar subcubic
graphs of high girth, whereas we consider subcubic graphs of high girth that, instead of being planar, do
not contain any small subdivided “H”-graph as a subgraph.
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Theorems 1 and 2. In the proofs of Sect. 4wemade explicit observations about this. The
complexity ofTree- Width is still open for planar graphs and planar subcubic graphs.
It is also still openwhetherDiameter andRadius allow a distinction between almost-
linear-time solvability versus not having a subquadratic-time algorithm on planar and
subcubic planar graphs.

7.2 Problems that do not Belong to any of the Three Frameworks

Every problem that is NP-complete for graphs of bounded treewidth does not satisfy
any of the frameworks. An example is the aforementioned Subgraph Isomorphism

problem, which is NP-complete even for input pairs (G1,G2) that are linear forests
(see, for example, [17] for a proof) and thus have tree-width 1.

As another example, theSteiner Forest problem is to decide for a given integer k,
graph G and set of pairs of terminal vertices S = {(s1, t1), . . . , (sp, tp)}, if G has a
subforest F with at most k edges, such that si and ti , for every i ∈ {1, . . . , p},
belong to the same connected component of F . It is readily seen that Steiner Forest

generalizes Edge Steiner Tree: take all pairs of vertices of T as terminal pairs to
obtain an equivalent instance of Steiner Forest. Hence, Steiner Forest is NP-
complete on planar subcubic graphs and this is maintained under subdivision, due
to Theorem 15. As Steiner Forest is NP-complete on graphs of treewidth 3 [10],
Steiner Forest does not belong to any of the three frameworks. We refer to [18] for
a partial complexity classification of Steiner Forest on H -subgraph-free graphs.

As an example on the other extreme end, the Clique problem does not fall under
any of the three frameworks for different reasons. As observed in Sect. 1, Clique
is polynomial-time solvable for H-subgraph-free graphs for every set of graphs H.
Consequently,Clique does not belong to the subgraph framework.Moreover,Clique
is polynomial-time solvable for planar graphs, as every clique in a planar graph has
size at most 4. Hence, Clique does not belong to the minor and topological minor
frameworks either.

7.3 Problems that Only Belong to theMinor Framework

We observe that every problem that satisfies the conditions of Theorem 2 also satisfies
the conditions of Theorem 1. However, there exist problems that satisfy the condi-
tions of Theorem 1 but not those of Theorems 2 and 3. For example, 3- Colouring
satisfies C1 (this even holds for its generalization List Colouring [64]). More-
over, 3- Colouring is NP-complete even for 4-regular planar graphs [34]. Hence,
3- Colouring belongs to the minor framework. However, 3- Colouring does not
satisfy the conditions of Theorems 2 and 3, as 3- Colouring is polynomial-time
solvable for subcubic graphs due to Brooks’ Theorem [24].

To give some further examples,we can also take the problemsConnected Vertex

Cover, Feedback Vertex Set and Independent Feedback Vertex Set. It
is known that all three problems satisfy C1 [8]. Moreover, Connected Vertex

Cover [48] and Feedback Vertex Set [92] are NP-complete for planar graphs of
maximum degree at most 4. By taking 1-subdivisions, we find that the same holds
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for Independent Feedback Vertex Set. However, unlike the related problems
Vertex Cover and Odd Cycle Transversal, the three problems do not satisfy
the conditions of Theorems 2 and 3. This is because Connected Vertex Cover

[96], Feedback Vertex Set [96] and Independent Feedback Vertex Set

[66] are polynomial-time solvable for subcubic graphs. Munaro [82] showed that
even Weighted Feedback Vertex Set is polynomial-time solvable for subcubic
graphs.

As a final example,we can take theMatching Cut problem.This problem satisfies
C1 [23]. Moreover, it is NP-complete for planar graphs of girth 5 [23] but polynomial-
time solvable for subcubic graphs [29].

7.4 Problems that Only Belong to theMinor and Topological Minor Frameworks

We also know of problems that satisfy the conditions of Theorem 2, and thus of
Theorem 1, but not those of Theorem 3. For example, Hamilton Cycle is solvable
in polynomial-time for graphs of bounded treewidth [9], so satisfies C1, and it is NP-
complete for planar subcubic graphs [50] (even if they are also bipartite and have
arbitrarily large girth [82]). Hence, Hamilton Cycle satisfies the conditions of
Theorem 2, and also satisfies C2. However, unlike its generalization Long Cycle,
which is C123, Hamilton Cycle does not satisfy C3 [75], so it is not a C123-
problem. The same holds for Hamilton Path (which contrasts the C123-property
of Long Path).

To give another example, Star 3- Colouring is to decide if a graph G has a 3-
colouring such that the union of every two colour classes induces a star forest (forest in
which each connected component is a star). This problem is known to beNP-complete
even for subcubic planar subgraphs of arbitrarily large fixed girth [20], but does not
satsify C3 [75], so is not C123.

To give a final example of a problem that satisfies the conditions of Theorems 1
and 2 but not those of Theorem 3, we can consider the C5-Colouring problem. This
problem is to decide if a given graph allows a homomorphism to C5. It is known to be
NP-complete on both subcubic graphs [47] and planar graphs [77]. In order to show
NP-completeness for subcubic planar graphs, one can take the gadget of MacGillivray
and Siggers [77] and augment it with a degree reduction gadget. As explained in
Appendix B, where we give a full proof, a suitable gadget appears in the arXiv version
of [28].2 However, C5-Colouring does not satisfy C3 [75], so it not C123.

7.5 Problems that Only Belong to the Subgraph Framework

There also exist problems that satisfy the conditions of Theorem 3, and thus are
C123, but that do not satisfy the conditions of Theorems 1 and 2. Namely, Max-

Cut is polynomial-time solvable for planar graphs [60] (and thus also for planar
subcubic graphs). However, we show in Sect. 4 thatMax- Cut satisfies the conditions
of Theorem 3, that is, is a C123-problem.

2 The use of this gadget for this purpose was proposed to us by Mark Siggers.
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8 Conclusions

By giving a meta-classification, we were able to unify a number of known results
from the literature, reprove some of them, and give new complexity classifications
for a variety of graph problems on classes of graphs characterized by a finite set H
of forbidden subgraphs. Similar frameworks existed (even for infinite setsH) already
for the minor and topological minor relations, whereas for the subgraph relation, only
some classifications for specific problems existed [7, 55, 67]. We showed that many
problems belong to all three frameworks, and also that there exist problems that belong
to one framework but not to (some of) the others.

In order to have stronger hardness results for our subgraph framework, we consid-
ered the unweighted versions of these problems. However, we note that most of the
vertex-weighted and edge-weighted variants of these problems satisfy C1 as well; see
[8]. We finish this section by setting out some directions for future work.

8.1 Refining and Extending the Subgraph Framework

We describe three approaches for refining or extending the subgraph framework. First,
in the proof of Theorem 4we gave an example of a C1’D-problem, namelyB-Modified
List Colouring, that is not C123. However, this example is rather artificial. To increase
our understanding of the conditionsC1–C3of our framework, addressing the following
question would be helpful.

Open Problem 1 Do there exist any natural graph C1’D-problems that are not C123-
problems?

As a second approach, we recall from Sect. 6.2 that we cannot relax condition C3 by
allowing the class G to be an arbitrary graph class instead of being subcubic. If we do
this nevertheless, we are only able to obtain a dichotomy forH-subgraph-free graphs
if |H| = 1. This relaxation could potentially lead to a classification of more problems
and we pose the following open problem.

Open Problem 2 Can we classify more problems for H-subgraph-free graphs by no
longer demanding that the class G in C3 is subcubic?

So far, we have not identified any problems that belong to the relaxation but not to our
original framework.

Recall that the set of forbidden graphs H is allowed to have infinite size in Theo-
rems 1 and 2. For any infinite set of graphs H, a C123-problem on H-subgraph-free
graphs is still efficiently solvable ifH contains a graph H from S. However, a C123-
problem may no longer be computationally hard forH-subgraph-free graphs ifH has
infinite size, as shown in Sect. 6.1 with some examples. Hence, as a third approach for
extending the subgraph framework, we propose the following problem. This problem
was also posed by Kamiński [67], namely for the C123-problem Max- Cut.

Open Problem 3 Can we obtain dichotomies for C123-problems restricted to H-
subgraph-free graphs when H is allowed to have infinite size?
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In order to solve Open Problem 3, we need a better understanding of the treewidth of
H-subgraph-free graphs when H has infinite size. In recent years, such a study has
been initiated for the induced subgraph relation; see, for example, [2, 3, 71, 98] for
many involved results in this direction.

8.2 FindingMore Problems Falling under the Three Frameworks

There still exist many natural problems for which it is unknown whether they belong
to the minor, topological minor or subgraph framework. For the first two frameworks,
we recall the following open problems, which have been frequently stated as open
problems before.

Open Problem 4 Determine the computational complexity ofTree- Width for planar
graphs and for planar subcubic graphs.

Open Problem 5 Determine the fine-grained complexity ofDiameter andRadius for
planar graphs and for planar subcubic graphs.

We now turn to the subgraph framework. We showed that Tree- Width and Path-

Width are C123, but further investigation might reveal more such problems that fit
the subgraph framework.

Open Problem 6 Do there exist other width parameters with the property that the
problem of computing them is C123?

We also made a detailed comparison between the minor, topological minor and
subgraph frameworks (see Sect. 7). To increase our general understanding of the com-
plexity of graph problems, it would be interesting to find more problems that either
belong to all frameworks or just to one or two. In particular, we pose the following
question.

Open Problem 7 Does there exist a graph problem that belongs to the minor and
subgraph frameworks, but not to the topological minor framework?

We note that such a problem (if it exists) must be computationally hard for planar
graphs and subcubic graphs, but efficiently solvable for subcubic planar graphs.

8.3 Dropping One of the Conditions C1, C2, or C3

Another highly interesting direction is to investigate if we can obtain new complex-
ity dichotomies for computationally hard graph problems that do not satisfy one of
the conditions, C1, C2 or C3. Recall that we call such problems C23, C13, or C12,
respectively.

As discussed in Sect. 1.2, some progress has recently been made on such problems
(see e.g. [18, 66, 75]). However, we note that in general, obtaining complete classi-
fications is challenging for C12-, C13- and C23-problems. In particular, we need a
better understanding of the structure of Pr -subgraph-free graphs andHi -subgraph-free
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graphs (recall thatHi is a subdivided “H”-graph). Recall that a graph is Pr -subgraph-
free if and only if it is Pr -(topological)-minor-free. Hence, if a problem is open for the
case where H = Pr for one of the frameworks, then it is open for all three of them.

To illustrate the challenges with an example from the literature, consider the afore-
mentionedSubgraph Isomorphism problem. This problem takes as input two graphs
G1 and G2. Hence, it does not immediately fit in our framework, but one could view
it as a C23-problem. The question is whether G1 is a subgraph of G2. Recall that
the Subgraph Isomorphism problem is NP-complete even for input pairs (G1,G2)

that are linear forests and thus even have path-width 1. Yet, even a classification for
H -subgraph-free graphs was not straightforward; recall that Bodlaender et al. [17]
essentially settled the computational complexity of Subgraph Isomorphism for H -
subgraph-free graphs except if H = P5 or H = 2P5. These cases are open for the
minor and topological minor frameworks as well due to the above observation (which
also holds for linear forests).

8.4 The Induced Subgraph Relation

We finish our paper with some remarks on the induced subgraph relation. As men-
tioned, there exist ongoing and extensive studies on boundary graph classes (cf. [5, 6,
72, 82]) and treewidth classifications (cf. [2, 3, 71, 98]) in the literature. We note that
for the induced subgraph relation, it is also useful to check C2 and C3. Namely, let �
be a problem satisfying C2 and C3. For any finite set of graphs H, the problem � on
H-free graphs is computationally hard if H contains no graph from S. This follows
from the same arguments as in the proof of Theorem 6.3 Hence, if we aim to classify
the computational complexity of problems satisfying C2 and C3 for H -free graphs
(which include all C123-problems), then we may assume that H ∈ S. For many of
such problems, such as Independent Set, this already leads to challenging open
cases.

As mentioned, we currently do not know even any algorithmic meta-theorem for
the induced subgraph relation, not even for a single forbidden graph H . However, a
recent result of Lozin and Razgon [76] provides at least an initial starting point. To
explain their result, the line graph of a graph G has vertex set E(G) and an edge
between two vertices e1 and e2 if and only if e1 and e2 share an end-vertex in G. Let
T be the class of line graphs of graphs of S. Lozin and Razgon [76] showed that for
any finite set of graphs H, the class of H-free graphs has bounded treewidth if and
only if H contains a complete graph, a complete bipartite graph, a graph from S and
a graph from T . Their characterization leads to the following theorem, which could
be viewed as a first meta-classification for the induced subgraph relation.

Theorem 20 Let � be a problem that is NP-complete on every graph class of
unbounded treewidth, but polynomial-time solvable for every graph class of bounded
treewidth. For every finite set of graphs H, the problem � on H-free graphs is

3 The reason is that for any integer k and a sufficiently large integer �, the class of subcubic
(C3, . . . ,C�,H1, . . . ,Hk )-free graphs coincides with the class of subcubic (C3, . . . ,C�,H1, . . . ,Hk )-
subgraph-free graphs.
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polynomial-time solvable ifH contains a complete graph, a complete bipartite graph,
a graph from S and a graph from T , and it is NP-complete otherwise.

Note that by the aforementioned result of Hickingbotham [62], we may replace
“treewidth” by “path-width” in Theorem 20. However, currently, we know of only
one problem that satisfies the conditions of Theorem 20, namely Weighted Edge

Steiner Tree [15], where we allow the edges to have weights. As we showed, even
Edge Steiner Tree (the unweighted version) is a C123-problem. Even though the
conditions of Theorem 20 are very restrictive, we believe the following open problem
is still interesting.

Open Problem 8 Determine other graph problems that satisfy the conditions of
Theorem 20.

A The Proof of Theorems 1 and 2

Both Theorems 1 and 2 follow immediately from the following classical result of
Robertson and Seymour.

Theorem 21 ([87]) For every planar graph H, all H-minor-free graphs have tree-
width at most cH for some constant cH that only depends on the size of H.

Here is the (known) proof of Theorem 1.

Theorem 1 (restated). Let � be a problem that is computationally hard on planar
graphs, but efficiently solvable for every graph class of bounded treewidth. For any
set of graphs H, the problem �on H-minor-free graphs is efficiently solvable if H
contains a planar graph (or equivalently, if the class of H-minor-free graphs has
bounded treewidth) and is computationally hard otherwise.

Proof LetH be a set of graphs,wherewe allowH to have infinite size. First assume that
H contains a planar graph H . Let G be anH-minor-free graph. As G isH-minor-free,
G is H -minor-free. We now apply Theorem 21 to find that G has treewidth bounded
by some integer cH , which is a constant as H is a fixed graph. We conclude that the
class ofH-minor-free graphs has bounded treewidth. Hence, by our assumption on�,
we can solve � efficiently for the class ofH-minor-free graphs.

Now assume that H contains no planar graph. As planar graphs are closed under
taking vertex deletions, edge deletions and edge contractions, they are closed under
takingminors. Thismeans that the class of planar graphs is a subclass of the class ofH-
minor-free graphs. Hence, by our assumption on �, we find that� is computationally
hard for the class of H-minor-free graphs.

It is well known that for a set of graphs H, a class of H-minor-free graphs has
bounded treewidth if and only ifH contains a planar graph. These facts follow directly
from results of Robertson and Seymour [86] (see e.g. [21, 32], where this is explained
with respect to the more general parameter clique-width). �
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Here is the (known) proof of Theorem 2.

Theorem 2(restated). Let � be a problem that is computationally hard on planar
subcubic graphs, but efficiently solvable for every graph class of bounded treewidth.
For any set of graphs H, the problem � on H-topological-minor-free graphs is effi-
ciently solvable if H contains a planar subcubic graph (or equivalently, if the class
of H-topological-minor-free graphs has bounded treewidth) and is computationally
hard otherwise.

Proof Let H be a set of graphs, where we allow H to have infinite size. First assume
that H contains a planar subcubic graph H . Let G be an H-topological-minor-free
graph. As G is H-topological-minor-free, G is H -topological-minor-free. As H is
subcubic, this means that G is even H -minor-free. We now apply Theorem 21 to
find that G has treewidth bounded by some integer cH , which is a constant as H is
a fixed graph. We conclude that the class of H-subgraph-free graphs has bounded
treewidth. Hence, by our assumption on �, we can solve � efficiently for the class of
H-topological-minor-free graphs.

Now assume thatH contains no planar subcubic graph. As planar subcubic graphs
are closed under taking vertex deletions, vertex dissolutions and edge deletions, they
are closed under taking topologicalminors. Thismeans that the class of planar subcubic
graphs is a subclass of the class of H-topological-minor-free graphs. Hence, by our
assumption on�,wefind that� is computationally hard for the class ofH-topological-
minor-free graphs.

It is well known that for a set of graphs H, a class of H-topological-minor-free
graphs has bounded treewidth if and only if H contains a planar subcubic graph.
These facts follow directly from results of Robertson and Seymour [86] (see e.g. [21,
32], where this is explained with respect to the more general parameter clique-width).

�


B Hardness of C5-Colouring for Subcubic Planar Graphs

We show the following result.

Theorem 22 C5- Colouring is NP-complete on subcubic planar graphs.

Proof It is known from [77] that C5- Colouring is NP-complete on planar graphs.
Let us introduce a degree reduction gadget communicated to us by Mark Siggers (a
similar one appears in the proof of Theorem 4.3 from the arXiv version of [28]). The
gadget in question is a collection of (some even number) d copies of C5, joined to one
another in sequence by a single overlapping edge, such that the last is joined to the
first to form a cycle. The resulting object appears like a flower and is drawn in Fig. 4
for the case d = 8. In any homomorphism from this gadget to C5, the outermost d
vertices (i.e., the d vertices of the gadget that have degree 2) must all be mapped to the
same vertex of C5. Thus, from a planar instance G of C5- Colouring, we can obtain
an equivalent subcubic planar instance G ′ by replacing in G, each vertex u of degree
d > 3 with such a gadget in such a way that each of the d neighbours of u is made
adjacent to a unique outermost vertex of the gadget. �
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Fig. 4 Degree reduction gadget
from Theorem 22 with d = 8
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47. Galluccio, A., Hell, P., Nešetřil, J.: The complexity of H -colouring of bounded degree graphs. Discret.

Math. 222, 101–109 (2000)
48. Garey, M.R., Johnson, D.S.: The Rectilinear Steiner Tree problem is NP complete. J. SIAM Appl.

Math. 32, 826–834 (1977)
49. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete problems. Proc. STOC

1974, 47–63 (1974)
50. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The Planar Hamiltonian Circuit problem is NP-complete.

SIAM J. Comput. 5, 704–714 (1976)
51. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., USA (1979)
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