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We prove that all finitely generated fully residually free groups 
(limit groups) have a sequence of finite dimensional unitary 
representations that ‘strongly converge’ to the regular rep-
resentation of the group. The corresponding statement for 
finitely generated free groups was proved by Haagerup and 
Thorbjørnsen in 2005. In fact, we can take the unitary rep-
resentations to arise from representations of the group by 
permutation matrices, as was proved for free groups by Bor-
denave and Collins.
As for Haagerup and Thorbjørnsen, the existence of such rep-
resentations implies that for any non-abelian limit group, the 
Ext-invariant of the reduced C∗-algebra is not a group (has 
non-invertible elements).
An important special case of our main theorem is in applica-
tion to the fundamental groups of closed orientable surfaces of 
genus at least two. In this case, our results can be used as an 
input to the methods previously developed by the authors of 
the appendix. The output is a variation of our previous proof 
of Buser’s 1984 conjecture that there exist a sequence of closed 
hyperbolic surfaces with genera tending to infinity and first 
eigenvalue of the Laplacian tending to 1

4 . In this variation of 
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the proof, the systoles of the surfaces are bounded away from 
zero and the surfaces can be taken to be arithmetic.

© 2025 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

A discrete group Γ is fully residually free (FRF) if for any finite set S ⊂ Γ, there 
exists a homomorphism Γ → F that is injective on S where F is a free group. Finitely 
generated FRF groups are known to coincide with Sela’s limit groups [25], so we use 
these two notions interchangeably in the sequel.

For N ∈ N let U(N) denote the group of N × N complex unitary matrices. For 
a discrete group Γ, λΓ : Γ → End(�2(Γ)) is the left regular representation. It was an 
open problem for some years, popularized by Voiculescu in [26, Qu. 5.12], whether for 
a finitely generated free group F, there exists a sequence of unitary representations 
{ρi : F → U(Ni)}∞i=1 such that for any element z ∈ C[F],

lim sup
i→∞ 

‖ρi(z)‖ ≤ ‖λF(z)‖.

The norm on the left is the operator norm on CNi with respect to the standard Hermitian 
metric, and the norm on the right is the operator norm on �2(F). This problem was solved 
in the affirmative in a huge breakthrough by Haagerup and Thorbjørnsen [16].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


L. Louder et al. / Journal of Functional Analysis 288 (2025) 110803 3

In fact, following [26], given that the reduced C∗-algebra of F is simple by a result of 
Powers [23], the inequality above can be improved automatically1 to

lim
i→∞

‖ρi(z)‖ = ‖λF(z)‖ ∀z ∈ C[F]. (1.1)

This notion of convergence of a sequence of finite dimensional unitary representations 
given by (1.1) applies equally as well to any discrete group Γ and we refer to this as 
strong convergence.

Theorem 1.1. Any limit group Γ has a sequence of finite dimensional unitary represen-
tations that strongly converge to the regular representation of Γ. In fact, these unitary 
representations can be taken to factor through

Γ → SN
std−−→ U(N − 1) (1.2)

for some varying N , where SN is the group of permutations of N letters, and std is the 
N − 1 dimensional irreducible component of the representation of SN by 0-1 matrices.

Remark 1.2. Some authors require weak convergence as part of the definition of strong 
convergence, meaning that there is pointwise convergence of the normalized traces. By a 
folklore result, for large classes of groups, including non-abelian limit groups, weak con-
vergence follows from our definition of strong convergence here. We provide a proof of this 
in §1.10. We also note that the existence of permutation representations of limit groups 
weakly converging to the regular representation (implying in particular the soficity of 
limit groups) is an easy consequence of their residual finiteness, which in turn, is an easy 
consequence of the residual finiteness of free groups.

It was proved by G. Baumslag in [1] that the fundamental groups Λg of closed ori-
entable surfaces are FRF, and it is also known [2, pp. 414-415] that the fundamental 
groups of non-orientable surfaces S with χ(S) ≤ −2 are FRF. This gives the following 
corollary of Theorem 1.1.

Corollary 1.3. Let Γ denote the fundamental group of a connected closed surface S that 
is either orientable with no constraint on χ(S), or non-orientable with χ(S) ≤ −2. Then 
Γ has a sequence of finite dimensional unitary representations that strongly converge to 
the regular representation. Moreover, they can be taken to be of the form (1.2) for some 
varying N .

Corollary 1.3 leaves open the cases of connected non-orientable surfaces with χ = 1
(RP 2), χ = 0 (the Klein bottle RP 2#RP 2), and χ = −1 ((RP 2)#3). In all these cases 
the corresponding fundamental groups are not FRF.2 The fundamental group of RP 2 is 

1 See proof of Theorem 1.1 below for details.
2 The first two cases are easy to check, and the case of χ = −1 is due to Lyndon [21].
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Z/2Z, and its regular representation is finite dimensional. We prove the following as an 
addendum to our main result.

Proposition 1.4. The fundamental groups π1((RP 2)#2) = 〈 a, b | b−1 = aba−1 〉 and 
π1((RP 2)#3) = 〈 a, b, c | a2b2c2 〉 have sequences of finite dimensional unitary represen-
tations that strongly converge to their respective regular representations.

The proof of Theorem 1.1 revolves around the following potential property of discrete 
groups that we introduce here.

Definition 1.5. A discrete group Γ is C∗-residually free if for any finite set S ⊂ Γ and 
ε > 0, there is a homomorphism φ : Γ → F with F free such that

‖λF(φ(z))‖ ≤ ‖λΓ(z)‖ + ε,

for all z ∈ C[Γ] supported on S with unit �1 norm.

Example 1.6. Any extension N → G
φ−→ F of a free group by an amenable group N

is C∗-residually free. Indeed, since N is amenable 1 is weakly contained in the regular 
representation of N . Then by Fell’s continuity of induction ([13], [7, Thm. F.3.5]) we 
have that the quasi-regular representation of G on �2(G/N) is weakly contained in the 
regular representation G, hence by [7, Thm. F.4.4] for any z ∈ C[G]

‖λG/N (zN)‖ = ‖λF(φ(z))‖ ≤ ‖λG(z)‖.

Here we prove the following.

Theorem 1.7. Limit groups are C∗-residually free.

The converse to Theorem 1.7 does not hold: Example 1.6 shows that Z × F is C∗-
residually free, but it is easy to see that it is not FRF. It is, however, also easy to see 
that it is residually free. Furthermore, the group

〈a, b, c | b−1 = aba−1, [c, b]〉

is C∗-residually free by Example 1.6 since it is an extension of the free group 〈b, c〉 by 
Z ∼ = 〈a〉. On the other hand, it is not even residually free since it contains an embedded 
Klein bottle subgroup 〈a, b〉. It is an interesting question, not pursued here, to give some 
alternative characterization of a group being C∗-residually free.

Given a free group F, and a basis X of F, we write |f |X for the word length of f
in the basis X. In any discrete group Γ with generating set Y we write BY (r) for the 
elements of Γ that can be written as a product of at most r elements of Y ∪ Y −1. The 
proof of Theorem 1.7 relies on the following key proposition.
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Proposition 1.8. Let Γ be a limit group with a fixed finite generating set Y . There is a 
free group F with a basis X and D = D(Γ, Y ) > 0 and C = C(Γ, Y ) > 0 such that for 
any r > 0 there is an epimorphism f : Γ → F which is injective on BY (r) and

max
g∈BY (r)

|f(g)|X ≤ CrD.

1.1. Further consequences I: spectral gaps

A hyperbolic surface is a complete Riemannian surface (without boundary) of con-
stant curvature -1. Given a hyperbolic surface X, we write ΔX for the Laplace-Beltrami 
operator on L2(X). If X is closed this operator’s spectrum spec(ΔX) consists of eigen-
values 0 = λ0(X) ≤ λ1(X) ≤ · · · ≤ λk(X) ≤ · · · with λk(X) → ∞ as k → ∞. It was a 
conjecture of Buser [11] whether there exist a sequence of closed hyperbolic surfaces Xi

with genera tending to infinity and with

λ1(Xi) →
1
4

where λ1 denotes the first non-zero eigenvalue of the Laplacian. The value 14 is the asymp-
totically optimal one by a result of Huber [17]. See [15, Introduction] for an overview of 
the rich history of this problem. Buser’s conjecture was settled in [15]. The proof therein 
does not allow us to take the surfaces to be arithmetic, and requires the surfaces to have 
very short curves. The results of this work in conjunction with the ideas in [15] allow us, 
along with Hide, to prove:

Theorem 1.9. There exists a sequence of closed arithmetic hyperbolic surfaces {Xi}i∈N
with g(Xi) → ∞, systoles uniformly bounded away from zero, and with

λ1(Xi) →
1
4 .

In fact the Xi can be taken to be covering spaces of a fixed arithmetic hyperbolic surface 
X.

Theorem 1.9 is proved in the Appendix3 by the second named author (MM) and Hide, 
as a consequence of the following corollary of Theorem 1.1.

Corollary 1.10 (Matrix coefficients version of Theorem   1.1). Let Γ be a limit group. There 
exist a sequence of finite dimensional representations ρi such that for any r ∈ N and 
finitely supported map a : Γ → Matr×r(C), we have

3 In fact, the Appendix proves a more general statement about coverings of any hyperbolic surface; see 
Theorem A.1.
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lim
i→∞

‖
∑
γ∈Γ

a(γ) ⊗ ρi(γ)‖ = ‖
∑
γ∈Γ

a(γ) ⊗ λ(γ)‖.

The norm on the left hand side is the operator norm for the tensor product of (r and 
Ni-dimensional) �2 norms. The norm on the right is the operator norm for the tensor 
product of �2 and the inner product on �2(Γ).

The proof of Corollary 1.10 from Theorem 1.1 is fairly standard and based on the fact 
that there is a unique C∗-algebra norm on Matn×n(A) where A is a C∗-algebra. See [16, 
§9] for details.

1.2. Further consequences II: Ext(C∗
r (Γ)) is not a group

In [5,6], Brown, Douglas, and Fillmore introduced and studied a homological/K-
theoretic invariant Ext(A) of a unital separable C∗-algebra A. By definition, Ext(A)
is the collection of ∗-homomorphisms

π : A → B(�2(N))/K

modulo conjugation of unitary operators on �2(N), where B(�2(N)) is the bounded 
operators on �2(N) and K is the ideal of compact operators therein. This is naturally 
a semigroup with multiplication arising from (π1, π2) �→ π1 ⊕ π2 composed with an 
isomorphism �2(N) ⊕ �2(N) ∼ = �2(N).

One of the motivations of the work of Haagerup and Thorbjørnsen [16] was to prove 
that there are non-invertible elements of Ext(C∗

r (F)) when F is a finitely generated 
non-abelian free group, i.e., Ext(C∗

r (F)) is not a group.
The passage from the existence of strongly convergent unitary representations of F

to this statement uses the following result proved by Voiculescu in [26, §§5.14] (see [16, 
Rmk. 8.6] for another exposition).

Proposition 1.11. If Γ is a discrete, countable, non-amenable group with a sequence of 
finite dimensional unitary representations that strongly converge to the regular represen-
tation of Γ, then Ext(C∗

r (Γ)) is not a group.

Since non-abelian limit groups Γ are C∗-simple (Lemma 5.2), they are non-amenable. 
Indeed, an amenable group Γ has a C∗-algebra morphism C∗

r (Γ) → C by [7, Thm. F.4.4] 
whose kernel contradicts simplicity. Hence combining Theorem 1.1 with Proposition 1.11
we obtain the following extension of ‘Ext(C∗

r (F)) is not a group’:

Corollary 1.12. If Γ is a non-abelian limit group, then Ext(C∗
r (Γ)) is not a group.
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2. Background

Groups
We write e for the identity in any group. For any group Γ, C[Γ] denotes the group 

algebra of Γ with complex coefficients. For a free group F with a fixed set of generators 
X, for each h ∈ F, we write |h|X for the reduced word length of h with respect to 
X ∪X−1. If the generators X are clear we write |h| for this reduced word length.

If Y is a generating set of any group Γ, we write BY (r) ⊂ Γ for the elements of Γ that 
can be written as the product of at most r elements of Y ∪ Y −1.

Analysis
Given a discrete group Γ, λΓ : Γ → End(�2(Γ)) is the left regular representation

λΓ(g)[f ](h) def= f(g−1h).

This representation extends by linearity to one of the convolution algebra �1(Γ). For 
ψ ∈ �1(Γ), since λΓ is unitary we have the basic inequality

‖λΓ(ψ)‖ ≤ ‖ψ‖�1 (2.1)

where the norm on the left is the operator norm. The reduced C∗-algebra of Γ, denoted 
C∗

r (Γ), is the closure of λΓ(�1(Γ)) with respect to the operator norm topology. A tracial 
state on a unital C∗ algebra A is a linear functional τ such that τ(1) = 1, τ(a∗a) ≥ 0
(in particular, is real) for all a ∈ A, and τ(ab) = τ(ba) for all a, b ∈ A.

An important inequality due to Haagerup [14] links the operator norm in End(�2(F))
and the �2 norm in C[F].

Lemma 2.1 (Haagerup). Let X denote a finite generating set for a free group F. Suppose 
that a ∈ C[F] is supported on BX(r). Then

‖λF(a)‖ ≤ (r + 1) 3
2 ‖a‖�2 .

Proof. Haagerup in [14, Lemma 1.4] proved that

‖λF(a)‖ ≤
∞ ∑
i=0 

(i + 1)‖ai‖�2
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where ai is the function a multiplied pointwise by the indicator function of BX(i)\BX(i−
1), i.e. the sphere of radius i. If a is supported on BX(r) then using Cauchy-Schwarz 
above gives the result, since 

∑r
i=0 ‖ai‖2

�2 = ‖a‖2
�2 . �

There is also a more basic inequality in the reverse direction that holds for arbitrary 
discrete groups. Suppose that Γ is a discrete group. Then let δe ∈ �2(Γ) denote the 
indicator function of the identity. We have for a ∈ C[Γ]

‖a‖2
�2 = 〈λΓ(a)δe, λΓ(a)δe〉 ≤ ‖λΓ(a)‖2. (2.2)

3. Proof of Proposition 1.8

The proof of Proposition 1.8 relies on the deep fact that any limit group embeds in 
an iterated extension of centralizers of a free group, and quantified versions of theorems 
of Gilbert and Benjamin Baumslag.

Definition 3.1. Let Γ be a limit group, A < Γ a maximal abelian subgroup. A group 
Γ′ = Γ ∗A B, B = A × 〈t〉 is an extension of centralizers of Γ. A group Γ is an iterated 
extension of centralizers if there is a chain of subgroups

F = Γ0 < Γ1 < · · · < Γn = Γ

such that Γi+1 is an extension of centralizers of Γi. The height of the extension is n.

Any iterated extension of centralizers is fully residually free, and so are their finitely 
generated subgroups, hence such subgroups are limit groups. Amazingly, the converse 
holds: any limit group actually embeds in a (finitely) iterated extension of centralizers. 
This was first claimed by Kharlampovich and Myasnikov in their papers on the Tarski 
problem [20, Theorem 4]. For a proof following Sela see [12, Theorem 4.2]. The forward 
implication seems to be contained in Lyndon’s original paper on his free exponential 
group [22, last two paragraphs, page 533], which is the direct limit over the family of all 
iterated extensions of centralizers of F, ordered by inclusion. See also [9, Theorem C1].

Let Γ be a limit group with some fixed generating set Y . The distortion function of 
Γ with respect to Y is the function

dY (r) = min
f : Γ→F
X⊂F

max
g∈BY (r)

|f(g)|X ,

where the minimum is over all free groups F, X which are bases of F, and homo-
morphisms f : Γ → F that are injective on BY (r). The proof of Proposition 1.8 is a 
recapitulation of the proof that an iterated extension of centralizers is fully residually 
free in a way that lets us bound the distortion function by a polynomial whose degree 
depends on the height. We start with an improvement of Baumslag’s power lemma.
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Lemma 3.2 (cf. [1, Proposition 1]). Fix a free group F with basis X. Let u, b0, b1, . . . , bn ∈
F, with u also cyclically reduced, nontrivial, and not a proper power of another element. 
If

w =
n ∏

i=0
ukibi = e (3.1)

for

min
i>0 

{|ki|} > (8n + 2) · max
i≥0 

{1, |bi|/|u|} ,

then [u, bi] = e for some i.

G. Baumslag proved the same thing if w = e for infinitely many integral values of 
each of the ki. See also the proof of [27, Lemma 4.13], which has, implicitly, an effective 
version of Lemma 3.2 in it.

Proof. The proof is by induction on n. Clearly for n = 0, if uk0b0 = e then b0 is a power 
of u and hence commutes with u.

We begin by manipulating our hypothesis to a more convenient form for the induction. 
If

min
i>0 

{|ki|} > (8n + 2) · max
i≥0 

{1, |bi|/|u|}

then

|w| > |u| ·
∑
i>0 

|ki| > (8n + 2) · max
i≥0 

{|u|, |bi|}. (3.2)

(Here |w| is the non-reduced length of w.)
Let W denote the (non-reduced) combinatorial word formed by concatenating the 

reduced expressions for the uki and the bi defining w. Represent W as a directed cycle 
with a subinterval for each letter of W , where each subinterval is labelled by the corre-
sponding x±1, x ∈ X, that appears at this point of the word. Because W reduces to the 
identity in F, if we draw this circle on the boundary of a disc, it is possible to create 
a perfect matching of the subintervals by disjoint arcs4 in the disc such that every arc 
has endpoints in interiors of two intervals labelled respectively x, x−1 for some x ∈ X. 
(Indeed, some consecutive pair of letters can be matched at first and then one iterates.) 
Fix such a matching. The arcs cut the disc into further topological discs.

The tree of cancellations T for w is the dual graph to this decomposition of the disc. 
A vertex of T is special if its corresponding topological disc meets an endpoint of one of 

4 An arc is an embedded interval with boundary in the boundary of the disc.
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the subwords uki , one of the bi, or has valence at least three. An embedded segment in 
T with special endpoints and no special vertices in its interior is a long edge.

Every valence one vertex in T is special, so there are at most 2n + 2 of them. We 
now work out the maximal number of long edges in a tree with at most 2n + 2 valence 
one vertices, which will happen when the number q≥3 of vertices of valence at least 3 is 
maximized. Let qm be the number of valence m vertices in T . Then

1 = χ(T ) =
∑

qm(1 −m/2) ≤ 2n + 2
2 

− 1
2q≥3

implies q≥3 ≤ 2n, there are at most 4n+ 2 special vertices, and there are at most 4n+ 1
long edges.

The sum of the lengths of the long edges is |w|/2, so there is a long edge of length at 
least |w|/(8n + 2), which from (3.2) is at least

max
i≥0 

{|u|, |bi| + 1} .

If this is the case, since the endpoints of the bi are special, the long edge is covered only 
by subsegments of powers of u. Because u is not a proper power, the segment (with a 
fixed direction) corresponds to a unique reduced expression of the form u0u

au1 where 
u0 and u1 are proper subwords of u and a > 0. (Otherwise, one is led to the conclusion 
that u can be written as a reduced product of reduced words u = pq = qp, and by [24, 
Lemma 2.2], this contradicts u not being a proper power.) Let us now fix the direction 
of the long edge so a > 0.

The upshot of this unique expression is that the term u0 corresponds to a terminal 
subsegment of a u as written in (3.1) (part of a uki with ki > 0), for each time the long 
edge is traversed in its given direction. If the long edge is traversed in the other way by 
the path of w, then the u0 segment corresponds to an initial subsegment of a u−1 in a 
uki with ki < 0.

Fix an endpoint v of the u0 segment in the long edge. Consider the subpaths of the 
path of w punctuated by returns to v. After cutting the tree at v, there must be at 
least one bi subpath on either half of the resulting forest. So there must be some closed 
subpath of w beginning and ending at v and corresponding, possibly after cyclic rotation 
of w, to a subsequence as indicated below by the underbrace

uk0b0u
k1b1 · · ·ukj−a uabju

kj+1 · · ·uklblu
c︸ ︷︷ ︸

↓ 

ukl+1−cbl+1 · · ·uknbn

with l − j < n, and

uabju
kj+1 · · ·uklblu

c = e ,

which implies
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ua+cbju
kj+1 · · ·uklbl = e.

Reducing a+c, we can use the inductive hypothesis to conclude that for some j, [u, bj] =
e. (Note that this is where the minimum of ki only over i > 0 is useful in the induction; 
a + c could in principle be very small.) �

A similar result holds when u is not necessarily cyclically reduced and is a power, e.g., 
u = pslp−1, with s cyclically reduced and |u| = 2|p| + l|s|. Rewrite the expression for w
as

e = w =
∏

pslkip−1bi

conjugate by p−1, and absorb the p’s into the b’s to get

e = w′ =
∏

slkib′i .

Then the same conclusion clearly holds when

lmin
i≥0 

{|ki|} > (8n + 2) · max
i≥0 

{1, (|bi| + 2|p|)/|s|} .

For the applications, since |u| = l|s|+ 2|p| > 2|p| so we can use instead the easier to use 
yet still sufficient inequality

min
i≥0 

{|ki|} ≥ (8n + 2) · max
i≥0 

{|bi| + |u|} , (3.3)

which gives the same conclusion. Note that this minimum of ki is now over all i, and not 
just i > 0. (The latter was just more convenient for the previous induction.)

In what follows, Γ is a limit group with a fixed finite generating set Y , A is a maximal 
abelian subgroup in Γ, and Γ′ is the extension of centralizers Γ′ = Γ ∗A B, where B =
A× 〈t〉. Let Y ′ = Y ∪ {t}.

Any element γ′ ∈ Γ′ can be written in shortest form w.r.t. Y ′ as

γ′ =
m ∏
i=0

tniγi

where γi are shortest form words in Y and
∑
i 

|ni| + |γi|Y = |γ′|Y ′ . (3.4)

If any γi0 corresponds to an element of A and there is more than one γi then we can 
combine two γi and two tni by commuting γi0 with one of its neighbouring tnj . This 
decreases m by one and does not increase
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∑
i 

|ni| + |γi|Y .

Therefore it must remain the same (= |γ′|Y ′). At the end of this process either all 
γi ∈ Γ\A and (3.4) still holds or

γ′ = tnα

with α ∈ A and

|n| + |α|Y = |γ′|Y ′ .

In either case we call this expression normal form. The previous discussion shows:

Fact 3.3. Any element of γ can be written as a normal form word in Y ′ whose length is 
the shortest amongst all expressions for γ in Y ′.

Lemma 3.4 (cf. [2, Lemma   7, Theorem   8]). Fix a ∈ A\{e}. Then

dY ′(r) ≤ (8r2 + 4r)dY (2(r + |a|))2 .

If dY (r) is a polynomial of degree D then dY ′(r) is bounded above by a polynomial of 
degree 2D + 2.

This is essentially a version of B. Baumslag’s generalization of G. Baumslag’s version 
of Lemma 3.2 from free groups to limit groups, where we keep track of the constants and 
avoid the phrases “sufficiently large” and “as large as we like.”

Proof. Let π : Γ′ → Γ be the retraction to Γ defined by π(t) = e, let τ be the automor-
phism of Γ′ fixing Γ with

τ(t) def= ta.

We will find an h : Γ′ → F which is injective on normal forms in Y ′ of length at most r
and doesn’t stretch too much.

Assume first that |g|Y ′ ≤ r and by Fact 3.3 we can assume g has the normal form∏
tnivi ,

which is a product of at most �r/2� terms tnivi with∑
i 

|ni| + |vi|Y ≤ r.

Then
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f ◦ π ◦ τm(g) =
∏

f(a)mnif(vi) .

In order to use Lemma 3.2 we need to choose f so that f([a, vi]) �= e. In the worst case 
the commutator [a, vi] has length at most

L
def= 2(r + |a|).

Choose f : Γ → F and a basis X of F such that

dY (L) = max
g∈BY (L)

|f(g)|X

and f embeds BY (L) ⊂ Γ. By (3.3), with ki = mni, n ≤ �r/2�, u = f(a), and bi = f(vi), 
as long as

min{|mni|} ≥ (4r + 2) · max{|f(vi)|X + |f(a)|X}

f ◦ π ◦ τm(g) is nontrivial. In the worst case ni = 1 for all i and f(a) and f(vi) have 
length dY (L), so choose

m = m(r, |a|) = (4r + 2) · 2dY (L)

and let

h = f ◦ π ◦ τm.

We continue to use the same basis X for F. Now overestimate the length of h(g): the 
normal form which can be expanded the most is tr, so we have r ·m terms whose images 
have length at most dY (L), and therefore

|h(g)|X ≤ r · (8r + 4) · dY (L)︸ ︷︷ ︸
m 

· dY (L) = (8r2 + 4r)dY (L)2 .

If g is of the form tnα then the worst that can happen is n = 1 and α has length at 
most r − 1 < L, h(g) = f(a)mf(α), but in this case

m · dY (L) ≥ m · |f(a)|X ≥ |h(t)|X ≥ m > dY (L) ≥ |f(α)|X ,

so h(g) is nontrivial — h(t) and f(α) cannot fully cancel since m > dY (L) — and h(g)
is not longer than m · dY (L) + dY (L), which is at most r ·m · dY (L) as required.

The final statement about degrees follows since L is linear in r. �
Corollary 3.5. Let Γ be a limit group, and suppose Γ embeds in an extension of centralizers 
of height n. Then dY (r) is bounded above by a polynomial in r of degree

D(n) = 2n+2 − 2n − 2 .
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Proof. For height 0, the distortion function is just r. Clearly by Lemma 3.4 and induction 
a polynomial of degree D(n) suffices. Now embed Γ in an iterated extension of centralizers 
of height n:

Γ ↪→ Γn > Γn−1 > · · · > Γ1 > F .

Since the embedding Γ ↪→ Γn expands lengths at most linearly, Γ has distortion function 
bounded above by a polynomial of degree D(n) as well. �

Proposition 1.8 follows immediately.

4. Proof of Theorem 1.7

Proof of Theorem 1.7. Fix a set Y of generators of Γ. It suffices to prove the theorem 
for the finite set BY (R) for arbitrary R > 0. We are given ε > 0. Let SY (R) ⊂ C[Γ]
denote the �1-unit sphere of the elements supported on BY (R). Our task is to prove that 
there is a homomorphism φ : Γ → F with F free such that

‖λF(φ(a))‖ ≤ ‖λΓ(a)‖ + ε, (4.1)

for all a ∈ SY (R). The set SY (R) is compact with respect to the �1 norm. Take a finite 
ε 
3 -net {ai}i∈I for SY (R) w.r.t. the �1 norm.

Due to the inequality (2.1) and the triangle inequality, the functions a �→ ‖λF(a)‖
and a �→ ‖λΓ(a)‖ are 1-Lipschitz on SY (R) with respect to the �1 norm and hence if we 
can prove the existence of φ : Γ → F with F free such that

‖λF(φ(ai))‖ ≤ ‖λΓ(ai)‖ + ε 
3 (4.2)

for all i ∈ I then (4.1) will follow for all a ∈ SY (R) as required. So we now set out to 
prove (4.2).

Let C and D be the constants from Proposition 1.8. Choose m = m(ε) ∈ N large 
enough so that

[C(2mR)D + 1] 3 
4m ≤ 1 + ε 

3 . (4.3)

We apply Proposition 1.8 with r = 2mR to get an epimorphism φ : Γ → F injective on 
BY (2mR), and a generating set X of F such that

φ(BY (2mR)) ⊂ BX

(
C(2mR)D

)
. (4.4)

Let bi
def= φ(ai) for each i ∈ I.
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Note that

‖λΓ(ai)‖2m = ‖λΓ (a∗i ai) ‖m = ‖λΓ (a∗i ai)
m ‖

and similarly, ‖λF(bi)‖2m = ‖λF (b∗i bi)
m ‖. Each (b∗i bi)

m is supported on BX(C(2mR)D)
by (4.4), hence by Haagerup’s inequality (Lemma 2.1) we have

‖λF(bi)‖2m = ‖λF (b∗i bi)
m ‖

≤ [C(2mR)D + 1] 3
2 ‖ (b∗i bi)

m ‖�2

= [C(2mR)D + 1] 3
2 ‖ (a∗i ai)

m ‖�2

≤ [C(2mR)D + 1] 3
2 ‖λΓ(ai)‖2m.

The equality on the third line used that φ is injective on BY (2mR), and the final in-
equality used (2.2). Hence

‖λF(bi)‖ ≤ [C(2mR)D + 1] 3 
4m ‖λΓ(ai)‖

≤
(
1 + ε 

3

)
‖λΓ(ai)‖ ≤ ‖λΓ(ai)‖ + ε 

3

by our choice of m in (4.3); the last inequality used that ‖ai‖�1 = 1 and (2.1). �
5. Proof of Theorem 1.1

Here we split into cases when Γ is abelian or not. Limit groups cannot have torsion, 
so abelian limit groups are of the form Zr for some r ∈ N.

5.1. Proof when Γ = Zr

The case when Γ = Zr must be dealt with by hand here.

Lemma 5.1. Theorem 1.1 holds when Γ = Zr. Moreover, for this sequence of representa-
tions we can ensure that for all z ∈ C[Γ]

lim
i→∞

Tr(ρi(z))
Ni

= τ(z) (5.1)

where τ(g) def= δeg is the delta function at the identity, extended linearly to a tracial state 
on C∗

r (Zr).

Proof. Let T r def= (S1)r be the standard r-dimensional flat torus. The Fourier transform 
gives an isomorphism of C∗-algebras
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F : C∗
r (Zr) → C(T r).

For q ∈ N let T r
q denote the subtorus (Z/qZ)r ⊂ T r. We obtain, via restriction and 

Fourier transform, a finite dimensional representation

C∗
r (Zr) ρq−→ C(T r

q )

that restricts to finite dimensional unitary representation of Zr. For any z ∈ C[Zr] we 
have

‖ρq(z)‖ = max
x∈T r

q

|F [z](x)| → max
x∈T r

|F [z](x)| = ‖λZr(z)‖

as q → ∞. We have only used here the fact that T r
q Hausdorff converges to T r as q → ∞.

We also have

Tr(ρq(z)) 
dim ρq(z)

= 1 
|T r

q |
∑
x∈T r

q

F [z](x) −−−→
q→∞

∫
T r

F [z]dμ = τ(z)

where dμ is Lebesgue probability measure on T r, and the convergence is by the definition 
of the Riemann integral; the last equality is by Fourier inversion.

Finally we remark that these representations factor through the permutation repre-
sentation of Zr acting on Zr/qZr by (left) multiplication. After we remove the trivial 
representation of Zr from this, the previous arguments still work, and thus we can obtain 
the conclusion with representations of the form (1.2). �
5.2. Proof for non-abelian limit groups

In the following, F will always denote some (not always the same) free group, and Γ
will be a fixed limit group.

Lemma 5.2. If Γ is a non-abelian limit group, then the reduced C∗-algebra of Γ is simple 
(has no non-trivial closed ideals) and has a unique tracial state.

Proof. We claim that any non-abelian FRF group Γ has the Pnai property of Bekka, 
Cowling, and de la Harpe [4, Def. 4]. This states that for any finite set S ⊂ Γ\{e}, there 
is y ∈ Γ of infinite order such that for every x ∈ S, x and y are free generators of a free 
rank 2 subgroup of Γ.

Proof of Claim. It is easy to check that since Γ is FRF, two elements x and y are free 
generators of a free rank 2 subgroup of Γ if and only if they do not commute. So to check 
property Pnai above, it remains to check that given any finite subset S ⊂ Γ\{e}, there 
is an infinite order y not commuting with any element of S.
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Because Γ is non-abelian, there are two elements a, b ∈ Γ with [a, b] �= e. By the FRF 
condition, there is a epimorphism5 φ : Γ → F that is an injection on S ∪ {e} ∪ {[a, b]}. 
In particular, the rank of F must be at least 2. Since φ(S) is a finite subset of F not 
containing the identity, there is an (necessarily infinite order) element f not commuting 
with any element of φ(S). Then any preimage of f , say y, is infinite order and does not 
commute with any element of S. This ends the proof of the claim.

The proof of Lemma 5.2 now concludes by using [4, Lemmas 2.1 and 2.2]. �
Proof of Theorem 1.1. The upshot of Lemma 5.2 is that proving the existence of a se-
quence of unitary representations {ρi : Γ → U(Ni)}∞i=1 strongly converging to the regular 
representation reduces to proving the existence of a sequence with

lim sup
i→∞ 

‖ρi(z)‖ ≤ ‖λΓ(z)‖ (5.2)

for all z ∈ C[Γ] of unit �1 norm. We give a proof of this passage that was also mentioned 
in the Introduction.

Suppose (5.2) holds. Then for any non-principal ultrafilter F , we form the ultraprod-
uct6 C∗-algebra U def= 

∏
F ρi(C[Γ]). There is a natural ∗-algebra map ι : C[Γ] → U . The 

inequality (5.2) implies

‖ι(z)‖U ≤ ‖λΓ(z)‖ (5.3)

for all z ∈ C[Γ]. If U1 denotes the closure of ι(C[Γ]) in U , then inequality (5.3) implies 
that the map ι extends continuously to a C∗-algebra map from C∗

r (Γ) to U1. But since we 
know C∗

r (Γ) is simple by Lemma 5.2, this map must be injective. But injective C∗-algebra 
maps are isometries (to their images), so we have for all z ∈ C[Γ]

‖λΓ(z)‖ = ‖ι(z)‖U = lim
i→U

‖ρi(z)‖.

Since this holds for arbitrary non-principal ultrafilters, it holds also that ‖λΓ(z)‖ =
limi→∞ ‖ρi(z)‖.

This reduces our task to proving (5.2), which we begin now. Fix a finite set of gen-
erators of Γ with respect to which we will define balls. Given ε > 0 we will prove that 
there is a unitary representation ρ = ρ(ε) : Γ → U(N) with N = N(ε) such that

‖ρ(z)‖ ≤ ‖λΓ(z)‖ + ε

for z ∈ C[Γ] with support in B
( 1
ε 
)

and ‖z‖�1 = 1. By taking ε → 0, this will imply the 
existence of a sequence ρi satisfying (5.2) for any z.

5 Because subgroups of free groups are free, the homomorphism provided by the FRF condition has free 
image.
6 For background on ultrafilters and ultraproducts, see [10, Appendix A].
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As in the proof of Theorem 1.7 (§4), by taking an ε 3 -net of the unit �1 sphere of the 
elements in C[Γ] supported on B

( 1
ε 
)
, it suffices to prove

‖ρ(ai)‖ ≤ ‖λΓ(ai)‖ + ε 
3

for a finite collection {ai}i∈I of elements of C[Γ] with ‖ai‖�1 = 1.
We apply Theorem 1.7 with S = B

( 1
ε 
)

to obtain a homomorphism φ : Γ → F with F
free such that

‖λF(φ(ai))‖ ≤ ‖λΓ(ai)‖ + ε 
6 , (5.4)

for all i ∈ I. Let bi
def= φ(ai) ∈ C[F].

The remainder of the proof splits into three cases.
A. If F is rank 1, i.e. F = Z then Lemma 5.1 tells that there is a finite dimensional 

unitary representation π of F such that

‖π(bi)‖ ≤ ‖λF(bi)‖ + ε 
6 (5.5)

for all i ∈ I.
B. Otherwise, if one only wants unitary representations in Theorem 1.1, then by 

Haagerup and Thorbjørnsen [16, Thm. B] there is a finite dimensional unitary represen-
tation π of F such that (5.5) holds for all i ∈ I.

C. If one wants the full strength of Theorem 1.1 and F has rank at least 2, then 
unitary representations factoring through SN as in (1.2) and satisfying (5.5) for all i ∈ I
exist by the work of Bordenave and Collins [3].

Then let ρ def= π ◦ φ, a finite dimensional unitary representation of Γ. Since ρ(ai) =
π(bi), using (5.4) we obtain

‖ρ(ai)‖ = ‖π(bi)‖ ≤ ‖λF(bi)‖ + ε 
6 ≤ ‖λΓ(ai)‖ + ε 

3

for all i ∈ I as required. �
6. Strong implies weak

Lemma 6.1 (Strong convergence implies weak convergence). Let Γ be a finitely generated 
discrete group such that C∗

r (Γ) has a unique tracial state. If {ρi : Γ → U(Ni)}∞i=1 is 
a sequence of finite dimensional unitary representations that strongly converge to the 
regular representation of Γ, then for any z ∈ C[Γ]

lim
i→∞

Tr(ρi(z))
Ni

= τ(z),
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where τ is the unique tracial state on C∗
r (Γ). Tr denotes the usual matrix trace on U(Ni)

extended linearly to C[U(Ni)].

We heard this lemma stated by Benoît Collins in a talk in Northwestern University 
in June 2022. The proof is to our knowledge not in the literature so we give it here.

Proof of Lemma 6.1. Consider any non-principal ultrafilter F on N, and form the ultra-
product C∗-algebra U def= 

∏
F ρi(C[Γ]). Let U1 denote the C∗-subalgebra in U generated 

by the images γ̂i in U of the generators γi of Γ. Strong convergence implies that the 
natural map from C[Γ] to U1 is an isometric embedding with respect to the norm on 
C[Γ] coming from C∗

r (Γ), and hence extends to an isomorphism between C∗
r (Γ) and U1. 

On the other hand,

lim
i→F

Tr ◦ ρi
Ni

defines a tracial state on U1, and when transferred to C∗
r (Γ) must coincide with the 

unique tracial state there. Since the convergence holds for all non-principal ultrafilters, 
the convergence must hold in general. �
7. Proof of Proposition 1.4

If Γ ≤ Λ are countable groups and ρ : Γ → U(H) is a unitary representation of Γ
on a separable Hilbert space H, we view ρ as making H a left Γ-module. Via the right 
regular representation, �2(Λ) is a right Γ-module, and via the left regular representation, 
it is a left Λ-module. The induced representation is defined to be the left Λ-module

IndΛ
Γρ

def= �2(Λ) ⊗Γ H

where the tensor product is the completed (Hilbert space) one. This module has an 
invariant Hermitian inner product for which gi ⊗Γ ej is an orthonormal basis, where 
g1, . . . , gK , . . . denote left coset representatives for Γ in Λ and {ej}dim(H)

j=1 are an or-
thonormal basis for H.

The proof of both cases of Proposition 1.4 rely on the following lemma, which may 
be of independent interest.

Lemma 7.1. Let Λ be any discrete group, Γ a finite index subgroup, and ρi : Γ → U(Ni)
finite dimensional unitary representations for which the conclusion of Corollary 1.10
holds. Then the induced unitary representations IndΛ

Γρi strongly converge to the regular 
representation of Λ.

Proof. Let ρ : Γ → U(H) be any unitary representation of Γ on a Hilbert space H. Let 
g1, . . . , gK denote left coset representatives for Γ in Λ. For each 1 ≤ k ≤ K and h ∈ Λ
we have
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h[gk ⊗Γ v] = gκ(k,h)γ(k, h) ⊗Γ v = gκ(k,h) ⊗Γ ρ(γ(k, h))v

where κ(k, h) ∈ {1, . . . ,K} and γ(k, h) ∈ Γ are uniquely defined by

hgk = gκ(k,h)γ(k, h).

The map above is isometrically conjugate to the map

∑
k

Ek,κ(k,h) ⊗C ρ(γ(k, h)) ∈ End(�2(Λ/Γ)) ⊗C End(H),

where Ep,q(gi)
def= δipgq are the elementary matrices. The isometric conjugacy does not 

depend on ρ or h, only Λ and Γ and the choice of coset representatives. This means for 
any z ∈ C[Γ] the map [IndΛ

Γρ](z) is conjugate to some

∑
g∈Γ

a(g) ⊗ ρ(g) ∈ End(�2(Λ/Γ)) ⊗C End(H) (7.1)

where g �→ a(g) is finitely supported and the coefficients a(g) do not depend on ρ; i.e. as 
ρ varies they may be taken the same for a fixed z.

Applying the conclusion of Corollary 1.10 to (7.1) for a sequence of ρi : Γ → U(Ni)
we learn that

lim
i→∞

‖[IndΛ
Γρi](z)‖ = ‖

∑
g∈Γ

a(g) ⊗ λΓ(g)‖.

But now applying our previous argument in reverse, 
∑

g∈Γ a(g) ⊗ λΓ(g) is isometrically 

conjugate to [IndΛ
ΓλΓ](z) = λΛ(z), since �2(Λ) ⊗Γ �2(Γ) ∼ = �2(Λ) as a left Λ-module. 

Hence the conclusion

lim
i→∞

‖[IndΛ
Γρi](z)‖ = ‖λΛ(z)‖. �

Proof of Proposition 1.4. The Klein bottle has an orientable double cover with Euler 
characteristic 0 = 2 × 0, hence a torus. The non-orientable surface (RP 2)#3 with Euler 
characteristic −1 has an orientable double cover with Euler characteristic −2, hence it 
is a genus 2 orientable surface. This means that their fundamental groups have index 2 
subgroups respectively isomorphic to Z2 and Γ2, the fundamental group of an orientable 
genus 2 surface. Since Z2 and Γ2 are both limit groups, Corollary 1.10 applies to both of 
them. Therefore Lemma 7.1 implies that the fundamental groups of both the Klein bottle 
and (RP 2)#3 have finite dimensional unitary representations that strongly converge to 
their regular representations. �
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Appendix A. Spectral gaps of hyperbolic surfaces

The purpose of this appendix is to explain how the following theorem can be deduced 
from Corollary 1.10.

Theorem A.1. Let X be a compact hyperbolic surface. There exists a sequence of Rie-
mannian covers {Xi}i∈N of X with genera g(i) → ∞ as i → ∞ such that for any ε > 0, 
for i large enough depending on ε,

spec (ΔXi
) ∩

[
0, 1

4 − ε

)
= spec (ΔX) ∩

[
0, 1

4 − ε

)
,

where the multiplicities are the same on either side.

To see that we can take all surfaces to be arithmetic we use the following argument. 
Let

Γ0(15) def= 

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 mod 15

}
.

The cusped hyperbolic surface Y0(15) def= Γ0(15)\H has no spectrum in (0, 1
4 ) by a result 

of Huxley [18, Thm., pg. 250]. Let D3,5 denote the quaternion algebra over Q generated 
by i, j, k such that

i2 = 3, j2 = 5, ij = −ji = k.

Then D3,5 is a division algebra with discriminant 15 [8, Ex. 8.27]. Let O denote a maximal 
order7 in D3,5 and O1 the elements of norm 1 in O. Then O1 embeds as a cocompact 
subgroup of PSL2(R); let X = O1\H. By the work of Jacquet and Langlands [19] (see 
[8, Thm. 8.18] for a convenient concise reference) every eigenvalue of X is an eigenvalue 
of Y0(15) and hence X has no eigenvalues in (0, 1

4 ).
Taking this X in Theorem A.1, one obtains a different proof of [15, Corollary 1.3] 

with a slightly stronger conclusion, i.e. there exists a sequence of compact arithmetic
hyperbolic surfaces {Xi}i∈N with genera g (Xi) → ∞ and λ1 (Xi) → 1

4 . Such a sequence 
of covering surfaces also have systoles uniformly bounded away from 0, also in contrast 
to the proof of [15, Corollary 1.3] (this conclusion on the systole is independent of 
arithmeticity).

7 See [8, Ex. 8.27] for an explicit maximal order.
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A.1. Set up

For any n ∈ N, let [n] def= {1, . . . , n} and Sn denote the group of permutations of [n]. 
Let X be a fixed compact hyperbolic surface with genus g � 2. We view X as

X = Γ\H,

where Γ is a discrete, torsion free subgroup of PSL2 (R), isomorphic to the surface group 
Λg. Given any φ ∈ Hom(Γ, Sn) we define an action of Γ on H× [n] by

γ (z, x) def= (γz, φ(γ)[x]) .

Then we obtain a degree n covering space Xφ of X by

Xφ
def= Γ\φ (H× [n]) . (A.1)

Let Vn
def= �2 ([n]) and V 0

n ⊂ Vn the subspace of functions with zero mean. Then Sn acts 
on Vn via std, the standard representation by 0-1 matrices, and V 0

n is the n−1 dimensional 
irreducible component. Throughout this appendix, we let {ρi}i∈N be a sequence of Ni-
dimensional unitary representations of Γ that factor through SNi

by

Γ φi−→ SNi

std−−→ End
(
V 0
Ni

)
, (A.2)

such that for any r ∈ N and finitely supported map a : Γ → Matr×r(C), we have

lim sup
i→∞ 

‖
∑
γ∈Γ

a(γ) ⊗ ρi(γ)‖ ≤ ‖
∑
γ∈Γ

a(γ) ⊗ λ(γ)‖, (A.3)

as provided by Corollary 1.10. Note that by approximation by finite-rank operators on 
either side (as in [15, Proof of Prop. 6.3]) the property in (A.3) extends easily to the 
case of

a : Γ → K

where K are the compact operators on a separable Hilbert space. We use this extension 
in the sequel.

Then through {ρi}i∈N , we obtain a sequence of degree-Ni covering surfaces {Xi}i∈N
from (A.1).

A.2. Function spaces

For the convenience of the reader we recall the following function spaces from [15, 
Section 2.2]. We define L2

new (Xi) to be the space of L2 functions on Xi orthogonal to 
all lifts of L2 functions from X. Then
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L2 (Xi) ∼ = L2
new (Xi) ⊕ L2 (X) .

We fix F to be a Dirichlet fundamental domain for X. Let C∞ (
H;V 0

Ni

)
denote the 

smooth V 0
Ni

-valued functions on H. There is an isometric linear isomorphism between

C∞ (Xi) ∩ L2
new (Xi) ,

and the space of smooth V 0
Ni

-valued functions on H satisfying

f (γz) = ρi (γ) f (z) ,

for all γ ∈ Γ, with finite norm

‖f‖2
L2(F )

def= 
∫
F

‖f(z)‖2
V 0
Ni

dμH (z) < ∞.

Here dμH denotes the hyperbolic volume form. We denote the space of such functions by 
C∞

φi

(
H;V 0

Ni

)
. The completion of C∞

φi

(
H;V 0

Ni

)
with respect to ‖ • ‖L2(F ) is denoted by 

L2
φi

(
H;V 0

Ni

)
; the isomorphism above extends to one between L2

new (Xi) and L2
φi

(
H;V 0

Ni

)
.

We introduce the following Sobolev spaces. Let H2 (H) denote the completion of 
C∞

c (H) with respect to the norm

‖f‖2
H2(H)

def= ‖f‖2
L2(H) + ‖Δf‖2

L2(H).

Let C∞
c,φi

(
H;V 0

Ni

)
denote the subset of C∞

φi

(
H;V 0

Ni

)
consisting of functions which 

are compactly supported modulo Γ. We let H2
φi

(
H;V 0

Ni

)
denote the completion of 

C∞
c,φi

(
H;V 0

Ni

)
with respect to the norm

‖f‖2
H2

φi

(
H;V 0

Ni

) def= ‖f‖2
L2(F ) + ‖Δf‖2

L2(F ).

We let H2 (Xi) denote the completion of C∞
c (Xi) with respect to the norm

‖f‖2
H2(Xi)

def= ‖f‖2
L2(Xi) + ‖Δf‖2

L2(Xi).

Viewing H2 (Xi) as a subspace of L2 (Xφi
), we let

H2
new (Xi)

def= H2 (Xi) ∩ L2
new (Xi) .

There is an isometric isomorphism between H2
new (Xi) and H2

φi

(
H;V 0

Ni

)
that intertwines 

the two relevant Laplacian operators.
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A.3. Operators on H

For s ∈ C with Re(s) > 1
2 , let

RH(s) : L2 (H) → L2(H),

RH(s) def= (ΔH − s(1 − s))−1
,

be the resolvent on the upper half plane. Then RH(s) is an integral operator with radial 
kernel RH(s; r). Let χ0 : R → [0, 1] be a smooth function such that

χ0 (t) =
{

1 if t � 0, 
0 if t � 1. 

.

For T > 0, we define a smooth cutoff function χT by χT (t) def= χ0(t−T ). We then define 
the operator R(T )

H (s) : L2 (H) → L2 (H) to be the integral operator with radial kernel

R
(T )
H (s; r) def= χT (r)RH(s; r).

Following [15, Section 5.2] we define L(T )
H (s) : L2 (H) → L2 (H) to be the integral 

operator with radial kernel

L(T )(s; r) def= 
(
− ∂2

∂r2 [χT ] − 1 
tanh r

∂

∂r
[χT ]

)
RH(s; r) − 2 ∂

∂r
[χT ] ∂RH

∂r
(s; r).

It is proved in [15, Lemma 5.3] that for any f ∈ C∞
c (H) and s ∈

[1
2 , 1

]
, we have

1. R
(T )
H (s)f ∈ H2 (H).

2. (Δ − s(1 − s))R(T )
H (s)f = f + L(T )

H (s)f as equivalence classes of L2 functions.

It is also proved, as a consequence of [15, Lemma 5.2], that for any s0 > 1
2 we can choose 

a T = T (s0) such that for all s ∈ [s0, 1] we have

‖L(T )
H (s)‖L2(H) ≤

1
8 . (A.4)

A.4. Proof of Theorem A.1

Recall that {ρi}i∈N is a sequence of strongly convergent representations of the form 
(A.2) that satisfy (A.3) as guaranteed by Corollary 1.10. As in [15, Section 5.3], we define

R
(T )
H,i(s;x, y)

def= R(T )
H (s;x, y)IdV 0

Ni
,

L(T )
H,i(s;x, y)

def= L(T )
H (s;x, y)IdV 0

Ni
.
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We define R(T )
H,i (s), L(T )

H,i (s) to be the corresponding integral operators. We have the 
following analogue of [15, Lemma 5.5].

Lemma A.2. For all s ∈
[1

2 , 1
]
,

1. The integral operator R(T )
H,i (s) is well-defined on C∞

c,φi

(
H;V 0

Ni

)
and extends to a 

bounded operator

R
(T )
H,i (s) : L2

φi

(
H;V 0

Ni

)
→ H2

φi

(
H;V 0

Ni

)
.

2. The integral operator L(T )
H,i (s) is well-defined on C∞

c,φi

(
H;V 0

Ni

)
and extends to a 

bounded operator on L2
φi

(
H;V 0

Ni

)
.

3. We have

[Δ − s(1 − s)]R(T )
H,i (s) = 1 + L(T )

H,i (s)

as an identity of operators on L2
φi

(
H;V 0

Ni

)
.

The proof of Lemma A.2 easily follows from the proof of [15, Lemma 5.5], simplified 
in places by the compactness of the fundamental domain F in the current setting.

We have an isomorphism of Hilbert spaces

L2
φi

(
H;V 0

Ni

) ∼ = L2 (F ) ⊗ V 0
Ni
,

given by

f �→
∑
ei

〈f |F , ei〉 ⊗ ei,

where {ej}Ni−1
j=1 is some choice of basis for V 0

Ni
. After conjugation by this isomorphism, 

the operator L(T )
H,i (s) becomes

L(T )
H,i (s) ∼ = 

∑
γ∈S

a(T )
γ (s) ⊗ ρi

(
γ−1) , (A.5)

where

a(T )
γ (s) : L2 (F ) → L2 (F ) ,

a(T )
γ (s) [f ] (x) def= 

∫
y∈F

L(T )
H (s; γx, y) f (y) dμH (y) .
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Since L(T )
H (s, γx, y) is only non-zero when d (γx, y) � T + 1, in (A.5) one can take 

S = S (T ) ⊂ Γ to be finite. Since L(T )
H (s; γx, y) is smooth and bounded it follows that 

the operators a(T )
γ (s) are Hilbert-Schmidt and therefore compact. We define

L(T )
s,∞

def= 
∑
γ∈S

a(T )
γ (s) ⊗ λ

(
γ−1) .

Under the isomorphism

L2 (F ) ⊗ �2 (Γ) ∼ = L2 (H) ,

f ⊗ δγ �→ f ◦ γ−1,

(with f ◦ γ−1 extended by zero from a function on γF ) the operator L(T )
s,∞ is conjugated 

to

L(T )
H (s) : L2 (H) → L2 (H) .

To prove Theorem A.1, we need to replace the probabilistic bound [15, Lemma 6.3] 
by a deterministic one.

Proposition A.3. For any s0 > 1
2 there is a T = T (s0) > 0 such that for any fixed 

s ∈ [s0, 1] there is an I (s0, s) with

‖L(T )
s,φi

‖L2(F )⊗V 0
Ni

≤ 1
4 ,

for all i � I.

Proof. Let s0 > 1
2 and a fixed s ∈ [s0, 1] be given. By (A.4) we can find a T (s0) such 

that

‖L(T )
s,∞‖L2(F )⊗�2(Γ) ≤

1
8 . (A.6)

Recall that the coefficients aγ(s) are supported on a finite set S = S(T ) ⊂ Γ. Because the 
aγ(s) are compact, we apply (A.3) (and the following remark) to the operators L(T )

H,i (s)
to find that there is I ∈ N such that for all i ≥ I (s0, s)

‖L(T )
s,φi

‖L2(F )⊗V 0
Ni

≤ ‖L(T )
s,∞‖L2(F )⊗�2(Γ) + 1

8 ≤ 1
4 . �

We can now prove Theorem A.1.

Proof of Theorem A.1. Given ε > 0 let s0 = 1
2 +

√
ε so that s0 (1 − s0) = 1

4 − ε. Let 
T = T (s0) be the value provided by Proposition A.3 for this s0.
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We use a finite net to control all values of s ∈ [s0, 1]. Using [15, Lemma 6.1] as in [15, 
Proof of Thm. 1.1] tells us that there is a finite set Y = Y (s0) of points in [s0, 1] such 
that for any s ∈ [s0, 1], there is s′ ∈ Y with

‖L(T )
s,φi

− L(T )
s′,φi

‖ ≤ 1
4 (A.7)

for all i.
Combining (A.7) with Proposition A.3 applied to L(T )

s,φi
for every s ∈ Y we find that 

there is an I (s0) such that for all s ∈ [s0, 1] and i ≥ I(s0)

‖L(T )
H,i (s) ‖L2

new(Xi) = ‖L(T )
s,φi

‖L2(F )⊗V 0
Ni

≤ 1
2 . (A.8)

By Lemma A.2, for s > 1
2 R

(T )
H,i (s) is a bounded operator from L2

new (Xi) to H2
new (Xi). 

By Lemma A.2 we have that

(
ΔXφ

− s(1 − s)
)
R

(T )
H,i (s) = 1 + L(T )

H,i (s) ,

on L2
new (Xi). From (A.8) for all i � I (s0) and s ∈ [s0, 1], 

(
1 + L(T )

H,i (s)
)−1

exists as a 

bounded operator on L2
new (Xi). We now get that for all i � I (s0) and all s ∈ [s0, 1],

(ΔXi
− s (1 − s))R(T )

H,i (s)
(
1 + L(T )

H,i (s)
)−1

= 1,

and we conclude that (ΔXi
− s (1 − s)) has a bounded right inverse from L2

new (Xi)
to H2

new (Xi), implying that for i � I (s0), ΔXi
has no new eigenvalues λ with λ ≤

s0 (1 − s0) = 1
4 − ε. �
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