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1 Introduction

Quantum field theories (QFTs) in two dimensions have both direct applications in condensed
matter systems and as the worldsheet theories of strings, and can provide a tractable sandpit
for the study of quantum field theory more generally. Special examples are provided by
conformal field theories (CFTs) and integrable field theories (IFTs), for which powerful infinite-
dimensional symmetries enable us to exactly determine certain key properties and observables.

One longstanding goal has been to provide a constructive origin of these integrable
systems from some putative parent theory, perhaps in higher dimensions. For instance, Ward
suggested [1] that all integrable equations may arise as reductions of the 4d anti-self-dual
Yang-Mills (ASDYM) equation. Given a choice of complex structure on R4, the ASDYM
equation are

𝐹 2,0 = 0 = 𝐹𝑧𝑤 , (1.1)
𝐹 0,2 = 0 = 𝐹𝑧�̄� , (1.2)

𝜛 ∧ 𝐹 1,1 = 0 = 𝐹𝑧𝑧 + 𝐹𝑤�̄� , (1.3)

where 𝜛 is the Kähler form. There are (at the very least) two senses in which ASDYM can
be viewed as an integrable theory in its own right. The first is that the ASDYM equations
can be exactly solved by the ADHM construction [2]. The second is that these equations
admit a zero curvature formulation in terms of a Lax pair of differential operators [3]:

𝐿 = ∇𝑧 − 𝜁∇�̄� , 𝑀 = ∇𝑤 + 𝜁∇𝑧 , [𝐿,𝑀] = 0 ∀ 𝜁 ⇐⇒ 𝐹 = −★ 𝐹 . (1.4)

Accordingly, in this work, we will denote four-dimensional QFTs whose equations of motion
can be recast as the anti-self duality of some connection as IFT4.

A prominent example in this class of theories is the 4d Wess-Zumino-Witten model
(WZW4) [4–7], which arises as a partial gauge fixing of the ASDYM equation. Up to a
gauge transformation, we may parametrise a generic connection that solves equations (1.1)
and (1.2) as 𝐴 = −𝜕𝑔𝑔−1, where the group-valued field 𝑔 becomes the fundamental field
of WZW4. The remaining ASDYM equation (1.3) becomes 𝜛 ∧ 𝜕(𝜕𝑔𝑔−1) = 0, which are
the equations of motion of WZW4, also known as Yang’s equation. The more well-known
WZW2 also arises as a reduction of WZW4, and Yang’s equation reduces to the familiar
holomorphic conservation law characterising this CFT2. Another example is found by solving
equations (1.1) and (1.3), leaving equation (1.2) as the dynamical equation of motion. In
this case, the IFT4 is known as the LMP model [8, 9], which gives the pseudo-dual of the
principal chiral model (PCM) after reduction.

Alternatively, motivated by the similarity between Reidemeister moves in knot theory and
the Yang-Baxter equation that underpins integrability, Witten suggested [10] that integrable
models might have a description in terms of Chern-Simons theory. The realisation of this
idea came some years later, with Costello’s understanding [11, 12] (see also [13]) that the
gauge theory description should combine the topological nature of Chern-Simons theory with
the holomorphic nature of the spectral parameter characterising IFTs. The theory proposed
in [11, 12] was extended and developed in a sequence of papers [14–16] describing a Chern-
Simons theory, which we denote by CS4, defined over a four-manifold Σ ×𝐶 with the action

𝑆CS4 [𝐴] = 1
2𝜋 i

∫
Σ×𝐶

𝜔 ∧ Tr
(
𝐴 ∧ d𝐴 + 2

3 𝐴 ∧𝐴 ∧𝐴
)
. (1.5)
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hCS6

CS4 IFT4

IFT2 / CFT2

Figure 1. The diamond correspondence of integrable avatars, in which wavy arrows indicate a descent
by reduction and straight arrows involve localisation i.e. integration over CP1. In this paper the IFT4
will either be WZW4, the LMP model or their gaugings. The landscape of IFT2 produced in this
fashion will be rich and varied.

Here, 𝜔 is a meromorphic differential on the complex curve 𝐶, which we will take to be 𝐶 = CP1.
Specifying boundary conditions at the poles of 𝜔, the dynamics can be ‘localised’ to take
place on Σ, which is identified with the spacetime of the IFT2, and the curve 𝐶 is associated
to spectral parameter of the Lax connection (see [17] for a pedagogical introduction).

An elegant origin of both the CS4 and the ASDYM descriptions was provided in the
work of Bittleston and Skinner [18] in terms of a six-dimensional holomorphic Chern-Simons
theory (hCS6), first proposed in [19, 20]. The theory is defined over (the Euclidean slice of)
Penrose’s twistor space [21] with the action functional

𝑆hCS6 [𝒜] = 1
2𝜋 i

∫
PT

Ω ∧ Tr
(
𝒜 ∧ 𝜕𝒜 + 2

3 𝒜 ∧𝒜 ∧𝒜

)
, (1.6)

in which Ω is a meromorphic (3, 0) form. This action is supplemented by a choice of boundary
conditions at the poles of Ω. The various lower-dimensional descriptions follow from exploiting
the fibration structure CP1 ↩→ PT ↠ R4. Reducing along two directions within R4, hCS6
descends to CS4. Alternatively, we can instead choose to first localise over CP1, which leads to
IFT4 in the ASDYM sense. Indeed, the integrability properties of ASDYM are fundamentally
tied to this twistorial origin and evidence suggests that at a quantum level it is natural
to consider the formulation on twistor space [20, 22]. Applying the reduction along R4 to
this IFT4 produces an IFT2, which can also be recovered by localising the CS4 description.
In this way, we have a diamond correspondence of theories illustrated in figure 1. Other
recent work on hCS6 includes [20, 23, 24].

Given an IFT2 or CFT2 it is sometimes possible to obtain another I/CFT2 via gauging.
Perhaps the most famous examples are the GKO 𝐺/𝐻 coset CFTs [25], which can be given
a Lagrangian description by taking a WZW2 CFT on 𝐺 and gauging a (vectorially acting)
𝐻 subgroup [26–29]. This motivates the core question of this work:

How can the diamond correspondence be gauged?

Resolving this question dramatically expands the scope of theories that can be given a higher-
dimensional avatar. A significant clue is given by the rather remarkable Polyakov-Wiegmann
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(PW) identity, which shows that the 𝐺/𝐻 gauged WZW2 model is actually equivalent to
the difference of a 𝐺 WZW2 model and an 𝐻 WZW2 model. This points towards a general
resolution that certain integrable gauged models might be obtained as differences of ungauged
models. This is less obvious than it might first seem; it was noted in [7] that for a PW
identity to apply for WZW4 it is necessary for the gauging to be performed by connections
with field strength restricted to type (1, 1). The six-dimensional origin of such a constraint
is rather intriguing and will be elucidated in this paper. In the context of CS4, Stedman
recently proposed [30] considering the difference of CS4 to give rise to gaugings of IFT2. We
will recover this construction as a reduction of hCS6 theory in the present work, as well as
uncovering some additional novelties in the CS4 description.

At the top of the diamond, we will consider a theory of two connections, 𝒜 ∈ Ω1(PT)⊗ g

and ℬ ∈ Ω1(PT) ⊗ h for a subalgebra h ⊂ g. The action of this theory is

𝑆ghCS6 = 𝑆hCS6 [𝒜] − 𝑆hCS6 [ℬ] + 𝑆int[𝒜,ℬ] , (1.7)

in which the term 𝑆int couples the two gauge fields. We will develop this story by means
of two explicit examples: choosing Ω to have two double poles, we will study the diamond
relevant to the gauged WZW theory, and with Ω containing a single fourth-order pole we
will study the gauged LMP model. This seemingly simple setup gives rise to a rich story
whose results we now summarise:

1. Starting from the holomorphic theory on twistor space (1.7), we localise to arrive at an
action for a gauged version of WZW4 (denoted gWZW4). After localising, the gauge
field 𝐵 is constrained to satisfy two of the three anti-self-dual Yang-Mills equations,
namely 𝐹 2,0[𝐵] = 0 and 𝐹 0,2[𝐵] = 0, and the resulting gWZW4 is an IFT4.1

2. The two gauge fields 𝒜 and ℬ of the gauged hCS6 theory (denoted ghCS6) source
various degrees of freedom in gWZW4. In particular, as well as the fundamental field 𝑔
and the 4d gauge field 𝐵, auxiliary degrees of freedom enter as Lagrange multipliers for
the constraints 𝐹 2,0[𝐵] = 0 and 𝐹 0,2[𝐵] = 0.

3. Reducing by two dimensions, we recover a variety of IFT2 including the special case
of the gauged WZW2 model (denoted gWZW2). In general, we find a model coupling
a gauged IFT2 and a Hitchin system [31] involving the gauge field 𝐵 and a pair of
adjoint scalar fields. These scalars may source a potential for the gWZW2 in which
case we recover the complex sine-Gordon model and more broadly the homogeneous
sine-Gordon models [32]. At the special point associated to the 2d PCM, Lagrange
multipliers ensure that the gauge field is flat and hence trivial — this is essential as the
gauged PCM is not generically integrable.

4. We also use this formalism to perform an integrable gauging of the LMP model. Just as
in the gauging of WZW4, the field strength of the gauge field must be constrained to obey
two of the anti-self-dual Yang-Mills equations, this time 𝐹 2,0[𝐵] = 0 and 𝜛 ∧ 𝐹 1,1[𝐵] = 0.
It is noteworthy that the two equations that are enforced by Lagrange multipliers agree

1This indicates that general unconstrained gaugings of WZW4 will break integrability in the sense out-
lined above.
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with the two equations that are identically solved in the ungauged case. This is true for
both WZW4 and the LMP model. In addition, we show that the gauged LMP model
obeys a PW-like identity such that it may be expressed as the difference of two LMP
models on g and h.

Let us outline the structure of this paper. We begin in section 2 with a review of the diamond
correspondence of theories for the ungauged WZW model. In section 3, we introduce the
gauging of this diamond concentrating in particular on the right hand side. We recover
the gauged IFT4 and demonstrate that its equations of motion may be rewritten as the
ASDYM equations. The wide array of IFT2 are explored in section 4 where we also show
that they are integrable and provide the associated Lax connection. Following the gauging
of WZW4, section 5 elaborates on the left hand side of the diamond, connecting to CS4 by
first reducing, and then to the IFT2 by localisation. Section 6 describes the diamond for the
gauged LMP theory. We conclude with a brief outlook in section 7. Although the subject
matter necessarily entails a degree of technical complexity, we have endeavoured to keep the
main presentation streamlined and complement this with a number of technical appendices.

2 The ungauged WZW diamond

In this section, we briefly describe the diamond correspondence of theories in which the two-
dimensional theory is the WZW2 CFT. This is a summary of part of the analysis first presented
in [18], which will serve to fix conventions and review key steps relevant to later sections.

2.1 hCS6 with double poles

We begin at the top of the diamond with 6d holomorphic Chern-Simons theory (hCS6) whose
fundamental field is an algebra-valued connection 𝒜 ∈ Ω0,1(PT) ⊗ g. The six-dimensional
action is given by

𝑆hCS6 [𝒜] = 1
2𝜋 i

∫
PT

Ω ∧ Tr
(
𝒜 ∧ 𝜕𝒜 + 2

3 𝒜 ∧𝒜 ∧𝒜

)
, (2.1)

in which we have introduced a meromorphic (3, 0)-form Ω. As a real manifold, there is an
isomorphism PT ∼= R4 × CP1 and we introduce coordinates 𝑥𝑎�̇� ∈ R4 and 𝜋𝑎 ∈ CP1. In
these coordinates, the meromorphic (3, 0)-form, which we take to have two double poles
at 𝛼𝑎, 𝛽𝑎 ∈ CP1,2 is given by3

Ω = 1
2 Φ(𝜋) 𝜖

�̇�𝑏
𝜋𝑎d𝑥𝑎�̇� ∧ 𝜋𝑏d𝑥𝑏𝑏 ∧ ⟨𝜋d𝜋⟩ , Φ = ⟨𝛼𝛽⟩2

⟨𝜋𝛼⟩2⟨𝜋𝛽⟩2 . (2.2)

The poles of Ω in CP1 play the role of boundaries in hCS6 because total derivatives pick
up a contribution from 𝜕Ω which is a distribution with support at these poles. To ensure

2To have the correct weight Φ should have four poles on CP1. The relevant configuration for WZW4 and
its gauging is two double poles [18]. The LMP model that we consider in section 6 requires a fourth-order
pole. One could also include simple poles, which would lead to deformed models as discussed in [24].

3Spinor contractions are defined by ⟨𝛼𝛽⟩ = 𝜖𝑎𝑏𝛼𝑎𝛽𝑏 , see appendix A for further details of spinor conventions.
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a well-defined variational principle, we impose boundary conditions on the gauge field at
these poles given by

𝒜|𝜋=𝛼 = 0 , 𝒜|𝜋=𝛽 = 0 . (2.3)

Turning to the symmetries of this model, the theory is invariant under gauge transformations
acting as

𝛾 : 𝐴 7→ (𝐴)𝛾 = 𝛾−1
𝒜𝛾 + 𝛾−1𝜕𝛾 , (2.4)

so long as they preserve the boundary conditions. This implies restrictions on the allowed
transformations at the poles of Ω, which are given by

𝜋𝑎𝜕𝑎�̇�𝛾 |𝜋=𝛼 = 0 , 𝜋𝑎𝜕𝑎�̇�𝛾 |𝜋=𝛽 = 0 . (2.5)

2.2 Localisation of hCS6 with double poles to WZW4

Surprisingly, all of the physical degrees of freedom in hCS6 can be captured by a four-
dimensional integrable field theory (IFT4). This field theory is derived by localising the
hCS6 action, integrating out the CP1 and landing on a theory on R4. For the choice of
meromorphic (3, 0)-form Ω and boundary conditions given above, this 4d theory is WZW4.
This localisation is possible because of the substantial gauge symmetry in Chern-Simons
theories. Indeed, the dynamical fields arise precisely where this gauge symmetry is broken,
namely at the poles of Ω. Fields capturing these degrees of freedom are known as ‘edge
modes’ and enter via the field redefinition

𝒜 = (𝒜′)𝑔 = 𝑔−1
𝒜

′𝑔 + 𝑔−1𝜕𝑔 . (2.6)

Expressing the action 𝑆hCS6 [𝒜] in terms of the fields 𝒜
′ and 𝑔 one obtains

𝑆hCS6 [𝒜] = 𝑆hCS6 [𝒜′] + 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
𝒜

′ ∧ 𝜕𝑔𝑔−1)
− 1

6𝜋 i

∫
PT×[0,1]

𝜕Ω ∧ Tr
(
𝑔−1d𝑔 ∧ 𝑔−1d𝑔 ∧ 𝑔−1d𝑔

)
,

(2.7)

where, with a slight abuse of notation, we are also denoting by 𝑔 a smooth homotopy to
a constant map in the last term (this will be perpetuated later without further comment).
Notably, the edge mode 𝑔 only appears in this action against the 4-form 𝜕Ω, which is a
distribution with support at the poles of Ω. This means that the action only depends on 𝑔
through its value (and CP1-derivative) at the poles of Ω, which we denote by

𝑔|𝜋=𝛼 = 𝑔 , 𝑔−1𝜕0𝑔|𝜋=𝛼 = 𝑢 , 𝑔|𝜋=𝛽 = 𝑔 , 𝑔−1𝜕0𝑔|𝜋=𝛽 = 𝑢 . (2.8)

Let us consider the symmetries of the theory in this new parametrisation. The gauge
transformation (2.4) acts trivially on 𝒜

′ while 𝑔 transforms with a right action as

𝛾 : 𝒜
′ 7→ 𝒜

′ , 𝑔 7→ 𝑔𝛾 . (2.9)
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In addition, the new parametrisation has introduced a redundancy, which we dub an internal
gauge symmetry, acting as

𝛾 : 𝒜
′ 7→ 𝛾−1

𝒜
′𝛾 + 𝛾−1𝜕𝛾 , 𝑔 7→ 𝛾−1𝑔 . (2.10)

We can exploit these symmetries to impose gauge fixing conditions on the fields 𝒜
′ and 𝑔.

Let us fix 𝒜
′ such that it has no CP1 leg, and fix the value of 𝑔 at 𝜋 = 𝛽 to the identity.4 The

surviving edge mode at the other pole 𝑔 = 𝑔|𝜋=𝛼 will become the fundamental field of WZW4.
Returning to the action (2.7), the first term is a genuine six-dimensional bulk term that

we eliminate by going on-shell. We find the bulk equation of motion 𝜕0𝒜
′
�̇� = 0, which implies

that these components are holomorphic. This may be solved in terms of CP1-independent
components 𝐴′

𝑎�̇� as

𝒜
′ = 𝜋𝑎𝐴′

𝑎�̇�𝑒
�̇� , 𝑒�̇� = 𝜋𝑎d𝑥𝑎�̇�

⟨𝜋𝜋⟩
. (2.11)

In this expression, 𝑒�̇� is a basis (0, 1)-form on twistor space defined in appendix B. This
completely specifies the CP1-dependence of 𝒜′, and the boundary conditions (2.3) may be
solved to determine 𝐴′

𝑎�̇� in terms of 𝑔,

𝐴′
𝑎�̇� = − 𝛽𝑎𝛼

𝑏

⟨𝛼𝛽⟩
𝜕𝑏�̇�𝑔𝑔

−1 . (2.12)

From these components, we can construct a 4d connection 𝐴′ = 𝐴′
𝑎�̇�d𝑥𝑎�̇�. This parametrisation

of 𝐴′ in terms of 𝑔 is known as Yang’s parametrisation with 𝑔 being called Yang’s matrix.
This solution for 𝒜

′ may now be substituted into the action and the integral over CP1 can
be computed explicitly. The second and third term of (2.7) localise to a four-dimensional
action (the detailed derivation is presented in appendix D) and we land on the WZW4
theory defined by

𝑆WZW4 = 1
2

∫
R4

Tr
(
𝑔−1d𝑔 ∧★𝑔−1d𝑔

)
+
∫
R4×[0,1]

𝜔𝛼,𝛽 ∧ℒWZ[𝑔] . (2.13)

In the second term, we have introduced a 2-form defined by

𝜔𝛼,𝛽 = 1
⟨𝛼𝛽⟩

𝛼𝑎𝛽𝑏 𝜖�̇�𝑏 d𝑥𝑎�̇� ∧ d𝑥𝑏𝑏 , (2.14)

and the WZ 3-form

ℒWZ[𝑔] = 1
3 Tr

(
𝑔−1d𝑔 ∧ 𝑔−1d𝑔 ∧ 𝑔−1d𝑔

)
, (2.15)

defined, as usual, using a suitable extension 𝑔 of 𝑔.
The equations of motion of this theory are given by

d
(
★− 𝜔𝛼,𝛽∧

)
d𝑔𝑔−1 = 0 ⇔ 𝜖�̇�𝑏𝛽𝑎𝜕𝑎�̇�

(
𝛼𝑏𝜕

𝑏𝑏
𝑔𝑔−1

)
= 0 . (2.16)

4At this point, we may further fix the CP1-derivative of 𝑔 at both 𝜋 = 𝛼 and 𝜋 = 𝛽 to zero. However, such
terms drop out of the action anyway in the ungauged case without specifying this.
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The six-dimensional gauge transformations (constrained by boundary conditions) descend
to semi-local symmetries of the action (2.13), which act as

𝑔 → 𝛾−1
𝐿 · 𝑔 · 𝛾𝑅 , 𝛼𝑎𝜕𝑎�̇�𝛾𝑅 = 0 , 𝛽𝑎𝜕𝑎�̇�𝛾𝐿 = 0 , (2.17)

where 𝛾𝐿 = 𝛾 |𝛽 and 𝛾𝑅 = 𝛾 |𝛼 . Of particular interest is the case where 𝛽 = 𝛼 , i.e. the poles of Ω
are antipodal on CP1, in which case 𝜔𝛼,𝛼 = 𝜛 is proportional to the Kähler form on R4. Here,
we are referring to the Kähler form with respect to the complex structure 𝒥𝛼 that is defined5 by
the point 𝛼 ∈ CP1. In this case, the semi-local symmetries can be interpreted as a holomorphic
left action and anti-holomorphic right action (akin to the 2d WZW current algebra).

2.3 Interpretation as ASDYM

A 4d Yang-Mills connection 𝐴′ with curvature 𝐹 [𝐴′] = d𝐴′ +𝐴′ ∧𝐴′ is said to be anti-self dual
if it obeys 𝐹 = −★𝐹 . After converting to bi-spinor notation, the anti-self-dual Yang-Mills
(ASDYM) equations can be expressed as

𝜋𝑎𝜋𝑏𝐹
𝑎�̇�𝑏𝑏

= 0 ∀𝜋𝑎 ∈ CP1 . (2.18)

This contains three independent equations that can be extracted by introducing basis spinors
𝛼𝑎 and 𝛽𝑎 satisfying ⟨𝛼𝛽⟩ ̸= 0. The three independent equations are then expressed in terms
of contractions with these basis spinors as

𝛼𝑎𝛼𝑏𝐹
𝑎�̇�𝑏𝑏

= 0 , (2.19)
𝛽𝑎𝛽𝑏𝐹

𝑎�̇�𝑏𝑏
= 0 , (2.20)

(𝛼𝑎𝛽𝑏 + 𝛽𝑎𝛼𝑏)𝐹
𝑎�̇�𝑏𝑏

= 0 . (2.21)

The six-dimensional origin of WZW4 (and indeed all IFT4 constructed in this way) ensures
that the connection 𝐴′ introduced in the previous section satisfies the ASDYM equation
when evaluated on solutions to the WZW4 equations of motion. This follows from the
six-dimensional equation Ω ∧ℱ[𝒜′] = 0, which encodes both the holomorphicity of 𝒜′ and
eq. (2.18). To see this explicitly for WZW4 where the connection 𝐴′ in given by eq. (2.12),
we note that the 𝛽-contracted eq. (2.20) holds because ⟨𝛽𝛽⟩ = 0, and the 𝛼-contracted
eq. (2.19) holds due to the Maurer-Cartan identity. The remaining equation (2.21) yields
the equations of motion of WZW4 (2.16).

2.4 Reduction of WZW4 to WZW2

Next, we will apply a two-dimensional reduction to WZW4 specified by two vector fields
𝑉𝑖 on R4 with 𝑖 = 1, 2. The idea of reduction is to restrict to field configurations that are
invariant under the flow of these vector fields. The two-dimensional dynamics of the reduced
theory will be specified by the Lagrangian ℒIFT2 = (𝑉1 ∧ 𝑉2) ∨ ℒIFT4 where ℒIFT4 is the
Lagrangian of the parent theory and we denote the contraction of a vector field 𝑉 with a
differential form 𝑋 by 𝑉 ∨ 𝑋 .

5Recall that R4 is a hyper-Kähler manifold, which has a CP1s worth of complex structures, see appendix A,
eq. (A.8).
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Let us introduce a pair of unit norm spinors 𝛾𝑎 and 𝜅�̇� and define the basis of 1-forms on R4

d𝑧 = 𝛾𝑎𝜅�̇�d𝑥𝑎�̇� , d𝑧 = 𝛾𝑎𝜅�̇�d𝑥𝑎�̇� , d𝑤 = 𝛾𝑎𝜅�̇�d𝑥𝑎�̇� , d𝑤 = −𝛾𝑎𝜅�̇�d𝑥𝑎�̇� . (2.22)

These are adapted to the complex structure 𝒥𝛾 defined by 𝛾𝑎 ∈ CP1. We choose to reduce
along the vector fields dual to d𝑧 and d𝑧 by demanding that 𝜕𝑧𝑔 = 𝜕𝑧𝑔 = 0.6 Contracting
the WZW4 Lagrangian with these vector fields results in the two-dimensional action of a
principal chiral model (PCM) plus Wess-Zumino (WZ) term:

𝑆PCM+𝓀WZ2 [𝑔] = 1
2

∫
Σ

Tr
(
𝑔−1d𝑔∧★𝑔−1d𝑔

)
+ i𝓀

3

∫
Σ×[0,1]

Tr(𝑔−1d𝑔∧𝑔−1d𝑔∧𝑔−1d𝑔) . (2.23)

In this action, the relative coefficient between the WZ term and the PCM term is given by

𝓀 = 𝛼 + 𝛽

𝛼 − 𝛽
, 𝛼 = ⟨𝛾𝛼⟩

⟨𝛼𝛾⟩
, 𝛽 = ⟨𝛾𝛽⟩

⟨𝛽𝛾⟩
. (2.24)

Varying the basis spinor 𝛾𝑎 in these expressions changes the choice of reduction vector
fields and parametrises a family of two-dimensional theories interpolating between WZW2
and the PCM. The WZW2 CFT limit is obtained when 𝓀 → 1 with 𝛼𝛽 held fixed. This can
be achieved by starting at the Kähler point in 4d, with 𝛽 = 𝛼 , and choosing the reduction
to be aligned with the complex structure, i.e. setting 𝛾 = 𝛼 . An alternative reduction that
turns off the WZ term and recovers the PCM is achieved by setting 𝛽 = −𝛼 .

For general choices of reduction, the four-dimensional semi-local symmetries descend
to a global 𝐺𝐿 × 𝐺𝑅 symmetry. This is because, for example, the conditions 𝛼𝑎𝜕𝑎�̇�𝛾𝑅 = 0
and 𝜕𝑧𝛾𝑅 = 𝜕𝑧𝛾𝑅 = 0 generically contain four independent constraints leaving only constant
solutions. However, when the reduction is taken to the CFT point, this system of four
constraints is not linearly independent, and chiral symmetries emerge satisfying 𝜕𝑤𝛾𝑅 = 0
(and vice versa for 𝛾𝐿).

Lax connection. A virtue of this approach is that a gC-valued Lax connection for the
dynamics of the resultant IFT2 may be derived from the 4d connection 𝐴′:

ℒ�̄� = 1
⟨𝜋𝛾⟩

𝜅�̇�𝜋𝑎(𝜕𝑎�̇� +𝐴′
𝑎�̇�) = 𝜕�̄� + (𝛽 − 𝜁 )

(𝛼 − 𝛽) 𝜕�̄�𝑔𝑔
−1 ,

ℒ𝑤 = 1
⟨𝜋𝛾⟩

𝜅�̇�𝜋𝑎(𝜕𝑎�̇� +𝐴′
𝑎�̇�) = 𝜕𝑤 + 𝛼(𝛽 − 𝜁 )

𝜁 (𝛼 − 𝛽) 𝜕𝑤𝑔𝑔
−1 ,

(2.25)

where the spectral parameter is given by 𝜁 = ⟨𝛾𝜋⟩
⟨𝜋𝛾⟩ . Flatness of this connection for all values

of 𝜁 is equivalent to the equations of motion of the PCM plus WZ term

𝛼𝜕�̄�(𝜕𝑤𝑔𝑔−1) − 𝛽𝜕𝑤(𝜕�̄�𝑔𝑔−1) = 0 ⇔ d(★− i𝓀)d𝑔𝑔−1 = 0 . (2.26)

Notice that in the CFT limit 𝓀 → 1 with 𝛽 → ∞, 𝛼 → 0 the Lax connection becomes
chiral and spectral parameter independent.

6In this case for reality we have ℒIFT2 = i(𝜕𝑧 ∧ 𝜕𝑧) ∨ℒIFT4 .
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2.5 Reduction of hCS6 to CS4

Instead of first integrating over CP1 and then reducing to two dimensions, we could instead
directly apply the reduction to hCS6. This gives the action of CS4,

𝑆CS4 [𝐴] = 1
2𝜋 i

∫
Σ×CP1

𝜔 ∧ Tr
(
𝐴 ∧ d𝐴 + 2

3 𝐴 ∧𝐴 ∧𝐴
)
. (2.27)

Here Σ is the R2 ⊂ R4 with coordinates 𝑤,𝑤 , and the meromorphic 1-form 𝜔 is given by

𝜔 = i(𝜕𝑧 ∧ 𝜕𝑧) ∨ Ω . (2.28)

A crucial feature here is that this contraction introduces zeroes in 𝜔 to complement its poles,
as required by the Riemann-Roch theorem. For the case at hand, 𝜔 is given explicitly by

𝜔 = i ⟨𝛼𝛽⟩
2⟨𝜋𝛾⟩⟨𝜋𝛾⟩

⟨𝜋𝛼⟩2⟨𝜋𝛽⟩2 ⟨𝜋d𝜋⟩ , (2.29)

and the zeroes are introduced at the points 𝜋𝑎 = 𝛾𝑎, 𝛾𝑎. The details of the reduction show
that, while our six-dimensional gauge field was regular, the connection 𝐴 entering in CS4
develops poles at the zeroes of 𝜔. In particular, the component 𝐴𝑤 will have a simple pole
at 𝜋𝑎 = 𝛾𝑎 and 𝐴�̄� will have a simple pole at 𝜋𝑎 = 𝛾𝑎. The four-dimensional Chern-Simons
connection is subject to the same boundary conditions as its parent, namely it vanishes at
the points 𝛼, 𝛽 ∈ CP1. The subsequent localisation of CS4 then gives the same PCM plus
WZ term derived by reducing WZW4 (see for instance [16] section 10).

3 The gauged WZW diamond

We now come to the main results of this paper. In this section, we will construct a diamond
correspondence of theories which realises the gauged WZW2 model, i.e. the 𝐺/𝐻 coset CFT.

3.1 Gauged WZW models

First, let us review the gauging of the WZW model and the crucial Polyakov-Wiegmann
identity. Letting 𝐺 be a Lie group and 𝑔 ∈ 𝐶∞(Σ,𝐺) a smooth 𝐺-valued field, the WZW2
action is7

𝑆WZW2 [𝑔] = 1
2

∫
Σ

Trg
(
𝑔−1d𝑔∧★𝑔−1d𝑔

)
+ 1

3

∫
Σ×[0,1]

Trg(𝑔−1d𝑔∧𝑔−1d𝑔∧𝑔−1d𝑔) . (3.1)

Gauging a vectorial 𝐻 -action of the PCM term is straightforward. We introduce an h-valued
connection 𝐵 ∈ Ω1(Σ) ⊗ h transforming as

ℓ ∈ 𝐶∞(Σ, 𝐻) : 𝐵 7→ ℓ−1𝐵ℓ + ℓ−1dℓ , 𝑔 7→ ℓ−1𝑔ℓ , (3.2)

with field strength 𝐹 [𝐵] = d𝐵 + 𝐵 ∧ 𝐵. The PCM term is then gauged by replacing the
exterior derivatives with covariant derivatives d𝑔 → D𝑔 = d𝑔 + [𝐵,𝑔]. Less trivially, the gauge
completion of the WZ 3-form is [29, 33–35]

ℒgWZ[𝑔, 𝐵] = ℒWZ[𝑔] + d Trg(𝑔−1d𝑔 ∧ 𝐵 + d𝑔𝑔−1 ∧ 𝐵 + 𝑔−1𝐵𝑔 ∧ 𝐵) . (3.3)
7To minimise factors of imaginary units we momentarily adopt Lorentzian signature. Schematically, we

have 𝑆Lorentz = −i𝑆Euclid|★→i★.
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Adding these two pieces together gives the gauged WZW2 action,

𝑆gWZW2 [𝑔,𝐵]=𝑆WZW2 [𝑔]+
∫

Σ
Trg(𝑔−1d𝑔∧(1−★)𝐵+d𝑔𝑔−1∧(1+★)𝐵+𝐵∧★𝐵+𝑔−1𝐵𝑔∧(1−★)𝐵) .

(3.4)
Notice that chiral couplings between currents and gauge fields emerge from combinations
of the PCM and WZ contributions. The identity

ℒWZ[𝑔1𝑔2] = ℒWZ[𝑔1] + ℒWZ[𝑔2] + d Trg
(
d𝑔2𝑔

−1
2 ∧ 𝑔−1

1 d𝑔1
)
, (3.5)

ensures that (3.4) can be recast as the difference of two WZW2 models. To see this we choose
a parametrisation of the gauge field 𝐵 in terms of two smooth 𝐻 -valued fields

𝐵 = 1 +★

2 𝑎−1d𝑎 + 1 −★

2 𝑏−1d𝑏 , 𝑎, 𝑏 ∈ 𝐶∞(Σ, 𝐻) . (3.6)

In two dimensions, this is not a restriction on the field content of the gauge field, but simply
a way of parametrising the two independent components of 𝐵. With such a parametrisation,
if we then further define 𝑔 = 𝑎𝑔𝑏−1 ∈ 𝐶∞(Σ,𝐺) and ℎ̃ = 𝑎𝑏−1 ∈ 𝐶∞(Σ, 𝐻) the gauged
model (3.4) can be written as the difference of two WZW2 models:

𝑆gWZW2 [𝑔, 𝐵] = 𝑆WZW2 [𝑔] − 𝑆WZW2 [ℎ̃] . (3.7)

This is known as the Polyakov-Wiegmann (PW) identity [36].

3.2 Gauging of the WZW4 model

Let us now consider the four-dimensional WZW model, given by eq. (2.13). The gauging
procedure follows in the exact same manner, producing an analogous gauged WZW4 action,

𝑆
(𝛼,𝛽)
gWZW4

[𝑔, 𝐵] = 1
2

∫
R4

Tr(𝑔−1∇𝑔 ∧★𝑔−1∇𝑔) +
∫
R4×[0,1]

𝜔𝛼,𝛽 ∧ℒgWZ[𝑔, 𝐵] . (3.8)

Here, we denote the covariant derivative by ∇𝑔 = d𝑔 + [𝐵,𝑔]. A critical difference between
two and four dimensions is the applicability of the PW identity as was pointed out in [7]. In
two dimensions, this mapping relies on the relation (3.6). To extend it to four dimensions,
we consider the operator on 1-forms

𝐽𝛼,𝛽(𝜎) = −i★ (𝜔𝛼,𝛽 ∧ 𝜎) . (3.9)

Checking that 𝐽 2
𝛼,𝛽 = −id, we can introduce the useful projectors

𝑃 = 1
2 (id − i𝐽 ) , 𝑃 = 1

2 (id + i𝐽 ) , (3.10)

which furnish a range of identities detailed in appendix C. With these in mind, we can write
a four-dimensional analogue to (3.6),

𝐵 = 𝑃
(
𝑎−1d𝑎

)
+ 𝑃

(
𝑏−1d𝑏

)
, 𝑎, 𝑏 ∈ 𝐶∞(R4, 𝐻) . (3.11)

– 11 –



J
H
E
P
1
2
(
2
0
2
4
)
2
0
2

With this parametrisation of the gauge field, it is indeed possible to use the composite fields
𝑔 = 𝑎𝑔𝑏−1 ∈ 𝐶∞(R4,𝐺) and ℎ̃ = 𝑎𝑏−1 ∈ 𝐶∞(R4, 𝐻) to express the gauged WZW4 action
in a fashion akin to eq. (3.7) as

𝑆
(𝛼,𝛽)
gWZW4

[𝑔, 𝐵] = 𝑆
(𝛼,𝛽)
WZW4

[𝑔] − 𝑆
(𝛼,𝛽)
WZW4

[ℎ̃] . (3.12)

However, unlike in two dimensions, the parametrisation of the gauge field in eq. (3.11) is not
generic. It implies a restriction on the connection, namely that its curvature satisfies

𝛼𝑎𝛼𝑏𝐹
𝑎�̇�𝑏𝑏

[𝐵] = 0 , 𝛽𝑎𝛽𝑏𝐹
𝑎�̇�𝑏𝑏

[𝐵] = 0 . (3.13)

This can be thought of as an analogue of imposing that 𝐹 is strictly a (1, 1)-form, which
indeed is the case when 𝛽 = 𝛼 and the WZW4 is taken at the Kähler point. It is noteworthy
that these constraints on the background gauge field agree with two of the three ASDYM
equations; the same two equations that were identically satisfied by the Yang parametrisation
of the connection 𝐴′. In the forthcoming analysis, we will see how this arises from the
hCS6 construction.

3.3 A six-dimensional origin

We now turn to the six-dimensional holomorphic Chern-Simons theory on twistor space
that will descend to the above gauged WZW models in two and four dimensions. Given the
factorisation of gWZW2 to the difference of WZW2 models, a natural candidate is to simply
consider the difference of hCS6 theories to generalise the six-dimensional action introduced
in [18–20, 23]. Indeed, a similar idea was proposed in [30] to construct 2d coset models from
the difference of CS4 theories. However, how this should work in six dimensions is less clear
as the factorisation of gWZW4 requires the curvature of the gauge field to be constrained.

The fundamental fields of our theory are two connections 𝒜 ∈ Ω0,1(PT) ⊗ g and ℬ ∈
Ω0,1(PT) ⊗ h, which appear in the six-dimensional action

𝑆ghCS6 [𝒜,ℬ] = 𝑆hCS6 [𝒜] − 𝑆hCS6 [ℬ] − 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
𝒜 ∧ℬ

)
, (3.14)

where the functional 𝑆hCS6 is defined in eq. (2.1). As well as the bulk hCS6 functionals, we
have also included a coupling term between the two connections that contributes on the
support of 𝜕Ω, i.e. at the poles of Ω. We will shortly provide a motivation for this boundary
term related to the boundary conditions we impose on the theory.

This definition is slightly imprecise; strictly speaking, the inner product denoted by ‘Tr’
should be defined separately for each algebra, i.e. Trg and Trh. In the coupling term, where
ℬ enters inside Trg, we should first act on ℬ with a Lie algebra homomorphism from h to
g, and, in principle, this homomorphism could be chosen differently at each pole of Ω. We
discuss more general gaugings, beyond the vectorial gauging considered here, in appendix E.
It will also be useful for us to assume that we have an orthogonal decomposition of g such that

g = h + k , Tr
(
𝑋 · 𝑌

)
= Tr

(
𝑋 h · 𝑌 h)+ Tr

(
𝑋 k · 𝑌 k) , (3.15)

and that the homogeneous space 𝐺/𝐻 is reductive,

[h, k] ⊂ k . (3.16)
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To complete the specification of the theory, we must supply boundary conditions that
ensure the vanishing of the boundary term in the variation of (3.14),

𝛿𝑆ghCS6

∣∣
bdry = 1

2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
(𝛿𝒜 + 𝛿ℬ) ∧ (𝒜 −ℬ)

)
. (3.17)

Since 𝜕Ω only has support at the poles of Ω, the integral over CP1 may be computed explicitly
in this term. As well as contributions proportional to delta-functions on CP1, this will also
include CP1-derivatives of delta-functions since the poles in Ω are second order. Using the
localisation formula in the appendix D, we find

𝛿𝑆ghCS6

∣∣
bdry = −

∫
R4

[
𝛼𝑎𝛽𝑏Σ𝑎𝑏

⟨𝛼𝛽⟩
∧ Tr

(
(𝛿𝒜 + 𝛿ℬ) ∧ (𝒜 −ℬ)

)
+ 1

2 𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ 𝜕0Tr
(
(𝛿𝒜 + 𝛿ℬ) ∧ (𝒜 −ℬ)

)]
+ 𝛼 ↔ 𝛽 .

(3.18)

In this expression, we have introduced a basis for the self-dual 2-forms defined by Σ𝑎𝑏 =
𝜀
�̇�𝑏

d𝑥𝑎�̇� ∧ d𝑥𝑏𝑏 . To attain the vanishing of the boundary variation, we consider the boundary
conditions

𝒜
k
∣∣
𝛼,𝛽

= 0 , 𝒜
h
∣∣
𝛼,𝛽

= ℬ

∣∣
𝛼,𝛽
, 𝜕0𝒜

h
∣∣
𝛼,𝛽

= 𝜕0ℬ
∣∣
𝛼,𝛽
, (3.19)

where the superscripts k and h denote projections corresponding to the decomposition (3.15).
This completes our definition of the gauged hCS6 theory.

We might choose to think of the boundary term in the variation as being a potential
for a ‘symplectic’ form8,9

Θ =𝛿𝑆ghCS6

∣∣
bdry , Ω =𝛿Θ =− 1

2𝜋 i

∫
PT
𝜕Ω∧

(
Trg
(
𝛿𝒜∧𝛿𝒜

)
−Trh

(
𝛿ℬ∧𝛿ℬ

))
, (3.20)

such that our boundary conditions define a Lagrangian (i.e. maximal isotropic) subspace. We
would like to interpret this as a symplectic form on an appropriate space of fields defined
over R4. Evaluating the integral over CP1 and writing Ω = Ω𝒜 − Ωℬ, this symplectic
form is given by

Ω𝒜 =
∫
R4

[
𝛼𝑎𝛽𝑏Σ𝑎𝑏

⟨𝛼𝛽⟩
∧Trg

(
𝛿𝒜∧𝛿𝒜

)∣∣
𝛼

+ 1
2 𝛼𝑎𝛼𝑏Σ𝑎𝑏∧𝜕0Trg

(
𝛿𝒜∧𝛿𝒜

)∣∣
𝛼

]
+𝛼↔ 𝛽 , (3.21)

with an analogous expression for Ωℬ. Since our boundary conditions are identical at each
pole, we concentrate only on the contributions associated to the pole at 𝛼 . The symplectic
form is not sensitive to the entire field configuration 𝒜 ∈ Ω1(PT) ⊗ g, but rather to the
evaluation of 𝒜 at the poles and its first CP1-derivative,

�⃗� =
(
𝒜|𝛼 , 𝜕0𝒜|𝛼

)
. (3.22)

This data may be interpreted as defining a 1-form (or more precisely a (0, 1)-form with respect
to the complex structure defined by 𝛼) on R4 valued in the Lie algebra10 g⃗ = g ⋉ Rdim(𝐺).

8Precedent in the literature dictates that we denote the symplectic form by Ω; we trust that context serves
to disambiguate from the meromorphic differential Ω.

9This is slightly loose as the 2-form is degenerate; strictly speaking we should restrict to symplectic leaves.
10The dimension of g⃗ is 2 dim(𝐺), so it must be isomorphic to Rdim(𝐺) ⊕ Rdim(𝐺) as a vector space. The Lie

algebra structure may be derived by considering consecutive infinitesimal gauge transformations. In the CS4

literature, these structures have been studied under the name ‘defect Lie algebras’ [37, 38].
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With this in mind, it is more accurate to say that the contribution from the pole at 𝛼 in
Ω is a symplectic form on the space of configurations(

�⃗�, ℬ⃗
)
∈ Ω0,1(R4) ⊗

(⃗
g⊕ h⃗

)
. (3.23)

This symplectic form may be succinctly written by introducing an inner product on the
Lie algebra g⃗⊕ h⃗, and our boundary conditions describe an isotropic subspace with respect
to this inner product.11

To be explicit, we associate Rdim𝐺 with the dual g∗ and denote the natural pairing of
the algebra and its dual by 𝑥(𝑥) ∈ R for 𝑥 ∈ g and 𝑥 ∈ g∗. We let �⃗� = (𝑥, 𝑥) and �⃗� = (𝑦,𝑦)
be elements of g⃗ such that the bracket on g⃗ is defined by

[�⃗� , �⃗� ]⃗g = ([𝑥,𝑦], ad∗
𝑥𝑦 − ad∗

𝑦𝑥) , (3.24)

where the co-adjoint action is ad∗
𝑦𝑥(𝑥) = 𝑥([𝑥,𝑦]). We equip g⃗ with the inner product

⟨�⃗� , �⃗� ⟩⃗g = ⟨𝛽𝛼⟩
⟨𝛼𝛽⟩⟨𝛼𝛼⟩

Trg(𝑥 · 𝑦) + 1
2
(
𝑦(𝑥) + 𝑥(𝑦)

)
, (3.25)

such that the contribution from the pole at 𝛼 to Ω𝒜is given by

Ω𝒜 =
∫
R4
𝜇𝛼 ∧ ⟨𝛿�⃗� , 𝛿�⃗�⟩⃗g , (3.26)

where 𝜇𝛼 = 𝛼𝑎𝛼𝑏Σ𝑎𝑏 is the (2, 0)-form defined by the complex structure associated to 𝛼 ∈ CP1.
In a similar fashion we let �⃗� = (𝑢,𝑢) and �⃗� = (𝑣, 𝑣) be elements of h⃗, which is equipped

with a bracket and pairing via the same recipe. We consider the commuting direct sum
g⃗ ⊕ h⃗ equipped with pairing and bracket

⟨⟨(�⃗� ,�⃗� ) , (�⃗� ,�⃗� )⟩⟩= ⟨�⃗� ,�⃗� ⟩⃗g−⟨�⃗� ,�⃗� ⟩⃗
h
, [[(�⃗� ,�⃗� ) , (�⃗� ,�⃗� )]] =

(
[�⃗� ,�⃗� ]⃗g , [�⃗� ,�⃗� ]⃗

h

)
, (3.27)

such that the total symplectic form coming from the pole at 𝛼 is just

Ω =
∫
R4
𝜇𝛼 ∧ ⟨⟨(𝛿�⃗�, 𝛿ℬ⃗) , (𝛿�⃗�, 𝛿ℬ⃗)⟩⟩ . (3.28)

Then, our boundary conditions can be expressed as
(
�⃗�, ℬ⃗

)
∈ Ω0,1(R4)⊗𝐿 where we introduce

a subspace

𝐿 =
{
(�⃗� , �⃗� ) ∈ g⃗⊕ h⃗ | 𝑥 = 𝑢 , 𝑃∗h𝑥 = 𝑢

}
, (3.29)

in which 𝑃∗h is dual to the projector 𝑃h onto the subalgebra, i.e. 𝑃∗h𝑥(𝑥) = 𝑥(𝑃h𝑥). As 𝐿 is
defined by dim g+ dim h constraints, it is half-dimensional and it is also isotropic with respect
to ⟨⟨· , ·⟩⟩, hence defines a Lagrangian subspace. Moreover, assuming that 𝐺/𝐻 is reductive, 𝐿

11This need not be the case since our boundary conditions could generically intertwine constraints on the
algebra and spacetime components, meaning they would not be captured by a subspace of the algebra alone.
They would always, however, define an isotropic subspace of Ω0,1(R4) ⊗

(⃗
g⊕ h⃗

)
by definition. Examples of

this more general type of boundary condition can be found in [24].
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is a subalgebra.12 Pre-empting the following section, this analysis indicates that there will be
a residual h⃗ gauge symmetry associated to the pole at 𝛼 , and similarly at 𝛽.

We can make one further observation13 on the role of the boundary term from a symplectic
perspective, which is best illustrated by a finite-dimensional analogy. Recall that the cotangent
bundle 𝑀 = 𝑇 ∗𝑋 is a symplectic manifold; if we let {𝑥𝑖} be local coordinates on 𝑋 and {𝜉𝑖}
the components of a 1-form 𝜉 = 𝜉𝑖𝑑𝑥

𝑖 ∈ 𝑇 ∗
𝑥 𝑋 , then 𝑝 = (𝑥𝑖 , 𝜉𝑖) provide local coordinates

for 𝑀 in terms of which the canonical symplectic form is Ω = d𝜉𝑖 ∧ d𝑥𝑖 . The tautological
potential, which admits a coordinate free definition in terms of the projection 𝜋 : 𝑇 ∗𝑋 → 𝑋 ,
for this is given by Θ = 𝜉𝑖d𝑥𝑖 . The zero section, i.e. points 𝑝 = (𝑥𝑖 , 𝜉𝑖 = 0) of 𝑇 ∗𝑋 , is a
Lagrangian submanifold and we note that Θ vanishes trivially here. Now Weinstein’s tubular
neighbourhood theorem ensures that in the vicinity of a Lagrangian submanifold 𝐿, any
symplectic manifold 𝑀 locally looks like 𝑇 ∗𝐿 with 𝐿 given by the zero section. In the case at
hand, our boundary conditions are of the schematic form 𝜉 = 𝒜 −ℬ = 0, and the effect of
including the additional boundary contribution in the action (3.14) ensures that the resultant
symplectic potential is the tautological one.

To close this section, let us comment that at the special point 𝛼 = 𝛽, one of the terms
in the inner product (3.25) vanishes. This allows for a larger class of admissible boundary
conditions, even in the ungauged model, including the examples

𝒜

∣∣
𝛼

= 0 , 𝜕0𝒜
∣∣
𝛼

= 0 or 𝜕0𝒜
∣∣
𝛼

= 0 , 𝜕0𝒜
∣∣
𝛼

= 0 . (3.30)

We leave these for future development.

3.4 Localisation to gWZW4

The localisation procedure follows in a similar fashion to the ungauged model. However,
given that there are now two gauge fields 𝒜 and ℬ, some care is required to account for
degrees of freedom and residual symmetries.

We introduce a new pair of connections 𝒜
′ ∈ Ω0,1(PT) ⊗ g and ℬ

′ ∈ Ω0,1(PT) ⊗ h,
along with group-valued fields 𝑔 ∈ 𝐶∞(PT,𝐺) and ℎ̂ ∈ 𝐶∞(PT, 𝐻) related to the original
gauge fields by

𝒜 = 𝑔−1
𝒜

′𝑔 + 𝑔−1𝜕𝑔 ≡ 𝒜
′𝑔 ,

ℬ = ℎ̂−1
ℬ

′ℎ̂ + ℎ̂−1𝜕ℎ̂ ≡ ℬ
′ℎ̂ .

(3.31)

The redundancy in this parametrisation is given by the action of 𝛾 ∈ 𝐶∞(PT,𝐺) and 𝜂 ∈
𝐶∞(PT, 𝐻):

𝒜
′ 7→ 𝛾−1

𝒜
′𝛾 + 𝛾−1𝜕𝛾 , 𝑔 7→ 𝛾−1𝑔 , (3.32)

ℬ
′ 7→ 𝜂−1

ℬ
′𝜂 + 𝜂−1𝜕𝜂 , ℎ̂ 7→ 𝜂−1ℎ̂ , (3.33)

which leave 𝒜 and ℬ invariant. As before, this is partially used to fix away the CP1 legs

𝒜
′
0 = ℬ

′
0 = 0 . (3.34)

12If g = h + k is not assumed to be reductive then the stabiliser of 𝐿 consists of elements of the form

stab𝐿 =
{

(�⃗� , �⃗� ) ∈ g⃗⊕ h⃗ | 𝑥 = 𝑢 , 𝑃
∗
h𝑥 = 𝑢 , [𝑢, k] = 0 , ([h, k], 𝑢) = 0

}
.

.
13We thank A. Arvanitakis for this suggestion.
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The localisation procedure will produce a four-dimensional boundary theory with fields given
by the evaluations of 𝑔, ℎ̂ and their CP1-derivatives at the poles 𝛼 and 𝛽 of Ω. Since the
CP1-derivatives will play an important role, we denote them

𝑢 = 𝑔−1𝜕0𝑔 , 𝑣 = ℎ̂−1𝜕0ℎ̂ . (3.35)

After fixing (3.34), we note that there is still some remaining symmetry given by internal
gauge transformations (3.32) and (3.33) that are CP1-independent. We use this residual
symmetry to fix

𝑔|𝛽 = id , ℎ̂|𝛽 = id . (3.36)

On the other hand, the action (3.14) is invariant under gauge transformations acting on
𝒜 and ℬ that preserve the boundary conditions (3.19). These are given by smooth maps
𝛾 ∈ 𝐶∞(PT,𝐺) and 𝜂 ∈ 𝐶∞(PT, 𝐻) satisfying14

𝛾 |𝛼,𝛽 = 𝜂|𝛼,𝛽 , 𝜕0𝛾 |𝛼,𝛽 = 𝜕0𝜂|𝛼,𝛽 . (3.37)

The induced action of these gauge transformations on the new field content is

𝒜
′ 7→ 𝒜

′ , 𝑔 7→ 𝑔𝛾 , 𝑢 7→ 𝛾−1𝑢𝛾 + 𝛾−1𝜕0𝛾 , (3.38)

ℬ
′ 7→ ℬ

′ , ℎ̂ 7→ ℎ̂𝜂 , 𝑣 7→ 𝜂−1𝑣𝜂 + 𝜂−1𝜕0𝜂 . (3.39)

We would like to use this symmetry to further fix degrees of freedom. Note that, while
the right action on the fields 𝑔 and ℎ̂ at 𝛼 is entirely unconstrained, the action at 𝛽 should
preserve the gauge fixing condition (3.36). This is achieved by performing both an internal
and external gauge transformation simultaneously, and requiring 𝛾 |𝛽 = 𝛾 and 𝜂|𝛽 = 𝜂. This
results in an induced left action on the fields 𝑔 and ℎ̂ at 𝛼 . In summary, introducing some
notation for simplicity, we have our boundary degrees of freedom

𝑔|𝛼 := 𝑔 , 𝑔|𝛽 = id , 𝑢|𝛼 := 𝑢 , 𝑢|𝛽 := 𝑢 , (3.40)

ℎ̂|𝛼 := ℎ , ℎ̂|𝛽 = id , 𝑣 |𝛼 := 𝑣 , 𝑣 |𝛽 := 𝑣 , (3.41)

and boundary gauge transformations

𝛾 |𝛼 = 𝜂|𝛼 := 𝑟 , 𝛾−1𝜕0𝛾 |𝛼 = 𝜂−1𝜕0𝜂|𝛼 := 𝜖 , (3.42)
𝛾 |𝛽 = 𝜂|𝛽 := ℓ−1 , 𝛾−1𝜕0𝛾 |𝛽 = 𝜂−1𝜕0𝜂|𝛽 := 𝜖 , (3.43)

which act on the boundary fields as

𝑔 7→ ℓ𝑔𝑟 , 𝑢 7→ 𝑟−1𝑢𝑟 + 𝜖 , 𝑢 7→ ℓ𝑢ℓ−1 + 𝜖 , (3.44)
ℎ 7→ ℓℎ𝑟 , 𝑣 7→ 𝑟−1𝑣𝑟 + 𝜖 , 𝑣 7→ ℓ𝑣ℓ−1 + 𝜖 , (3.45)

with ℓ, 𝑟 ∈ 𝐶∞(R4, 𝐻) and 𝜖, 𝜖 ∈ 𝐶∞(R4, h). Based on our expectation of a gauge theory con-
taining a 𝐺-valued field and a vectorial 𝐻 -gauge symmetry, we use the above symmetries to fix

ℎ = id , 𝑣 = 𝑣 = 0 . (3.46)
14Here we use that the homogeneous space 𝐺/𝐻 is reductive (3.16) to ensure that the boundary conditions

are preserved.
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We are thus left with a residual symmetry 𝑟 = ℓ−1 acting as

𝑔 7→ ℓ𝑔ℓ−1 , 𝑢 7→ ℓ𝑢ℓ−1 , 𝑢 7→ ℓ𝑢ℓ−1 , 𝐵 7→ ℓ𝐵ℓ−1 − dℓℓ−1 , (3.47)

which will become the 𝐻 -gauge symmetry of our 4d theory.
We now proceed with the localisation of the six-dimensional action. As with the ungauged

model, the first step is to write the action in terms of 𝒜′,ℬ′ and 𝑔, ℎ̂. Given that the localisation
formula (D.9) introduces at most one 𝜕0 derivative, all dependence on ℎ̂ will drop out due to
our gauge fixing choices (3.41) and (3.46). Hence there will be no contribution from 𝑆hCS6 [ℬ]
to the four-dimensional action. As per eq. (2.7), we find that the bulk equations of motion
(i.e. contributions to the variation of the action that are not localised at the poles of Ω)
enforce 𝜕0𝒜

′
�̇� = 𝜕0ℬ

′
�̇� = 0. This implies that the components 𝒜

′
�̇�,ℬ

′
�̇� are holomorphic, which

(combined with the fact that they have homogeneous weight 1) allows us to deduce that

𝒜
′
�̇� = 𝜋𝑎𝐴′

𝑎�̇� , ℬ
′
�̇� = 𝜋𝑎𝐵′𝑎�̇� , (3.48)

where 𝐴′
𝑎�̇�, 𝐵

′
𝑎�̇� are CP1-independent. Imposing the bulk equations of motion and the gauge

fixings described above, the remaining contributions in the action (3.14) are given by

𝑆ghCS6 [𝒜,ℬ] = 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
𝒜

′ ∧ 𝜕𝑔𝑔−1 − (𝑔−1
𝒜

′𝑔 + 𝑔−1𝜕𝑔) ∧ℬ
′)

− 1
6𝜋 i

∫
PT×[0,1]

𝜕Ω ∧ Tr
(
𝑔−1d𝑔 ∧ 𝑔−1d𝑔 ∧ 𝑔−1d𝑔

)
.

(3.49)

In the ungauged model, the next step was to solve the boundary conditions for 𝒜
′ in

terms of 𝑔. Here, the boundary conditions on 𝒜 and ℬ, i.e. excluding those relating the
CP1-derivatives of the gauge fields, do not fully determine 𝐴′

𝑎�̇�, 𝐵
′
𝑎�̇� and instead relate them as15

𝐴′
𝑎�̇� = 𝐵′𝑎�̇� + Θ𝑎�̇� := 𝐵′𝑎�̇� −

1
⟨𝛼𝛽⟩

𝛽𝑎𝛼
𝑏∇𝑏�̇�𝑔𝑔

−1 , (3.50)

where the covariant derivative is given by ∇𝑎�̇�𝑔𝑔
−1 = 𝜕𝑎�̇�𝑔𝑔

−1 + 𝐵′𝑎�̇� − Ad𝑔𝐵′𝑎�̇�. The rela-
tion (3.50) allows us to express (3.49) entirely in terms of ℬ′, Θ = 𝜋𝑎Θ𝑎�̇�𝑒

�̇� and 𝑔. Many of
the terms combine to produce a gauged Wess-Zumino contribution (3.3) with the result

𝑆ghCS6 [𝒜,ℬ] = 1
2𝜋 i

∫
PT
𝜕Ω∧Tr

(
Θ∧

(
∇𝑔𝑔−1−ℬ

′
))

− 1
2𝜋 i

∫
PT×[0,1]

𝜕Ω∧ℒgWZ[𝑔,ℬ′] . (3.51)

Given that both 𝐵′𝑎�̇� and Θ𝑎�̇� are CP1-independent, we have that∫
PT
𝜕Ω ∧ Tr(Θ ∧ℬ

′) = 0 , (3.52)

15The boundary conditions relating the CP1-derivatives of the gauge fields impose

𝛼𝑎

⟨𝛼𝛽⟩
(
∇𝑎�̇�𝑔𝑔

−1)h = −𝛽𝑎∇𝑎�̇�𝑢
h
,

𝛽𝑎

⟨𝛼𝛽⟩
(
𝑔
−1∇𝑎�̇�𝑔

)h = −𝛼𝑎∇𝑎�̇�𝑢
h
,

which, in principle, can be solved for 𝐵′
𝑎�̇�. However, we will not invoke these since they will follow as equations

of motion of the 4d theory due to the addition of the boundary term in the gauged hCS6 action (3.14). See
appendix E for more details.
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with cancelling contributions from the two end points of the integral. Hence we are left
with a manifestly covariant result

𝑆ghCS6 [𝒜,ℬ] = 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
Θ ∧

(
∇𝑔𝑔−1

)
− 𝐿gWZ[𝑔,ℬ′]

)
. (3.53)

Applying the localisation formula (D.13) in appendix D yields the four-dimensional action

𝑆IFT4 = 1
2

∫
R4

Tr
(
∇𝑔𝑔−1 ∧★∇𝑔𝑔−1)+

∫
R4×[0,1]

𝜔𝛼,𝛽 ∧ℒgWZ[𝑔, 𝐵′]

−
∫
R4
𝜇𝛼 ∧ Tr(𝑢 · 𝐹 [𝐵′]) + 𝜇𝛽 ∧ Tr(𝑢 · 𝐹 [𝐵′]) .

(3.54)

At this point only the h-components of 𝑢 and 𝑢 contribute to the action, and so henceforth,
to ease notation and without loss of generality, we set their projection onto k to zero.

Something rather elegant has happened; we have found that the localisation of the six-
dimensional theory returns not only the gauging of the WZW4 model, but also residual edge
modes serving as Lagrange multipliers constraining the field strength to obey exactly those
conditions (3.13) that ensure the theory can be written as the difference of WZW4 models.
The constraints 𝐹 2,0 = 0 and 𝐹 0,2 = 0 have also been imposed by Lagrange multipliers in the
context of 5d Kähler Chern-Simons theory [5, 6]. This theory bears a similar relationship to
WZW4 as 3d Chern-Simons theory bears to WZW2. This poses a natural question: what
is the direct relationship between this 5d Kähler Chern-Simons theory and 6d holomorphic
Chern-Simons theory? We suspect the mechanism here is rather similar to that which relates
CS4 and CS3 [39] and comment on this further in the outlook.

3.5 Equations of motion and ASDYM

Making use of the projectors previously introduced in eq. (3.10), the equations of motion
following from the action (3.54) read

𝛿𝐵′ : 0 = 𝑃∇𝑔𝑔−1|h − 𝑃𝑔−1∇𝑔|h +★
(
𝜇𝛼 ∧∇𝑢 + 𝜇𝛽 ∧∇𝑢

)
,

𝛿𝑔 : 0 = ∇★∇𝑔𝑔−1 − 𝜔𝛼,𝛽 ∧∇(∇𝑔𝑔−1) + 2𝜔𝛼,𝛽 ∧ 𝐹 [𝐵′] ,
𝛿𝑢 : 0 = 𝜇𝛼 ∧ 𝐹 [𝐵′] ,
𝛿𝑢 : 0 = 𝜇𝛽 ∧ 𝐹 [𝐵′] .

(3.55)

We can exploit the projectors to extract two independent contributions from the 𝐵′ equation
of motion:

𝛿𝐵′ :
0 = 𝑃

(
∇𝑔𝑔−1|h +★(𝜇𝛽 ∧∇𝑢)

)
,

0 = 𝑃
(
𝑔−1∇𝑔|h −★(𝜇𝛼 ∧∇𝑢)

)
.

(3.56)

As expected from the discussion in appendix E, these are exactly the conditions that arise from
the boundary conditions relating the CP1-derivatives of the gauge fields, 𝜕0𝒜

h|𝛼,𝛽 = 𝜕0ℬ|𝛼,𝛽 ,
justifying a posteriori why we did not impose them in the localisation procedure.

Making use of the identity

∇(𝜔𝛼,𝛽 ∧★(𝜇𝛽 ∧∇𝑢)) = ∇(𝜇𝛽 ∧∇𝑢) = 𝜇𝛽 ∧ 𝐹 [𝐵′] · 𝑢 , (3.57)
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we obtain an on-shell integrability condition for the first equation in (3.56), namely that

∇(𝜔𝛼,𝛽 ∧ 𝑃(∇𝑔𝑔−1|h)) = 0 . (3.58)

Hence, using the projection of the 𝛿𝑔 equation of motion onto h, we have that 𝜔𝛼,𝛽 ∧ 𝐹 [𝐵′] = 0
follows on-shell.

Let us return to the ASDYM equations, which we can recast as

𝜇𝛼 ∧ 𝐹 = 0 , 𝜇𝛽 ∧ 𝐹 = 0 , 𝜔𝛼,𝛽 ∧ 𝐹 = 0 . (3.59)

In differential form notation, the relation (3.50) can be written as

𝐴′ = 𝐵′ − 𝑃(∇𝑔𝑔−1) . (3.60)

By virtue of the identities obeyed by the projectors in eqs. (C.3) to (C.5) and the covariant
Maurer-Cartan identity obeyed by 𝑅∇ = ∇𝑔𝑔−1,

∇𝑅∇ − 𝑅∇ ∧ 𝑅∇ = (1 − Ad𝑔)𝐹 [𝐵′] , (3.61)

we can readily establish

𝜇𝛽 ∧ 𝐹 [𝐴′] = 𝜇𝛽 ∧ 𝐹 [𝐵′] , (3.62)
𝜇𝛼 ∧ 𝐹 [𝐴′] = 𝜇𝛼 ∧ Ad𝑔𝐹 [𝐵′] , (3.63)

2𝜔𝛼,𝛽 ∧ 𝐹 [𝐴′] = 2𝜔𝛼,𝛽 ∧ 𝐹 [𝐵′] + 2𝜔𝛼,𝛽 ∧∇𝑃(𝑅∇)
= 2𝜔𝛼,𝛽 ∧ 𝐹 [𝐵′] −∇(★∇𝑔𝑔−1) + 𝜔𝛼,𝛽 ∧∇(∇𝑔𝑔−1) . (3.64)

Hence we conclude that the 𝛿𝑔, 𝛿𝑢, 𝛿𝑢 equations of motion are equivalent to the ASDYM
equations for the connection 𝐴′. Demanding that the 𝐵′ connection is also ASD requires
in addition that 𝜔𝛼,𝛽 ∧ 𝐹 [𝐵′] = 0, which is indeed a consequence of the 𝐵′ equations of
motion as shown above.

As we have seen, the equations of motion of gWZW4 (3.54) are equivalent to the ASDYM
equations for the two connections, 𝐴′ and 𝐵′. This ensures that the gauging of the WZW4 is
compatible with integrability. Indeed, from these connections we can construct Lax pairs
of differential operators as in eq. (1.4), where the spectral parameter can be interpreted
as the coordinate on CP1 ⊂ PT.

3.6 Constraining then reducing

We now proceed to the bottom of the diamond by reduction of the IFT4. In this section, we
shall first implement the constraints imposed by the Lagrange multipliers 𝑢,𝑢 in the 4d theory
and then reduce. While not the most general reduction, this will allow us to directly recover
the gauged WZW coset CFT. In section 4, we will investigate more general reductions, in
particular, what happens if we reduce without first imposing constraints.

Imposing the reduction ansatz that 𝜕𝑧 = 𝜕𝑧 = 0 in the complex coordinates of eq. (2.22),
we have that the solution to the constraints 𝐵 = 𝑃(𝑎−1d𝑎) + 𝑃(𝑏−1d𝑏) becomes

𝐵′ = 𝐵′𝑎�̇�d𝑥𝑎�̇� = 1
𝛼 − 𝛽

(
𝛼𝑏−1𝜕𝑤𝑏 − 𝛽𝑎−1𝜕𝑤𝑎

)
d𝑤 − 1

𝛼 − 𝛽

(
𝛽𝑏−1𝜕�̄�𝑏 − 𝛼𝑎−1𝜕�̄�𝑎

)
d𝑤

+ 1
𝛼 − 𝛽

(
𝑏−1𝜕�̄�𝑏 − 𝑎−1𝜕�̄�𝑎

)
d𝑧 + 𝛼𝛽

𝛼 − 𝛽

(
𝑏−1𝜕𝑤𝑏 − 𝑎−1𝜕𝑤𝑎

)
d𝑧 .

(3.65)
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For simplicity, let us first consider the Kähler point and align the reduction to the complex
structure (implemented by taking 𝛼 → 0 and 𝛽 → ∞). In this scenario, the reduction ansatz
enforces that 𝐵′𝑧 = 𝐵′𝑧 = 0 with the remaining components of 𝐵′ parametrising a generic
two-dimensional gauge field. Effectively, we can simply ignore the constraints altogether
but impose 𝐵′𝑧 = 𝐵′𝑧 = 0 as part of the reduction ansatz. This could be interpreted as
demanding 𝐷𝑧 = 𝐷𝑧 = 0 acting on fields. In this case, it is immediate that the 4d gauged
WZW reduces to a 2d gauged WZW.

Away from the Kähler point and aligned reduction, i.e. not fixing 𝛼 and 𝛽, we need
to keep track of contributions coming from 𝐵′𝑧 and 𝐵′𝑧. We can still view the 𝐵′𝑤 and 𝐵′�̄�
components of eq. (3.65) as a parametrisation of a generic 2d gauge field, but there is no way
in which we can view the 𝐵′𝑧 and 𝐵′𝑧 as a local combination of 𝐵′𝑤 and 𝐵′�̄�. We are forced
to work with the variables 𝑎 and 𝑏 rather than a 2d gauge field. Fortunately, however, the
reduction can still be performed immediately if we use the composite fields 𝑔 = 𝑎𝑔𝑏−1 and
ℎ̃ = 𝑎𝑏−1. These composite fields are invariant under the 𝐻 -gauge symmetry, but a new
semi-local symmetry emerges given by 𝑎 → ℓ𝑎, 𝑏 → 𝑏𝑟−1 with 𝛼𝑏𝜕

𝑏𝑏
𝑟 = 𝛽𝑏𝜕

𝑏𝑏
ℓ = 0. These

leave 𝐵′, 𝑔, ℎ invariant but act as 𝑔 → ℓ𝑔𝑟 and ℎ̃ → ℓℎ̃𝑟 . At the Kähler point and aligned
reduction, these symmetries descend to affine symmetries, but in general descend only to
global transformations. Recall that in terms of the composite fields gWZW4 becomes

𝑆
(𝛼,𝛽)
gWZW4

[𝑔, 𝐵′] = 𝑆
(𝛼,𝛽)
WZW4

[𝑔] − 𝑆
(𝛼,𝛽)
WZW4

[ℎ̃] . (3.66)

It is then immediate that this reduces to the difference of PCM plus WZ term theories
with action (2.23) and WZ coefficient 𝓀:

𝑆IFT2 [𝑔, ℎ̃] = 𝑆PCM+𝓀WZ2 [𝑔] − 𝑆PCM+𝓀WZ2 [ℎ̃] . (3.67)

Away from the CFT point, 𝓀 = 1, this cannot be recast in terms of a deformation of gWZW2
expressed as a local functional of 𝐵′, 𝑔.

Lax formulation. To obtain the Lax connection of the resulting IFT2 we first note that
the four-dimensional gauge fields, upon solving the constraints on 𝐵′, are gauge equivalent to

𝐴′
𝑎�̇� = − 1

⟨𝛼𝛽⟩
𝛽𝑎𝛼

𝑏𝜕𝑏�̇�𝑔𝑔
−1 , 𝐵′𝑎�̇� = − 1

⟨𝛼𝛽⟩
𝛽𝑎𝛼

𝑏𝜕𝑏�̇�ℎ̃ℎ̃
−1 .

Therefore, we may simply follow the construction of the Lax connection from the ungauged
model in eq. (2.25), with the connection 𝐴′ producing a Lax for the 𝑆PCM+𝓀WZ2 [𝑔] and 𝐵′

producing one for 𝑆PCM+𝓀WZ2 [ℎ̃].

4 More general IFT2 from IFT4: reducing then constraining

In the previous section, we reduced from the gauged WZW4 model to an IFT2, but prior
to reduction we enforced the constraints imposed by the Lagrange multiplier fields. These
constraints determine implicit relations between the components of the gauge field as per
eq. (3.65). In the simplest case, where we work at the Kähler point and align the reduction
directions with the complex structure, the constraints enforce 𝐵′𝑧 = 𝐵′𝑧 = 0. However, if we
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do not impose the constraints in 4d, the standard reduction ansatz would only require that
𝐵′𝑧 and 𝐵′𝑧 are functionally independent of 𝑧 and 𝑧, a weaker condition.

In this section, we explore the consequences of reducing without first constraining.
Denoting the reduction by ⇝ we anticipate that the lower-dimensional description will
include additional fields as16

𝐵′𝑤(𝑤,𝑤, 𝑧, 𝑧)⇝ 𝐵𝑤(𝑤,𝑤) , 𝐵′�̄�(𝑤,𝑤, 𝑧, 𝑧)⇝ 𝐵�̄�(𝑤,𝑤) ,
𝐵′𝑧(𝑤,𝑤, 𝑧, 𝑧)⇝ Φ̄(𝑤,𝑤) , 𝐵′𝑧(𝑤,𝑤, 𝑧, 𝑧)⇝ Φ(𝑤,𝑤) ,

(4.1)

where Φ and Φ̄ will be adjoint scalars in the lower-dimensional theory (sometimes called
Higgs fields in the literature). These will enter explicitly in the lower-dimensional theory
through the reduction of covariant derivatives

∇𝑧𝑔𝑔
−1 ⇝ Φ̄ − 𝑔Φ̄𝑔−1 , ∇𝑧𝑔𝑔

−1 ⇝ Φ − 𝑔Φ𝑔−1 . (4.2)

On-shell, the 4d gauge field 𝐵′ is ASD and couples to matter in the gWZW4 model. It is
well-known that the reduction of an ASDYM connection leads to the Hitchin system, and
we will see this feature in the lower-dimensional dynamics below.

The two-dimensional Lagrangian that arises from reducing eq. (3.54) without first
constraining is17

𝐿IFT2 = 1
2 Tr

(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)
+1

2
𝛼+𝛽
𝛼−𝛽

𝐿gWZ+Tr
(

ΦΦ̄+ 𝛼

𝛼−𝛽
ΦAd𝑔Φ̄− 𝛽

𝛼−𝛽
ΦAd−1

𝑔 Φ̄
)

+ 1
𝛼−𝛽

Tr
(
Φ(𝑔−1𝐷�̄�𝑔+𝐷�̄�𝑔𝑔

−1)+𝛼𝛽 Φ̄(𝑔−1𝐷𝑤𝑔+𝐷𝑤𝑔𝑔
−1)
)

+Tr
(
𝑢(𝐹�̄�𝑤−𝛽−1𝐷�̄�Φ−𝛽𝐷𝑤Φ̄−[Φ̄,Φ])

)
+Tr

(
𝑢(𝐹�̄�𝑤−𝛼−1𝐷�̄�Φ−𝛼𝐷𝑤Φ̄−[Φ̄,Φ])

)
,

(4.3)

where we denote the 2d covariant derivative as 𝐷 = d + ad𝐵 and note that we have rescaled
𝑢 → 𝑢

⟨𝛽𝛾⟩⟨𝛽𝛾⟩ and 𝑢 → 𝑢
⟨𝛼𝛾⟩⟨𝛼𝛾⟩ . The fields of the IFT2 are 𝑔 ∈ 𝐺 and 𝐵𝑤,�̄�,Φ, Φ̄, 𝑢,𝑢 ∈ h. In

addition to the overall coupling, the IFT2 (4.3) only depends on a single parameter. This
can be seen by introducing18

𝓀 = 𝛼 + 𝛽

𝛼 − 𝛽
, 𝓀

′ = − 2
√
𝛼𝛽

𝛼 − 𝛽
, 𝓀

2 − 𝓀
′2 = 1 , (4.4)

rescaling Φ →
√
𝛼𝛽 Φ and Φ̄ → 1√

𝛼𝛽
Φ̄, and defining 𝑋− = 𝓀

′−1(𝑢 +𝑢) and 𝑋+ = 𝓀
′−1(𝑢−𝑢).

The Lagrangian (4.3) can then be rewritten as

𝐿IFT2 = 1
2 Tr

(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)

+ 𝓀

2 𝐿gWZ + Tr
(
Φ𝒪Φ̄ + Φ𝑉�̄� + Φ̄𝑉𝑤

)
+ Tr

(
𝑋−(𝓀′(𝐹�̄�𝑤 − [Φ̄,Φ]) + 𝓀(𝐷𝑤Φ̄ + 𝐷�̄�Φ))

)
+ Tr

(
𝑋+(𝐷𝑤Φ̄ − 𝐷�̄�Φ)

)
,

(4.5)

16Note, we are dropping the prime on the 2d gauge field 𝐵.
17The 2d Lagrangians are defined as 𝑆IFT2 = 2i

∫
R2 d𝑤 ∧ d𝑤 𝐿IFT2 . We have also introduced the scalar

densities 𝐿WZ and 𝐿gWZ where
∫

d𝑤 ∧ d𝑤 𝐿(g)WZ(𝑔) =
∫
R2×[0,1] ℒ(g)WZ(𝑔) and the 3-forms ℒWZ and ℒgWZ are

defined in eqs. (2.15) and (3.3) respectively. Explicitly, we have

𝐿gWZ = 𝐿WZ(𝑔) + Tr
(
(𝑔−1

𝜕𝑤𝑔 + 𝜕𝑤𝑔𝑔
−1)𝐵�̄� − (𝑔−1

𝜕�̄�𝑔 + 𝜕�̄�𝑔𝑔
−1)𝐵𝑤 + 𝐵𝑤Ad𝑔𝐵�̄� − 𝐵𝑤Ad−1

𝑔 𝐵�̄�

)
,

which we include for convenience.
18Here, we have implicitly assumed that 𝛼𝛽 ≥ 0, which implies that |𝓀| ≥ 1. The other regime of interest,

𝛼𝛽 ≤ 0 and |𝓀| ≤ 1 is related by the analytic continuation 𝓀
′ → −i𝓀′.
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where

𝒪 = 1 − 𝓀 + 1
2 Ad𝑔 + 𝓀− 1

2 Ad−1
𝑔 , 𝑉𝑤,�̄� = − 𝓀

′

2 (𝑔−1𝐷𝑤,�̄�𝑔 + 𝐷𝑤,�̄�𝑔𝑔
−1) . (4.6)

Note that the CFT points 𝓀 = 1 or 𝓀 = −1 correspond to taking 𝛾 → 𝛽 or 𝛾 → 𝛼 , i.e. when
the zeroes of the twist function coincide with the poles.

By construction, as the reduction of gWZW4, the equations of motion of this theory
are expected to be equivalent to the zero curvature of Lax connections, whose components
are given by the d𝑤 and d𝑤 legs of the 4d gauge fields. Explicitly, these Lax connections
are given by

ℒ
(𝐴)
𝑤 = 𝜕𝑤 + 𝐵𝑤 − 𝓀 + 1

2 𝐾𝑤 − 1
𝜁

(
Φ + 𝓀

′

2 𝐾𝑤

)
,

ℒ
(𝐴)
�̄� = 𝜕�̄� + 𝐵�̄� + 𝓀− 1

2 𝐾�̄� + 𝜁

(
Φ̄ + 𝓀

′

2 𝐾�̄�

)
,

(4.7)

ℒ
(𝐵)
𝑤 = 𝜕𝑤 + 𝐵𝑤 − 1

𝜁
Φ , ℒ

(𝐵)
�̄� = 𝜕�̄� + 𝐵�̄� + 𝜁 Φ̄ , (4.8)

where we have also redefined the spectral parameter 𝜁 →
√
𝛼𝛽 𝜁 compared to section 2.4

and introduced the currents

𝐾𝑤 = 𝐷𝑤𝑔𝑔
−1 + 𝓀− 1

𝓀′ (1 − Ad𝑔)Φ , 𝐾�̄� = 𝐷�̄�𝑔𝑔
−1 − 𝓀 + 1

𝓀′ (1 − Ad𝑔)Φ̄ . (4.9)

It is natural to ask whether first reducing and then constraining leads to a consistent
truncation since we are dropping certain parts of the 4d constraints. In the language of
Kaluza-Klein compactifications these would be the higher-mode constraints. Since every
term in a higher-mode constraint will depend on the higher modes of some field, it follows
that setting all the higher modes to zero is expected to be a consistent truncation. Another
viewpoint is that of symmetry reduction; since the action is invariant under shifts of 𝑧 and 𝑧
we can consistently set all fields to be independent of them. If the truncation is consistent
then we expect the resulting 2d theory to be integrable, which we now check explicitly.

4.1 Lax formulation

Before analysing the Lagrangian (4.5) in more detail, let us show explicitly that its equations
of motion are indeed equivalent to the zero-curvature condition for the Lax connections (4.7)
and (4.8). The equations of motion that follow from the Lagrangian (4.5) by varying 𝑋+,
𝑋− and 𝑔 are

𝛿𝑋+ : ℰ+ ≡𝐷𝑤Φ̄−𝐷�̄�Φ = 0 ,

𝛿𝑋− : ℰ−≡𝓀
′(𝐹�̄�𝑤−[Φ̄,Φ]

)
+𝓀

(
𝐷𝑤Φ̄+𝐷�̄�Φ) = 0 ,

𝛿𝑔𝑔−1 : ℰ𝑔 ≡
𝓀−1

2

(
𝐷𝑤𝐾�̄�+𝓀+1

𝓀′ [Φ̄,𝐾𝑤 ]
)
−𝓀+1

2

(
𝐷�̄�𝐾𝑤−

𝓀−1
𝓀′ [Φ,𝐾�̄� ]

)
+ 𝓀

𝓀′ℰ−−
1
𝓀′
(
𝐷𝑤Φ̄+𝐷�̄�Φ

)
= 0 .

(4.10)
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We also have the Bianchi identity following from the zero-curvature of the Maurer-Cartan
form d𝑔𝑔−1

𝒵≡𝐷𝑤𝐾�̄� + 𝓀+1
𝓀′ [Φ̄,𝐾𝑤 ]−𝐷�̄�𝐾𝑤 + 𝓀−1

𝓀′ [Φ,𝐾�̄� ]+[𝐾�̄�,𝐾𝑤 ]+ 1
𝓀′ (1−Ad𝑔)(ℰ−+ℰ+) = 0 .

(4.11)

The zero curvature of the A-Lax eq. (4.7) gives rise to three equations that are linear
combinations of the equations of motion eq. (4.10) and the Bianchi identity eq. (4.11):

0 = 𝓀− 1
2 𝒵

′ −ℰ𝑔 + 𝓀

𝓀′ ℰ− − 1
𝓀′ ℰ+ ,

0 = 𝓀
′2
𝒵

′ − 2𝓀ℰ𝑔 + 2𝓀′
ℰ− ,

0 = 𝓀 + 1
2 𝒵

′ −ℰ𝑔 + 𝓀

𝓀′ ℰ− + 1
𝓀′ ℰ+ ,

(4.12)

where we have defined 𝒵
′ ≡ 𝒵 − 1

𝓀′ (1 − Ad𝑔)(ℰ− + ℰ+). On the other hand, the zero
curvature of the B-Lax (4.8) defines the Hitchin system:

0 = 𝐷�̄�Φ , 0 = 𝐹�̄�𝑤 − [Φ̄,Φ] , 0 = 𝐷𝑤Φ̄ , (4.13)

which can be rewritten as the three equationsℰ± = 0 andℰ0 ≡ 𝐷𝑤Φ̄+𝐷�̄�Φ = 0. Therefore, the
two Lax connections give rise to five independent equations, which are linear combinations of
the equations of motion (4.10), the Bianchi identity (4.11), and the additional equation ℰ0 = 0.

To recover this final equation from the equations of motion, let us consider the variational
equations for 𝐵𝑤, 𝐵�̄�, Φ̄,Φ:

𝛿𝐵𝑤 : ℰ𝐵≡𝓀
′𝐷�̄�𝑋

−−[Φ̄,𝑋++𝓀𝑋−]+𝓀−1
2 𝑃h𝐾�̄�+𝓀+1

2 𝑃hAd−1
𝑔 𝐾�̄�−

𝓀+1
𝓀′ 𝑃h(1−Ad−1

𝑔 )Φ̄=0,

𝛿𝐵�̄� : ℰ𝐵≡𝓀
′𝐷𝑤𝑋

−−[Φ,𝑋+−𝓀𝑋−]+𝓀+1
2 𝑃h𝐾𝑤+𝓀−1

2 𝑃hAd−1
𝑔 𝐾𝑤−

𝓀−1
𝓀′ 𝑃h(1−Ad−1

𝑔 )Φ=0,

𝛿Φ: ℰΦ≡𝐷�̄�(𝑋+−𝓀𝑋−)+𝓀
′[Φ̄,𝑋−]−𝓀

′

2 𝑃h(1+Ad−1
𝑔 )𝐾�̄�+𝑃h(1−Ad−1

𝑔 )Φ̄=0,

𝛿Φ̄ : ℰΦ̄≡𝐷𝑤(𝑋++𝓀𝑋−)+𝓀
′[Φ,𝑋−]+𝓀

′

2 𝑃h(1+Ad−1
𝑔 )𝐾𝑤−𝑃h(1−Ad−1

𝑔 )Φ=0 .
(4.14)

These can be understood as a first-order system of equations for 𝑋+ and 𝑋−. Consistency of the
system implies that they should satisfy the integrability conditions [𝐷�̄�, 𝐷𝑤 ]𝑋+ = [𝐹�̄�𝑤, 𝑋

+]
and [𝐷�̄�, 𝐷𝑤]𝑋− = [𝐹�̄�𝑤, 𝑋

−]. We find that

𝓀
′[𝐷�̄�, 𝐷𝑤 ]𝑋− − 𝓀

′[𝐹�̄�𝑤, 𝑋
−] = [𝑋+,ℰ+] + [𝑋−,ℰ−] + 𝑃h(1 − Ad−1

𝑔 )ℰ𝑔 + 𝓀𝑃hAd−1
𝑔 𝒵 ,

(4.15)

hence, using the Bianchi identity (4.11), this vanishes on the equations of motion for 𝑋+,
𝑋− and 𝑔 (4.10). On the other hand, we have

𝓀
′[𝐷�̄�,𝐷𝑤 ]𝑋+−𝓀

′[𝐹�̄�𝑤,𝑋
+]=[𝑋+,ℰ−]+[𝑋−,ℰ+]+ 2𝓀

𝓀′ ℰ−−
2
𝓀′ℰ0−𝑃h(1+Ad−1

𝑔 )ℰ𝑔+𝓀𝑃hAd−1
𝑔 𝒵 .

(4.16)
Here, we see that in addition to the Bianchi identity (4.11) and equations of motion (4.10),
we also require ℰ0 = 0, recovering the final equation of the Lax system.
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4.2 Relation to known models

As we will shortly see, if we take 𝐻 to be abelian, the Lagrangian (4.5) can be related to
known models, including the homogeneous sine-Gordon models and the PCM plus WZ term.
However, for non-abelian 𝐻 this model has not been considered before, and defines a new
integrable field theory in two dimensions. Moreover, by integrating out Φ, Φ̄ and the gauge
field 𝐵𝑤,�̄�, it leads to an integrable sigma model for the fields 𝑔, 𝑋+ and 𝑋−. We leave the
study of these models for future work.

To recover a sigma model from the Lagrangian (4.5) for abelian 𝐻 , after integrating
out 𝐵𝑤, 𝐵�̄�, we have two options. The first is to integrate out Φ, Φ̄. The second is to solve
the constraint imposed by the Lagrange multiplier 𝑋+. For abelian 𝐻 the Lagrangian (4.5)
simplifies to

𝐿ab
IFT2 = 1

2 Tr
(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)

+ 𝓀

2 𝐿gWZ + Tr
(
Φ𝒪Φ̄ + Φ𝑉�̄� + Φ̄𝑉𝑤

)
+ Tr

(
(𝑋−(𝓀′𝐹�̄�𝑤 + 𝓀(𝜕𝑤Φ̄ + 𝜕�̄�Φ))

)
+ Tr

(
𝑋+(𝜕𝑤Φ̄ − 𝜕�̄�Φ)

)
.

(4.17)

This takes the form of a first-order action in the Büscher procedure, and it follows that the
two sigma models will be T-dual to each other with dual fields 𝑋+ and 𝑋+. Explicitly the
Lagrangians, before integrating out 𝐵𝑤, 𝐵�̄�, are

𝐿𝑋IFT2 = 1
2 Tr

(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)

+ 𝓀

2 𝐿gWZ + 𝓀
′Tr
(
𝑋−𝐹�̄�𝑤

)
+ Tr

(
(𝜕𝑤𝑋+ −𝑉𝑤 + 𝓀𝜕𝑤𝑋

−)𝒪−1(𝜕�̄�𝑋+ +𝑉�̄� − 𝓀𝜕�̄�𝑋
−)
)
,

(4.18)

and

𝐿𝑋IFT2 = 1
2 Tr

(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)

+ 𝓀

2 𝐿gWZ + 𝓀
′Tr
(
𝑋−𝐹�̄�𝑤

)
+ 1

4 Tr
(
𝜕𝑤𝑋

+
𝒪𝜕�̄�𝑋

+ + 2𝜕𝑤𝑋+(𝑉�̄� − 𝓀𝜕�̄�𝑋
−) + 2𝜕�̄�𝑋+(𝑉𝑤 − 𝓀𝜕𝑤𝑋

−)
)
,

(4.19)

where in the second Lagrangian we have locally solved the constraint imposed by the
Lagrange multiplier 𝑋+ by setting

Φ = 1
2 𝜕𝑤𝑋

+ , Φ̄ = 1
2 𝜕�̄�𝑋

+ , 𝑋+ ∈ h . (4.20)

As mentioned above, the first approach can also be straightforwardly applied for non-
abelian 𝐻 . Generalising the second approach is more subtle. The constraint imposed by the
Lagrange multiplier 𝑋+ in the Lagrangian (4.5) implies that

𝐷𝑤Φ̄ − 𝐷�̄�Φ = 0 . (4.21)

Typically the full solution to this equation would be expressed in terms of path-ordered
exponentials of 𝐵𝑤 and 𝐵�̄�. To avoid non-local expressions, we can restrict Φ and Φ̄ to be
valued in the centre of h, denoted 𝒵(h). Note that this is not a restriction if 𝐻 is abelian.
With this restriction, the Lagrangian (4.5) again simplifies to (4.17), and the constraint (4.21)
becomes 𝜕𝑤Φ̄ − 𝜕�̄�Φ = 0, which we can again locally solve by (4.20) now with 𝑋+ ∈ 𝒵(h),
similarly leading to the Lagrangian (4.19).
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Relation to PCM plus WZ term. Taking 𝐻 to be abelian, we can relate the La-
grangian (4.17) to that of the PCM plus WZ term for 𝐺 × 𝐻 through a combination of
T-dualities and field redefinitions. We start by parametrising

𝑔 = 𝑒
1
2𝜏𝑔𝑒

1
2𝜏 , 𝜏 ∈ h , (4.22)

and setting 𝜕𝑤,�̄�𝜏 → 2𝐶𝑤,�̄� . We also integrate by parts and set 𝜕𝑤𝑋− → 2Ψ and 𝜕�̄�𝑋
− → 2Ψ̄.

To maintain equivalence with the Lagrangian we started with, we add Tr
(
𝜏(𝜕𝑤𝐶�̄� − 𝜕�̄�𝐶𝑤)

)
+

Tr
(
𝑋−(𝜕𝑤Ψ̄ − 𝜕�̄�Ψ)

)
, i.e. the Lagrange multipliers 𝜏 and 𝑋− locally impose 𝐶𝑤,�̄� = 1

2 𝜕�̄�,𝑤𝜏 ,
Ψ = 1

2 𝜕𝑤𝑋
− and Ψ̄ = 1

2 𝜕�̄�𝑋
−. We can then redefine the fields as19

𝐵𝑤 → 𝐵𝑤 − 𝓀

𝓀′ Φ , 𝐶𝑤 → 𝐶𝑤 − 1
𝓀′ Φ , Ψ → Ψ + 𝓀

𝓀′2 Φ ,

𝐵�̄� → 𝐵�̄� + 𝓀

𝓀′ Φ̄ , 𝐶�̄� → 𝐶�̄� − 1
𝓀′ Φ̄ , Ψ̄ → Ψ̄ + 𝓀

𝓀′2 Φ̄ ,

𝑋+ → 1
𝓀′ 𝑋

+ − 𝓀

𝓀′ 𝑋
− + 1

𝓀′ 𝜏 , 𝑋− → 𝓀
′𝑋− , 𝜏 → 𝜏 .

(4.23)

Doing so, we arrive at the following Lagrangian

𝐿ab
IFT2 = 1

2 Tr
(
𝑔−1𝜕𝑤𝑔𝑔

−1𝜕�̄�𝑔
)

+ 𝓀

2 𝐿WZ(𝑔)

+ 1 − 𝓀

2 Tr
(
𝑔−1𝜕𝑤𝑔(𝐶�̄� − 𝐵�̄�) + 𝜕�̄�𝑔𝑔

−1(𝐶𝑤 + 𝐵𝑤) + (𝐶𝑤 + 𝐵𝑤)Ad𝑔(𝐶�̄� − 𝐵�̄�)
)

+ 1 + 𝓀

2 Tr
(
𝑔−1𝜕�̄�𝑔(𝐶𝑤 − 𝐵𝑤) + 𝜕𝑤𝑔𝑔

−1(𝐶�̄� + 𝐵�̄�) + (𝐶𝑤 − 𝐵𝑤)Ad−1
𝑔 (𝐶�̄� + 𝐵�̄�)

)
+ Tr

(
𝐵𝑤𝐵�̄� +𝐶𝑤𝐶�̄� + 𝓀𝐶𝑤𝐵�̄� − 𝓀𝐵𝑤𝐶�̄�

)
+ Tr

(
𝜏(𝜕𝑤𝐶�̄� − 𝜕�̄�𝐶𝑤)

)
+ 𝓀

′Tr
(
𝑋−(𝜕𝑤Ψ̄ − 𝜕�̄�Ψ)

)
+ 2𝓀′Tr

(
Ψ𝐵�̄� − 𝐵𝑤Ψ̄

)
+ 1

𝓀′ Tr
(
𝑋+(𝜕𝑤Φ̄ − 𝜕�̄�Φ)

)
− 2

𝓀′2 Tr
(
ΦΦ̄
)
.

(4.24)

The final steps are to integrate out 𝜏,Ψ, Ψ̄, and Φ, Φ̄, leading us to set

𝐶𝑤,�̄� = 1
2 𝜕𝑤,�̄�𝜏 , 𝐵𝑤,�̄� = − 1

2 𝜕𝑤,�̄�𝑋
− , Φ = − 𝓀

′

2 𝜕𝑤𝑋
+ , Φ̄ = 𝓀

′

2 𝜕�̄�𝑋
+ . (4.25)

Redefining 𝑔 → 𝑒−
1
2 (𝜏+𝑋−)𝑔𝑒−

1
2 (𝜏−𝑋−), we find the difference of PCM plus WZ term La-

grangians for 𝐺 and 𝐻

𝐿PCM+𝓀WZ2 = 1
2 Tr

(
𝑔−1𝜕𝑤𝑔𝑔

−1𝜕�̄�𝑔
)

+ 𝓀

2 𝐿WZ(𝑔) − 1
2 Tr

(
𝜕𝑤𝑋

+𝜕�̄�𝑋
+) , (4.26)

where we recall that for abelian 𝐻 the WZ term vanishes.
19To arrive at this field redefinition, we first look for the shifts of 𝐵𝑤,�̄� , 𝐶𝑤,�̄� , Ψ and Ψ̄ that decouple

Φ and Φ̄ from all other fields apart from 𝑋+. Since both 𝐶𝑤 and 𝐶�̄� transform in the same way, as
do Ψ and Ψ̄, we can then easily compute the transformation of 𝜏 , 𝑋− and 𝑋+ by demanding that the
triplet of terms Tr

(
𝜏𝐹𝑤�̄�(𝐶) + 𝑋−𝐹𝑤�̄�(Ψ) + 𝑋+𝐹𝑤�̄�(Φ)

)
is invariant up to a simple rescaling, i.e. it becomes

Tr
(
𝜏𝐹𝑤�̄�(𝐶) + 𝓀

′𝑋−𝐹𝑤�̄�(Ψ) + 1
𝓀′ 𝑋

+𝐹𝑤�̄�(Φ)
)
.
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To summarise, starting from the sigma model (4.19) we T-dualise in 𝜏 , 𝑋+ and 𝑋−, we
then perform a GL(3) transformation on the dual coordinates, and finally T-dualise back
in 𝜏 to recover (4.26), the difference of the PCM plus WZ term Lagrangians for 𝐺 and 𝐻 .
This relation through dualities may have been anticipated since this is the model we would
expect to find starting from the ghCS6 action (3.14) and instead imposing the boundary
conditions 𝒜|𝛼,𝛽 = ℬ|𝛼,𝛽 = 0.

𝓴 → 1 limit. As we have seen, the 𝓀 → 1 limit is special since if we first constrain and
then reduce we recover the gauged WZW coset CFT. By first reducing and then constraining,
we can recover massive integrable perturbations of these theories. We consider the setup
where Φ and Φ̄ are restricted to lie in 𝒵(h) and solve the constraint imposed by the Lagrange
multiplier 𝑋+ by (4.20). Taking 𝓀 → 1 the Lagrangian (4.19) simplifies further to

𝐿IFT2 = 1
2 Tr

(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)

+ 1
2 𝐿gWZ

+ 1
4 Tr

(
𝜕𝑤𝑋

+(1 − Ad𝑔)𝜕�̄�𝑋+ − 2𝜕𝑤𝑋+𝜕�̄�𝑋
− − 2𝜕�̄�𝑋+𝜕𝑤𝑋

−) , (4.27)

This is reminiscent of a sigma model for a pp-wave background, with the kinetic terms for
the transverse fields described by the gauged WZW model for the coset 𝐺/𝐻 , except that the
would-be light-cone coordinates 𝑋+ and 𝑋− have dim𝒵(h) components. Nevertheless, we
still have the key property that the equation of motion for 𝑋− is 𝜕𝑤𝜕�̄�𝑋+ = 0, whose general
solution is 𝑋+ = 𝑌 (𝑤) + 𝑌 (𝑤). Substituting into the Lagrangian (4.27) we find

𝐿IFT2 = 1
2 Tr

(
𝑔−1𝐷𝑤𝑔𝑔

−1𝐷�̄�𝑔
)

+ 1
2 𝐿gWZ + 1

4 Tr
(
𝜕𝑤𝑌 𝜕�̄�𝑌 − 𝜕𝑤𝑌Ad𝑔𝜕�̄�𝑌

)
. (4.28)

In the special case that 𝑌 = 𝑤Λ and 𝑌 = 𝑤Λ̄, which is the most general solution preserving
the translational invariance of the action, this is the gauged WZW model for the coset 𝐺/𝐻
perturbed by a massive integrable potential 𝑉 = Tr(ΛAd𝑔Λ̄) − Tr(ΛΛ̄) as studied in [40].
Taking the limit 𝓀 → 1 directly at the level of the Lax connection given in eq. (4.7), keeping
track of the definitions of the currents 𝐾𝑤, 𝐾�̄�, which depend on 𝓀, we find

ℒ𝑤 → 𝜕𝑤 + 𝐵𝑤 − 𝐷𝑤𝑔𝑔
−1 + 1

2𝜁 Λ , ℒ�̄� = 𝜕�̄� + 𝐵�̄� − 𝜁

2 Ad𝑔Λ̄ , (4.29)

recovering the Lax given in [32, 40].
When 𝐺 is compact and 𝐻 = U(1)rk𝐺 , Λ and Λ̄ can be chosen such that these models

have a positive-definite kinetic term and a mass gap. These are known as the homogeneous
sine-Gordon models [32]. For 𝐺 = SU(2) and 𝐻 = U(1) the homogeneous sine-Gordon model
becomes the complex sine-Gordon model after integrating out 𝐵𝑤, 𝐵�̄�. Note that if 𝒵(h)
is one-dimensional and 𝑌 (𝑤) and 𝑌 (𝑤) are both non-constant then we can always use the
classical conformal symmetry of the sigma model to reach 𝑌 = 𝑤Λ and 𝑌 = 𝑤Λ, hence
recovering a constant potential. This is not the case for higher-dimensional 𝒵(h).

4.3 Example: SL(2)/U(1)𝑽
To illustrate the features of this construction, let us consider the example of SL(2)/U(1)𝑉 for
which the 2d gauged WZW describes the trumpet CFT. To be explicit we use sl(2) generators

𝑇1 =
(

1 0
0 −1

)
, 𝑇2 =

(
0 1
1 0

)
, 𝑇3 =

(
0 1
−1 0

)
, (4.30)
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and parametrise the group element as

𝑔 =
(

cos(𝜃) sinh(𝜌) + cosh(𝜌) cos(𝜏) sin(𝜃) sinh(𝜌) + cosh(𝜌) sin(𝜏)
sin(𝜃) sinh(𝜌) − cosh(𝜌) sin(𝜏) cosh(𝜌) cos(𝜏) − cos(𝜃) sinh(𝜌)

)
. (4.31)

We choose the U(1) vector action generated by 𝑇3 such that

𝛿𝑔 = 𝜖[𝑔,𝑇3] ⇒ 𝛿𝜌 = 𝛿𝜏 = 0 , 𝛿𝜃 = 𝜖 , (4.32)

hence we gauge fix by setting 𝜃 = 0. The analysis here is simplified by the observation that
there is no WZ term since there are no 3-forms on the two-dimensional target space.

The CFT point. For orientation, we first work at the CFT point corresponding to 𝓀 = 1.
Recall from the discussion in section 3 that first constraining in 4d and then reducing enforces
Φ̄ = Φ = 0 and the Lagrange multiplier sector vanishes. This gives the conventional gauged
WZW model described by the target space geometry

d𝑠2 = d𝜌2 + coth2 𝜌 d𝜏2 . (4.33)

Let us now consider the IFT2 that results from taking the same reduction that would
lead to the CFT, but now in our reduction ansatz set Φ = 𝑚

2 𝑇3 and Φ̄ = − 𝑚
2 𝑇3. The

Lagrangian that follows is

𝐿CsG = 𝜕𝑤𝜌𝜕�̄�𝜌 + coth2 𝜌 𝜕𝑤𝜏𝜕�̄�𝜏 −𝑚2 sinh2 𝜌 . (4.34)

This theory is well known as the complex sinh-Gordon model, a special case of the integrable
massive perturbations of 𝐺/𝐻 gauged WZW models known as the homogeneous sine-Gordon
models [32, 40].

Unconstrained reduction: integrating out Φ, Φ̄ and 𝑩𝒘,�̄�. We now turn to the more
general story, away from the CFT point, by considering the reduction without first imposing
constraints. Taking the IFT2 (4.17) and integrating out Φ, Φ̄ and the gauge field 𝐵𝑤,�̄� while
retaining 𝑋− and 𝑋+, results in the sigma model with target space metric and B-field

d𝑠2 = d𝜌2 + coth2 𝜌 d𝜏2 + csch2𝜌
(
d𝑋+2 − d𝑋−2

)
,

𝐵2 = 𝒱 ∧ d𝑋+ , 𝒱 = 𝓀csch2𝜌 d𝑋− + 𝓀
′ coth2 𝜌 d𝜏 .

(4.35)

Unconstrained reduction: the dual. On the other hand, if we solve the constraint
imposed by the Lagrange multiplier 𝑋+ setting Φ = 1

2 𝜕𝑤𝑋
+ and Φ̄ = 1

2 𝜕�̄�𝑋
+, we find the

sigma model with target space geometry

d𝑠2 = d𝜌2 + coth2 𝜌 d𝜏2 − csch2𝜌 d𝑋−2 + sinh2 𝜌 (d𝑋+ + 𝒱)2 ,

𝐵2 = 0 .
(4.36)

This can of course be recognised as the T-dual of (4.35) along 𝑋+. In the limit 𝓀 → 1 (4.36)
becomes the pp-wave background

d𝑠2 = d𝜌2 + coth2 𝜌 d𝜏2 + sinh2 𝜌 d𝑋+2 + 2d𝑋+d𝑋− ,

𝐵2 = 0 ,
(4.37)

and if we light-cone gauge fix, 𝑋+ = 𝑚(𝑤 −𝑤), in the associated sigma model we recover
the complex sinh-Gordon Lagrangian (4.34) as expected.
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Relation to PCM plus WZ term. Finally we demonstrate a relation between the models
above and the PCM plus WZ term. Let us start with the metric and B-field for the PCM
plus WZ term for 𝐺 = GL(2)

d𝑠2 = d𝑋+2 + d𝜌2 − cosh2 𝜌d𝜏2 + sinh2 𝜌d𝑋−2 ,

𝐵 = 𝓀 cosh2 𝜌 d𝜏 ∧ d𝑋− .
(4.38)

Note that d𝐵 = 𝓀 sinh 2𝜌 d𝜌 ∧ d𝜏 ∧ d𝑋−, which is proportional to the volume for SL(2). We
first T-dualise 𝜏 → 𝜏 , and then perform the following field redefinition

𝑋+ → 𝓀
′𝑋+ + 𝓀

𝓀′ 𝑋
− − 𝜏 , 𝑋− → 1

𝓀′ 𝑋
− . (4.39)

It is straightforward to check that this is the inverse transformation to (4.23). Finally, T-
dualising back, 𝑋+ → 𝑋+, 𝑋− → 𝑋− and 𝜏 → 𝜏 , we precisely recover the background (4.36),
demonstrating that it can be understood as a generalised TsT transformation of the PCM
plus WZ term.

4.4 The LMP limit

The PCM plus WZ term admits a limit in which it becomes the 2d analogue of the LMP
model, otherwise known as the pseudodual of the PCM [41], see, e.g. [42]. It is possible to
generalise this limit to the gauged model (4.5) by setting 𝑔 = exp(𝜀𝑈 ), 𝓀 = 𝜀−1ℓ, 𝑋+ → 𝜀2𝑋+,
𝑋− → 𝜀3𝑋− − 𝜀𝑃h𝑈 , rescaling the Lagrangian by 𝜀−2, and taking 𝜀 → 0. Implementing
this limit in (4.5) we find

𝐿LMP
IFT2 = 1

2 Tr
(
𝐷𝑤𝑈𝐷�̄�𝑈 + [Φ,𝑈 ][Φ̄,𝑈 ]

)
− ℓ

6 Tr
(
(𝐷𝑤𝑈 + [Φ,𝑈 ][𝑈 , (𝐷�̄�𝑈 − [Φ̄,𝑈 ]]

)
+ ℓTr

(
𝑋−(𝐹�̄�𝑤 − [Φ̄,Φ] + 𝐷𝑤Φ̄ + 𝐷�̄�Φ)

)
+ Tr

(
(𝑋+(𝐷𝑤Φ̄ − 𝐷�̄�Φ)

)
+ 1

2ℓ Tr
(
U(𝐹�̄�𝑤 − [Φ̄,Φ] − 𝐷𝑤Φ̄ − 𝐷�̄�Φ)

)
.

(4.40)

Similarly we can take the limit in the Lax connections (4.7) and (4.8). The B-Lax (4.8) is
unchanged, while the A-Lax (4.7) becomes

ℒ
(𝐴)
𝑤 = 𝜕𝑤 + 𝐵𝑤 − ℓ

2 𝐾
LMP
𝑤 − 1

𝜁

(
Φ + ℓ

2 𝐾
LMP
𝑤

)
,

ℒ
(𝐴)
�̄� = 𝜕�̄� + 𝐵�̄� + ℓ

2 𝐾
LMP
�̄� + 𝜁

(
Φ̄ + ℓ

2 𝐾
LMP
�̄�

)
,

(4.41)

where
𝐾LMP
𝑤 = 𝐷𝑤𝑈 + [Φ,𝑈 ] , 𝐾LMP

�̄� = 𝐷�̄�𝑈 − [Φ̄,𝑈 ] . (4.42)

As we will see in section 6 this model can also be found directly from gauged hCS6 and CS4
by considering a twist function with a single fourth-order pole.

As for the gauged WZW case, we can again find an integrable sigma model from (4.40)
by integrating out Φ, Φ̄ and the gauge field 𝐵𝑤,�̄� . For abelian 𝐻 we can also construct the dual
model by solving the constraint imposed by the Lagrange multiplier 𝑋+ and integrating out
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𝐵𝑤, 𝐵�̄�. For SL(2)/U(1)𝑉 the resulting backgrounds can be found by taking the LMP limit

𝜌 → 𝜀𝜌 − 1
6 𝜀

3𝜌𝜏2 , 𝜏 → 𝜀𝜏 − 1
3 𝜀

3𝜌2𝜏 , (d𝑠2, 𝐵2) → 𝜀−2(d𝑠2, 𝐵2) , 𝓀 → 𝜀−1ℓ ,

𝑋− → 𝜀3𝑋− − 𝜀𝜏 , 𝑋+ → 𝜀2𝑋+ , 𝑋+ → 𝑋+ , 𝜀 → 0 ,
(4.43)

in eqs. (4.35) and (4.36). This limit breaks the manifest global symmetry given by shifts
of the coordinate 𝜏 . This is in agreement with the fact that the Lagrangian (4.40) is not
invariant under 𝑈 → 𝑈 + 𝐻0 (𝐻0 ∈ h), while its gauged WZW counterpart (4.5) is invariant
under 𝑔 → ℎ0𝑔ℎ0 (ℎ0 ∈ 𝐻) for abelian 𝐻 .

Curiously, we can actually take a simplified LMP limit

𝜌 → 𝜀𝜌 , 𝜏 → 𝜀𝜏 , (d𝑠2, 𝐵2) → 𝜀−2(d𝑠2, 𝐵2) , 𝓀 → 𝜀−1ℓ ,

𝑋− → 𝜀3𝑋− − 𝜀𝜏 , 𝑋+ → 𝜀2𝑋+ , 𝑋+ → 𝑋+ , 𝜀 → 0 ,
(4.44)

in the backgrounds (4.35) and (4.36) that preserves this global symmetry. Taking this limit
in eq. (4.35) we find

d𝑠2 = d𝜌2 + d𝜏2 + 1
𝜌2 d𝑋+2 + 2

𝜌2 d𝑋−d𝜏 ,

𝐵2 = 𝒱 ∧ d𝑋+ , 𝒱 = ℓ

𝜌2 d𝑋− +
(
ℓ − 1

2ℓ𝜌2

)
d𝜏 ,

(4.45)

while the limit of eq. (4.36) is

d𝑠2 = d𝜌2 + d𝜏2 + 𝜌2(d𝑋+ + 𝒱)2 + 2
𝜌2 d𝑋−d𝜏 ,

𝐵2 = 0 .
(4.46)

As for the gauged WZW case these two backgrounds can also be constructed as a generalised
TsT transformation of the background for the LMP model on GL(2)

d𝑠2 = d𝑋+2 + d𝜌2 − d𝜏2 + 𝜌2d𝑋−2 ,

𝐵2 = ℓ𝜌2𝑑𝜏 ∧ d𝑋− .
(4.47)

Explicitly, if we first T-dualise 𝜏 → 𝜏 , then perform the following field redefinition

𝑋+ → ℓ𝑋+ + 1
2ℓ2 𝑋

− − 𝜏 , 𝑋− → 1
ℓ
𝑋− , 𝜏 → 𝜏 − 1

2ℓ2 𝑋
− , (4.48)

and finally T-dualise back,20 𝑋+ → 𝑋+, 𝑋− → 𝑋− and 𝜏 → 𝜏 , we recover the back-
ground (4.45).

5 Reduction to gCS4 and localisation

Having discussed the right hand side of the diamond, we briefly describe the left hand side
that follows from first reducing to obtain a gauged 4d Chern-Simons theory on R2 × CP1

and then integrating over CP1 to localise to a two-dimensional field theory on R2. We show
that the resulting IFT2 matches (4.3).

20Note that here the order of T-dualities matters. In particular, we cannot first T-dualise 𝜏 after the
coordinate redefinition since it turns out to be a null coordinate.

– 29 –



J
H
E
P
1
2
(
2
0
2
4
)
2
0
2

We recall the six-dimensional coupled action

𝑆ghCS6 [𝒜,ℬ] = 𝑆hCS6 [𝒜] − 𝑆hCS6 [ℬ] − 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr (𝒜 ∧ℬ) , (5.1)

and note that the three terms in the action are invariant under the transformations 𝒜 7→
𝒜 = 𝒜 + 𝜌𝒜�̇� 𝑒

�̇� + 𝜌𝒜0 𝑒
0 and ℬ 7→ ℬ̂ = ℬ + 𝜌ℬ�̇� 𝑒

�̇� + 𝜌ℬ0 𝑒
0, given that both Ω and 𝜕Ω are top

forms in the holomorphic directions. By choosing 𝜌𝒜 and 𝜌ℬ appropriately, we can ensure
that neither 𝒜 nor ℬ̂ have d𝑧 or d𝑧 legs, so

𝒜 = 𝒜𝑤d𝑤 + 𝒜�̄�d𝑤 + 𝒜0𝑒
0 with 𝒜𝑤 = − [𝒜𝜅]

⟨𝜋𝛾⟩
, 𝒜�̄� = − [𝒜𝜅]

⟨𝜋𝛾⟩
, (5.2)

ℬ̂ = ℬ̂𝑤d𝑤 + ℬ̂�̄�d𝑤 + ℬ0𝑒
0 with ℬ̂𝑤 = − [ℬ𝜅]

⟨𝜋𝛾⟩
, ℬ̂�̄� = − [ℬ𝜅]

⟨𝜋𝛾⟩
. (5.3)

To perform the reduction we follow the procedure outlined in section 2.4. Namely, we contract
the six-dimensional Lagrangian of (5.1) with the vector fields 𝜕𝑧 and 𝜕𝑧, and restrict to
gauge connections that are invariant under the flow of these vector fields. Thus, since the
shifted gauge fields 𝒜 and ℬ̂ manifestly have no d𝑧 or d𝑧 legs, and we are restricting to field
configurations satisfying 𝐿𝜕𝑧𝒜 = 𝐿𝜕𝑧ℬ̂ = 𝐿𝜕𝑧𝒜 = 𝐿𝜕𝑧ℬ̂ = 0, the contraction by 𝜕𝑧 and 𝜕𝑧 only
hits Ω in the first two terms and 𝜕Ω in the third. In particular, we find

(𝜕𝑧 ∧ 𝜕𝑧) ∨ Ω = ⟨𝛼𝛽⟩2

2
⟨𝜋𝛾⟩⟨𝜋𝛾⟩

⟨𝜋𝛼⟩2⟨𝜋𝛽⟩2 𝑒
0 , (𝜕𝑧 ∧ 𝜕𝑧) ∨ 𝜕Ω = − ⟨𝛼𝛽⟩2

2 𝜕0

( ⟨𝜋𝛾⟩⟨𝜋𝛾⟩
⟨𝜋𝛼⟩2⟨𝜋𝛽⟩2

)
𝑒0 ∧ 𝑒0 .

(5.4)
Hence the six-dimensional action reduces to a four-dimensional coupled Chern-Simons action

𝑆gCS4 [𝐴, 𝐵] =
∫
𝑋

𝜔 ∧ CS[𝐴] −
∫
𝑋

𝜔 ∧ CS[𝐵] − 1
2𝜋𝑖

∫
𝑋

𝜕𝜔 ∧ Tr(𝐴𝐵) , (5.5)

where 𝑋 = CP1 × R2,

𝜔 = ⟨𝛼𝛽⟩2

2
⟨𝜋𝛾⟩⟨𝜋𝛾⟩

⟨𝜋𝛼⟩2⟨𝜋𝛽⟩2 𝑒
0 , (5.6)

and 𝐴 and 𝐵 are the restrictions of 𝒜 and ℬ̂ to 𝑋 . Similarly, the boundary conditions (3.19)
descend to analogous boundary conditions on 𝐴 and 𝐵. The action (5.5) has been considered
before in [30], albeit not with the choice of 𝜔 discussed here.

With the gauged 4d Chern-Simons action at hand, we may now localise. The procedure
is entirely analogous to the one described in section 3.4 so we shall omit some of the details.
We begin by reparametrising our four-dimensional gauge fields 𝐴 and 𝐵 in terms of a new
pair of connections 𝐴′, 𝐵′ and smooth functions 𝑔 ∈ 𝐶∞(𝑋,𝐺) and ℎ̂ ∈ 𝐶∞(𝑋,𝐻). We use the
redundancy in the reparametrisation to fix 𝐴′

0 = 𝐵′0 = 0. The boundary degrees of freedom
of the resulting IFT2 will a priori be given by the evaluation of 𝑔, ℎ̂, 𝑢 and 𝑣 at 𝛼 and 𝛽.
However, as in the 6d setting, we have some residual symmetry we can use to fix 𝑔|𝛽 = id,
ℎ̂|𝛼,𝛽 = id, and similarly, 𝑣 |𝛼,𝛽 = 0. We are thus left with

𝑔|𝛼 := 𝑔 , 𝑢|𝛼 := 𝑢 , 𝑢|𝛽 = 𝑢 . (5.7)
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In terms of these variables, the bulk equations of motion of gCS4 imply

𝜕0𝐴
′
𝑖 = 0 , 𝜕0𝐵

′
𝑖 = 0 , (5.8)

away from the zeroes of 𝜔, namely 𝛾 and 𝛾 . The on-shell gCS4 action can be thus written as

𝑆gCS4 [𝐴′, 𝐵′] = 1
2𝜋 i

∫
𝑋

𝜕𝜔 ∧ Tr
(
𝐴′ ∧ 𝜕𝑔𝑔−1 − (𝑔−1𝐴′𝑔 + 𝑔−1𝜕𝑔) ∧ 𝐵′

)
− 1

6𝜋 i

∫
𝑋×[0,1]

𝜕𝜔 ∧ Tr
(
𝑔−1d𝑔 ∧ 𝑔−1d𝑔 ∧ 𝑔−1d𝑔

)
.

(5.9)

To obtain the IFT2 we begin by looking at the bulk equations of motion (5.8). Liouville’s
theorem shows that the only bounded, holomorphic functions on CP1 are constant functions.
However, we are after something more general than this since we do not require the components
of our gauge field to be bounded at the zeroes of 𝜔. Indeed, we allow the 𝑤-component to
have a pole at 𝜋 ∼ 𝛾 and the 𝑤-component to have a pole at 𝜋 ∼ 𝛾 . With this analytic
structure in mind, we can parametrise the solution of the bulk equation for 𝐵′ as

𝐵′𝑤 = 𝐵𝑤 + ⟨𝜋𝛾⟩
⟨𝜋𝛾⟩

Φ , 𝐵′�̄� = 𝐵�̄� − ⟨𝜋𝛾⟩
⟨𝜋𝛾⟩

Φ̄ , (5.10)

where we have conveniently used the field variables introduced in (4.1) to ease compari-
son with (4.3) after localisation to the IFT2. In particular, under 𝜋-independent gauge
transformations 𝐵𝑤, 𝐵�̄� transforms as the components of a 2d gauge field, while Φ and Φ̄
transform as adjoint scalars.

Note that in the singular part of these solutions, we have chosen to align the zero
of each with the pole of the other. This choice is completely general since moving the
zeroes in the singular parts amounts to field redefinitions relating 𝐵𝑤 and Φ or 𝐵�̄� and Φ̄.
However, it is a convenient choice since the flatness condition on 𝐵′ immediately reproduces
Hitchin’s equations,

𝐹𝑤�̄� [𝐵′] = 𝐹𝑤�̄� [𝐵] − [Φ, Φ̄] − ⟨𝜋𝛾⟩
⟨𝜋𝛾⟩

𝐷𝑤Φ̄ − ⟨𝜋𝛾⟩
⟨𝜋𝛾⟩

𝐷𝑤Φ . (5.11)

On the other hand, for the 𝐴′ gauge field a convenient choice of parametrisation when solving
the bulk equation of motion (5.8) is

𝐴′
𝑖 = ⟨𝜋𝛼⟩

⟨𝜋𝛾⟩
⟨𝛽𝛾⟩
⟨𝛽𝛼⟩

𝑈𝑖 + ⟨𝜋𝛽⟩
⟨𝜋𝛾⟩

⟨𝛼𝛾⟩
⟨𝛼𝛽⟩

𝑉𝑖 , 𝑖 = 𝑤,𝑤 . (5.12)

This parametrisation, in which we have chosen the coefficients such that one term vanishes
at 𝜋 ∼ 𝛼 while the other vanishes at 𝜋 ∼ 𝛽, is adapted to the boundary conditions, which
can be solved for 𝑈𝑖 and 𝑉𝑖 to yield

𝐴′
𝑤 = 𝐵′𝑤 − ⟨𝜋𝛽⟩

⟨𝜋𝛾⟩
⟨𝛼𝛾⟩
⟨𝛼𝛽⟩

(
𝐷𝑤𝑔𝑔

−1 + ⟨𝛼𝛾⟩
⟨𝛼𝛾⟩

(1 − Ad𝑔)Φ
)
,

𝐴′
�̄� = 𝐵′�̄� − ⟨𝜋𝛽⟩

⟨𝜋𝛾⟩
⟨𝛼𝛾⟩
⟨𝛼𝛽⟩

(
𝐷�̄�𝑔𝑔

−1 − ⟨𝛼𝛾⟩
⟨𝛼𝛾⟩

(1 − Ad𝑔)Φ̄
)
.

(5.13)

Replacing (5.10) and (5.13) in (5.9) and integrating21 along CP1 we recover the IFT2 given
in (4.3).

21To do so, we use the localisation formula in homogeneous coordinates

1
2𝜋 i

∫
𝑋

𝜕𝜔 ∧𝑄 = − 1
2

∫
R2

[
⟨𝛼𝛾⟩⟨𝛽𝛾⟩ + ⟨𝛼𝛾⟩⟨𝛽𝛾⟩

⟨𝛼𝛽⟩ 𝑄|𝛼 + ⟨𝛼𝛾⟩⟨𝛼𝛾⟩(𝜕0𝑄)|𝛼
]

+ 𝛼 ↔ 𝛽 ,

for any 𝑄 ∈ Ω2(𝑋 ).
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6 Gauged LMP action

In the previous sections, we analysed the ghCS6 action (3.14) where the meromorphic (3, 0)-
form Ω had two double poles, showing that such a theory leads to a gauged WZW4 upon
localisation to R4. To highlight some of the universal features of this procedure, we will now
focus on another example in which the meromorphic (3, 0)-form has a single fourth-order
pole. For the ungauged hCS6, such a configuration was shown in [43] to lead to the LMP
action for ASDYM [8, 9].

6.1 LMP action from hCS6

Let us first review the localisation of hCS6 with a fourth-order pole. We start with the
action and (3, 0)-form defined by

𝑆hCS6 [𝒜] = 1
2𝜋 i

∫
PT

Ω ∧ CS(𝒜) , Ω = 𝑘
𝑒0 ∧ 𝑒�̇� ∧ 𝑒�̇�

⟨𝜋𝛼⟩4 . (6.1)

As is usual in hCS6, we impose boundary conditions on the gauge field 𝒜 to ensure the
vanishing of the boundary variation

𝛿𝑆hCS6

∣∣
bdry = 1

2𝜋 i

∫
PT
𝜕Ω ∧ Tr(𝛿𝒜 ∧𝒜) . (6.2)

Evaluating this integral is achieved by making use of the localisation formula (see appendix D)

1
2𝜋 i

∫
PT
𝜕Ω ∧𝑄 = 𝑘

6

∫
R4
𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ 𝜕3

0𝑄
∣∣
𝛼
. (6.3)

Then, we find that the boundary variation vanishes if we impose the boundary conditions

𝒜|𝜋=𝛼 = 0 and 𝜕0𝒜|𝜋=𝛼 = 0 . (6.4)

Admissible gauge transformations. We now check which residual gauge symmetries
survive once we impose our choice of boundary conditions. We proceed in the familiar fashion,
introducing a new parametrisation of our gauge field 𝒜 as

𝒜 = 𝑔−1
𝒜

′𝑔 + 𝑔−1𝜕𝑔 , 𝒜
′
0 = 0 . (6.5)

This parametrisation has both external and internal gauge symmetries, which act as

External 𝛾 : 𝒜 7→ 𝒜
𝛾 , 𝒜

′ 7→ 𝒜
′ , 𝑔 7→ 𝑔𝛾 ,

Internal 𝛾 : 𝒜 7→ 𝒜 , 𝒜
′ 7→ 𝒜

′𝛾 , 𝑔 7→ 𝛾−1𝑔 .
(6.6)

The internal gauge transformations must satisfy 𝜕0𝛾 = 0 to preserve the condition 𝒜
′
0 = 0.

These transformations leave 𝒜 invariant and as such they are fully compatible with the
boundary conditions. We use the internal gauge symmetry to fix 𝑔|𝜋=𝛼 = id. The story for
the external gauge symmetries is slightly different; under external gauge transformations
𝒜 7→ 𝒜

𝛾 and so the value of 𝒜 at the poles is not necessarily invariant. Requiring our
boundary conditions to be invariant under external gauge transformations imposes constraints
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on the admissible symmetries at 𝜋 = 𝛼 . This limits the amount of symmetry available for
gauge fixing. The gauge transformation of the first boundary condition reads

0 = 𝒜
𝛾 |𝜋=𝛼 =

(
𝛾−1

𝒜𝛾 + 𝛾−1𝜕𝛾
)
|𝜋=𝛼 =⇒ 𝛾−1𝛼𝑎𝜕𝑎�̇�𝛾 = 0 , (6.7)

where we have defined

𝛾 |𝜋=𝛼 = 𝛾 .

Here, we have shown that at 𝜋 = 𝛼 the gauge transformations are restricted such that they
are holomorphic on R4 with respect to the complex structure given by the point 𝜋 = 𝛼 .
Another way of stating this is that our admissible external gauge symmetries on PT localise
to semi-local symmetries in the effective theory on R4. However, this restriction is derived
from only one half of the boundary conditions. Introducing the notation

Γ̂ := 𝛾−1𝜕0𝛾 ,

the gauge transformation of the second boundary condition reads

0 = 𝜕0𝒜
𝛾 |𝜋=𝛼 = 𝜕0

(
𝛾−1

𝒜𝛾 + 𝛾−1𝜕𝛾
)
|𝜋=𝛼

=
([
𝛾−1

𝒜 𝛾, Γ̂
]

+ 𝛾−1𝜕0𝒜𝛾 + 𝜕Γ̂ +
[
𝛾−1𝜕𝛾, Γ̂

]
+ 𝛾−1𝜕�̇�𝛾 𝑒

�̇�
)
|𝜋=𝛼 .

(6.8)

Imposing the original boundary conditions we arrive at the constraint equation

𝛼𝑎𝜕𝑎�̇�Γ + 𝛾−1𝛼𝑎𝜕𝑎�̇�𝛾 = 0 , (6.9)

where we have used ⟨𝛼𝛼⟩ = 1 and defined

Γ̂|𝜋=𝛼 = Γ .

One solution is that the external gauge transformations are global symmetries of the localised
effective theory dR4𝛾 = 0, and Γ is holomorphic on R4 with respect to the choice of complex
structure given by the point 𝛼 ∈ CP1.

Tentatively, our localised theory should have 4 degrees of freedom, known as ‘edge modes’

u := (𝑔,u1,u2,u3) , (6.10)

where

𝑔 = 𝑔|𝜋=𝛼 , u1 := 𝑔−1𝜕0𝑔|𝜋=𝛼 , u2 := 𝑔−1𝜕2
0𝑔|𝜋=𝛼 , u3 := 𝑔−1𝜕3

0𝑔|𝜋=𝛼 . (6.11)

However, some of these fields are spurious and can be gauged fixed away using the admissible
gauge symmetries. We have already used the internal gauge symmetry to fix 𝑔 = id.
Furthermore, the second and third 𝜕0-derivatives of the external gauge transformations are
unconstrained by the boundary conditions, so they can be used to gauge fix u2 = u3 = 0.
This leaves us with one dynamical degree of freedom in the localised theory on R4, namely
u1 : R4 → g, which we will now denote by u for brevity. In conclusion, after gauge
fixing we have

u = (id,u, 0, 0) . (6.12)
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Solving the boundary conditions. Using the boundary conditions, we will solve for 𝒜
′ in

the parametrisation (6.5) in terms of the edge modes. The first boundary condition tells us

𝒜
′|𝜋=𝛼 = 0 ⇒ 𝛼𝑎𝐴𝑎�̇� = 0 ⇒ 𝐴𝑎�̇� = 𝛼𝑎𝐶�̇� . (6.13)

The second boundary condition equation is then written as

(
𝜕0𝒜

′ + 𝜕(𝑔−1𝜕0𝑔)
)
|𝜋=𝛼 = 0 ⇒ 𝛼𝑎

⟨𝛼𝛼⟩
𝐴𝑎�̇� + 𝛼𝑎𝜕𝑎�̇�u = 0 , (6.14)

which allows us to conclude that

𝐶�̇� = 𝛼𝑎𝜕𝛼�̇�u . (6.15)

We now have all the ingredients to localise the hCS6 action to R4.

Localisation to R4. We can write the action (6.1) in the new variables as

𝑆 = 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr(𝒜′ ∧ 𝜕𝑔𝑔−1) − 1

6𝜋 i

∫
PT×[0,1]

𝜕Ω ∧ Tr
(
(𝑔−1d𝑔)3

)
, (6.16)

where in the second term we have extended PT to the 7-manifold PT× [0, 1], whose boundary
is a disjoint union of two copies of PT. We have also extended our fields via a smooth
homotopy 𝑔 → 𝑔(𝑡) so that 𝑔(0) = id and 𝑔(1) = 𝑔. Applying the localisation formula (6.3)
and the choice of gauge fixing (6.12), we arrive at the spacetime action

𝑆LMP[u] = 𝑘

3

∫
R4

1
2 Tr(du ∧★du) + 1

3 𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ Tr(u [du, du]) . (6.17)

The action (6.17) is the LMP model for ASDYM, which upon reduction to R2 becomes
the pseudo-dual of the PCM [44].

6.2 Gauged LMP action from ghCS6

In the previous section, we derived the LMP action from hCS6. Next, we consider the same
fourth-order pole structure for gauged hCS6. The starting point is to compute the boundary
variation and choose boundary conditions to ensure that it vanishes.

Boundary conditions. Starting from the action

𝑆ghCS6 [𝒜,ℬ] = 𝑆hCS6 [𝒜] − 𝑆hCS6 [ℬ] − 1
2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
𝒜 ∧ℬ

)
, (6.18)

the boundary variation is given by

𝛿𝑆ghCS6

∣∣
bdry = 1

2𝜋 i

∫
PT
𝜕Ω ∧ Tr

(
𝛿𝒜 ∧ (𝒜 −ℬ) − 𝛿ℬ ∧ (ℬ−𝒜)

)
. (6.19)

Following in a parallel fashion to the hCS6 case, we find that a suitable choice of boundary
conditions is given by

𝒜|𝜋=𝛼 = ℬ|𝜋=𝛼 , 𝜕0𝒜|𝜋=𝛼 = 𝜕0ℬ|𝜋=𝛼 , 𝜕2
0𝒜

h|𝜋=𝛼 = 𝜕2
0ℬ|𝜋=𝛼 , 𝜕3

0𝒜
h|𝜋=𝛼 = 𝜕3

0ℬ|𝜋=𝛼 .

(6.20)
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Gauge fixing. Gauge fixing will once again prove helpful to proceed with the localisation cal-
culation. As such, we will consider the set of admissible gauge transformations respecting our
boundary conditions. Performing a gauge transformation on the first boundary condition gives(

𝛾−1
𝒜𝛾 + 𝛾−1𝜕𝛾

)
|𝜋=𝛼 =

(
𝜂−1

ℬ𝜂 + 𝜂−1𝜕𝜂
)
|𝜋=𝛼 , (6.21)

from which we conclude that the admissible gauge transformations should obey 𝛾 |𝛼 = 𝜂|𝛼 .
Running through systematically, the second boundary condition requires([

𝛾−1
𝒜 𝛾 + 𝛾−1𝜕𝛾, Γ̂

]
+ 𝛾−1𝜕0𝒜𝛾 + 𝜕Γ̂ + 𝛾−1𝜕�̇�𝛾 𝑒

�̇�
)
|𝜋=𝛼 =

=
([
𝜂−1

ℬ𝜂 + 𝜂−1𝜕𝜂, N̂
]

+ 𝜂−1𝜕0ℬ𝜂 + 𝜕N̂ + 𝜂−1𝜕�̇�𝜂 𝑒
�̇�
)
|𝜋=𝛼 ,

(6.22)

where we have denoted Γ̂ = 𝛾−1𝜕0𝛾 and N̂ = 𝜂−1𝜕0𝜂. Making use of the original boundary
condition and the constraint 𝛾 |𝛼 = 𝜂|𝛼 , we conclude that admissible gauge transformations
should also obey Γ̂|𝜋=𝛼 = N̂|𝜋=𝛼 . In a similar fashion, from the third boundary condition we
conclude that Γ̂(2)

h |𝛼 = N̂(2)|𝛼 where Γ̂(2) := 𝛾−1𝜕2
0𝛾 and N̂(2) := 𝜂−1𝜕2

0𝜂. Finally, from the
fourth boundary condition we find Γ̂(3)

h |𝛼 = N̂(3)|𝛼 where Γ̂(3) := 𝛾−1𝜕3
0𝛾 and N̂(3) := 𝜂−1𝜕3

0𝜂.
Now we know the admissible gauge symmetries of our theory, we can gauge fix the degrees

of freedom. Initially, there are 8 degrees of freedom in our theory,

u :=
(
𝑔,u1,u2,u3

)
,

v :=
(
ℎ,v1,v2,v3

)
.

(6.23)

We first consider the internal gauge symmetries of 𝒜 and ℬ, which we can use to set both
𝑔 and ℎ to the identity. Next, we note that the 𝐻 -valued external gauge transformations
of ℬ parametrised by 𝜂 are unconstrained at the point 𝜋 = 𝛼 . As such, we can gauge fix
v𝑖 = 0 for 𝑖 = 1, 2, 3. Now, since the external gauge transformations of 𝒜 parametrised
by 𝛾 are constrained to coincide with 𝜂 at 𝜋 = 𝛼 , and we have used these symmetries in
our choice of gauge fixing, we find that we are unable to gauge fix u𝑖 . As such, each of
these degrees of freedom will appear as fields in our effective theory on R4. In summary,
renaming u1 as u, after gauge fixing we have

u =
(
id,u,u2,u3

)
,

v = (id, 0, 0, 0) .
(6.24)

Solving the boundary conditions. The first boundary condition reads(
𝑔−1

𝒜
′𝑔 + 𝑔−1𝜕𝑔

)
|𝜋=𝛼 = (ℎ̂−1

ℬ
′ℎ̂ + ℎ̂−1𝜕ℎ̂)|𝜋=𝛼 . (6.25)

Given our choice of gauge fixing (6.24) and the bulk solutions 𝒜
′
�̇� = 𝜋𝑎𝐴𝑎�̇� and ℬ

′
�̇� = 𝜋𝑎𝐵𝑎�̇�,

this implies

𝒜
′|𝜋=𝛼 = ℬ

′|𝜋=𝛼 ⇒ 𝛼𝑎𝐴𝑎�̇� = 𝛼𝑎𝐵𝑎�̇� ⇒ 𝐴𝑎�̇� = 𝐵𝑎�̇� − 𝛼𝑎𝑄�̇� . (6.26)

We can then use the second boundary condition to solve for 𝑄�̇�,

𝜕0𝒜|𝜋=𝛼 = 𝜕0ℬ|𝜋=𝛼 , =⇒ 𝑄�̇� = −𝛼𝑎 ([𝐵𝑎�̇�,u] + 𝜕𝑎�̇�u) = −𝛼𝑎∇𝑎�̇�u . (6.27)
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These two boundary conditions are sufficient to solve for 𝐴𝑎�̇� in terms of the other degrees
of freedom,

𝐴𝑎�̇� = 𝐵𝑎�̇� + 𝛼𝑎𝛼
𝑏∇𝑏�̇�u . (6.28)

Localisation to R4. Writing the action (6.18) in terms of the new field variables, the only
terms that contribute to the effective action given our choice of gauge (6.24) will be

𝑆ghCS6 = 1
2𝜋𝑖

∫
PT
𝜕Ω∧Tr(𝒜′∧𝜕𝑔𝑔−1−𝑔−1

𝒜
′𝑔∧ℬ′−𝑔−1𝜕𝑔∧ℬ′)− 1

6𝜋𝑖

∫
PT×[0,1]

𝜕Ω∧Tr
(
(𝑔−1d𝑔)3) .

(6.29)
The localisation calculation of the gauged model is slightly more involved than the ungauged
case due to the additional degrees of freedom appearing. However, in analogy with calculations
in previous sections, we expect u2 and u3 to appear only as Lagrange multipliers, in particular,
imposing self-duality type constraints for our gauge field 𝐵. With this in mind, we can show
that the 4d theory is given by

𝑆gLMP[u,𝐵]=𝑘
∫
R4

vol4
1
2 Tr(∇𝑎�̇�u∇𝑎�̇�u)+1

3 𝜖
�̇�𝑏Tr(u

[
𝛼𝑎∇𝑎�̇�u,𝛼𝑏∇𝑏𝑏

u
]
)+u𝜖�̇�𝑏𝛼𝑎𝛼𝑏𝐹

𝑎�̇�𝑏𝑏
(𝐵)

+1
2u

2𝜖�̇�𝑏
(
𝛼𝑎𝛼𝑏+𝛼𝑎𝛼𝑏

)
𝐹
𝑎�̇�𝑏𝑏

(𝐵)+ũ3𝜖�̇�𝑏𝛼𝑎𝛼𝑏𝐹
𝑎�̇�𝑏𝑏

(𝐵),
(6.30)

where we have performed a field redefinition u3 → ũ3 := 1
6 (u3 + 2

[
u,u2]). Reducing along a

particular R2, and appropriately redefining fields and parameters, we find that the gauged
LMP action gives the IFT2 (4.40).

Implementing the Lagrange multipliers. In section 2.3 we reviewed how solutions to
the ASDYM can be formulated in terms of Yang’s matrix after a partial gauge fixing of the
ASD connection. We conclude this section by integrating out the Lagrange multiplier fields
present in the action (6.30) by solving the self duality constraints they impose in a similar
fashion. Indeed, the LMP equations of motion can be understood as the remaining ASDYM
equation once these two constraints have been solved. This is analogous to the statement
that the WZW4 equations of motion are the remaining ASDYM equation for Yang’s matrix.

The equation of motion found by varying ũ3 is an integrability condition along the
2-plane defined by 𝛼𝑎, and it can be solved by

𝜖�̇�𝑏𝛼𝑎𝛼𝑏𝐹
𝑎�̇�𝑏𝑏

(𝐵) = 0 =⇒ 𝛼𝑎𝐵𝑎�̇� = ℎ−1𝛼𝑎𝜕𝑎�̇�ℎ , (6.31)

where ℎ ∈ 𝐶∞(R4) ⊗ 𝐻 . It is helpful to parametrise the remaining degrees of freedom in
𝐵𝑎�̇� in terms of a new field 𝐶�̇�, defined by the relation

𝐵𝑎�̇� = ℎ−1𝜕𝑎�̇�ℎ − 𝛼𝑎 ℎ
−1𝐶�̇�ℎ . (6.32)

Then, the u2 equation of motion becomes

𝜖�̇�𝑏
(
𝛼𝑎𝛼𝑏 + 𝛼𝑎𝛼𝑏

)
𝐹
𝑎�̇�𝑏𝑏

(𝐵) = 0 ⇐⇒ 𝜖�̇�𝑏𝛼𝑎𝜕𝑎�̇�𝐶𝑏 = 0 . (6.33)

This may be solved explicitly by 𝐶�̇� = 𝛼𝑎𝜕𝑎�̇� 𝑓 for 𝑓 ∈ 𝐶∞(R4) ⊗ h, such that the gauge
field 𝐵 is given by

𝐵𝑎�̇� = ℎ−1𝜕𝑎�̇�ℎ + ℎ−1𝑋𝑎�̇�ℎ where 𝑋𝑎�̇� = −𝛼𝑎𝛼𝑏𝜕𝑏�̇� 𝑓 . (6.34)
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Reinserting this expression into the action (6.30), the resulting theory may be written as a
difference of two LMP actions. This follows after performing a field redefinition ℎuℎ−1 = 𝑣− 𝑓 ,
for 𝑣 ∈ 𝐶∞(R4) ⊗ g, such that we arrive at the action

𝑆gLMP[u, 𝐵] = 𝓀

∫
R4

1
2 Tr(d𝑣 ∧★d𝑣) + 1

3 𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ Tr(𝑣 [d𝑣, d𝑣 ])

− 𝓀

∫
R4

1
2 Tr(d𝑓 ∧★d𝑓 ) + 1

3 𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ Tr(𝑓 [d𝑓 , d𝑓 ]) .
(6.35)

This demonstrates the conclusion

𝑆gLMP[u, 𝐵] = 𝑆LMP[𝑣 ] − 𝑆LMP[𝑓 ] . (6.36)

7 Outlook

The construction presented in this work has led us to new integrable field theories in both four
and two dimensions. We conclude by highlighting a number of interesting future directions
prompted by these results.

Motivated by the observation that the gauged WZW model on the coset 𝐺/𝐻 in two
dimensions can be written as the difference of WZW models for the groups 𝐺 and 𝐻 , we took
the difference of two hCS6 theories as our starting point. The boundary conditions (3.19) led
us to add a boundary term resulting in the action (3.14). It is worth highlighting that the
boundary variation vanishes on the boundary conditions (3.19) whether or not the boundary
term is included, and the contribution of the boundary term to the IFT4 vanishes if we invoke
all the boundary conditions. However, while the algebraic boundary conditions, 𝒜k|𝛼,𝛽 = 0
and 𝒜

h|𝛼,𝛽 = ℬ|𝛼,𝛽 can be straightforwardly solved, this is not the case for the differential
one 𝜕0𝒜

h|𝛼,𝛽 = 𝜕0ℬ|𝛼,𝛽 . Therefore, we relaxed this condition such that the contribution of
the boundary term no longer vanishes. Importantly, for the specific boundary term added
in (3.14), the constraints implied by the differential boundary condition now follow as on-shell
equations of motion, leading to fully consistent IFT4 and IFT2.

There are compelling reasons to follow this strategy, including that the symplectic
potential becomes tautological upon including the boundary term. However, a systematic
interpretation of when boundary conditions can be consistently dropped for particular choices
of boundary term is an open question. To address this, it would be appropriate to pursue
a more formal study, complementing a homotopic analysis (along the lines done for CS4
in [37]) with a symplectic/Hamiltonian study of the 6d holomorphic Chern-Simons theory
(similar to [45] in the context of CS4).

A second arena for formal development is the connection between 6d holomorphic Chern-
Simons and five-dimensional Kähler Chern-Simons (KCS5) theory [5, 6]. This should mirror
the relationship between CS4 and CS3 theories described by Yamazaki [39]. To make this
suggestion precise in the present context one may consider a Kaluza-Klein expansion around
the U(1) rotation in the CP1 that leaves the location of the double poles fixed, retaining
the transverse coordinate as part of the bulk five-manifold of KCS5. The details of this
are left for future study.

It would also be interesting to explore the new integrable IFT4 and IFT2 that we have
constructed. 𝐺/𝐻 coset CFTs in two dimensions have a rich spectrum of parafermionic
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operators [28, 46]. It would be very interesting to establish the lift or analogue of these
objects in the context of the IFT4. The natural framework for this is likely to involve the
study of co-dimension one defects and associated higher-form symmetries.

For abelian 𝐻 we find IFT2 that, in the 𝓀 → 1 limit, are related to massive integrable
perturbations of the𝐺/𝐻 gauged WZW models known as homogeneous sine-Gordon models [32,
40]. These include the sine-Gordon and complex sine-Gordon models as special cases, two
of the most well-understood IFT2. There is nothing in our construction that prohibits
non-abelian 𝐻 and it would be interesting to study the resulting models in more detail. The
homogeneous sine-Gordon models before gauging are closely related to the non-abelian Toda
equations [47, 48], for which an alternative derivation from CS4 involving both order and
disorder defects was presented in [49]. It would be instructive to understand the relationship
between the two approaches.

An important class of IFT2 are the symmetric space sigma models. These can be
constructed either by restricting fields to parametrise 𝐺/𝐻 directly or by gauging a left action
of H in the PCM. These theories have been realised in CS4 through branch cut defects [16]
and recently in hCS6 [50]. One might explore the realisation of the gauging construction
of such models within the current framework, and generalise to Z4-graded semi-symmetric
spaces (relevant for applications of CS4 to string worldsheet theories [51, 52]).

When 𝐺/𝐻 is a symmetric space, an alternative class of massive integrable perturbations
of the𝐺/𝐻 gauged WZW model are known as the symmetric space sine-Gordon models [32, 53].
In the landscape of IFT2 these are related to the 𝜆 → 0 limit [54, 55] of the 𝜆-deformation
of the symmetric space sigma model [56]. Note that 𝓀 → 1 and 𝜆 → 0 both correspond
to conformal limits and it would be instructive to explore the relation between the two
constructions. More generally, it would be interesting to generalise the construction in this
work to deformed models, in particular, splitting one or both double poles in the meromorphic
(3,0)-form Ω into simple poles, or dual models, for example, considering the alternative
boundary conditions (3.30).

Finally, recently novel approaches to constructing IFT3 using higher Chern-Simons
theory in 5d have been explored in [57, 58]. Given that there is an overlap between the
models that can be obtained from these constructions and from hCS6, or more precisely
its reduction to five dimensions, CS5 on the mini-twistor correspondence space PN [18], it
would be exciting to understand the link between the two, and investigate the existence
of categorical generalisations of hCS6.
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A Spinor and differential form conventions

We work on R4 and define coordinates in bispinor notation as

𝑥𝑎�̇� = 1√
2

(
𝑥0 + i𝑥1 𝑥2 + i𝑥3
−𝑥2 + i𝑥3 𝑥0 − i𝑥1

)
. (A.1)

We fix orientation such that ★1 = vol4 = d𝑥0 ∧ d𝑥1 ∧ d𝑥2 ∧ d𝑥3. For 1-forms 𝜎 = 𝜎𝑎�̇�d𝑥𝑎�̇�

and 𝜏 = 𝜏𝑎�̇�d𝑥𝑎�̇� we have

★2𝜎 = −𝜎 , 𝜎 ∧★𝜏 = −★ 𝜎 ∧ 𝜏 = vol4𝜖𝑎𝑏𝜖�̇�𝑏𝜎𝑎�̇�𝜏𝑏𝑏 , d★ 𝜎 = vol4𝜖𝑎𝑏𝜖�̇�𝑏𝜕𝑎�̇�𝜎𝑏𝑏 . (A.2)

Contraction of spinors is given by

⟨𝛼𝛽⟩ = 𝛼1𝛽2 − 𝛼2𝛽1 = 𝛼𝑎𝛽𝑎 , (A.3)

and spinor indices are raised as

𝛼𝑎 = 𝜖𝑎𝑏𝛼𝑏 , 𝜖12 = −𝜖21 = −1 . (A.4)

We define 𝜖12 = +1 such that 𝜖𝑎𝑏𝜖𝑏𝑐 = 𝛿𝑎𝑐 . The (quaternionic) conjugation of a spinor
𝛼𝑎 = (𝛼1, 𝛼2) is defined to be 𝛼𝑎 = (−𝛼2, 𝛼1). Identical definitions hold for the anti-chiral
spinors with dotted indices and contraction denoted with square brackets though these do
not play a role in this work.

A basis for self-dual 2-forms is given by

Σ𝑎𝑏 = 𝜖
�̇�𝑏

d𝑥𝑎�̇� ∧ d𝑥𝑏𝑏 , (A.5)

from which, given any two spinors, we can define self-dual forms

Σ𝛼,𝛽 = 𝛼𝑎𝛽𝑏Σ𝑎𝑏 = 𝛼𝑎𝛽𝑏𝜖�̇�𝑏d𝑥𝑎�̇� ∧ d𝑥𝑏𝑏 , ★Σ𝛼,𝛽 = Σ𝛼,𝛽 . (A.6)

As they will play key roles, we denote

𝜔𝛼,𝛽 = 1
⟨𝛼𝛽⟩

Σ𝛼,𝛽 , 𝜇𝛼 = Σ𝛼,𝛼 , 𝜇𝛽 = Σ𝛽,𝛽 . (A.7)

R4 is equipped with a hyper-Kähler structure and has a CP1s worth of complex structures.
We can compactly express the complex structure corresponding to a spinor 𝛾𝑎 as

𝒥𝛾 = −𝑖(𝛾𝑎𝜕𝑎�̇�) ⊗ (𝛾𝑏d𝑥𝑏�̇�) − 𝑖(𝛾𝑎𝜕𝑎�̇�) ⊗ (𝛾𝑏d𝑥𝑏�̇�) , (A.8)

for which adapted complex coordinates are given by

d𝑧 = 𝛾𝑎𝜅�̇�d𝑥𝑎�̇� , d𝑧 = 𝛾𝑎𝜅�̇�d𝑥𝑎�̇� , d𝑤 = 𝛾𝑎𝜅�̇�d𝑥𝑎�̇� , d𝑤 = −𝛾𝑎𝜅�̇�d𝑥𝑎�̇� . (A.9)
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With these coordinates we have that

𝜇𝛼 =−2⟨𝛼𝛾⟩2d𝑤∧d𝑧−2⟨𝛼𝛾⟩⟨𝛼𝛾⟩(d𝑧∧d𝑧+d𝑤∧d𝑤)−2⟨𝛼𝛾⟩2d𝑤∧d𝑧 , (A.10)

𝜔𝛼,𝛽 =−2 ⟨𝛼𝛾⟩⟨𝛽𝛾⟩
⟨𝛼𝛽⟩

d𝑤∧d𝑧−2 ⟨𝛼𝛾⟩⟨𝛽𝛾⟩
⟨𝛼𝛽⟩

d𝑤∧d𝑧−⟨𝛼𝛾⟩⟨𝛽𝛾⟩+⟨𝛼𝛾⟩⟨𝛽𝛾⟩
⟨𝛼𝛽⟩

(d𝑧∧d𝑧+d𝑤∧d𝑤) .

(A.11)

Notice that, if we align the spinor 𝛼 to 𝛾 and 𝛽 to 𝛾 , then 𝜔𝛾,𝛾 is (proportional to) the
corresponding Kähler form 𝜛 of type (1, 1) and 𝜇𝛾 is a holomorphic (2, 0)-form and 𝜇𝛾 is
(0, 2)-form.

B Twistor space

We work on the Euclidean slice of Penrose’s twistor space, PTE. Starting from the twistor
space of complexified Minkowski space,

PT = CP3 \ CP1 = {𝑍𝛼 = (𝜔�̇�, 𝜋𝑎)}|𝜋𝑎 ̸= 0 , 𝑍𝛼 ∼ 𝑟𝑍𝛼 𝑟 ∈ C×} , (B.1)

we obtain PTE by making a choice of reality conditions, in particular, by selecting the slice
of PT invariant under the anti-holomorphic (quartic) involution acting on the holomorphic
coordinates as 𝑍𝛼 7→ 𝑍𝛼 = (𝜔�̇�, 𝜋𝑎). This choice of reality conditions induces a double
fibration and we find that Euclidean twistor space can be viewed as the holomorphic vector
bundle PTE ∼= 𝒪(1) ⊕ 𝒪(1) → CP1, where the holomorphic coordinates along the fibre
direction are given by the incidence relations 𝜔�̇� = 𝑥𝑎�̇�𝜋𝑎. With this we choose a basis of
(1, 0)-forms and (0, 1)-forms

𝑒0 = ⟨𝜋d𝜋⟩ , 𝑒�̇� = 𝜋𝑎d𝑥𝑎�̇� ,

𝑒0 = ⟨𝜋d𝜋⟩
⟨𝜋𝜋⟩2 , 𝑒�̇� = 𝜋𝑎d𝑥 �̇�𝑎

⟨𝜋𝜋⟩
,

(B.2)

and their dual vector fields

𝜕0 = 𝜋𝑎

⟨𝜋𝜋⟩
𝜕

𝜕𝜋𝑎
, 𝜕�̇� = − 𝜋𝑎𝜕𝑎�̇�

⟨𝜋𝜋⟩
,

𝜕0 = −⟨𝜋𝜋⟩ 𝜋𝑎
𝜕

𝜕𝜋𝑎
, 𝜕�̇� = 𝜋𝑎𝜕𝑎�̇� .

(B.3)

It is important to note that this basis of 1-forms, and their duals, satisfy the structure
equations,

𝜕𝑒�̇� = 𝑒0 ∧ 𝑒�̇� , 𝜕𝑒�̇� = 𝑒�̇� ∧ 𝑒0 ,

[𝜕0 , 𝜕�̇�] = 𝜕�̇� , [𝜕�̇� , 𝜕0] = 𝜕�̇� .
(B.4)

B.1 Homogeneous and inhomogeneous coordinates

Homogeneous coordinates on CP1 will be denoted by 𝜋𝑎 = (𝜋1, 𝜋2), which are defined up
to the equivalence relation 𝜋𝑎 ∼ 𝑠 𝜋𝑎 for any non-zero 𝑠 ∈ C∗. These have the advantage of
being globally defined on CP1 but can lead to technical complications in certain calculations.
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It can also be useful to work with inhomogeneous coordinates on two patches covering
CP1 ∼= 𝑆2. Introducing an arbitrary spinor 𝛾𝑎 that satisfies ⟨𝛾𝛾⟩ = 1, the two patches covering
CP1 will be defined as

𝑈1 = {𝜋𝑎 | ⟨𝜋𝛾⟩ ̸= 0} , 𝑈2 = {𝜋𝑎 | ⟨𝜋𝛾⟩ ̸= 0} . (B.5)

Inhomogeneous coordinates may be defined on each patch by

𝜁 = ⟨𝛾𝜋⟩
⟨𝜋𝛾⟩

, 𝜉 = ⟨𝜋𝛾⟩
⟨𝛾𝜋⟩

, 𝜉 = 𝜁−1 . (B.6)

In this section, we restrict our attention to 𝑈1 and the inhomogeneous coordinate 𝜁 , knowing
that an analogous discussion holds for the other patch. The complex conjugate of the
inhomogeneous coordinate 𝜁 is

𝜁 = − ⟨𝜋𝛾⟩
⟨𝛾𝜋⟩

. (B.7)

Forms and vector fields on CP1 written in these coordinates are related to one another by

d𝜁 = 𝑒0

⟨𝜋𝛾⟩2 , d𝜁 = ⟨𝜋𝜋⟩2

⟨𝛾𝜋⟩2 𝑒
0 ,

𝜕𝜁 = ⟨𝜋𝛾⟩2𝜕0 , 𝜕𝜁 = ⟨𝛾𝜋⟩2

⟨𝜋𝜋⟩2 𝜕0 .

(B.8)

It is also helpful to define a weight zero basis of (1, 0)-forms on R4 ⊂ PT by

𝜃 �̇� = 𝑒�̇�

⟨𝜋𝛾⟩
= d𝑥𝑎�̇� 𝛾𝑎 + 𝜁 d𝑥𝑎�̇� 𝛾𝑎 . (B.9)

Likewise, the weight zero basis of (0, 1)-forms on R4 ⊂ PT are defined by

𝜃 �̇� = ⟨𝜋𝛾⟩ 𝑒�̇� = 1
1 + 𝜁𝜁

(
𝑑𝑥𝑎�̇� 𝛾𝑎 − 𝜁 𝑑𝑥𝑎�̇� 𝛾𝑎

)
. (B.10)

Given a point on CP1 defined by 𝛼𝑎 in homogeneous coordinates, we denote the corresponding
point in the inhomogeneous coordinate 𝜁 by

𝛼 = ⟨𝛾𝛼⟩
⟨𝛼𝛾⟩

= 𝜁 |𝜋𝑎∼𝛼𝑎 . (B.11)

We also have the relation

⟨𝜋𝛼⟩
⟨𝜋𝛾⟩⟨𝛾𝛼⟩

= (𝜁 − 𝛼) . (B.12)

C Projector technology

We consider the operator on 1-forms on R4 given by

𝐽𝛼,𝛽(𝜎) = −i★ (𝜔𝛼,𝛽 ∧ 𝜎) , 𝐽 2
𝛼,𝛽 = −id , (C.1)
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which allows us to define projectors

𝑃 = 1
2 (id − i𝐽 ) 𝑃 = 1

2 (id + i𝐽 ) . (C.2)

For this to define a complex structure on the real Euclidean slice of R4 ⊂ C4 we require
that 𝐽 maps Euclidean-real 1-forms to Euclidean-real 1-forms. While not true for general
𝛼 and 𝛽, this is the case if we take 𝛼 = 𝛾 and 𝛽 = 𝛾 . Then 𝐽𝛾,𝛾 is the complex structure
𝐽𝛾 , see eq. (A.8). The projectors 𝑃 and 𝑃 project onto the (1, 0) and (0, 1) components thus
realising the Dolbeault complex.

These projectors satisfy a range of useful identities:

𝑃(★(𝜇𝛼 ∧ 𝜎)) = 0 , 𝑃(★(𝜇𝛽 ∧ 𝜎)) = 0 , 𝜇𝛽 ∧ 𝑃(𝜎) = 0 , 𝜇𝛼 ∧ 𝑃(𝜎) = 0 , (C.3)

𝜔𝛼,𝛽 ∧ 𝑃(𝜎) = −★ 𝑃(𝜎) , 𝜔𝛼,𝛽 ∧ 𝑃(𝜎) = ★𝑃(𝜎) , (C.4)
𝜔𝛼,𝛽 ∧ 𝑃(𝜎) ∧ 𝜏 = 𝜔𝛼,𝛽 ∧ 𝜎 ∧ 𝑃(𝜏) , 𝜔𝛼,𝛽 ∧ 𝑃(𝜎) ∧ 𝑃(𝜏) = 0 . (C.5)

To move between form and component notation is useful to observe that

𝑃(𝜎)𝑎�̇� = − 1
⟨𝛼𝛽⟩

𝛼𝑎𝛽
𝑏𝜎𝑏�̇� , 𝑃(𝜎)𝑎�̇� = 1

⟨𝛼𝛽⟩
𝛽𝑎𝛼

𝑏𝜎𝑏�̇� . (C.6)

Further relations, useful for analysing the CP1-derivative boundary conditions, are

2𝛼𝑎𝜎𝑎�̇�𝑒�̇�|𝛼 = ★(𝜇𝛼 ∧ 𝜎) , 𝛽𝑎𝜏𝑎�̇�𝑒
�̇�|𝛼 = −⟨𝛼𝛽⟩𝑃(𝜏) , (C.7)

2𝛽𝑎𝜎𝑎�̇�𝑒�̇�|𝛽 = ★(𝜇𝛽 ∧ 𝜎) , 𝛼𝑎𝜏𝑎�̇�𝑒
�̇�|𝛽 = ⟨𝛼𝛽⟩𝑃(𝜏) . (C.8)

As an application of this projector technology let us consider the (ungauged) WZW4
model, for which the equations of motion can be cast in terms of the right-invariant Maurer-
Cartan form 𝑅 = d𝑔𝑔−1, which obeys d𝑅 = 𝑅 ∧ 𝑅, as

d★ 𝑃(𝑅) = 1
2 d (★− 𝜔𝛼,𝛽∧) d𝑔𝑔−1 = 0 . (C.9)

We now consider a Yang-Mills connection 𝐴 = −𝑃(𝑋 ). The equations for this to be anti-self
dual are

𝜇𝛽 ∧ 𝐹 [𝐴] = 0 , 𝜇𝛼 ∧ 𝐹 [𝐴] = 0 , 𝜔𝛼,𝛽 ∧ 𝐹 [𝐴] = 0 . (C.10)

The first of these vanishes identically by virtue of the fact that 𝜇𝛽 ∧𝐴 = 0. Since 𝜇𝛼 ∧𝐴 =
−𝜇𝛼 ∧ 𝑋 , the second yields a Bianchi identity

𝜇𝛼 ∧ 𝐹 [𝐴] = −𝜇𝛼 ∧ (d𝑋 − 𝑋 ∧ 𝑋 ) , (C.11)

hence is solved by 𝑋 = 𝑅. The final equation returns the equations of motion as

𝜔𝛼,𝛽 ∧ 𝐹 [𝐴] = −d(𝜔𝛼,𝛽 ∧ 𝑃(𝑅)) + 𝜔𝛼,𝛽 ∧ 𝑃(𝑅) ∧ 𝑃(𝑅) = d★ 𝑃(𝑅) . (C.12)

At the Kähler point 𝛽 = 𝛼 = 𝛾 , we can simply write the ASDYM equations as

𝐹 2,0 = 0 , 𝐹 0,2 = 0 , 𝜛 ∧ 𝐹 1,1 = 0 . (C.13)

In this case, the connection given by 𝐴 = −𝜕𝑔𝑔−1 is of type (0, 1), hence 𝐹 2,0 = 0 automatically,
𝐹 0,2 = 0 is zero by the Bianchi identity and the equations of motion of WZW4 are

𝜛 ∧ 𝜕(𝜕𝑔𝑔−1) = 0 . (C.14)
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D Derivation of localisation formulae

In this work we are required to evaluate integrals of the form

𝐼 = 1
2𝜋 i

∫
PT
𝜕Ω ∧𝑄 , 𝑄 ∈ Ω0,2(PT) . (D.1)

In this appendix, we will derive general formulae for these integrals for the cases in which
Ω has either two double poles or a single fourth-order pole. To compute these integrals
efficiently we will work in inhomogeneous coordinates and make use of the identities

𝜕𝜁

( 1
𝜁 − 𝛼

)
= −2𝜋 i𝛿2(𝜁 − 𝛼) ,

∫
CP1

d𝜁 ∧ d𝜁 𝛿2(𝜁 − 𝛼) 𝑓 (𝜁 ) = 𝑓 (𝛼) . (D.2)

D.1 Two double poles

We consider the (3, 0)-form given by

Ω = 1
2

⟨𝛼𝛽⟩2

⟨𝜋𝛼⟩2⟨𝜋𝛽⟩2 𝑒
0 ∧ 𝑒�̇� ∧ 𝑒�̇� = 1

2
(𝛼 − 𝛽)2

(𝜁 − 𝛼)2(𝜁 − 𝛽)2 d𝜁 ∧ 𝜃 �̇� ∧ 𝜃�̇� . (D.3)

Substituting this into the integral gives

𝐼 = − 1
2

1
2𝜋 i

∫
PT

d𝜁 ∧ d𝜁 𝜕𝜁
( (𝛼 − 𝛽)2

(𝜁 − 𝛼)2(𝜁 − 𝛽)2

)
∧ 𝜃 �̇� ∧ 𝜃�̇� ∧𝑄 . (D.4)

Then, using the identity (D.2) gives

𝐼 = − (𝛼 − 𝛽)2

2

∫
PT

d𝜁 ∧ d𝜁
[
𝜕𝜁𝛿(𝜁 − 𝛼)
(𝜁 − 𝛽)2 +

𝜕𝜁𝛿(𝜁 − 𝛽)
(𝜁 − 𝛼)2

]
∧ 𝜃 �̇� ∧ 𝜃�̇� ∧𝑄 . (D.5)

Since the integral is symmetric under 𝛼 ↔ 𝛽 we will only compute the first term explicitly.
Integrating by parts and evaluating the integral over CP1 gives

𝐼 = (𝛼 − 𝛽)2

2

∫
R4
𝜕𝜁

(
𝜃 �̇� ∧ 𝜃�̇� ∧𝑄

(𝜁 − 𝛽)2

)∣∣∣∣
𝛼

+ 𝛼 ↔ 𝛽 . (D.6)

We first distribute the 𝜕𝜁 derivative, leaving the 2-form 𝑄 completely general, resulting in

𝐼 = (𝛼 − 𝛽)2

2

∫
R4

[ −2
(𝜁 − 𝛽)3 𝜃

�̇� ∧ 𝜃�̇� ∧𝑄 + 2
(𝜁 − 𝛽)2 𝛾𝑎d𝑥𝑎�̇� ∧ 𝜃�̇� ∧𝑄

+ 𝜃 �̇� ∧ 𝜃�̇�
(𝜁 − 𝛽)2 ∧ 𝜕𝜁𝑄

]∣∣∣∣
𝛼

+ 𝛼 ↔ 𝛽 .

(D.7)

The overall factor of (𝛼 − 𝛽)2 outside the integral cancels with the denominators in the
integrand. We now make use of (B.12) to return to spinor notation and introduce self-dual
2-forms defined by Σ𝑎𝑏 = 𝜀

�̇�𝑏
d𝑥𝑎�̇� ∧ d𝑥𝑏𝑏 to write

𝐼 = 1
2

∫
R4

[ −2⟨𝛾𝛽⟩
⟨𝛼𝛽⟩⟨𝛼𝛾⟩

𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧𝑄|𝛼 + 2
⟨𝛼𝛾⟩

𝛾𝑎𝛼𝑏Σ𝑎𝑏 ∧𝑄|𝛼

+ 𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧
𝜕𝜁𝑄

⟨𝜋𝛾⟩2

∣∣∣∣
𝛼

]
+ 𝛼 ↔ 𝛽 .

(D.8)
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Expanding 𝛼𝑎 in the basis formed by 𝛾𝑎 and 𝛽𝑎, we see that one component of the first term
cancels the second term, and only a term proportional to 𝛼𝑎𝛽𝑏Σ𝑎𝑏 survives. In the third
term of the integral, we recognise the combination 𝜕0 acting on 𝑄 and make this replacement.
In conclusion, we have the general formula

1
2𝜋 i

∫
PT
𝜕Ω ∧𝑄 =

∫
R4

[
𝛼𝑎𝛽𝑏Σ𝑎𝑏

⟨𝛼𝛽⟩
∧𝑄|𝛼 + 1

2 𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ (𝜕0𝑄)|𝛼
]

+ 𝛼 ↔ 𝛽 , (D.9)

or in differential form notation

1
2𝜋 i

∫
PT
𝜕Ω ∧𝑄 =

∫
R4

[
𝜔𝛼,𝛽 ∧𝑄|𝛼 + 1

2 𝜇𝛼 ∧ (𝜕0𝑄)|𝛼
]

+ 𝛼 ↔ 𝛽 . (D.10)

It is also helpful to specialise to 2-forms of the form 𝑄 = 𝜋𝑎𝜋𝑏𝑄
𝑎�̇�𝑏𝑏

𝑒�̇� ∧ 𝑒𝑏 , which we will
often encounter. In this case, we may make use of the identity

𝑒𝑐 ∧ 𝑒𝑐 ∧ 𝑒�̇� ∧ 𝑒𝑏 = −2 vol4 𝜀�̇�𝑏 , (D.11)

and its generalisation valid for any spinors 𝛼𝑎 and 𝛽𝑎

𝛼𝑎𝛽𝑏Σ𝑎𝑏 ∧ 𝑒�̇� ∧ 𝑒𝑏 = −2 vol4
⟨𝛼𝜋⟩⟨𝛽𝜋⟩
⟨𝜋𝜋⟩2 𝜀�̇�𝑏 . (D.12)

Using these identities on the above formula for 𝑄 = 𝜋𝑎𝜋𝑏𝑄
𝑎�̇�𝑏𝑏

𝑒�̇� ∧ 𝑒𝑏 gives

1
2𝜋 i

∫
PT
𝜕Ω ∧𝑄 = −

∫
R4

vol4
[
𝜀�̇�𝑏(𝛼𝑎𝛽𝑏 + 𝛽𝑎𝛼𝑏)

⟨𝛼𝛽⟩
𝑄
𝑎�̇�𝑏𝑏

|𝛼 + 𝜀�̇�𝑏𝛼𝑎𝛼𝑏(𝜕0𝑄𝑎�̇�𝑏𝑏
)|𝛼
]

+ 𝛼 ↔ 𝛽 .

(D.13)
Finally, we specialise to the case when 𝑄

𝑎�̇�𝑏𝑏
= 𝑋𝑎�̇�𝑌𝑏𝑏 , for which the answer can again be

recast in differential form notation as

1
2𝜋 i

∫
PT
𝜕Ω ∧𝑄 =

∫
R4

[
𝜔𝛼,𝛽 ∧ 𝑋 ∧ 𝑌 |𝛼 + 1

2 𝜇𝛼 𝜕0 ∧ (𝑋 ∧ 𝑌 )|𝛼
]

+ 𝛼 ↔ 𝛽 . (D.14)

To apply these formulae we also need the following CP1-derivatives:

𝜕0(d𝑔𝑔−1) = 𝑔d𝑢𝑔−1 , (D.15)
𝜕0(𝑔−1d𝑔) = d𝑢 + [𝑔−1d𝑔,𝑢] , (D.16)

𝜕0(𝐴) = 𝜕0(𝐵) = 0 , (D.17)
𝜕0(𝑔−1𝐴𝑔) = [𝑔−1𝐴𝑔,𝑢] , (D.18)

𝜕0
1
3 Tr(𝑔−1d𝑔)3 = d Tr(𝑢(𝑔−1d𝑔)2) , (D.19)

where we have defined 𝑢 = 𝑔−1𝜕0𝑔.

D.2 Fourth-order pole

In section 6, we consider a different (3, 0)-form given by

Ω = 𝑘
𝑒0 ∧ 𝑒�̇� ∧ 𝑒�̇�

⟨𝜋𝛼⟩4 = 𝑘 ′

⟨𝛾𝛼⟩4
𝑑𝜁 ∧ 𝜃 �̇� ∧ 𝜃�̇�

(𝜁 − 𝛼)4 . (D.20)
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Substituting this into the general integral expression above gives

𝐼 = − 𝑘

⟨𝛾𝛼⟩4
1

2𝜋 i

∫
PT

d𝜁 ∧ d𝜁 𝜕𝜁
( 1

(𝜁 − 𝛼)4

)
∧ 𝜃 �̇� ∧ 𝜃�̇� ∧𝑄 . (D.21)

Then, using the identity (D.2), we find

𝐼 = − 𝑘

6⟨𝛾𝛼⟩4

∫
PT

d𝜁 ∧ d𝜁
(
𝜕3
𝜁𝛿(𝜁 − 𝛼)

)
∧ 𝜃 �̇� ∧ 𝜃�̇� ∧𝑄 . (D.22)

Integrating by parts and evaluating the integral over CP1 gives

𝐼 = 𝑘

6⟨𝛾𝛼⟩4

∫
R4
𝜕3
𝜁

(
𝜃 �̇� ∧ 𝜃�̇� ∧𝑄

)∣∣∣
𝛼
. (D.23)

In order to distribute the 𝜕𝜁 derivatives, it is helpful to use the identities

𝜃𝑎
∣∣
𝛼

= 𝛼𝑎d𝑥𝑎�̇�

⟨𝛾𝛼⟩
, 𝜕𝜁𝜃

𝑎
∣∣
𝛼

= 𝛾𝑎d𝑥𝑎�̇� , 𝜕2
𝜁𝜃

𝑎
∣∣
𝛼

= 0 . (D.24)

Distributing the three 𝜕𝜁 derivatives gives

𝐼 = 𝑘

6⟨𝛾𝛼⟩4

∫
R4

[
𝛼𝑎𝛼𝑏Σ𝑎𝑏

⟨𝛼𝛾⟩2 ∧ 𝜕3
𝜁𝑄
∣∣
𝛼

+ 6 𝛼𝑎𝛾𝑏Σ𝑎𝑏

⟨𝛼𝛾⟩
∧ 𝜕2

𝜁𝑄
∣∣
𝛼

+ 6𝛾𝑎𝛾𝑏Σ𝑎𝑏 ∧ 𝜕𝜁𝑄
∣∣
𝛼

]
. (D.25)

Converting this expression back into homogeneous coordinates (and using the fact that 𝑄 is
a (0, 2)-form on twistor space hence 𝛼𝑎d𝑥𝑎�̇� ∧ 𝑄|𝛼 = 0) this integral becomes

𝐼 = 𝑘

6

∫
R4
𝛼𝑎𝛼𝑏Σ𝑎𝑏 ∧ 𝜕3

0𝑄
∣∣
𝛼
. (D.26)

E Localisation derivation with general gaugings

In this appendix we describe in more detail the derivation of the gauged WZW4 model from
the gauged hCS6 theory and the application of the localisation formulae in appendix (D.1).
We will do this in a more general manner, allowing the gauging of an 𝐻 subgroup that acts as

𝑔 7→ 𝜌𝛽(ℓ)𝑔𝜌𝛼(ℓ−1) , 𝐵 7→ ℓ𝐵ℓ−1 − dℓℓ−1 , ℓ ∈ 𝐻 ⊂ 𝐺 , (E.1)

where 𝜌𝑖 : 𝐻 → 𝐺 are group homomorphisms (algebra homomorphisms will be denoted by
the same symbol). The covariant derivative is then given by

∇𝑔𝑔−1 = d𝑔𝑔−1 + 𝐵𝛽 − 𝑔𝐵𝛼𝑔
−1 7→ 𝜌𝛽(ℓ)(∇𝑔𝑔−1)𝜌𝛽(ℓ−1) , (E.2)

in which we ease the notation by setting 𝐵𝑖 = 𝜌𝑖(𝐵).
The starting point is the six-dimensional theory

𝑆ghCS6 [𝒜,ℬ] = 𝑆hCS6 [𝒜] − 𝑆hCS6 [ℬ] + 𝑆bdry[𝒜,ℬ] , (E.3)

where we take the boundary interaction term to be

𝑆bdry[𝒜,ℬ] = − 𝑞

2𝜋 i

∫
PT
𝜕Ω ∧ Trg (𝒜 ∧ 𝜌(ℬ)) . (E.4)
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Here we have introduced a parameter 𝑞, which will ultimately be set to one, to keep track
of the contributions from this boundary term. To specify this term we include an algebra
homomorphism 𝜌 that only needs to be defined piecewise on the components of the support
of 𝜕Ω. We could choose to dispense with the higher-dimensional covariance and simply add
different boundary terms specified only at the location of the poles, but it is convenient to
formally consider 𝜌 to be a defined as a piecewise map that takes values 𝜌|𝜋=𝛼,𝛽 = 𝜌𝛼,𝛽 .

To define a six-dimensional theory requires imposing conditions that ensure the vanishing
of the boundary variation∫

PT
𝜕Ω ∧ (Trg (𝛿𝒜 ∧ (𝒜 − 𝑞𝜌(ℬ)) + 𝑞𝜌(𝛿ℬ) ∧𝒜) − Trh(𝛿ℬ ∧ℬ)) . (E.5)

We are required to cancel a term involving the inner product on the algebra h with one
on g, which can be achieved by demanding

Trg(𝜌(𝑥)𝜌(𝑦))|𝛼,𝛽 = Trh(𝑥𝑦) ∀𝑥,𝑦 ∈ h . (E.6)

Note that as a consequence this implies

Trg(𝜌𝛼(𝑥)𝜌𝛼(𝑦)) = Trh(𝑥𝑦) = Trg(𝜌𝛽(𝑥)𝜌𝛽(𝑦)) , (E.7)

which is the familiar anomaly-free condition required to construct a gauge-invariant extension
to the WZW model with the gauge symmetry (E.1). With this condition satisfied, the
boundary term produced by variation is given by∫

PT
𝜕Ω ∧

(
Trg

(
𝛿𝒜 ∧ (𝒜 − 𝑞𝜌(ℬ)) + 𝑞𝜌(𝛿ℬ) ∧ (𝒜 − 𝑞−1 ∧ 𝜌(ℬ))

))
, (E.8)

and is set to zero by the conditions

𝒜
k
∣∣
𝛼,𝛽

= 0 , 𝒜
h
∣∣
𝛼,𝛽

= 𝜌(ℬ)
∣∣
𝛼,𝛽
, 𝜕0𝒜

h
∣∣
𝛼,𝛽

= 𝜌(𝜕0ℬ)
∣∣
𝛼,𝛽

. (E.9)

If we impose all of these conditions from the outset, the contribution from the explicit
boundary term 𝑆bdry[𝒜,ℬ] would vanish. However, from a four-dimensional perspective the
CP1-derivative boundary conditions lead to constraints relating derivatives of the fundamental
fields to the 4-dimensional gauge field 𝐵 that comes from ℬ. While these can be formally
solved for 𝐵, our aim is to construct a gauged IFT4 with a gauge field. Therefore, we
only impose the conditions 𝒜

k
∣∣
𝛼,𝛽

= 0 and 𝒜
h
∣∣
𝛼,𝛽

= 𝜌(ℬ)
∣∣
𝛼,𝛽

, which can be solved for the
4-dimensional gauge field 𝐴 that comes from 𝒜 and substituted into the Lagrangian without
concern. Doing this, we find that 𝑆bdry[𝒜,ℬ] does contribute, and when 𝑞 = 1 in particular,
it provides a gauge invariant completion of the action. Importantly, the CP1-derivative
boundary conditions that we have not imposed have not been forgotten, instead when 𝑞 = 1
they are recovered as on-shell equations in this four-dimensional theory. This provides an
alternative view of the procedure; when 𝑞 = 1 the explicit boundary term (E.4) is serving to
implement the constraints arising from 𝜕0𝒜

h
∣∣
𝛼,𝛽

= 𝜌(𝜕0ℬ)
∣∣
𝛼,𝛽

at the Lagrangian level. We can
see this explicitly by observing that if we just impose 𝒜

k
∣∣
𝛼,𝛽

= 0 and 𝒜
h
∣∣
𝛼,𝛽

= 𝜌(ℬ)
∣∣
𝛼,𝛽

then(
𝛿𝒜 ∧ (𝒜 − 𝑞𝜌(ℬ)) + 𝑞𝜌(𝛿ℬ) ∧𝒜 − 𝜌(𝛿ℬ) ∧ 𝜌(ℬ)

)
|𝛼,𝛽 = 0 ,

𝜕0
(
𝛿𝒜 ∧ (𝒜 − 𝑞𝜌(ℬ)) + 𝑞𝜌(𝛿ℬ) ∧𝒜 − 𝜌(𝛿ℬ) ∧ 𝜌(ℬ)

)
|𝛼,𝛽

= (1 − 𝑞)𝛿(𝜕0𝒜 − 𝜌(𝜕0ℬ)) ∧ 𝜌(ℬ)|𝛼,𝛽 + (1 + 𝑞)𝜌(𝛿ℬ) ∧ (𝜕0𝒜 − 𝜌(𝜕0ℬ))|𝛼,𝛽 .

(E.10)
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Therefore, for 𝑞 = 1 we see that the boundary equations of motion for ℬ are precisely the
CP1-derivative boundary conditions 𝜕0𝒜

h
∣∣
𝛼,𝛽

= 𝜌(𝜕0ℬ)
∣∣
𝛼,𝛽

.
The localisation proceeds as follows. First, we change parametrisation 𝒜 = 𝒜

′𝑔 and
ℬ = ℬ

′ℎ̂ fixing some of the redundancy by demanding that 𝒜
′ and ℬ

′ have no CP1 legs.
Second, we fix some of the residual symmetry preserved by the boundary conditions to
set 𝑔|𝛽 = ℎ̂|𝛼,𝛽 = id and 𝜕0ℎ̂|𝛼,𝛽 = 0. The remaining fields are 𝑔|𝛼 = 𝑔, 𝑔−1𝜕0𝑔|𝛼 = 𝑢,
𝑔−1𝜕0𝑔|𝛽 = 𝑢 and the four-dimensional gauge fields 𝐴 and 𝐵 that arise from 𝒜

′ and ℬ
′ once

their holomorphicity is imposed.
We may now directly apply the localisation formulae (D.14) to show that the hCS6 terms

localise, before imposing boundary conditions, to give

𝑆hCS6 [𝒜] ≃
∫
R4
𝜔𝛼,𝛽 ∧ Trg(𝐴𝑔 ∧ 𝑔−1d𝑔) − 𝜔𝛼,𝛽 ∧ℒWZ[𝑔]

+ 1
2 𝜇𝛼 ∧ Trg(𝐴𝑔 ∧ d𝑢) + 1

2 𝜇𝛽 ∧ Trg(𝐴 ∧ d𝑢) ,
(E.11)

while 𝑆hCS6 [ℬ] yields zero in this gauge. Let us first consider the terms involving 𝜔𝛼,𝛽 . Since
the gauge completion of the WZ term is

ℒgWZ[𝑔, 𝐵] = ℒWZ[𝑔] + Trg
(
𝑔−1d𝑔 ∧ 𝐵𝛼 + d𝑔𝑔−1 ∧ 𝐵𝛽 + 𝑔−1𝐵𝛽𝑔𝐵𝛼

)
, (E.12)

we may express them (trace implicit) as

𝜔𝛼,𝛽 ∧
(
𝐴𝑔 ∧ 𝑔−1d𝑔 −ℒWZ[𝑔]

)
= 𝜔𝛼,𝛽 ∧

(
𝐴𝑔 ∧ 𝑔−1d𝑔 −ℒgWZ[𝑔, 𝐵] + 𝑔−1d𝑔 ∧ 𝐵𝛼 + d𝑔𝑔−1𝐵𝛽 + 𝑔−1𝐵𝛽𝑔𝐵𝛼

)
= 𝜔𝛼,𝛽 ∧

(
(𝐴𝑔 − 𝐵𝛼) ∧ 𝑔−1∇𝑔 −ℒgWZ[𝑔, 𝐵] +𝐴𝑔 ∧ 𝐵𝛼 −𝐴 ∧ 𝐵𝛽

)
.

(E.13)

In differential form notation, the algebraic boundary conditions of eq. (E.9) become

𝐴 = 𝐵𝛽 − 𝑃(∇𝑔𝑔−1) , 𝐴𝑔 = 𝑃(𝑔−1∇𝑔) + 𝐵𝛼 . (E.14)

It follows that

𝜔𝛼,𝛽 ∧
(
𝐴𝑔 ∧ 𝑔−1d𝑔 −ℒWZ[𝑔]

)
= 𝜔𝛼,𝛽 ∧

(
𝑃(𝑔−1∇𝑔) ∧ 𝑔−1∇𝑔 −ℒgWZ[𝑔, 𝐵] +𝐴𝑔 ∧ 𝐵𝛼 −𝐴 ∧ 𝐵𝛽

)
= − 1

2 𝑔
−1∇𝑔 ∧★(𝑔−1∇𝑔) − 𝜔𝛼,𝛽 ∧

(
ℒgWZ[𝑔, 𝐵] −𝐴𝑔 ∧ 𝐵𝛼 +𝐴 ∧ 𝐵𝛽

)
.

(E.15)

Here, in the last line, we made use of the identity 𝜔 ∧ 𝑃(𝜎) ∧ 𝜎 = − 1
2 𝜎 ∧★𝜎 for a 1-form 𝜎.

To treat the terms involving 𝜇𝛼 and 𝜇𝛽 we combine the algebraic boundary conditions (E.14)
with the properties 𝜇𝛼 ∧ 𝑃(𝑋 ) = 𝜇𝛽 ∧ 𝑃(𝑋 ) = 0 such that 𝜇𝑎 ∧𝐴𝑔 = 𝜇𝛼𝐵𝛼 and 𝜇𝛽 ∧𝐴 = 𝜇𝛽𝐵𝛽 .
In summary, we find

𝑆hCS6 [𝒜] ≃
∫
R4

− 1
2 Trg

(
𝑔−1∇𝑔 ∧★𝑔−1∇𝑔

)
− 𝜔𝛼,𝛽 ∧

(
ℒgWZ[𝑔, 𝐵] + Trg(𝐴 ∧ 𝐵𝛽 −𝐴𝑔𝐵𝛼)

)
+ 1

2 𝜇𝛼 ∧ Tr(𝐵𝛼 ∧ d𝑢) + 1
2 𝜇𝛽 ∧ Tr(𝐵𝛽 ∧ d𝑢) .

(E.16)
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The localisation of the explicit boundary term yields, after using 𝜇𝑎 ∧𝐴𝑔 = 𝜇𝛼𝐵𝛼 ,

𝑆bdry[𝒜,ℬ] ≃ −𝑞
∫
R4
𝜔𝛼,𝛽 ∧ Trg(𝐴𝑔𝐵𝛼 −𝐴𝐵𝛽)

+ 1
2 𝜇𝛼 ∧ Trg((d𝑢 + [𝐵𝛼 , 𝑢])𝐵𝛼) + 1

2 𝜇𝛽 ∧ Trg((d𝑢 + [𝐵𝛽 , 𝑢])𝐵𝛽) .
(E.17)

The significance of the boundary term now becomes clear. It serves to ensure manifest gauge
invariance when we do not impose the CP1-derivative boundary conditions. When 𝑞 = 1
the terms 𝜔𝛼,𝛽 ∧ Tr(𝐴𝑔𝐵𝛼 − 𝐴𝐵𝛽) directly cancel. The contributions of the entire localised
action that are wedged against 𝜇𝛼 sum to

𝜇𝛼 ∧ Trg ((1 − 𝑞) d𝑢 ∧ 𝐵𝛼 + 2𝑞 𝑢𝐹 [𝐵]𝛼 − 2𝑞 d(𝐵𝛼𝑢)) . (E.18)

We see that for 𝑞 = 1 we find a gauge-invariant field strength together with a total derivative
term that we discard. The terms wedged against 𝜇𝛽 give a similar contribution. Hence
the fully localised action becomes

𝑆 ≃
∫
R4

− 1
2 Trg

(
𝑔−1∇𝑔 ∧★𝑔−1∇𝑔

)
− 𝜔𝛼,𝛽 ∧ℒgWZ[𝑔, 𝐵]

+ 𝜇𝛼 ∧ Trg(𝑢𝐹 [𝐵]𝛼) + 𝜇𝛽 ∧ Trg(𝑢𝐹 [𝐵]𝛽) .
(E.19)

Noting that the components of 𝑢 and 𝑢 in the complement of h decouple, we can view 𝑢

and 𝑢 as h-valued and write

𝑆 ≃
∫
R4

− 1
2 Trg

(
𝑔−1∇𝑔 ∧★𝑔−1∇𝑔

)
− 𝜔𝛼,𝛽 ∧ℒgWZ[𝑔, 𝐵]

+ 𝜇𝛼 ∧ Trh(𝑢𝐹 [𝐵]) + 𝜇𝛽 ∧ Trh(𝑢𝐹 [𝐵]) .
(E.20)
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