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Abstract
Networks are increasingly used to describe and analyse complex archaeological data 
in terms of nodes (archaeological sites or places) and edges (representing relation-
ships or connections between each pair of nodes). Network analysis can then be 
applied to express local and global properties of the system, including structure (e.g. 
modularity) or connectivity. However, the usually high amount of missing data in 
archaeology and the uncertainty they cause make it difficult to obtain meaningful 
and robust results from the statistical methods utilised in the field of network analy-
sis. Hence, we present in this paper manual and computational methods to (1) fill 
gaps in the settlement record and (2) reconstruct an ancient route system to retrieve 
a network that is as complete as possible. Our study focuses on the sites and routes, 
so-called hollow ways, in the Khabur Valley, Mesopotamia, during the Bronze and 
Iron Age as one of the most intensively surveyed areas worldwide. We were able to 
predict additional sites that were missing from the record as well as develop an inno-
vative hybrid approach to complement the partly preserved hollow way system by 
integrating a manual and computational procedure. The set of methods we used can 
be adapted to significantly enhance the description of many other cases, and with 
appropriate extensions successfully tackle almost any archaeological region.
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Introduction

Analysing and understanding the connectivity of human and non-human enti-
ties in socio-ecological systems can offer new perspectives on the functioning of 
human societies, present and past (Bell, 2020). Networks as a representation of 
connectivity and network analysis as a technique to quantify connectivity have 
become increasingly popular in archaeology to enhance our understanding of the 
archaeological record (Brughmans & Peeples, 2022; Brughmans et al., 2023). 
However, the potential for network analysis to be used in archaeology is often 
constrained by missing data in the archaeological record. Complete data sets 
can give unique insights into how and why people moved through the landscape, 
thereby revealing—or at least allowing interpretations of—the social processes 
hidden behind their physical remains. The overarching aim of this study is there-
fore to develop approaches to resolve the issue of missing archaeological data, i.e. 
fill the missing gaps, based on the physical network structure.

The hollow ways in Northern Mesopotamia are one of the best-preserved route 
systems worldwide and formed more than 5000  years ago. The temporal scope 
of the study covers the periods from the Early Bronze Age to the Iron Age (c. 
3000–600 BCE). Together with the settlements they connect, the hollow ways 
form a network that can be analysed with graph-theoretical tools or statistical 
models to improve our understanding of the past.

In the Khabur Valley in Mesopotamia, a region with fairly homogenous eleva-
tion, a route network of so-called hollow ways represents the human movement of 
the Bronze and Iron Age (de Gruchy & Cunliffe, 2020; Ur, 2003, 2009; Wilkin-
son, 1993). Unlike the Chacoan, Inca or Roman roads, they not only provide 
information about trade and exchange but also about the daily and regular short-
distance movement of people (Ur, 2009; Wilkinson, 1993). The hollow ways, as 
mere depressions on the surface, are prone to attenuation and destruction through 
geomorphological processes and land-use changes. Although the Mesopotamian 
hollow ways are still one of the least fragmented ancient road networks globally, 
their visible remains are fragmented, posing limitations on the application of net-
work-analytical methods.

Previous attempts of route reconstruction in the Khabur Valley include both, 
network approaches (Menze & Ur, 2012; Palmisano & Altaweel, 2015) and opti-
mal route models (de Gruchy, 2016). Menze and Ur (2012) converted the hol-
low way system, digitised from satellite imagery, into edges and use the sites as 
nodes. However, they do not provide a description about how they defined if a 
hollow way connects two sites or if and how they filled the gaps between the 
hollow ways. Palmisano and Altaweel (2015) developed a model to calculate traf-
fic between sites in the Khabur Valley and weighted traffic that coincided with 
hollow ways higher. Although they were able to define factors that impact hol-
low way location, they did not attempt to fill the gaps between them. De Gruchy 
(2016) calculated optimal paths based on variables that are known to affect route 
choice and quantified their influence on route choice according to their overlap 
with hollow ways. This approach allowed the significance of distinct factors on 
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hollow way formation to be determined but did not involve reconstruction of the 
complete hollow way system. Reconstructing the complete network opens a new 
suite of analytical tools to allow for more advanced analysis of network properties 
and controls on network formation and is therefore not only a necessary first step 
in the analysis but a valuable addition to the archaeological toolbox.

Road Reconstruction and Network Analysis in Archaeology

Roads, tracks and paths between settlements are physical evidence of the repeated 
movement of people, resources and material culture, and are one type of network 
edges that can be represented as a graph. The ancient road infrastructure can give 
invaluable insights into the structure and functioning of the social, economic and 
political networks it is embedded in. Studies about ancient infrastructure include 
research on mediaeval Russian waterway networks (Pitts, 1965), the Roman roads 
in Britain (Dicks, 1972) and the Chacoan road network in the US Southwest (Ebert 
& Hitchcock, 1980). Later studies have focused on road networks where constructed 
features such as (partial) pavements, bridges and retaining walls are easily recog-
nisable in the landscape, e.g. Roman roads in Europe (Dicks, 1972; Graham, 2006; 
Isaksen, 2008; Orengo & Livarda, 2016; Verhagen et al., 2019; Lewis, 2021) and 
the Inka roads in South America (Jenkins, 2001) as well as combining observed evi-
dence of roads with (least-cost path) reconstructions in study areas with reasonably 
well documented settlement systems (Amati et al., 2020; Bevan & Wilson, 2013; 
Brughmans et al., 2014; Ducke & Suchowska, 2021; Groenhuijzen & Verhagen, 
2017; Jiménez & Chapman, 2002; Tsirogiannis & Tsirogiannis, 2016).

Approaches to reconstruct fragmented ancient route systems, if there are any 
remains of the routes at all, include least-cost paths or optimal route models, based 
on topography but also including other physical and cultural variables (Lewis, 2023; 
McLean & Rubio-Campillo, 2022). A major challenge for investigating route net-
works in flat landscapes is that least-cost paths often rely on topography, especially 
slope. However, this focus on a single parameter (steepness) is unsuitable in rela-
tively flat areas such as the Khabur Valley. A combination of factors such as vegeta-
tion, surface roughness or micro-terrain might be able to provide plausible recon-
structions for ancient route systems in flat landscapes, but that information is not 
available for the Khabur Valley in the Bronze and Iron Age.

Other forms of edges in archaeological networks, i.e. not based on the physi-
cal evidence of roads, are usually either reconstructed by implementing spatial 
assumptions (e.g. geodesic distance or gravity models; see Jiménez & Chapman, 
2002; Rivers et al., 2013) or correlating node attributes (e.g. similarity of mate-
rial culture; see Cochrane & Lipo, 2010; Mills et al., 2013; Östborn & Gerd-
ing, 2014) but not utilising physical connections such as paths. Therefore, the 
approach presented in this paper takes advantage of the nature of the networks 
themselves, i.e. defining the physical hollow ways as edges, which differs from 
previous research in which edges between sites are estimated without using phys-
ical evidence. Instead of overestimating connections based on assumption about 



 D. Priß et al.   19  Page 4 of 33

proximity and interaction, we hence probably underestimate connections due to 
the attenuation of the hollow way record over time.

In archaeological networks, missing data can concern not only the visibility 
and incompleteness of edges (e.g. hollow ways) but also missing nodes (e.g. 
sites), their attributes or any combination of them and each type of missing data 
requires different treatment when trying to fill the gaps. Missing attributes can be, 
for example, dating of sites, population size, site size, demographic data or mate-
rial remains. Often, nodes and their attributes are missing for a significant num-
ber of sites (e.g. Lucas, 2012; Peeples & Mills, 2016; Perreault, 2019). Although 
there are suggestions on how to impute missing nodes or edges (Krause, 2019; 
Smith et al., 2022; van Buuren, 2018), the imputation of node or edge attributes 
is much more difficult, if not impossible and has not been addressed yet, in par-
ticular for archaeological networks (Brughmans & Peeples, 2022).

One of the most popular methods for archaeological site prediction has always 
been logistic regression that uses the presence and absence of sites as input, with 
environmental factors as independent variables, and calculates the likelihood 
of site presence based on these data (Judge and Sebastian, 1988; Wachtel et al., 
2018; Hazra, 2020; Li et al., 2022). However, the simulation of absence data or 
lack of true absence (“no site”) data has the potential of distorting the results 
significantly. The absence of archaeological evidence does not necessarily mean 
that there never existed a site at a specific location—the evidence might also have 
been destroyed or simply not been discovered yet. Hence, we can confirm the 
presence of a site if there are material remains, but we cannot prove its absence 
with certainty. Therefore, the approach currently deemed most accurate and reli-
able for archaeological site prediction is maximum entropy which accounts for 
the uncertainty and incompleteness of archaeological data by introducing pseudo-
absence data, thereby overcoming the lack of true-absence data (Li et al., 2022; 
Wachtel et al., 2018; Yaworsky et al., 2020).

White and Barber (2012) provide a different approach with their “From Eve-
rywhere to Everywhere” (FETE) model which uses Dijkstra’s popular shortest 
path algorithm to predict travel probabilities. They suggest that the model might 
also be used to predict settlement locations by identifying junctions of the mod-
elled trade routes. Using the FETE model, Crabtree et al. (2021)predicted opti-
mal “superhighways” of the first peopling of Sahul. Similar to White and Bar-
ber (2012), they suggest that high-traffic areas that have been frequently travelled 
potentially indicate the locations of settlements. The least-cost paths created by 
the FETE model could therefore be used as input for machine learning or linear 
regression models and significantly improve those methods for site prediction.

In order to achieve our aim to enhance the archaeological record in the Khabur 
Valley by predicting the locations of missing/unobservable network nodes (sites) 
from the observed network edges (hollow ways) and complementing the frag-
mented edges, we address the following two objectives: (1) to develop an algo-
rithm that uses ancient roads to predict the locations of unrecorded archaeologi-
cal settlements; and (2) to develop an approach to enhance the fragmented hollow 
way datasets, by connecting the path segments to retrieve the long-distance routes 
they once formed.
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Materials and Methods

Empirical Data

To add missing nodes (sites) to the archaeological network and complement the 
fragmented record of the edges (hollow ways), it was first necessary to compile 
available empirical datasets for hollow ways and settlement data for the study area.

Settlement Data

The settlement data compiled consist of the location of archaeological sites (Fig. 1) 
with information about their dating and size, where available. Datasets were com-
piled from the Fragile Crescent Project (FCP; (FCP, 2013)), the Ancient Near East-
ern placemarks project (ANE; (Jones, 2018)) and Kalaycı (Kalaycı, 2013).

The settlement data set from the FCP (FCP, 2013) was collected from surveys 
and excavations in the ancient Near East and was compiled in a comprehensive data-
base (Galiatsatos et al., 2009). Data from the FCP used in this study consist of set-
tlement locations, dating information and estimates of settlement size based on sur-
veys (partly supplemented by excavations and remote sensing) and cover the Bronze 
Age to Iron Age (c. 3000–600 BCE). Those periods were chosen because they pro-
vide abundant archaeological evidence for sites and their trajectories over time as 

Fig. 1  Overview of site data employed in this study. Data sets were compiled by the Fragile Crescent 
Project (FCP), the Ancient Near Eastern placemarks (ANE) and by Kalaycı
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extensive surveys have been carried out to uncover those material remains. The FCP 
data are the most complete and reliable data used in this study because they are 
based on fieldwork informed by remote sensing. For the relevant periods and region, 
the results of four surveys are included in the analysis: the North Jazira Survey (NJS) 
(Wilkinson & Tucker, 1995), the Leilan Regional Survey (LLN) (Weiss, 2014), the 
Tell Hamoukar Survey (THS) (Ur, 2010) and the Tell Beydar Survey (TBS) (Ur & 
Wilkinson, 2008). For an overview of the basic survey information, see Table 1.

The data within the FCP reflect the research aims and methods of the individual 
projects: the NJS focused on a 475  m2 area in north-west Iraq which was about to 
undergo significant development caused by irrigation methods (Wilkinson & Tucker, 
1995). The LLN started as a survey in a radius of 15 km around Tell Leilan and in 
its last phase, was extended to include a 1650  km2 area on a transect from the Turk-
ish to the Iraqi border (Ristvet, 2005; Weiss, 1985, 2014). The THS covers an area 
of 125  m2 just a few kilometres northwest of the NJS and was primarily initiated to 
test new methodologies (Ur, 2010). The TBS targeted Tell Beydar and its hinterland 
within a radius of 12  km, covering 450  km2 (Ur & Wilkinson, 2008; Wilkinson, 
2000). All four surveys are hence spatially restricted (see distribution of FCP sites 
in Fig. 1) and the space between them has not been intensively surveyed yet (see 
Lyonnet (1996) and Meijer (1986) for large but low intensity surveys in the region), 
which introduces a high amount of missing data paired with the high-resolution data 
gathered within the surveys.

Further information about site locations was drawn from the ANE project (Jones, 
2018; Pedersen, 2012), gathered using survey and excavation reports and plans as 
well as aerial photos and a variety of maps (Pedersen et al., 2010). Place names 
(modern and/or ancient) are available for most of the sites but no dating or sizes. 
Hence, the data need to be used with caution because sites may belong to any period 
and site names might be incorrect. This data set is therefore used primarily to add 
site names to the FCP data, if appropriate, and to include sites in the data set for this 
study for which dating and/or size can be added from the literature and/or remote 
sensing.

The Kalaycı (2013, 2022) data used CORONA satellite images to identify ancient 
settlements, and estimate the visible extent of ancient settlement mounds. This 
approach has some limitations: first, the settlement sizes are based on the observ-
able extent of sites which may not represent the ancient settlement size in specific 
periods. Second, site names and dating are not available from remote sensing which 
makes it difficult to relate the sizes to the respective ancient site. Therefore, the data 

Table 1  Overview of the surveys recorded in the Fragile Crescent Project and used in this study

Survey name Abbreviation Field seasons Area Site count

North Jazira Survey NJS 1986–1990 475  km2 184
Leilan Regional Survey LLN 1984, 1987, 1995, 1997 1650  km2 335
Tell Hamoukar Survey THS 1999–2001 125  km2 60
Tell Beydar Survey TBS 1997–1998 450  km2 83
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is used, with a certain level of caution, to add size information to FCP sites but not 
to add additional sites to the data set. Size information is available for all sites in 
Kalaycı’s data set and is therefore a valuable supplement for the FCP data, where 
site sizes are often missing.

An overview of the settlement data in the three data sets listed above is given in 
Table 2. The ANE and Kalaycı data sets cover a region much larger than the focal 
area of this study and have been spatially subsampled to the extent of the hollow 
ways. Figure 1 shows the complete data sets as illustrated in Table 2 while only the 
FCP sites are used in this study, complemented by information from the two other 
data sets.

In order to enhance the site attribute data, the site extent was added when it was 
possible to gauge it from satellite images, providing an estimate for the maximum 
extent of sites. However, sites might have been smaller at any point in time; hence, 
those estimates are a rough proxy for site size. Dating information was added when 
it could be determined from the literature (e.g. Mallowan (1936), McMahon (2009), 
McMahon et al. (2001) for Chagar Bazar; Pfälzner (1990) for Tell Bderi; Lebeau 
(1993) for Tell Melebyia; Bieliński (1992) for Tell Rad Shaqrah; or Hole (1999) for 
Tell Ziyade, amongst other excavation reports).

A total of 489 sites were available from the FCP, for which we defined the cen-
troids of each site. Settlement size and names in the FCP data are only available 
for sites that were sufficiently investigated to reveal their extent or that were men-
tioned in historic documents. The FCP data was therefore supplemented with names 
from ANE and sizes from Kalaycı. The time frame provided by the dating of the 
sites consists of various sub-periods, defined by regional chronologies. Therefore, 
to make the data more comparable, those sub-periods were merged into six broader 
periods (Table 3). Periods are derived from pottery collected at the sites by survey-
ors and excavators and are tied into standard local sequences (see Ur, 2010 for the 
most recent version).

Table 2  Overview of attributes 
available in the complete data 
sets from the Fragile Crescent 
Project (FCP), Ancient Near 
Eastern placemarks (ANE) and 
Kalaycı

Data Set Total sites Dating known Size known

FCP 489 390 351
ANE 359 0 0
Kalaycı 910 0 910

Table 3  Definition of periods 
for this study

Period Abbreviation Period dates

Early Bronze Age 1 EBA 1 c. 3000–2500 BCE
Early Bronze Age 2 EBA 2 c. 2500–2000 BCE
Middle Bronze Age MBA c. 2000–1600 BCE
Late Bronze Age LBA c. 1600–1200 BCE
Iron Age 1 IA 1 c. 1200–900 BCE
Iron Age 2 IA 2 c. 900–600 BCE
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Hollow Ways Data

Data for the hollow ways are from Ur (2008). Although the Mesopotamian hol-
low ways have not been in continuous use since their formation, likely in the 
Early Bronze Age or Late Chalcolithic, some of them have survived and can still 
be observed from satellite images as broad (50–120 m) and shallow (up to 0.5 m) 
depressions (Ur, 2009; Wilkinson et al., 2010). Their distinctive appearance as dark 
lines with light borders makes it possible to distinguish them from other features 
such as recent roads or canals (Casana, 2013; Ur, 2009; Wilkinson et al., 2010). 
The hollow ways were digitised from CORONA satellite images taken in the 
1960s (Ur, 2003, 2010) and therefore represent their modern fragmented remains 
(Fig.  2). It should be noted that human-induced bias during the visual interpreta-
tion of the imagery could have impacted the resulting hollow way dataset. Since the 
1960s, the region has changed significantly due to increased development and the 
introduction of mechanised agriculture and large-scale irrigation measures which 
destroyed a considerable amount of archaeological remains (de Gruchy & Cunliffe, 
2020). Therefore, more recent satellite and aerial images generally lack the rich and 
detailed archaeological landscape that was still observable on the CORONA images. 
Conversely, CORONA images have a lower resolution than most modern imagery 
and are greyscale versions of images collected using the visible spectrum which 
impedes the use of more complex computational enhancements available through 
current multi-band images.

Fig. 2  Research area with mapped out hollow ways (Ur, 2018)
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Bronze and Iron Age hollow ways in Mesopotamia have been discovered in three 
regions, with several studies describing and investigating them: Northwest Syria 
(Casana, 2013), Southern Mesopotamia (Jotheri et al., 2019) and Northern Meso-
potamia (de Gruchy, 2016; de Gruchy & Cunliffe, 2020; Ur, 2003, 2009; Wilkinson, 
1993). Here, we focus on the hollow ways in the Greater Khabur Valley in Northern 
Mesopotamia, bounded by what is today the Syrian-Turkish border to the north, the 
Syrian-Iraqi border to the east, the Jebel Sinjar to the south and the Khabur river to 
the west.

The hollow ways in Northern Mesopotamia exhibit a characteristic behaviour: 
they radiate from the settlements which can help to identify archaeological sites 
based on the hollow ways and gives an indication of their age. Hollow ways are 
assumed to be at least as old as the latest phase of the settlements they radiate from 
which can serve as a terminus post quem (Wilkinson et al., 2010). The hollow ways 
can be broadly separated into two categories: short ones that fade out after a few 
kilometres and long-distance routes (Ur, 2009; Wilkinson, 1993; Wilkinson et al., 
2010). The short hollow ways represent the daily movement of the farmers and herd-
ers that went to the adjacent fields or led their livestock to pastures beyond the agri-
cultural area (Ur & Wilkinson, 2008; Wilkinson, 1993). The long-distance routes 
emerged through regular interaction such as trade and exchange between sites (Ur 
& Wilkinson, 2008; Wilkinson, 1993). However, the record is patchy and the routes 
are segmented into 6531 fragments of which many can be identified by eye as parts 
of potential long-distance routes, sometimes interrupted by hundreds of metres.

Methods for Site Prediction and Hollow Way Reconstruction

Settlements—Predicting Missing Site Locations (Site Algorithm)

To fulfil objective 1, i.e. predicting the location of missing sites, we developed an 
algorithm to computationally find junctions of multiple hollow ways, indicating the 
location of an archaeological site. To do this, the end points of every hollow way 
are selected to create a cone-shaped search area facing away from the hollow way 
in which to identify potential settlements (Fig. 3). The width of the cone is defined 
by the offset angle, a, on either side of the hollow way direction, and the length, d, 
is the radius of the cone. A number of trials were carried out using a split-sample 
approach and optimised to capture already known sites. It was found that the opti-
mal parameter values are a = 30° and d = 800 m (see supplements Fig. 11 – Fig. 15).

We use the Woods-Saxon shape (WSS) to define a decay function (Woods & 
Saxon, 1954). The WSS has been used widely in nuclear physics to model the den-
sity of a nucleus, i.e. the probability of finding a nucleon (the constituent of the 
nucleus) at a given location from the centre of that nucleus (Jones, 1970). The WSS 
shape can be translated to the context of this study: the centre of the nucleus is the 
end point of the hollow way and we are looking for a nucleon (a site) in the vicin-
ity of the end point. The probability of finding a site is constant near the end point 
and then decreases with increasing distance from the end point and with increasing 
offset from the orientation of the hollow way. Hence, the WSS value provides an 
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estimate of finding a settlement within the search area. This can be computed for any 
point and in case of an overlap of WSS cones, the sum of WSS values is computed 
which can therefore increase and pass an appropriately chosen threshold. The higher 
the value of a grid cell, the higher the likelihood of a settlement in this cell.

We use a bootstrapping approach to define a threshold for deciding whether a 
settlement is identified: we apply the method for hollow ways around known set-
tlements and set the parameters of the WSS and the threshold for identification of a 
settlement to correctly identify the known settlements. We assign a value based on 
the decay function outlined in Eq. 1 (with the parameters fixed by bootstrapping) to 
every grid cell in the search area.

The WSS is controlled by the decay length R which is the distance at which the 
potential is half of the value at the centre (Jones, 1970). The function used to cal-
culate the likelihood value, Z, for each grid point is a multiplication of two Woods-
Saxon functions, where the first one considers the distance of the grid point and the 
second one the angle.

where:

Z  is the calculated value of the product of the two WSS form factors at the point 
within the cone defined by r and �;

θ  is the angle between the hollow way direction and the line connecting the grid 
point to the hollow way end point, in the range [-a a] (see Fig. 3);

(1)Z(�, r) =

(
1

1 + e
r−R

b

)
∗

(
1

1 + e

|�|−Θ
�

)

Fig. 3  Schematic drawing of the search area to find missing sites: from the end points of each hollow, a 
conical search area is defined with radius d and offset a from the orientation of the hollow way
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r  is the distance between the grid point and the hollow way end point in the range 
[0 d] (see Fig. 3);

R  and Θ are constants, defining the range of constant probability in the radial and 
angular variation, respectively;

b  and β are constants, defining the decay rate of the WSS for large values of r and 
θ respectively.

We will use conventional units, i.e. meter (m) for length (variable r and constants 
R and b) and degree (°) for angle (variable � , constants Θ and β and range limit a). 
When only hollow ways are used as input, there is no preferred angular direction; 
therefore, only the modulus of the deviation from the hollow way direction is rel-
evant; typical estimates for optimal values for Θ are found to be much higher than 
the range of θ values we used here (up to 30°), which implies that as a first approxi-
mation the angular WSS can be removed (replaced by unity).

We kept the second (angular) WSS in Eq. 1 to indicate how the method can be 
extended to reinforce the influence of known settlements. The angular WSS can 
also be effective if an iterative approached is used, to enhance the influence of puta-
tive settlements identified by our method in a previous iteration. The radial fixed 
parameters we determined, by bootstrapping optimisation (see supplements Fig. 16 
– Fig. 22), are R = 250 and b = 750. Those values seem reasonable: initially, the WSS 
has a high and fairly constant value, which decreases as r becomes comparable to R, 
reducing to half its initial value when r = R. It then decreases more rapidly, becom-
ing nearly a quarter of its original value about 1 km away from the hollow way end.

The areas for potential sites are identified by determining a threshold that 
describes the statistically significant minimum Z-value. For this purpose, we focus 
on non-zero values of Z, excluding zero values because they represent areas without 
estimations. We calculate the mean and standard deviation of these non-zero values 
to establish the baseline statistics of our dataset. We then quantify how much each 
point deviates from the mean in terms of standard deviations. Setting a p-value at 
0.05, we apply the Bonferroni correction by dividing this p-value by the number of 
non-zero values, which adjusts our threshold to minimise the risk of false positives. 
Using this corrected p-value, we determine the threshold and identify regions where 
Z exceeds this threshold. In order to visually highlight the results, we plot a circle 
centred around the point with the highest Z-value in each significant region, filling it 
with the colour corresponding to the Z-value at that point.

Hollow Ways—Connecting the Fragments

Due to the incomplete preservation of the hollow ways, evaluating which settle-
ments were connected by them is difficult. Hence, it is necessary to connect the indi-
vidual route fragments. In the following sections, we describe procedures to fill the 
gaps in the complete hollow way data set both manually and computationally. To 
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connect the fragmented hollow ways systematically, we assumed the following: first, 
distance is important, i.e. only hollow ways that are within a certain distance of each 
other have the potential to be connected. Second, orientation is important, i.e. only 
hollow ways that share a similar orientation have the potential to be connected.

The manual approach, whereby hollow ways are connected by manually digitis-
ing missing links, benefits from the ability of the digitiser to make an informed deci-
sion (based on an understanding of the system) about whether it is reasonable (or 
not) for two hollow ways to be connected. For example, if two hollow way fragments 
are separated by agricultural fields with a higher distance than given in the param-
eter specifications for the computational procedure, it can be assumed that they once 
formed a route that was partially destroyed by agricultural activities such as plough-
ing (Fig. 4a). On the other hand, if two fragments are close and have (roughly) the 
same orientation but connecting them would result in a sharp bend, it is not very 
likely that those fragments were part of the same route because humans naturally 
avoid too sharp turns and bends (Fig. 4b).

Conversely, the computational approach benefits from a lack of human bias 
and computationally links fragmented hollow ways according to the pre-defined 
rules. We also explored a third approach—a combination of both the manual and 

Fig. 4  Examples for connecting hollow ways. (a) Two hollow way fragments are separated by an 
obstruction such as agricultural fields and it would make sense to connect them although the distance 
might be higher than defined in the parameters; (b) two hollow way fragments fulfil the parameter 
requirements but a connection would be unreasonable in terms of human movement because humans in 
general avoid sharp bends and turns
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computational approaches, with the intention of benefitting from the “human knowl-
edge” component of the manual approach, alongside the automated and systematic 
benefits of the computational approach.

Manual Approach to Connect Hollow Ways

Settlements were connected to their adjacent hollow ways as well as to neighbour-
ing sites, both within a distance of 2000  m. This distance was chosen to account 
for slight shifts in site location over time and varying site sizes, because settlement 
coordinates represent the centroid of the settlement rather than their extent. The 
radius of 2000 m represents the highest distance between the end points of radiat-
ing hollow ways and the centroids of the sites. Neighbouring sites within this radius 
were assumed to be in regular contact due to their proximity.

As hollow ways possibly also run through (abandoned) sites, hollow ways were 
connected even if they cross a settlement. The maximum distance to connect two 
hollow ways was set to 3000 m as space between hollow ways might be more dis-
turbed in the flat landscape than the area in or around settlements, leading to larger 
gaps between hollow way fragments than between hollow way fragments and sites. 
However, in some cases (less than 1% of all manual connections), a connection was 
reasonable although the distance between fragments exceeded 3000  m (see, for 
example, Fig. 4a). Hence, the actual maximum distance for manual connections is 
5500 m with 99% of connections being less than 3000 m long.

Extracting networks from the hollow way dataset for each period was done manu-
ally as well. The sites for the respective period are projected on top of the hollow 
way network, and for every site, the next neighbours are recorded in the form of an 
edgelist. Neighbours are defined as sites to which the current one is directly con-
nected by a hollow way.

Computational Approach to Connect Hollow Ways (Hollow Way Algorithm)

In addition to the manual approach, a computational procedure was developed to 
reduce potential bias and make the approach reproducible. Two threshold distances 
were chosen to connect the hollow ways automatically. Comparing those two sets 
of parameter values enables us to assess which of them results in a more realis-
tic network with regard to the archaeological record. The first one is based on the 
initial parameter for distance in the manual network (3000  m, computational net-
work 2), and the second on the actual maximum distance in the manual network 
(5500 m, computational network 1). The offset from the orientation of the hollow 
way (angle) was set to a high value for small distances and a low value for large dis-
tances. Hence, with increasing distance, the offset between two hollow ways needs 
to be small in order for them to be connected. Those parameter values were chosen 
because the higher distance increases the covered area significantly if the angles are 
the same.

Each iteration consists of three steps: the connection of sites and hollow ways, the 
connection of hollow ways with small distance and large angle and the connection of 
hollow ways with large distance and small angle (Fig. 5). In the first step, a new line 
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is drawn between a site and a hollow way if the distance parameter (d < = 2000 m) 
is met, which increases the length of the hollow way and makes the site the new 
endpoint of this hollow way. In the second step, the orientation of each hollow way 
is calculated and a conical search area was selected around each endpoint of every 
hollow way with the values for angle (a) and distance (d) and new lines were drawn 
between the current hollow way and all hollow ways within the search area that had 
the same orientation. In the third step, the procedure of step 2 was repeated but with 
different parameter values for angle (a) and distance (d). For each iteration, the net-
work generated from the previous iteration was used.

After each iteration, the network was cleaned; i.e. multiple edges (edges that 
connect the same two nodes), self-loops (edges that connect one node with itself) 
and pseudo-nodes (nodes that are redundant because they are located on an edge 
between two sites but are not a site themselves) were removed and intersection 
structures compressed into single nodes. The creation of the edgelist for the individ-
ual period networks was automated as well. First, all simple paths between all sites 
of the individual periods were extracted, with the length of paths restricted to avoid 
infinite paths. Then, the nodes of each path were added to an edgelist so that direct 
and indirect paths are equally captured. Removing of duplicate entries in the edgelist 
is necessary because all simple paths between all pairs of nodes are recorded, pro-
ducing the same connections several times.

Hybrid Networks

The hybrid networks were constructed by combining the manual and the compu-
tational networks. The computational network where d = 3000  m and a = 30° was 
chosen to generate the hybrid network as it better reflected the archaeological record 
in terms of the representation of important sites and had less superfluous connec-
tions (see the “Results” section). The hybrid networks were produced by adding the 

Fig. 5  Flow diagram of the algorithm procedure, including parameter values (d, distance; a, angle)
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adjacency matrices of the manual and the computational network. In total, 24 net-
works were generated, one for every of the six periods for (a) the manual, (b) the 
two computational and (c) the hybrid approach.

Comparing the Manual and Computational Approach to Connect the Hollow Ways

To evaluate how well the manual and computational approaches replicate the net-
work structure, we chose two different methods: first, the sizes of the manual and 
computational networks (number of nodes and number of edges) were compared 
and the percentage of matching edges between the manual and the two computa-
tional networks were assessed to evaluate how much the networks differ. Further-
more, local network metrics for a selection of well-studied sites, for which detailed 
information about their dating, development over time and size are available, were 
evaluated. Those sites are large and well-understood sites which have been mostly 
excavated and which provide evidence for significant changes in status over the 
study period, in contrast to smaller sites that have only been surveyed but never 
excavated. We have a clear grasp of what we think these sites should be doing in 
relation to the network. Hence, the trajectories of those sites can be determined for 
most, if not all, of the relevant periods for this study, thereby providing the basis 
to evaluate the approaches. The selected sites are Tell Leilan (LLN) (see Ristvet, 
2005), Mohammed Diyab (LLN) (see Ristvet, 2005), Tell Beydar (TBS) (see Ur & 
Wilkinson, 2008), Tell Hamoukar (THS) (see Ur, 2010), Khirbet al- ‘Abd (THS) 
(see Ur, 2010) and Tell Hawa (NJS) (see Wilkinson & Tucker, 1995).

For the comparison of the selected sites, degree and betweenness centrality for 
each site in each period were calculated as these metrics represent the number of 
edges of a site (degree) and the flows that go through it, relative to all other nodes 
in the network (betweenness). Our assumption is that if a site was a centre (i.e. the 
largest site in the region) in one period, its degree and betweenness centrality should 
be high, indicating that the site had a central function in the network. We assessed 
if betweenness centrality and degree are in a quartile that reflects its importance. 
Hence, if a site was the main centre of the survey region, its degree and betweenness 
centrality should be in the 4th quartile, and if a site was a large site or major centre 
(together with other sites), its betweenness centrality and degree should be in the 4th 
or 3rd quartile. For every site, its importance (based on the archaeological record) 
was determined and cross-checked with its betweenness centrality and degree. The 
data for the sites and their importance was drawn from the surveys utilised in this 
study (Ristvet, 2005; Ur, 2010; Ur & Wilkinson, 2008; Wilkinson & Tucker, 1995).

Results

Verifying Predicted Sites

The results of the Site Algorithm can be illustrated as a heatmap with higher values 
of Z indicating a higher likelihood of a site. From this heatmap, centroid coordinates 
of areas with values higher than the threshold are extracted and cross-checked with 
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recent and historic aerial and satellite images. By cross-checking the locations with 
CORONA and Google Earth images from the last 40 years (NASA/USGS Landsat 7 
satellite images), we can confirm the location of a site.

The resulting heatmap of the Site Algorithm is presented in Fig.  6. Despite 
using the centroid as a proxy for an area, matching the 176 predicted sites with the 
recorded ones was straightforward because the offset between them was very low, in 
most cases below 100 m with a maximum of c. 300 m.

The site algorithm detected 176 sites in the study area. The area of the predicted 
sites was cropped to match the area of the FCP data to render the evaluation more 
comparable; hence, only 128 predicted sites were included for the comparison 
with the FCP data. In summary, 17.2 to 64.2% can be matched with known sites 
(Table 4). Around 4.5 to 17.0% of known sites have been detected by the algorithm. 
Only 39 of the predicted sites could not be confirmed by either matching them with 
the known sites or by remote sensing and we were able to add 19 previously unre-
corded sites that were visible on CORONA and/or Google Earth satellite images.

Hollow Ways (Edges)

The manually and computationally reconstructed hollow way networks are inher-
ently different (Fig. 7). The manual network contains fewer connections between 
the same two hollow way fragments or between sites and the same hollow way 
fragments and fewer duplicated lines, lines that turn and bend unreasonably or 
zigzag (superfluous connections), and the routes are more easily recognisable. 
The computational network 2 with d = 3000  m and a = 30° is denser than the 

Fig. 6  Result of the Site Algorithm for a subset of the hollow way system. Higher values indicate higher 
likelihood of a site. Areas with medium to high likelihood are enhanced in the main figure for better vis-
ibility while the inset illustrates the initial results. Known settlements in the region are marked by a grey “x”
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computational network 1 with d = 5500 m and a = 10°; i.e. more connections were 
generated with smaller distance and larger angle parameters.

We produced period-specific edgelists for each of the 18 networks (six period-
specific manual networks and six period-specific networks for both of the com-
putational approaches) that represent only direct connections between nodes (see 
Fig. 8 for the MBA which will be used to illustrate the results).

The number of nodes and edges varies between the manual and computational 
approaches with the manual networks usually having fewer edges and more nodes 
(Fig. 8, Table 5). In general, there are on average 15% fewer nodes in the com-
putational networks but their relative numbers are similar; i.e. the MBA network 
is always the one with most nodes while EBA1 always has least nodes. On aver-
age, between 30 and 40% of the edges in the manual and computational networks 
overlap. Furthermore, the edges in the computational networks are mainly from 
short-distance routes while long-distance connections are sparse (for the remain-
der of this section, distance will be used in terms of physical geodesic distance, 
not as graph-theoretic distance, i.e. path length). In the manual networks, both 
kinds of links are present but with fewer long-distance connections.

Table 4  Overview of the results of the Site Algorithm: Percentage of matches between known sites from 
either of the utilised data sets (FCP, ANE, Kalaycı) and the sites predicted by the Site Algorithm, per-
centage of predicted sites that could be confirmed and added as new sites and predicted sites that could 
not be confirmed (false positive) as well as the percentage of matches in the individual FCP surveys. 
Note that for the evaluation of matches with the FCP data, the area of the predicted sites was cropped to 
the area of the FCP data; hence, less predicted sites are included

Match No match Total predicted 
sites

Percentage 
matched

Percentage of predicted sites that match known sites
     FCP 22 30 52 42.31
     ANE 61 115 176 34.66
     Kalaycı 113 63 176 64.20
Percentage of predicted confirmed and unconfirmed sites
     Confirmed sites (additions) 19 176 10.80
     Unconfirmed sites (potential false       

     positives)
39 176 22.16

Percentage of known sites that match predicted sites
     FCP 22 467 489 4.50
     ANE 61 298 359 16.99
     Kalaycı 113 797 910 12.42
Percentage of FCP sites detected for individual FCP surveys
     NJS 8 174 182 4.40
     LLN 5 196 201 2.49
     TBS 7 45 52 13.46
     THS 2 52 54 3.70
     Sum 22 467 489 4.50
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Fig. 7  Results for a manually connected network, b computational network 1 with d = 5500  m and 
a = 10° and c computational network 2 with d = 3000 m and a = 30°

Fig. 8  Graphs produced from the respective edgelists for the manual, computational 1 (d = 5500  m, 
a = 10°) and computational 2 (d = 3000 m, a = 30°) network
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In the manual networks, between 3 and 14% of the nodes are isolates (except 
MBA with 20% isolates). Isolates are sites that coincide with a point on a hollow 
way and are therefore included in the network but that are not connected to any 
other site. In the computational networks, the number of isolates is within a range 
of 18–23% and 15–36%, respectively (Table 6).

The comparison of the selected sites shows large variation between the 
approaches. We exemplify the results for site importance with Tell Beydar, a site 
that was occupied in most of the periods analysed here (Table  7). Tell Beydar 
was one of the largest sites in the TBS region during EBA1 and EBA2. It was 
destroyed in the MBA with a long hiatus afterwards with barely any evidence of 
occupation. Occupation resumed in the LBA and Tell Beydar remained a small 
site during this period, regaining importance in the Iron Age. Hence, its degree 
and betweenness centrality should be in the 4th quartile in EBA1 and EBA2, the 
site should be not in the network in the MBA and degree and betweenness cen-
trality should be in the 2nd or 3rd quartile in the LBA and in the 4th or 3rd quar-
tile in IA1 and IA2.

In the manual network, the importance of Tell Beydar is reasonably well cap-
tured, although betweenness in EBA1 and EBA2 is only in the 2nd quartile and 
too high (4th quartile) in the LBA. The computational network 2 produced val-
ues that diverged more than the manual network from our expectations of how 
the site would behave, with degree and betweenness being 0 in EBA1 and EBA2 
and degree 1 and betweenness 0 in IA2. The importance of Tell Beydar in the 
LBA and IA1 is well captured. In the computational network 1, only the LBA is 
captured reasonably well. In all three networks, the site is excluded in the MBA, 
reflecting the hiatus after its destruction. Results for the other sites are similar 
and presented in the supplements (Table 9 – Table 19).

The hybrid network was generated by adding the matrices of the manual and 
computational network 2. In those matrices, 1 indicates an edge between two sites 
and 0 indicates that there is no edge between two sites. Therefore, in the resulting 
matrix, 2 shows that the edge between the respective sites exists in both the man-
ual and computational network and 1 represents an edge that is derived from only 
one of those networks. The matrix for the hybrid network was then converted into 
a network graph. The resulting graph for the MBA is presented in Fig. 9 along-
side the graphs of the manual and computational networks. Graphs for the other 
periods are available in the supplements (Fig. 23 – Fig. 28).

Table 6  Number and percentage 
of isolates in the manual 
network, computational network 
1 (d = 5500 m, a = 10°) and 
computational network 2 
(d = 3000 m, a = 30°)

Period Manual Comp 1 Comp 2

EBA1 15 (11%) 28 (23%) 42 (36%)
EBA2 18 (11%) 28 (20%) 46 (34%)
MBA 52 (20%) 35 (19%) 29 (15%)
LBA 20 (14%) 25 (21%) 37 (31%)
IA1 14 (10%) 26 (20%) 43 (34%)
IA2 5 (3%) 30 (18%) 35 (22%)
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The results for the importance of selected sites are captured reasonably well, not 
as good as in the manual network but better than in the computational network. The 
results for the hybrid network are generally slightly worse than for the manual net-
work but have improved compared to the computational network. Table 8 shows the 
degree and betweenness centrality for Tell Beydar; the results for the other sites can 
be accessed in the supplements (Table 9—Table 19). Degree and betweenness cen-
trality for all periods in the hybrid network are captured not perfectly but reason-
ably well, similar to the manual network. The only difference to the manual network 
is degree in EBA1 which is slightly less well captured in the hybrid network (2nd 
instead of 3rd quartile).

Discussion

Site Prediction

The sites predicted by the Site Algorithm had only a small offset to known sites 
with a maximum of 300 m, which suggests that the predictions are accurate and that 
using proxy centroid coordinates is reasonable. Between 34 and 64% of the recorded 
sites could be predicted by the algorithm (Table 4).

The high correspondence between the FCP data and the predicted sites (42.3%) is 
caused by the data source: the FCP compiled data from survey and excavation pro-
jects which were intensive and recovered as complete as possible record of the four 
survey regions. Hence, it can be assumed that a high percentage of sites has been 
discovered, in particular large tells which are often associated with hollow ways. 

Fig. 9  Network graphs for the manual, hybrid and computational approaches
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However, if the sites have no radiating hollow ways around them, the algorithm was 
not able to predict them, which explains that more than half of the FCP sites could 
not be predicted.

The high correspondence with predicted sites and those in Kalaycı’s data set 
(64.2%) can be explained by the data collection via remote sensing and extensive 
spatial coverage. Settlement mounds, or tells, are distinctive features, clearly vis-
ible on satellite or aerial images (Fig. 10). Most of the tells, in particular the largest 
ones, date to the Early Bronze Age (Ristvet, 2005; Wilkinson, 2000), when the hol-
low ways are assumed to have been in use. This relationship with the hollow ways 
explains the high correspondence with the predicted sites.

The data collection of the ANE sites is the reason for the 34.7% matching 
between them and the predicted sites: as with the FCP data base, the ANE place-
marks mainly rely on surveyed and published data, but from different sources, so 
that the two data sets are different. The FCP data have been subset to only include 
sites from the relevant periods (Bronze Age to Iron Age) which is not possible for 
the ANE sites because no dating information are available (except those added in 
this study). Therefore, although the Site Algorithm detected more ANE than FCP 
sites, the uncertainty is much higher. In summary, the Site Algorithm to predict 
potential locations of archaeological sites performs generally well in areas where 
hollow ways are present and we were able to add 19 more sites to the data set com-
piled from the FCP, ANE and Kalaycı’s data.

With the introduction of more and more computational tools in archaeology, 
machine and deep learning have become a means to train models for site predic-
tion (Bachagha et al., 2023; Ben-Romdhane et al., 2023; Garcia-Molsosa et al., 
2021; Orengo et al., 2020). The sparseness and incompleteness of the archaeological 
record provide a good case study for those approaches because those models can be 
trained to identify data gaps on the basis of observed data. However, for machine 
and deep learning to be successful and meaningful for archaeological site predic-
tion, large training data sets of site locations in various environments are neces-
sary, but those are still rare globally. A combination of LCP modelling using the 

Fig. 10  The Bronze Age settlement Tell Brak from the ground (left) and on CORONA images (right)
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FETE model as presented by White and Barber (2012) and Crabtree et al. (2021)
and machine learning or linear regression would be a more efficient and less com-
putationally demanding alternative. The approach presented here adds further to this 
line of research by including the partial evidence from known route segments and 
predicting the most probable site locations based on route intersections. The com-
bination of remote sensing and machine learning is promising as well but also has 
its limitations such as the resolution of satellite and LiDAR images (Ben-Romdhane 
et al., 2023), the preservation of archaeological features (Orengo et al., 2020) or the 
difficulty of defining rules for the machine learning model that are precise enough so 
that they can be distinguished from other landscape features.

All those methods are accurate to varying degrees but they all have some com-
mon disadvantages: they rely on additional data such as satellite images and 
therefore the precision of the models is restricted to the resolution of these data. 
Moreover, although the models include environmental factors like slope, soil char-
acteristics or vicinity to water, they usually ignore other landscape features such as 
paths, canals or other landmarks that could give further insights into the distribution 
of settlements.

The computational procedure for site prediction presented in this paper therefore 
uses ancient routes to predict sites in contrast to previous approaches that use sites 
to estimate the routes between them. Hence, we employ features created by the past 
societies themselves: the paths they moved on and that represent their approaches to 
wayfinding and the cultural, social and economic factors that influenced their route 
choice. Results from this study demonstrate that this method offers a more realistic 
and accurate way for the prediction of archaeological sites that can be used in any 
region of the world where characteristic landscape features of past societies are pre-
served and exhibit specific patterns.

Filling the Gaps in the Hollow Way System

The manual connecting of the hollow ways is prone to human error introduced by 
subjective perception—two persons might have different views about which frag-
ments form a longer route. The resulting network therefore inevitably relies on the 
researcher constructing it and their perception. Hence, it is impossible to develop a 
computational procedure that incorporates all subjective perceptions and there sim-
ply might not be a “correct” answer when manually connecting hollow ways. Algo-
rithms on the other hand lack the human component. Therefore, although the manual 
connecting has the major disadvantage of being subjective and not exactly reproduc-
ible, it might be the better approach to reflect how past humans moved while the 
computational procedure adds connections that the human might have missed.

Another issue with the manual approach is the possibility to miss connections 
that might not seem relevant on a small scale but contribute to the network on the 
large scale, as we are not always able to see the whole picture, especially when the 
data are messy. We tend to focus on smaller subsets which leads to a bias towards 
short-distance routes. However, this bias might be mitigated by the connections 
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from one node to another via intermediate nodes (indirect paths), so that we can 
capture long-distance routes as well.

The computational approaches have on average fewer nodes than the manual 
approach. In particular, c. 15% of the archaeological sites are excluded due to the 
specifications of the computational procedure to connect the hollow way fragments 
with the sites: if a site has no connections to hollow ways, it is not included in the 
network (see Fig. 5 Step 3 “Connect hollow ways and sites” and Step 4 “Convert to 
network and clean” and code available on GitHub). The computational extraction 
of the network graph from the spatial object containing hollow way and site data 
(shapefile) required a site to coincide with a point on a (connected) hollow way and 
offsets of more than a 100 m between sites and points on hollow ways caused the 
sites to be excluded.

There are 10–20% more isolates in the computational networks compared to the 
manual network. Those results imply that the computationally connected hollow 
ways are generally less complete than the manual ones. Finding the ideal parameter 
values for the Hollow Way Algorithm might be an option to overcome this issue but 
those time- and resource-intensive tests were outside the scope of this study.

Both sets of parameters for the Hollow Way Algorithm introduce a high number 
of superfluous connections, unlike the manual approach (Fig.  7) which illustrates 
the most important difference in the two approaches: when manually connecting the 
hollow ways, only those connections are made that are perceived as forming a route. 
Those connections are based on the factors distance and direction as well as on the 
perception that it “looked right”. However, we are unable to explain what “look 
right” means in scientific terms which is one of the challenges when developing a 
computational approach. Although archaeological evidence was not explicitly used 
to connect the hollow ways—only points and lines were displayed when drawing the 
lines, without any further information—it might have influenced the process uncon-
sciously. The Hollow Way Algorithm on the other hand creates new lines whenever 
the parameter thresholds are met, introducing superfluous connections, i.e. dupli-
cated lines, lines that turn and bend unreasonably or zigzag. In general, there are less 
edges in the manual networks than in the computational ones.

The decision for the computational network 2 to combine the manual network 
into a hybrid one was based on the results described above: computational network 
2 captures the importance of the selected sites better than network 1 (see Table 7) 
and produces fewer superfluous connections (Fig. 7). There are slightly more match-
ing edges between the computational network 2 and the manual network (Table 5) 
which indicates that the parameter values are better suited to reproduce the human 
perception but might be more accurate as the human error is eliminated. Further-
more, there are more isolates in the computational than in the manual networks with 
much more isolates in computational network 1 than in computational network 2. 
Therefore, a combination of the manual and computational network 2 enhances the 
number of nodes while adding potentially more accurate edges. Another way might 
be to use the computational results as a starting point to manually connect the hol-
low ways. However, in that case, one would ideally use the computationally con-
nected hollow ways as presented in Fig. 7 as those are the original ones resulting 
from the computational procedure. As they are quite messy and hard to distinguish, 
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it might not be desirable to do it as it would probably take more time than doing the 
manual and computational connections separately and then merging the two.

Site importance is generally better captured in the manual network, and computa-
tional network 2 returns results that align better with the archaeological record than 
computational network 1. The hybrid network naturally provides results that present 
a trade-off between the manual and computational network 2; i.e. they are slightly 
worse than those of the manual but better than those of the computational approach. 
However, site importance is a vague proxy to evaluate the ability of an approach to 
reflect the archaeological record because a site might be a centre at the beginning of 
a period and lost its importance by the end of it. This intra-period variation cannot 
be recognised properly due to the broad chronological periods and even sub-periods. 
Another limitation is the incomplete data which probably causes a distortion for the 
investigated metrics degree and betweenness centrality. The results show that at least 
the manual, the computational network 2 and consequently the hybrid network cap-
ture site importance reasonably well, justifying site importance as a plausible way to 
evaluate the credibility of the networks.

Based on the results of this exploratory analysis, we conclude that the hybrid 
approach is the archaeologically most plausible and accurate one to represent the 
real-world network in the Khabur Valley in the Bronze and Iron Age. It combines 
the strengths of the manual and computational approaches while reducing their 
weaknesses and produces reasonably exact results with regard to the archaeologi-
cal record. However, the hybrid network is still incomplete to a large and unknown 
degree and additional data would enhance the results of this approach significantly.

This paper fills the gap evident in research concerned with movement, connectiv-
ity and settlement dynamics in the Khabur Valley by offering a method to recon-
struct the route system represented by the hollow ways. This method has the poten-
tial to enhance the archaeological record of paths and is not restricted to a specific 
area. However, a more extensive analysis to define the ideal parameter values is 
necessary.

Conclusion

In this paper, we presented manual and computational approaches to handle missing 
data in archaeological networks. More precisely, we offer computational methods 
to fill the gaps in two archaeological data sets to retrieve a more complete network: 
incomplete edges (i.e. routes or paths) and nodes (i.e. sites). Although the research 
area, periods and data are specific for this research project, the algorithms can be 
used for similar data with some adjustments. Any data set of features with a distinc-
tive characteristic behaviour (such as the radiating patterns of the hollow ways) and 
any fragmented line data can be used as input for the algorithms and the parameters 
can be adjusted to the specific case study and research question.

Although both algorithms seem to be able to enhance the reconstruction of past 
settlement systems, they have limitations and need to be developed further. The 
main restrictions are the dependence of the Site Algorithm on the hollow ways, 
excluding areas without them, and the simplicity of the Hollow Way Algorithm that 
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results in a significant number of superfluous connections. Despite these limitations, 
the accordance of the resulting network with the archaeological evidence, i.e. site 
importance in the individual periods and the location of the predicted sites, proved 
to be good, in particular considering the broad chronological classification. There-
fore, we conclude that the computational procedures are suitable to fill the gaps in 
those types of archaeological data and would even improve with additional research 
on them.

Given the results of the Hollow Way Algorithm and the manual connecting of 
the hollow ways, a hybrid network, i.e. a combination of manual and computational 
network, is the most accurate and realistic option, although it is also affected by 
the large amount of missing data. However, our results demonstrate that the com-
bination of manual and computational methods, either from the start or after ini-
tially conducting them separately, can significantly enhance the results. This is not 
only applicable for our data but for archaeological data in general. With current and 
future advances in computational methods, tools and techniques, we need to inte-
grate them into our research to improve the quality of the inherently sparse and 
incomplete archaeological record. With a more complete archaeological record, the 
outcomes of any subsequent analysis will be improved as well and give us more 
accurate and realistic insights into the life of past humans. Furthermore, deriving 
site locations from route systems is an innovative way to semi-independently cross-
check the results of AI-driven site detection approaches using satellite data, thereby 
providing an additional way to test the results if fieldwork is not possible.

ArcGIS Pro 3.1 was used to manually connect the hollow ways and generate 
Figs. 1, 2 and 7. Figures 3, 4 and 5 were created in InkScape and Figs. 8 and 9 were 
created in R. Figure 6 was produced in MatLab.

Software and Code

Data preparation, analysis and The Hollow Way Algorithm (Hollow way recon-
struction) were carried out in R (R Core Team, 2021) with the GUI RStudio, ver-
sion 4.1.0 (Windows 10). R packages used in for this paper include sf (Pebesma, 
2018), nngeo (Dorman, 2023), rgeos (R. S. Bivand & Rundel, 2023), sp (R. Bivand 
et al., 2013), sfnetworks (van der Meer et al., 2023), igraph (Csardi & Nepusz, 2006; 
Csardi et al., 2023), shp2igraph (Lu et al., 2018) and network (Butts, 2008).

The Site Algorithm (site prediction) was developed in MatLab 2019b (The Math-
Works Inc., 2019) with the toolboxes Image Processing 11.0 and Statistics and 
Machine Learning 11.6.

Data and scripts are available on GitHub (https:// github. com/ dpriss/ Filli ng_ the_ 
gaps) and on Zenodo (https:// zenodo. org/ recor ds/ 13825 544).
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