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ABSTRACT
Sexual dimorphism is one of the main factors confounding attempts to generate sound alpha taxonomic hypotheses in the early

hominin fossil record. To better understand how between‐sex variation may confound alpha taxonomic assessments, we

consider some of the factors that drive hard‐tissue sexual dimorphism in extant primates. We review the socioecological

correlates of body size sexual dimorphism, how sexual selection may be associated with craniofacial sexual dimorphism in the

context of visual signaling, and how sex‐specific patterns of growth and development in primates contribute to intra‐specific
variation. To illustrate how variation associated with inferred sexual dimorphism has the potential to confound alpha taxo-

nomic assessments in early hominins, we focus on its impact on our understanding of a single taxon, Paranthropus boisei. We

suggest that regions of the skeleton likely to be influenced by sexual selection should be avoided when generating alpha

taxonomic hypotheses.

1 | Introduction

Sexual dimorphism influences how we interpret the hominin
fossil record in two main ways. First, it confounds attempts to
generate reliable alpha taxonomic hypotheses because high
levels of size and shape craniofacial sexual dimorphism could
be mistaken for inter‐specific variation, resulting in the over-
estimation of taxic diversity (e.g. [1–5]). The second way sexual
dimorphism influences the interpretation of the hominin fossil
record is that once sound alpha taxonomic hypotheses have
been generated, reference models based on sexual dimorphism
in extant primates are used to make behavioral inferences about
early hominin taxa (e.g., [6, 7]).

Our primary aim in writing this article is to provide a com-
parative context for the task of assessing the influence of sexual
dimorphism on attempts to generate reliable alpha taxonomic
hypotheses. A comprehensive review of the biological basis of
sexual dimorphism, its expression in extant primates, and its

possible expression in the hominin fossil record, is much too
large an undertaking for a review of this scale. Instead, we focus
on the different research interests that led each of us to our
shared interest in craniofacial sexual dimorphism. One of us
(B.W.) investigated sexual dimorphism because he needed to
understand more about the potential contribution of sexual
dimorphism to intra‐specific variation when he was charged
with working out how many early hominin taxa were being
sampled at Koobi Fora [8]. This perspective is very different
from K.B.'s research interest, which explores ways in which
sexual selection may have driven aspects of craniofacial sexual
dimorphism in extant and fossil hominoids (e.g., [9–11]).

Appreciating the nature and extent of the contribution of sexual
dimorphism to intra‐specific variation in the early hominin
fossil record is essential if we are to generate sound alpha tax-
onomic hypotheses [12], but showing how sexual dimorphism
potentially confounds alpha taxonomy across all of the early
hominin fossil record is beyond the scale and scope of this
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review, so we use one taxon, Paranthropus boisei, as an example
of how variation due to sexual dimorphism might be manifest
in the early hominin fossil record. We also explore the ways
sexual dimorphism contributes to intra‐specific craniofacial
variation within extant primates to better understand the dif-
ference between intra‐ and inter‐species hard‐tissue variation in
early hominins. A comprehensive review of what is known, and
not known, about sexual dimorphism in the hominin fossil
record, is the topic of an upcoming review.

There are several ways that selective pressures associated with
sexual selection, which are difficult to ascertain a priori among
hominin fossil assemblages, may be causally associated with the
expression of sexual dimorphism within a taxon. Evidence from
extant primates shows that the influence of sexual dimorphism
on hard‐tissue size and shape variation varies across the regions
of the skeleton [13], and there may even be differences in
the degree of sexual dimorphism within the same region [14].
In this article, we will show that primate species may exhibit
high between‐sex shape variation in some skeletal regions, but
low between‐sex shape variation in others, associated with
sexual or social selection depending on aspects of the socio-
ecology of the species under scrutiny. Identification of regions
that vary in response to social or sexual selection among extinct
hominin species is an important consideration for evaluating
alpha taxonomic hypotheses. In light of our primary aim, which
is to understand how the influences of sexual dimorphism may
confound attempts to generate reliable alpha taxonomic
hypotheses, we consider regions of the skeleton that may have
been influenced by sexual selection, but we do not review the
underlying basis for canine crown height dimorphism because a
reduction in the size of the canine teeth is one of the main
criteria used to recognize hominins (e.g., [15]). Understanding
sexual dimorphism as a source of intra‐specific variation allows
us to better retrodict how sexual size and shape dimorphism
contributed to the morphological variation observed in fossil
assemblages. We use P. boisei [16, 17] as an example of how
sexual dimorphism needs to be taken into account when gen-
erating alpha taxonomic hypotheses, but we provide a more
wide‐ranging review of the fossil evidence in a follow‐up
review. We propose that skeletal regions that are likely to vary
in response to sexual or social selection among hominins should
be avoided when generating alpha taxonomic hypotheses, and
we discuss what information we may be missing by being
limited to the hard tissue sexual dimorphism that is captured by
the hominin fossil record. We appreciate that factors other than
sexual dimorphism (e.g., behavior, geography, time, ontogeny,
and taphonomy) contribute to intra‐specific variation in the
hominin fossil record, but aside from brief reference to some of
these variables in our example, we do not consider them further
in this review.

2 | Causes of Sexual Dimorphism

In this section we consider some possible underlying causes of
body weight/body size sexual dimorphism among primates, and
provide a brief overview of the influence of socioecological
factors such as mating system, availability of females and the
associated frequency and intensity of inter‐male competition.

We also briefly review selective pressures that have the poten-
tial to influence craniofacial dimorphism, including whether
some craniofacial regions may be under selection as a source of
visual signaling, and how sexual dimorphism might relate to
sex‐specific patterns of ontogeny and the extension of skeletal
growth beyond dental maturity. The purpose of our review of
these underlying causes of sexual dimorphism is to better
understand how these sources of variation may confound at-
tempts to generate reliable alpha taxonomic hypotheses within
the hominin clade. Plavcan [18–21] and Cassini [22] provide
wider‐ranging reviews of the potential causes of sexual dimor-
phism among primates.

2.1 | Body Weight Dimorphism

The main way in which sexual dimorphism may influence at-
tempts to generate alpha taxonomic hypotheses among fossil
assemblages is through the association between body size
dimorphism and skeletal dimorphism among primates [23].
There has been much research investigating the relationship
between body weight or body size dimorphism and intra‐sexual
competition, through direct observations (such as the nature
and frequency of inter‐male competitive encounters), or by
looking at aspects of primate sociality, including mating system,
social organization or the socionomic or operational sex ratio.
Early studies on this topic suggested a relationship between
mating system and the degree of body weight sexual dimor-
phism, with polygynous primates displaying higher levels of
body weight dimorphism than monogamous ones, with the
heaviest primate species being the most dimorphic [24–26].
Subsequent research showed that species in which males show
intense and frequent intra‐sexual competition and aggression,
or the highest ratios of fertile females to reproductively active
males in a group (as measured by the operational sex ratio),
show increased selection for larger male body weights
[20, 27–29]. Natural selection has also been proposed as a driver
of sexual size dimorphism among primates, through differences
in the way each sex interacts with their environment, inde-
pendent of pressures associated with sexual selection [30, 31]. It
is known that aspects of primate socioecology, such as group
size, social organization and mating system, are influenced by
ecological factors such as food availability, which in turn affects
the distribution of females and the associated ability of males to
monopolize access to females [32]. All of this makes it difficult
to tease out the relative effects of selection, both natural and
sexual, on the expression of body size sexual dimorphism
among primates.

2.2 | Craniofacial Dimorphism in the Context of
Visual Signaling

A less‐explored consideration concerning the expression of
sexual dimorphism is whether craniofacial regions undergo
selection in the context of visual signaling, which has implica-
tions for interpreting the underlying sources of variation among
extinct hominin fossil assemblages, especially given that their
relatively small canines mean there were likely other ways that
early hominins signaled their status. Research indicates there is
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greater complexity in the secondary sexual adornments of pri-
mate males who live in uni‐male/multi‐female social organi-
zations, with evidence that sexual dimorphism in visually
conspicuous traits occurs in addition to any influence body
mass may have on sexual dimorphism. These adornments
include facial flanges in adult male orangutans, bright skin
coloration in adult male mandrills, and large bulbous noses in
adult male proboscis monkeys (as reviewed by [33]). If the hard
tissues underlying these sexually dimorphic soft tissue facial
traits also vary, this may be an additional source of sex‐related
skeletal variation. For example, in the upper face, browridge
morphology among extinct hominins cannot be explained solely
through mechanical considerations [34, 35], with the possibility
that eyebrow mobility may be associated with social signaling
[36]. Similarly, there is evidence that browridge morphology
among red colobus monkeys and some hylobatid taxa may vary
in response to socioecological factors [10, 37]. With respect to
the mid‐face, nasal cavity size and shape among proboscis
monkeys is associated with visual and acoustic signaling [11].
Among modern humans and non‐human primates, relatively
wide faces are associated with behavioral and personality vari-
ables, as well as perceived dominance and aggression [38–44],
but these associations are not universal among species or pop-
ulations [45].

Some have suggested the sagittal crest may function as a visual
signal. Among western lowland gorillas, sagittal hump size in
males is associated with the number of females associated with
each male in adulthood and the number of successfully‐reared
offspring [46, 47]. Similarly, among mountain gorilla males, back
breadth and sagittal crest height are positively associated with
dominance rank, group tenure length and the number of females
per group [48]. In both western lowland gorillas and Bornean
orangutans, sagittal crest development coincides with sexual
maturity in the males of both species, which is consistent with it
being a sexually selected trait [9]. Overall, these findings suggest
sexual selection and social signaling may influence sexual
dimorphism in some regions of the craniofacial skeleton,
resulting in a high degree of intra‐specific variation among these
morphological traits. If this is the case, sex‐related variation in
these regions could confound attempts to generate reliable alpha
taxonomic hypotheses. We discuss this further in Section 4.

2.3 | Sex Differences in Skeletal Growth and
Development

Sex differences in growth and development are another source of
variation associated with sexual dimorphism. Most of the
research exploring sex‐specific ontogenetic patterns of growth
and development in the primate skeleton focuses on the cra-
nium. Researchers have shown there are differences among taxa
in how craniofacial sexual dimorphism is attained among pri-
mates [49]. Some species, including crab‐eating macaques and
red howler monkeys, predominantly attain adult sexual dimor-
phism through sex differences in rates of growth (rate hyper‐ or
hypomorphosis) [50–52]. Other species, including proboscis
monkeys, mantled howler monkeys, tufted capuchin monkeys
and collared mangabeys, attain adult sexual dimorphism mainly
through sex differences in the timing of growth cessation

(bimaturism, or duration hyper‐ or hypomorphosis) [50, 51, 53].
Craniofacial sexual dimorphism among many primate taxa can
be attained through a combination of rate and duration hyper‐ or
hypomorphosis (e.g., among some African apes, orangutans,
rhesus macaques and papionins [54–60]). Similar levels of sexual
size dimorphism can therefore be attained either through sex
differences in the rate of growth, sex differences in the duration
of growth, or a combination of the two [49, 58]. Sex differences in
craniofacial ontogeny among primates are often consistent with
the presence of sex differences in patterns of body mass growth,
where males of some species may grow for longer than females,
or growth may be delayed, followed by an adolescent, or adult-
hood growth spurt [26, 61–66]. Studies among gorillas, who
manifest high levels of body size dimorphism, suggest there are
sex differences in the timing and rate of postcranial and body size
growth across taxa and sexes [67, 68].

How sexual dimorphism is attained is associated with aspects of
primate socioecology. For example, in some Old World monkey
and ape species, males delay growth relative to females. This is
followed by an adolescent growth spurt associated with a delay
in the emergence of characteristics that signal social maturity,
until males are ready to compete with other males [61, 62, 69].
There are also sex differences in the timing of growth cessation
associated with the timing of social maturity during early‐ to
mid‐adulthood among anthropoids [9, 61, 63, 69, 70].

As noted above, many studies in primates have demonstrated
skeletal variation associated with growth and development until
the onset of dental maturity, and this source of variation is
taken into account when considering potential influences on
variation among fossil hominin taxa [54, 71–73]. However,
evidence for skeletal growth and development beyond dental
maturity is less well documented, and among some highly
sexually‐dimorphic non‐human primate taxa, including gorillas
and orangutans, male craniofacial growth continues well
beyond dental maturity [9, 70, 74]. Among orangutans, growth
can be “indeterminate” [9, 57, 59, 60, 70, 74]. The timing of
male growth cessation may be linked with energetic constraints,
and the time required for males to attain full body size [9, 57,
59–60, 70, 75–77]. In some non‐human primate taxa, females
also show growth beyond dental maturity [70, 75].

Evidence among fossil hominins of growth beyond dental
maturity [78, 79] suggests that differences in this phenomenon
may influence sex‐related intra‐specific variation in early ho-
minins, either based on morphological variation associated with
body size dimorphism (reviewed in Section 2.1), selection on
specific craniofacial traits associated with visual signaling
(reviewed in Section 2.2) or a combination of the two. Growth
beyond dental maturity in either sex has the potential to
influence the degree of intra‐specific variation present within
fossil assemblages, making it difficult for researchers to reliably
generate alpha taxonomic hypotheses.

2.4 | Male and Female Contributions to Sexual
Dimorphism

The majority of sexual dimorphism research among primates
has focused on the selective pressures that contribute to

3 of 11

 15206505, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/evan.22052 by T

est, W
iley O

nline L
ibrary on [06/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



variation in male morphology, either through sexual selection
via male‐male competition or through female mate choice (as
reviewed by [80–82]). For example, as noted above, variation in
male body size, canine crown height and facial characteristics
has been associated with levels of inter‐male aggression, mating
system and social organization ([20, 29, 83]; (as reviewed by
[33]). Less well‐studied is whether, and how, selective pressure
on female morphology contributes to sexual dimorphism ([84,
85]; as reviewed by [19]). While some of the variation in female
body size is associated with correlated response or selection, in
association with selection on male body size, there is scope for
natural selection to also act on female body size, independent of
selective pressures influencing male body size [19, 84]. For ex-
ample, female resource competition may favor larger female
body size because larger females are able to give birth to larger
offspring [19, 86], and larger body size may afford further ad-
vantages associated with higher dominance rank and increased
access to preferred food resources [19, 86, 87]. Conversely, body
size can be inversely related to fecundity because smaller in-
dividuals are able to reproduce more often [19, 31, 86, 88].

Consistent with findings that female body size is likely under
selection because of intra‐sexual competition, some authors
have adopted a social selection approach to understanding
behavior, including the possibility of intra‐specific competition
for resources among males as well as females [89–91]. Others
have adopted approaches that entertain independent selective
pressures acting on males and females (e.g., [91–93]). There is
evidence in some primate species that when body size and
craniofacial growth in females extends beyond the onset of
dental maturity, it may result in a higher dominance rank [63,
70, 75, 76].

In summary, selective pressures on both sexes potentially con-
tribute to sexual dimorphism and the associated degree and
patterns of sex‐specific morphological variation, and therefore
have the potential to confound attempts to generate reliable
alpha taxonomic hypotheses.

3 | How Might Variation Associated with Sexual
Dimorphism Confound Alpha Taxonomic
Assessments Among Extinct Hominin Taxa?

Primate species vary in the degree of sexual size dimorphism,
such that in some taxa, adult males can be over twice as heavy
as females (e.g., [29, 62, 63, 94]). If we assume that similar levels
of sexual size dimorphism may occur among extinct hominin
taxa [23], there is the potential for researchers to either over-
estimate or underestimate the number of species present within
a fossil assemblage. A scenario in which the variation within a
fossil assemblage exceeds the maximum amount of variation
observed among living primate taxa may lead researchers to
overestimate the number of species present in a site sample
[1–3] (Box 1).

We also need to take into account the possibility that, in addi-
tion to body size dimorphism contributing to craniofacial vari-
ation in a fossil assemblage, sexual selection may be acting on
the craniofacial morphology of early hominin taxa in the

BOX 1: | Two sexes, or two species?

One of the challenges facing researchers engaged in
generating hypotheses about the alpha taxonomy of early
hominins is how to assess the significance of variation in
fossil evidence that is interpreted as sampling a single
species. As sample size increases, so may the range of
variation, until the limit present in the species under
question has been reached. But at what stage, and under
what circumstances, does additional size and shape var-
iation demand that the single‐species hypothesis should
be reconsidered, and potentially rejected? We use the
example of variation in Paranthropus boisei to illustrate
these challenges.

The skull and dental morphology of P. boisei is so distinctive
that for most researchers there is little discussion about
which cranial specimens should be allocated to that taxon.
Debates about its taxonomy center not on identification, but
on how to explain the considerable synchronic variation
within the current P. boisei craniodental hypodigm (e.g.,
[12, 104].). Is that variation the result of intra‐specific var-
iation, including substantial sexual dimorphism, within a
single species, or is it because the fossil record of multiple
species has mistakenly been lumped into the hypodigm of a
single species?

Some researchers have concluded that the different pat-
terns of ectocranial cresting, and the differences in
the degree of prognathism of the lower face between two
large, presumably male crania, OH 5 and KNM‐ER 406,
are best interpreted as evidence of intra‐ and not inter‐
specific variation [105, 106]. More recent additions to the
hypodigm (e.g., two partial crania from Koobi Fora,
KNM‐ER 13750 and 23000, and the skull from Konso,
KGA 10−525), are also consistent with the observation
that while some aspects of cranial morphology, such as
the distribution of the ectocranial crests and the shape of
the face, vary among members of the presumed male
morph of P. boisei, other regions (e.g., the cranial base)
are relatively invariant [2, 107].

The KNM‐ER 407 calvaria, and the KNM‐ER 732 partial
hemicranium, differ in both size and shape from presumed
male P. boisei crania such as OH 5 and KNM‐ER 406. The
morphological differences between KNM‐ER 406 and 407
were so great that the initial taxonomic assessment of the
latter placed it in “…either a gracile species of Aus-
tralopithecus or else a very early representative of Homo…”
[108, p. 224]. In contrast, the initial taxonomic assessment
of KNM‐ER 732 suggested that “it seems likely that the two
specimens (KNM‐ER 406 and 732) represent the two sexes
of the same species” [109, p. 244]. The microstructure of the
exposed enamel of the only preserved tooth crown of KNM‐
ER 732 is P. boisei‐like [110], and the relative size of the
postcanine dentition as judged from the proportions of the
alveolar process, is within, or just below, the range for P.
boisei [105]. In addition, the arrangement of the cranial base
of KNM‐ER 732 and KNM‐ER 407, especially the relatively
anterior position of the foramen magnum and the
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context of visual signaling [35, 36, 95], or in association with
craniofacial growth beyond dental maturity (e.g., [78, 79]),
where selection may act on either sex (Section 2; Figure 1).
Hominins are characterized by having reduced canine crowns
[15], but in non‐human primates canines are involved in social
signaling [83, 85, 96]. While the reasons underlying canine
crown height reduction in hominins are unclear, some re-
searchers have suggested that the loss of the canine/P3 honing
complex is indicative of a reduced scope of sexual selection to
target large canine size, or is associated with craniodental
adaptations associated with masticatory changes [97–101].
Whatever the reason for canine size reduction in hominins, in
the absence of canines being involved in social signaling, some
researchers have suggested that other craniofacial regions may
have replaced canine crown height as a means of social sig-
naling among extinct hominin taxa [95, 102]. Regions that are
hypothesized to be involved in social signaling are the brow-
ridges [10, 35, 37, 103], the mid‐face [41, 43, 95, 102], and the
sagittal crest [9]. If a particular morphology is typically only
expressed in one sex (e.g., sagittal crest), or if a morphological
region is under sexual selection, it would be unwise to interpret
variation in those structures and/or regions as evidence of taxic
diversity.

4 | How Might Researchers Assess Which
Skeletal Regions to Use to Generate Reliable Alpha
Taxonomic Hypotheses?

There is still much to be understood about the extent to which
regions of the skeleton vary among modern humans and extant
non‐human primates in response to sexual or social selection.
This understanding is important for deciding whether evidence
from particular morphological regions should be avoided when
generating alpha taxonomic hypotheses. High levels of sexual
dimorphism, and associated high levels of intra‐specific varia-
tion, render these regions especially unreliable for generating
alpha taxonomic hypotheses. As noted in Section 2.2, the cra-
niofacial regions that are hypothesized to vary in response to
social signaling among primates include browridges [10, 35–37,
103], the mid‐face [41, 43, 45, 95, 102], and sagittal crest ex-
pression and size [9, 74]. These morphological regions have the
potential for unique patterns of sexual dimorphism to be ex-
pressed within species as a result of sexual or social selection.
Further research is required to understand which morphologi-
cal regions show high intra‐specific variability, potentially
associated with sexual or social selection. Once a comprehen-
sive extant comparative framework is established, researchers
will be better equipped to understand the extent to which sexual
or social selection influences male and female skeletal mor-
phology. Regions hypothesized to vary in response to sexual or
social selection should be avoided when generating alpha tax-
onomic hypotheses.

Closely‐related taxa show similar degrees and patterns of sexual
size dimorphism based on phylogenetic relatedness [23, 120], so
it is likely the morphological regions showing high levels of
sexual dimorphism in closely‐related extant taxa will also do so
within an early hominin fossil assemblage. Therefore, alpha
taxonomic hypotheses should focus on morphological regions

coronally‐orientated petrous temporal bones, resembles the
arrangement seen in OH 5 and KNM‐ER 406 [105, 111].
Erosion has damaged the frontal and zygomatic regions of
KNM‐WT 17400 [112], but the remaining osseous and
dental morphology leaves little doubt that this subadult
specimen belongs to P. boisei. Because the P. boisei hypo-
digm at the time comprised crania (e.g., OH 5 and KNM‐ER
406) whose ectocranial morphology was analogous to that
of large male members of Gorilla and Pongo, and because
both KNM‐ER 407 and 732 possessed morphological fea-
tures that, despite their smaller size, were regarded as
diagnostic of P. boisei, many researchers subscribed to the
view that crania such as KNM‐ER 407 and 732 were
smaller‐bodied, presumably female, representatives of P.
boisei, thereby providing evidence of sexual dimorphism
within that taxon (e.g., [8, 14, 106, 113, 114]).

It has been suggested that the exceptional degree of size
variation in the equivalent mandibular hypodigm may be
because it samples more than one hominin taxon [115,
116]. However, much of this “excessive” variation can
potentially be explained by changes to these specimens
after the death of the individuals. In some specimens, post
mortem matrix‐filled cracks have artificially inflated the
size of the mandibular corpus, whereas in others erosion
of surface bone of the corpus has reduced corpus size
[105, 117]. When the mandibles of P. boisei were assessed
for matrix‐filled cracking, or for signs of surface erosion,
the incidence of the former was greater in the larger
specimens, whereas erosion was more common in the
absolutely smaller corpora [117]. Apart from these ex-
trinsic causes for differences in overall size, the size and
shape of the mandibular corpus of P. boisei is remarkably
stable through geological time [2, p. 129, Fig. 2E], and
both small and large mandibles in the sample display a
characteristically robust (i.e., relatively broad for its
height) corpus and rounded base [2, 105]. In addition,
Wood et al. [105] demonstrated that the pattern of intra‐
specific cranial variation within P. boisei was similar to
that seen in closely‐related extant taxa. Wood and
Lieberman [12] suggested the pattern of cranial regional
variability (the tendency of regions within the cranium to
vary) was consistent with the hypothesis that regions
subjected to high levels of masticatory‐related strain,
such as the face and mandible, tend to vary more than in
regions such as the cranial base and cranial vault that are
subjected to lower levels of strain, but not all researchers
agree [118, 119].

There is no compelling evidence to support the
hypothesis that the hypodigm of P. boisei sensu stricto
samples more than one taxon. While P. boisei sensu
stricto subsumes substantial cranial variation, it is con-
sistent with the hypothesis that high levels of sexual
dimorphism in that taxon result in substantial size and
shape differences between larger, presumed male, cra-
nia, and smaller, presumed female, crania. The intrigu-
ing exception is the lack of any substantial dimorphism
in the size and shape of the canine crowns and the
length of the roots.
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FIGURE 1 | Legend on next page.
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for which there is either no, or weak, evidence that they are
under social or sexual selection.

5 | How Much Information Are We Missing By
Focusing Exclusively on Hard Tissue Sexual
Dimorphism?

The reality that fossilized hard tissues are all that remains of our
early hominin relatives means that we lack an understanding of
sexual dimorphism associated with the soft tissues that are
commonly sexually dimorphic in extant primates (e.g., the red
nasal strip observed in male mandrills, sexual dichromatism in
gibbons, the presence of a beard in modern human males, facial
flanges in orangutan males, and the enlarged bulbous nose in
male proboscis monkeys) (as reviewed in [33, 121]). While there
is no direct evidence of these structures, there may be indirect
evidence in the form of any hard tissue correlates of these soft
tissue features. For example, jaw‐muscle fiber length and
architecture is associated with jaw size variables and maximum
jaw gape among extant cercopithecoid males, associated with
canine displays and aggressive biting [122, 123]. Any evidence
of a link between sagittal crest size and fat hump size in extant
gorillas, or facial muscle markings and facial flanges in extant
orangutans, would enable researchers to use hard tissue evi-
dence in the hominin fossil record to reconstruct soft tissue
morphology, and thus infer sex. In the absence of being able to
obtain DNA data from early hominin remains, which has been
possible for some later hominin species [124–126], the ability to
reconstruct sexual dimorphism in facial markings, body hair or
skin color from the fossil record is limited. However, develop-
ments in techniques for extracting the components of amelo-
genin proteins from fossilized remains have opened up the
prospect that researchers will be able to determine sex by using
peptides recovered from individual fossil specimens ([127, 128],
submitted).

6 | Conclusion

If, as is the case in extant primates, parts of the skeleton and
dentition of extinct hominins were influenced by sexual or
social selection, evidence from these regions should be avoided
when generating alpha taxonomic hypotheses. A more com-
prehensive understanding of the biological basis of observed
patterns of sexual dimorphism among extant primates will help
us better understand how sexual dimorphism contributes to

intra‐specific variation within early hominin taxa. The limita-
tion of fossilized hard tissues being the sole source of evidence
means we lack an understanding of important aspects of sexual
dimorphism in early hominins. Research that investigates
whether there are hard tissue correlates of soft tissue dimor-
phism has the potential to reduce any confounding effects of
sexual dimorphism.
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