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Abstract
We consider the problem of minimising the k-th eigenvalue of the Laplacian with
some prescribed boundary condition over collections of convex domains of prescribed
perimeter or diameter. It is known that these minimisation problems are well-posed
for Dirichlet eigenvalues in any dimension d ≥ 2 and any sequence of minimisers
converges to the ball of unit perimeter or diameter respectively as k → +∞. In this
paper,we show that the same is true in the case ofNeumann eigenvalues under diameter
constraint in any dimension and under perimeter constraint in dimension d = 2. We
also consider these problems for Robin eigenvalues and mixed Dirichlet–Neumann
eigenvalues, under an additional geometric constraint.

Keywords Spectral shape optimisation · Weyl’s law · Isoperimetric inequality ·
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1 Introduction

Given � ⊂ R
d a bounded convex domain, it is well-known that the Dirichlet −�D

�

andNeumann−�N
� Laplacians acting onL2(�) have discrete spectra, each consisting

of a sequence of eigenvalues accumulating only at +∞. We denote the Dirichlet
eigenvalues by

0 < λ1(�) < λ2(�) ≤ λ3(�) ≤ · · · ↑ +∞

and the Neumann eigenvalues by

0 = μ1(�) < μ2(�) ≤ μ3(�) ≤ · · · ↑ +∞.
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Moreover, it is well-known that these eigenvalues obey Weyl’s law, see for example
[19, §3.2−3.3], which asserts that

λk(�) ∼ μk(�) ∼ 4π2
(

k

ωd |�|
)2/d

=: Wd

|�|2/d k
2/d , as k ↑ +∞, (1)

where |�| is the d-dimensional volume of� andωd is the volume of the d-dimensional
unit ball. From Weyl’s law, if one knows either the entire Dirichlet spectrum or the
entire Neumann spectrum of �, then one can determine the volume of �.

Naïvely, Weyl’s law and the isoperimetric/isodiametric inequality together suggest
that if one minimises either Dirichlet or Neumann eigenvalues over the collection of
bounded convex domains of a given perimeter/diameter then for large k minimisers
should be close to the ball, i.e. the domain with the largest volume. To be clear, by
perimeter here we mean the (d − 1)-dimensional Hausdorff measure of the boundary
∂�, which we denote by |∂�|.

In this vein, one can consider the four following spectral shape optimisation prob-
lems:

inf
{
λk(�) : � ⊂ R

d bounded, convex, |∂�| = 1
}

, (2)

inf
{
λk(�) : � ⊂ R

d bounded, convex, diam(�) = 1
}

, (3)

inf
{
μk(�) : � ⊂ R

d bounded, convex, |∂�| = 1
}

, (4)

inf
{
μk(�) : � ⊂ R

d bounded, convex, diam(�) = 1
}

. (5)

For each of the above problems we will discuss when one has existence of min-
imisers and, if so, the geometric behaviour of minimisers as k → +∞. To do this
we need to introduce a notion of convergence onto the collection of bounded convex
domains. We use the Hausdorff metric here, which is defined as

dH (�1,�2) := max

{
sup
x∈�1

inf
y∈�2

‖x − y‖2, sup
x∈�2

inf
y∈�1

‖x − y‖2
}

(6)

for two bounded convex domains �1,�2 ⊂ R
d , where ‖·‖2 is the standard Euclidean

norm. In this paper, the Hausdorff convergence of bounded convex domains will be
taken up to rigid transformations where necessary, i.e �n Hausdorff converges to �

as n → +∞ if there exists a sequence of rigid transformations Rn : R
d → R

d such
that dH (Rn(�n),�) → 0 as n → +∞. As the Dirichlet and Neumann eigenvalues
of a domain are invariant under rigid transformations, this causes no problems.

1.1 Dirichlet EigenvalueMinimisation

The shape optimisation problem (2) was first considered in the case of k = 1 and for
planar domains by Courant in [16], where it was shown that the ball is the minimiser.
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This can also be shown using the Faber–Krahn [25, Thm. 3.2.1.] and isoperimetric
inequalities. The existence of a minimiser to (2) for any k ∈ N when d = 2 was given
by van den Berg and Iversen in [10] under the more general conditions of minimising
the k-th Dirichlet eigenvalue among non-empty bounded open sets of unit perimeter
without any convexity or connectivity constraints. They showed that a minimiser in
this case is necessarily convex. Bucur and Freitas in [6] later showed, when d = 2, that
any sequence�∗

k of minimisers to (2) Hausdorff converges to the ball of unit perimeter
as k → +∞. For d ≥ 3, van den Berg in [5] deduced existence of minimisers and the
same asymptotic behaviour as in the two-dimensional case.

Theorem 1.1 [5, Thm. 1, adapted] For any d ≥ 2, there exists a minimiser to (2) for
all k ≥ 1. Moreover, any sequence of minimisers Hausdorff converges to the ball of
unit perimeter as k → +∞.

In the same paper, [5], van denBerg also considered the shape optimisation problem
(3) and deduced an analogous result to Theorem 1.1 in this case.

Theorem 1.2 [5, Thm. 1, adapted] For any d ≥ 2, there exists a minimiser to (3) for
all k ≥ 1. Moreover, any sequence of minimisers Hausdorff converges to the ball of
unit diameter as k → +∞.

Bogosel, Henrot and Lucardesi also studied the shape optimisation problem (3)
in [8] and deduced that the ball is only a minimiser for finitely many k ∈ N and
minimisers are necessarily bodies of constant width.

1.2 Neumann EigenvalueMinimisation

In light of Theorems 1.1 and 1.2, the aforementioned naïve notion of minimisers for
large k being close to a ball holds for Dirichlet eigenvalues. However, for the case of
Neumann eigenvalues, the minimisation problem (4) is well-known to be ill-posed for
any k ≥ 2 and d ≥ 3 as the infimum is zero in this case butμ2(�) > 0 for any bounded
convex domain �. Hence, the naïve philosophy that motivated these questions at the
beginning of this paper fails here. The fact that this infimum is zero can easily be
deduced by considering the sequence of cuboids

(0, ε) × · · · × (0, ε) ×
(
0, 1

2(d−1) (ε
2−d − 2ε)

)
⊂ R

d

as ε ↓ 0. When d = 2, it was shown by van den Berg et al. in [3, Thm. 3.2.] that the
minimisation problem

inf
{
μk(�) : � ⊂ R

2 rectangle, |∂�| = 1
}

has a minimiser for all k ≥ 3 and any sequence of minimisers Hausdorff converges
to the square of unit perimeter as k → +∞. The analogous result is true in the more
general setting of planar convex domains as we now state.
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Theorem 1.3 When d = 2, for each k ≥ 3 there exists a minimiser to (4). Moreover,
any sequence of minimisers Hausdorff converges to the ball of unit perimeter as
k → +∞.

Our methods in this paper are asymptotic in nature and, in fact, only assert that
minimisers exist for k sufficiently large. It has been shown that they exist for each
k ≥ 3, as in the statement of Theorem 1.3, and not for k = 2 in [9, Thm. 2.5].

In contrast to the perimeter case, we have that for any k ≥ 2 and d ≥ 2 the infimum
in (5) is non-zero from the Payne–Weinberger inequality, see [4] and [38], which
asserts for any bounded convex domain � ⊂ R

d

μ2(�) >
π2

diam(�)2
. (7)

This inequality is sharp and attained in the limit by the sequence of cuboids

(0, ε) × · · · × (0, ε) ×
(
0,
√
1 − (d − 1)ε2

)
⊂ R

d

as ε ↓ 0, in the case where diam(�) = 1. It is not immediately clear if and when the
shape optimisation problem (5) admitsminimisers.However,minimisers do eventually
exist for k sufficiently large and one can obtain the asymptotic behaviour ofminimisers
as k → +∞. In particular, in dimension two, as in the perimeter case it was shown in
[9, Thm. 2.4] that minimisers exist for all k ≥ 3.

Theorem 1.4 For any d ≥ 2, there exists a constant Nd ∈ N such that for all k ≥ Nd

there exists a minimiser to (5). Moreover, any sequence �∗
k of minimisers Hausdorff

converges to the ball of unit diameter as k → +∞.

The proofs of Theorems 1.3 and 1.4 rest on proving a suitably good family of upper
bounds for the Neumann eigenvalue counting function

N N
� (α) := #{k ∈ N : μk(�) < α} (8)

for a bounded convex domain � ⊂ R
d , see Proposition 2.3. We also give a family of

lower bounds on the Dirichlet eigenvalue counting function

N D
� (α) := #{k ∈ N : λk(�) < α}, (9)

from which one can prove a statement of Weyl’s law for sequences bounded convex
domains with geometric control, which we will discuss in Sect. 4.

The family of upper bounds on the Neumann counting function can also be used to
study a variation of (4) for which one does have the existence of minimisers and for
which any sequence of minimisers Hausdorff converges to the ball of unit perimeter
as k → +∞. The philosophy is if we don’t allow the domains in the collection under
consideration to grow too quickly with k in terms of their diameter then we obtain
non-degenerate asymptotic behaviour. The case d = 2 is not interesting in this case as
two-dimensional convex sets of a fixed perimeter have uniformly bounded diameter.

123



On the Minimisation of Eigenvalues of the Laplacian Page 5 of 35    62 

Before stating the next theorem, for functions f , g : N → R>0, let us remark that
the notation f (k)  g(k) means that lim supk→+∞ f (k)/g(k) = 0 and f (k) � g(k)
means that lim supk→+∞ f (k)/g(k) < +∞ throughout this paper.

Theorem 1.5 For any d ≥ 3 and any f : N → R>0 with 1  f (k)  k1/d(d−1),
there exists a constant Nd, f ∈ N such that for all k ≥ Nd, f there exists a minimiser
to

inf
{
μk(�) : � ⊂ R

d bounded convex domain, |∂�| ≤ 1, diam(�) ≤ f (k)
}

.

Moreover, any sequence �∗
k of minimisers Hausdorff converges to the ball of unit

perimeter as k → +∞.

1.3 Other Related Problems

Themethods in this paper can be applied to other spectral shape optimisation problems
to obtain asymptotic results.

In [12], the authors study the so-called ‘interior problem’

inf{μk(�) : � ⊂ D, � convex domain},

where D is a fixed bounded convex domain inR
2. They deduce necessary and sufficient

conditions for the existence ofminimisers to this problem. Following a similar strategy
to the proof of Theorem 1.4 one can deduce the following result.

Theorem 1.6 Given a bounded convex domain D ⊂ R
d , there exists a constant ND ∈

N such that for all k ≥ ND there exists a minimiser to

inf{μk(�) : � ⊂ D, � convex domain}.

Moreover, any sequence of minimisers Hausdorff converges to D as k → +∞.

We can also prove results for spectral shape optimisation problems for eigenvalues
of the Robin Laplacian−�R

�,β with positive Robin parameter β > 0 acting onL2(�).

As in the case of the Dirichlet and Neumann Laplacians, it is well-known that −�R
�,β

has a discrete collection of eigenvalues accumulating only at +∞ which we denote
by

0 < λ
β
1 (�) ≤ λ

β
2 (�) ≤ λ

β
3 (�) ≤ · · · ↑ +∞.

Moreover, these eigenvalues satisfy the Dirichlet–Neumann bracketing inequality

μk(�) ≤ λ
β
k (�) ≤ λk(�),

see for example [30,Thm. 3.2.9.].And so theRobin eigenvalues also satisfyWeyl’s law,
see (1). Due to this bracketing and properties of Robin eigenvalues, from our Neumann
eigenvalue counting function bounds we can prove the following two theorems.
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Theorem 1.7 Fix β ∈ (0,+∞). For each k ≥ 1 there exists a minimiser to

inf
{
λ

β
k (�) : � ⊂ R

2 bounded, convex, |∂�| = 1
}

.

Moreover, any sequence ofminimisersHausdorff converges to the ball of unit perimeter
as k → +∞.

Remark 1.8 It is unclear to the author if one would expect Theorem 1.7 to hold in
higher dimensions. Existence of minimisers for all k ≥ 1 in any dimension can be
shown using Theorem 4.4 in [27] and the lower semi-continuity of Robin eigenvalues
under Hausdorff convergence of convex domains, see for example [15, Prop. 3.1].
However, the asymptotic behaviour of minimisers is not known as far as the author of
this paper is aware. We note that the conclusion of Theorem 1.5 holds in the case of
Robin eigenvalues with positive parameter β > 0 with existence of minimisers for all
k ≥ 1.

Theorem 1.9 Fix β ∈ (0,+∞). For each k ≥ 1 there exists a minimiser to

inf
{
λ

β
k (�) : � ⊂ R

d bounded, convex, diam(�) = 1
}

.

Moreover, any sequence of minimisers Hausdorff converges to the ball of unit diameter
as k → +∞.

Other eigenvalues which satisfy Dirichlet–Neumann bracketing are so-called
Zaremba eigenvalues, which satisfy a Neumann boundary condition on part of ∂� and
a Dirichlet boundary condition on its complement. In Sect. 5, we study the perime-
ter constraint eigenvalue minimisation problem for Zaremba eigenvalues in which
the shape optimisation problem exhibits the same behaviour as that of (2), see The-
orem 1.1. For this we introduce an additional geometric constraint on the collection
of convex domains which yields a canonical way of prescribing the mixed boundary
conditions and allows us to obtain eigenvalue bounds. Due to the added technicalities
in defining this problem, we defer further exposition for later on in the paper.

1.4 Volume Constraint and Other Spectral Functionals

The asymptotic behaviour of optimisers to spectral shape optimisation problems has
also been studied in other contexts for differing geometric constraints and spectral
functionals. Here we give a brief overview of some related results and remarks on
their differences to our own here.

Let Qd denote the space of d-dimensional cuboids, that is the space of all sets of
the form (0, a1) × · · · × (0, ad), a1, . . . , ad ∈ (0,+∞), up to a rigid transformation.
For such domains one can gain a very strong control on the Dirichlet and Neumann
counting functions owing to the fact that they may be written as lattice point counting
problems, see [33] for a good overview. This strong control has been utilised to prove
results in asymptotic spectral shape optimisation, namely the following was proven
by Gittins and Larson in [22].
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Theorem 1.10 [22, Adapted from Thms 1.1 & 1.2] Let d ≥ 2.

• For any k ≥ 1 there exists a minimiser R∗
k to

inf{λk(R) : R ∈ Qd , |R| = 1}.

Moreover, any sequence R∗
k of minimisers Hausdorff converges to the d-

dimensional unit cube as k → +∞.
• For any k ≥ 1 there exists a maximiser S∗

k to

sup{μk(S) : S ∈ Qd , |S| = 1}.

Moreover, any sequence S∗
k of maximisers Hausdorff converges to the d-

dimensional unit cube as k → +∞.

One should remark that prior to the work of Gittins and Larson, the above result
was known in the Dirichlet case in dimension two [1] and in dimension three [7] and
in the Neumann case in dimension two [3]. It is also worth noting the above theorem
can be proven using the results of Marshall in [33].

In Theorem 1.10, under volume constraint one maximises Neumann eigenvalues
rather than minimises them. This in contrast to Theorems 1.3, 1.4 and 1.5 where
we minimise Neumann eigenvalues under perimeter and diameter constraint. Under
volume constraint, we have that

inf{μk(�) : � ⊂ R
d bounded convex, |�| = 1} = 0

for any k ≥ 1 and any d ≥ 2 and so the minimisation problem is ill-posed. The fact
that the above infimum is zero can be seen by considering the sequence of cuboids

(0, ε1−d) × (0, ε) × · · · × (0, ε) ⊂ R
d .

The philosophy behind wanting to minimise Dirichlet eigenvalues and maximise
Neumann eigenvalues under volume constraint comes from the conjectured two-term
Weyl asymptotic formula which states that

N D
� (α) = |�|

(2π)d
ωdα

d/2 − |∂�|
4 · (2π)d−1ωd−1α

(d−1)/2 + o
(
α(d−1)/2),

N N
� (α) = |�|

(2π)d
ωdα

d/2 + |∂�|
4 · (2π)d−1ωd−1α

(d−1)/2 + o
(
α(d−1)/2)

as α → +∞. The conjecture is known to hold when� is smooth and satisfies a certain
dynamical condition, see [26]. Note that the two-term asymptotic formula suggests
that one wants to minimise perimeter in order to minimise large Dirichlet eigenvalues
and maximise large Neumann eigenvalues.

In this paper, our control on the Neumann and Dirichlet counting functions is not
good enough to obtain asymptotic results concerning the problems

inf{λk(�) : � ⊂ R
d bounded convex, |�| = 1},
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sup{μk(�) : � ⊂ R
d bounded convex, |�| = 1}. (10)

Moreover, as far as the author is aware, the asymptotic behaviour of optimisers to
these problems is unknown. However, extremal problems under volume constraint for
averages of eigenvalues have been considered in the literature.

In [20], Freitas considers extremal problems for the average of the first k Dirichlet
eigenvalues under volume constraint, and also perimeter constraint. Due to the rele-
vance to the results of this paper, we also note that in the perimeter case Freitas proves
that any sequence of the associated minimisers Hausdorff converges to the ball as
k → +∞. Freitas also discusses the analogues of these problems for the average of
the first k Neumann eigenvalues in Sect. 5 of [20].

Riesz means of eigenvalues have also been studied and results concerning the
asymptotic behaviour of optimisers to a problem similar to (10) have been obtained.
For γ ≥ 0 we define the Dirichlet Riesz mean by

RD,γ
� (�) :=

∑
k:λk (�)<�

(� − λk(�))γ

The Riesz mean RD,γ
� (�) can be viewed as an average of the Dirichlet eigenvalue

counting functionN D
� given in (9). Note that for γ = 0,RD,γ

� = N D
� . Moreover, due

to this, minimising Dirichlet eigenvalues is morally the same idea as maximising the
Riesz mean.

It was shown in [17, Cor. 1.3] that for any γ ≥ 1 fixed, there exists a maximiser
�∗

γ,� to

sup{RD,γ
� (�) : � ⊂ R

d bounded convex, |�| = 1}

for all � > 0. Moreover, letting �∗
γ,� denote any choice of such maximiser, one has

that �∗
γ,� Hausdorff converges to the ball of unit volume as � → +∞.

This fits with the idea that in the regime of volume constraint, onewants tominimise
perimeter to minimise large Dirichlet eigenvalues. For further recent results on Riesz
means and their associated asymptotic spectral shape optimisation, we refer the reader
to [18] and [29].

Plan of the paper In Sect. 2, we prove upper bounds on the Neumann eigenvalue
counting function and lower bounds on the Dirichlet eigenvalue counting function for
bounded convex domains. Using these bounds, we prove Theorems 1.3, 1.4 and 1.5,
1.6, 1.7 and 1.9 in Sect. 3. In Sect. 4, we discuss applications of these bounds with
regards to the geometric stability of Weyl’s law. In Sect. 5, we consider some cases
where one mixes Dirichlet and Neumann boundary conditions.

2 Bounding Dirichlet and Neumann Counting Functions

For a bounded convex domain� ⊂ R
d , recall the definition of its Neumann eigenvalue

counting function N N
� from (8) and its Dirichlet eigenvalue counting function N D

�
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from (9). We aim to prove a suitably good family of upper bounds on N N
� , which

in turn give us lower bounds on the Neumann eigenvalues of �, and a suitably good
family of lower bounds on N D

� , which in turn give us upper bounds on the Dirichlet
eigenvalues of �.

In order to prove these bounds, we need to divulge briefly into some convex geome-
try. We remark that all the results in convex geometry stated in this paper are generally
stated for compact convex sets but we have given the equivalent statement here for
bounded convex domains for simplicity of exposition. A well-known result in this
area is the Minkowski–Steiner theorem, which gives an expression for the volume
of a bounded convex domain which is obtained by taking the Minkowski sum of a
bounded convex domain�with a ball of radius δ > 0, in terms of geometric quantities
associated with � and δ > 0.

From here forward, let Od denote the collection of bounded convex domains
endowed with the Hausdorff topology induced by the metric given by (6).

Theorem 2.1 (Minkowski–Steiner, see [24, §6]) Let � be a d-dimensional convex
domain and δ > 0. Then there exist continuous maps s2, s3, . . . , sd−1 : Od → R

called the quermassintegrals of � such that

|� + δBd | = |�| + |∂�|δ +
d−1∑
j=2

(
d

j

)
s j (�)δ j + ωdδ

d ,

where Bd is the d-dimensional unit ball. In particular, as a mapOd × (0,+∞) → R,
|� + δBd | is continuous.

It is now worth noting some properties of quermassintegrals. Namely, they are
monotone with respect to inclusion, i.e. s j (�1) ≤ s j (�2) for all j and all �1 ⊂ �2,
and are continuous in the Hausdorff topology, see [24, §6]. The monotonicity property
will allow us to obtain bounds on the Neumann eigenvalue counting function which
are monotone with respect to domain inclusion.

In addition to the Minkowski–Steiner theorem, we also require the following esti-
mate concerning the volume of interior tubular neighbourhoods of the boundary for
convex domains.

Lemma 2.2 For any � ∈ Od , one has that

|{x ∈ � : d(x, ∂�) ≤ r}| ≤ |∂�|r

for all r > 0.

Proof This follows from Remark 5.7 in [23], which we now briefly outline. We note
that in [23] the authors consider C2 bounded convex domains but, as they point out,
this result holds more generally for bounded convex domains.

Let

ρ = sup {r > 0 : {x ∈ � : d(x, ∂�) ≤ r} �= �} ,
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or equivalently ρ is the inradius of �. By the definition of ρ, we have that

|{x ∈ � : d(x, ∂�) ≤ r}| = |�|

for all r ≥ ρ and so it suffices to consider what happens for r < ρ. From the work of
Matheron in [34, §2], we have that

d

dr
|{x ∈ � : d(x, ∂�) ≤ r}| = P(r)

for all 0 < r < ρ, where P(r) is the perimeter of the set �r := {x ∈ � : d(x, ∂�) ≥
r}. One may further note that the set �r is convex and so P(r) ≤ |∂�| for all r > 0
by the monotonicity of perimeter with respect to the inclusion of convex bounded
domains. Hence, one has that

|{x ∈ � : d(x, ∂�) ≤ r}| =
∫ min(r ,ρ)

0
ds P(s) ≤

∫ r

0
ds |∂�| = |∂�|r ,

for all r > 0 which is the desired result. ��
We are now ready to state and prove a family of upper bounds for the Neumann

eigenvalue counting function. The proof is originally inspired by the proof of Proposi-
tion A.1. in [23], whereby the authors give an upper bound on the Neumann counting
function of a bounded C2 convex domain. Moreover, one should note that the idea of
the proof is very classical and can be attributed back to the proof of Weyl’s law in the
book of Courant and Hilbert [13]. Although more general than the bound in [23], our
bound is also weaker and less general than others in the literature, see Remark 2.5, but
it is more convenient to work with and suffices for the purposes of this paper as our
focus is the study of spectral shape optimisation problems. So, we favour it for clarity
of exposition.

Before stating our family of bounds, we make a notational remark that �x� means
the smallest integer bigger than or equal to x ∈ R.

Proposition 2.3 For any n ∈ N, � ∈ Od and α > 0,

N N
� (α) ≤ n|�|

(μ∗
n+1)

d/2 αd/2 + rn(�;α), (11)

where

rn(�;α) =
⎛
⎝ κn√

μ∗
n+1

⎞
⎠

d−1

(2κn + 3) d1/2|∂�|α(d−1)/2

+
d−1∑
j=2

(
d

j

)
(4d) j/2

⎛
⎝ κn√

μ∗
n+1

⎞
⎠

d− j

s j (�)α(d− j)/2 + (4d)d/2ωd ,
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μ∗
n+1 denotes the (n + 1)-th Neumann eigenvalue of the d-dimensional unit cube,

s j (�) denotes the j-th quermassintegral of � from the Minkowski–Steiner formula

and κn = �π−1
√
dμ∗

n+1 �.Moreover, the remainder rn(�;α) is monotonewith respect

to inclusion of convex domains.

Proof Fix δ > 0 and n ∈ N. For m ∈ Z
d , let Qm,δ := δ(m + (0, 1)d). Note that

N N
Qm,δ

(δ−2μ∗
n+1) ≤ n

by the definition of the Neumann counting function and the scaling property of Neu-
mann eigenvalues under homothety. Setting Iδ := {m ∈ Z

d : Qm,δ ∩ � = Qm,δ},
we immediately see that #Iδ ≤ δ−d |�| as for any m ∈ Iδ we must have Qm,δ ⊂ �.
Then define �i

δ := ⋃
m∈Iδ

Qm,δ . Taking κn ∈ N as given in the statement of the
proposition, let

Jδ := {
m ∈ Z

d : Qm,κ−1
n δ

∩ � �= ∅, Qm,κ−1
n δ

∩ �i
δ = ∅

}
, �o

κ−1
n δ

:= � ∩
⋃

m∈Jδ

Qm,δ .

As κn is a positive integer and by construction, we see that�i
δ ∩�o

δ = ∅, as κ−1
n δZ ⊃

δZ, and that �i
δ ∪ �o

κ−1
n δ

= � up to a set of measure zero. We now argue that for any

m ∈ Jδ , Qm,κ−1
n δ

must be a subset of the region

∂�δ,κn := {
x ∈ � : d(x, ∂�) ≤ (2 + κ−1

n )δd1/2
} ∪ {x ∈ R

d\� : d(x, ∂�) ≤ 2(κn)
−1δd1/2

}
.

Firstly suppose that

Qm,κ−1
n δ

∩ {x ∈ � : d(x, ∂�) > (2 + κ−1
n )δd1/2

} �= ∅.

Then we see that d(mκ−1
n δ, ∂�) > 2δd1/2. Now let m∗ ∈ Z

d be the unique integer
lattice point such that Qm∗,δ ⊃ Qm,κ−1

n δ
. Then one easily sees that ‖mκ−1

n δ−m∗δ‖2 ≤
δd1/2 and so one must have that d(m∗δ, ∂�) > δd1/2. But this implies that m∗ ∈ Iδ

which implies that m /∈ Jδ and we have a contradiction. Now suppose that

Qm,κ−1
n δ

∩ {x ∈ R
d\� : d(x, ∂�) > 2(κn)

−1δd1/2
} �= ∅.

Then we have that d(mκ−1
n δ, ∂�) > δ(κn)

−1d1/2, but again this contradicts m ∈ Jδ

as in this case Qm,κ−1
n δ

∩� = ∅. Hence, we must indeed have that Qm,κ−1
n δ

⊂ ∂�δ,κn

if m ∈ Jδ .
Using the Minkowski–Steiner formula to approximate the volume of ∂�δ,κn ∩

(Rd\�) and Lemma 2.2 to estimate the volume of ∂�δ,κn ∩ �, we see that

|∂�δ,κn | ≤
(
2 + 3κ−1

n

)
d1/2|∂�|δ +

d−1∑
j=2

(
d

j

)
(4d) j/2(κn)

− j s j (�)δ j + (4d)d/2ωdδ
d .
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We then can immediately deduce a bound on the cardinality of Jδ:

#Jδ ≤ (κn)
dδ−d |∂�δ,κn |

≤
(
2(κn)

d + 3(κn)
d−1

)
d1/2|∂�|δ−d+1

+
d−1∑
j=2

(
d

j

)
(4d) j/2(κn)

d− j s j (�)δ−d+ j + (4d)d/2ωd .

Observing that Qm,κ−1
n δ

∩� is convex, by our choice of κn and the Payne–Weinberger
inequality, see (7),

μ2(Qm,κ−1
n δ

∩ �) ≥ δ−2μ∗
n+1,

and so N N
Q
m,κ

−1
n δ

∩�(δ−2μ∗
n+1) = 1. By the variational characterisation of Neumann

eigenvalues, see [30, Thm. 3.1.11.], it is straightforward to verify that μk(�
i
δ ∪

�o
κ−1
n δ

) ≤ μk(�) for all k ∈ N, and so it suffices to bound the Neumann eigen-

value counting function of �i
δ ∪ �o

κ−1
n δ

. Taking δ = α−1/2(μ∗
n+1)

1/2 and using the

bounds on #Iδ and #Jδ , we see that

N N
�i

δ∪�o
κ
−1
n δ

(α) ≤
∑
m∈Iδ

N N
Qm,δ

(α) +
∑
m∈Jδ

N N
Qm,κ−1δ

∩�(α)

≤ n|�|
(μ∗

n+1)
d/2 αd/2 +

⎛
⎝ κn√

μ∗
n+1

⎞
⎠

d−1

(2κn + 3) d1/2|∂�|α(d−1)/2

+
d−1∑
j=2

(
d

j

)
(4d) j/2

⎛
⎝ κn√

μ∗
n+1

⎞
⎠

d− j

s j (�)α(d− j)/2 + (4d)d/2ωd ,

= n|�|
(μ∗

n+1)
d/2 αd/2 + rn(�;α).

The monotonicity of quermassintegrals with respect to inclusion of bounded convex
domains gives the monotonicity of the remainder rn with respect to inclusion of bound
convex domains, which completes the proof. ��
Remark 2.4 To make the upper bound in Proposition 2.3 explicit relies on the com-
putability of the quermassintegrals of the domain. In dimension two, the bound simply
reads

N N
� (α) ≤ n|�|

μ∗
n+1

α +
√

2

μ∗
n+1

⎡
⎢⎢⎢

√
2μ∗

n+1

π

⎤
⎥⎥⎥
⎛
⎝2

⎡
⎢⎢⎢

√
2μ∗

n+1

π

⎤
⎥⎥⎥+ 3

⎞
⎠ |∂�|√α + 8π.
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Remark 2.5 In Proposition 2.3, we let the parameter n ∈ N be independent of α > 0.
One could let n varywithα and obtain a bound so that the leading term in (11) coincides
with (2π)−dωd |�|αd/2, which is the leading asymptotic term from Weyl’s law. By
considering upper bounds on the Neumann counting function of the d-dimensional
unit cube, one can observe that

n

(μ∗
n+1)

d/2 ≤ (2π)−dωd + O
((

μ∗
n+1

)−1/2
)

as n → +∞. Moreover,

⎛
⎝ κn√

μ∗
n+1

⎞
⎠

d−1

(2κn + 3) = O
((

μ∗
n+1

)1/2)

as n → +∞. So, taking n ∼
( |�|√α

|∂�|
)d/2

our upper bound in Proposition 2.3 becomes

of the form

N N
� (α) ≤ (2π)−dωd |�|αd/2 + O

(
α(2d−1)/4

)
.

This is asymptotically worse than the bound given in Theorem 1.3 in [37] which states
that

N N
� (α) ≤ (2π)−dωd |�|αd/2 + O

(
α(d−1)/2 logα

)
,

and for much more general domains. With the aforementioned choice of n depending
on α, one may prove Propositions 3.1 and 3.2 with a slight modification to the proofs
presented in this paper.1 We keep the independence of the parameter n from α as a
stylistic choice.

One can also play the same game with Dirichlet counting functions and prove a
lower bound analogously to the proof of Proposition 2.3. Again, as in Remark 2.5, this
bound is by no means optimal but is more convenient for us to work with and suffices
for our purposes. A better asymptotic bound in a much more general setting and where
one does not have a parameter n ∈ N may be found in Theorem 1.8. of [37].

Proposition 2.6 For any n ∈ N, � ∈ Od and α > 0,

N D
� (α) ≥ n|�|

(λ∗
n)

d/2 αd/2 − 2nd1/2|∂�|
(λ∗

n)
(d−1)/2

α(d−1)/2,

where λ∗
n is the n-th Dirichlet eigenvalue of the d-dimensional unit cube.

1 The author would like to thank one of the anonymous referees for observing that the proofs of Propositions
3.1 and 3.2 can also be done in this way.

123



   62 Page 14 of 35 S. Farrington

Proof Let ε > 0. For m ∈ Z
d and δ > 0, define Qm,δ and Iδ as in the proof of

Proposition 2.3. It is clear that for a given m ∈ Z
d if Qm,δ ∩ {x ∈ � : d(x, ∂�) ≥

2δd1/2} �= ∅ then m ∈ Iδ . Hence, we obtain that

#Iδ ≥ δ−d |{x ∈ � : d(x, ∂�) ≥ 2δd1/2}| ≥ δ−d |�| − 2d1/2δ−d+1|∂�|. (12)

Noting that N D
Qm,δ

(δ−2(λ∗
n + ε)) ≥ n, by the variational characterisation of Dirich-

let eigenvalues, see [30, Thm. 3.1.9.], it suffices to bound the counting function of⋃
m∈Iδ

Qm,δ from below. Hence, taking δ = α−1/2(λ∗
n + ε)1/2 and using the estimate

on #Iδ from (12), we see that

N D
� (α) ≥

∑
m∈Iδ

N D
Qm,δ

(α) ≥ n|�|
(λ∗

n + ε)d/2 αd/2 − 2nd1/2|∂�|
(λ∗

n + ε)(d−1)/2
α(d−1)/2.

Taking ε ↓ 0 completes the proof. ��

3 Proofs of Theorems 1.3, 1.4, 1.5, 1.6, 1.7 and 1.9

For d ≥ 3, one can make the upper bound in Proposition 2.3 uniform over a given
collection of convex domains provided that the convex domains are all subsets of a
larger convex domain. This can be done by constraining the diameter of the domains.
This is due to the monotonicity of the remainder in Proposition 2.3 as any convex
domain of diameter D > 0 can be contained in a ball of diameter 2D.

Wenowshowhowone can construct asymptotic uniform lower bounds onNeumann
eigenvalues of convex domains. In fact, we do not need uniform control on the diameter
of the convex domains, we only need a certain control for each k, as we now prove.
Recall that Od denotes the collection of bounded convex domains endowed with the
Hausdorff topology induced by the metric given by (6) and Wd denotes the Weyl
constant from (1).

Proposition 3.1 For any V > 0 and any f : N → R>0 such that c ≤ f (k) 
k1/d(d−1) as k → +∞ for some c > 0,

lim inf
k→+∞ k−2/d

[
inf {μk(�) : � ∈ Od , |�| ≤ V , diam(�) ≤ f (k)}

]
≥ WdV

−2/d .

Proof Let k, n ∈ N and ε > 0 be fixed, and let � ∈ Od with |�| ≤ V and diam(�) ≤
f (k). From the bound in Proposition 2.3, using the monotonicity of the remainder, we
see that

k ≤ N N
� (μk(�) + ε) ≤ n|�|

(μ∗
n+1)

d/2 (μk(�) + ε)d/2 + rn(Bk;μk(�) + ε),
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where Bk is the ball of diameter 2 f (k). Since � was arbitrary, we see that

1 ≤ nV

k(μ∗
n+1)

d/2 (mk + ε)d/2 + k−1rn(Bk;mk + ε), (13)

where

mk = inf {μk(�) : � ∈ Od , |�| ≤ V , diam(�) ≤ f (k)} .

Setting mk = k−2/d(mk + ε), writing out the right-hand side of (13) we see that

1 ≤ nV

(μ∗
n+1)

d/2 (mk)
d/2 + Cd,nk

−1/d |∂Bk |(mk)
(d−1)/2

+
d−1∑
j=2

C ′
d,n, j s j (Bk)k

− j/d(mk)
(d− j)/2 + C ′′

d k
−1

:= pn,k(mk),

for some constantsCd,n,C ′
d,n, j ,C

′′
d > 0whose dependence is denoted in the subscript.

By the scalingproperties of quermassintegralswe see that k−1/d |∂Bk |, k− j/ds j (Bk) →
0 as k → +∞. Hence, for any 0 < δ < 1, there exists kδ ∈ N such that for all k ≥ kδ

we have

1 ≤ pn,k(mk) ≤ nV

(μ∗
n+1)

d/2 (mk)
d/2 + δ

d∑
j=1

(mk)
(d− j)/2.

Let γn,δ be the unique positive solution to

nV

(μ∗
n+1)

d/2 (γn,δ)
d/2 + δ

d∑
j=1

(γn,δ)
(d− j)/2 = 1,

then we immediately deduce that mk ≥ γn,δ for any k ≥ kδ , as pn,k : (0,+∞) → R

is strictly monotone increasing for each n, k ∈ N. Since δ > 0 was arbitrary, we see
that

lim inf
k→+∞ mk ≥ lim

δ↓0 γn,δ =
(

(μ∗
n+1)

d/2

nV

)2/d

= μ∗
n+1

n2/dV 2/d .

And so

lim inf
k→+∞ k−2/dmk ≥ μ∗

n+1

n2/dV 2/d

as ε > 0 was arbitrary. Taking the limit as n → +∞ gives the result by Weyl’s law. ��
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One can also prove the following result completely analogously to that of Proposi-
tion 3.1.

Proposition 3.2 For any V > 0 and any f : N → R>0 such that c ≤ f (k)  k1/2

as k → +∞ for some c > 0,

lim inf
k→+∞ k−1

[
inf {μk(�) : � ∈ O2, |�| ≤ V , |∂�| ≤ f (k)}

]
≥ 4πV−1.

The proofs of Theorems 1.3, 1.4, 1.5 1.6, 1.7 and 1.9 now immediately follow from
the proof of Propositions 3.1 and 3.2. Before giving the proofs we state a variation of
Blaschke’s selection theorem which suffices for our purposes.

Lemma 3.3 (Blaschke’s selection theorem) Any sequence �n ∈ Od with |�n| ≥ C1
and diam(�n) ≤ C2 for all n ∈ N for some positive constants C1,C2 > 0 has
a Hausdorff convergent subsequence, up to possible translations of elements of the
sequence.

Proof From Lemma 3 in [5] and the constraints on the volume and diameter of the
�n , we have that

ρ(�n) ≥ 2−d(dωd)
−1diam(�)1−d |�n| ≥ ρ∗

where ρ(�n) denotes the inradius of �n and ρ∗ > 0 is a constant. Hence, as the
diameters of the �n are uniformly bounded, we can find a suitably large compact
convex domain K ′ such that we can arrange the �n so that

B(0; ρ∗) ⊂ �n ⊂ K ′

for each n ∈ N. Applying the classical form of Blaschke’s selection theorem, see [24,
Thm. 6.3], the sequence �n has a Hausdorff convergent subsequence �nk converging
to some compact convex set K with non-empty interior as k → +∞. Denoting the
interior of K by �, we see that �nk → � as k → +∞ with respect to the Hausdorff
metric which gives the result. ��

3.1 Proof of Theorems 1.3 and 1.7

Proof of Theorem 1.3 Existence of minimisers for all k ≥ 3 comes directly from The-
orem 2.5 in [9]. So it suffices to prove the asymptotic behaviour of any sequence �∗

k
of minimisers as k → +∞. Let f (k) = 1 and take V > 0 to be the volume of the
two-dimensional ball of unit perimeter, which we denote by B. From Weyl’s law we
know that

μk(B) ∼ 4πk

V
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and from Proposition 3.2 we see that for any 0 < ε < V and δ > 0

inf {μk(�) : � ∈ O2, |�| ≤ V − ε, |∂�| = 1} ≥ 4πk

V − ε
− δ

for k sufficiently large. Combining these two results, we see that for any 0 < ε < V ,
for k sufficiently large

μk(B) < inf {μk(�) : � ∈ O2, |�| ≤ V − ε, |∂�| = 1} .

Hence, one must have that |�∗
k | > V − ε for k sufficiently large. Since 0 < ε < V

was arbitrary, we see that |�∗
k | → V as k → +∞. Using Bonnesen’s quantitative

isoperimetric inequality, see [11, 28], one can deduce that the ∂�∗
k eventually lie, up

to rigid planar motions, inside the annulus

(∂B)δ := {x ∈ R
2 : d(x, ∂B) ≤ δ}

for any δ > 0 for k sufficiently large. Hence, the�∗
k Hausdorff converge, up to possible

rigid planar motions, to B as k → +∞, which completes the proof. ��
Proof of Theorem 1.7 We first show that minimisers exist for each k ≥ 1. Fix k ≥ 1,
using Proposition 2.3 in [2], we see that

inf
{
λ

β
k (�) : � ∈ O2, |�| ≤ ε

}
↑ +∞

as ε ↓ 0. Hence, there exists ε0 > 0 such that

inf
{
λ

β
k (�) : � ∈ O2, |∂�| = 1

}
= inf

{
λ

β
k (�) : � ∈ O2, |∂�| = 1, |�| ≥ ε0

}
.

(14)

By Lemma 3.3 and the inequality 2diam(�) ≤ |∂�| for � ∈ O2, the set on the right-
hand side of (14) is sequentially compact, up to possible translation of the elements of a
given sequence, with respect to the Hausdorff metric. Thus, any minimising sequence
�n in this set has a Hausdorff convergent subsequence, up to translations, which we
also denote by �n , converging to some �∗ ∈ O2 as n → +∞ with |∂�∗| = 1
and |�∗| ≥ ε0. Hence, using semi-continuity of Robin eigenvalues under Hausdorff
convergence of bounded convex domains, see [15, Prop. 3.1.], one obtains that

λ
β
k (�∗) ≤ lim inf

n→+∞ λ
β
k (�n) = inf

{
λ

β
k (�) : � ∈ O2, |∂�| = 1

}
.

And so minimisers exist for all k ≥ 1.
The proof of the asymptotic behaviour of minimisers follows completely analo-

gously to the proof of Theorem 1.3 using the inequality μk(�) ≤ λ
β
k (�) and that the

Robin eigenvalues λ
β
k (�) satisfy Weyl’s law. ��

123



   62 Page 18 of 35 S. Farrington

3.2 Proof of Theorems 1.4, 1.5, 1.6 and 1.9

Proof of Theorem 1.4 In dimension two, the proof of existence of minimisers for all
k ≥ 3 and not for k = 2 follows from Theorem 2.4 in [9]. In higher dimensions, we
cannot use the same trick as in two-dimensions as collapsing sequences of convex
domains of unit diameter do not necessarily collapse to a line segment. Instead we
show that minimisers must eventually exist from the asymptotic result in Proposition
3.1.

Let f (k) = 1 and take V > 0 to be the volume of the d-dimensional ball of unit
diameter, which we denote by B. Weyl’s law tells us that

μk(B) ∼ Wd

V 2/d k
2/d

and from Proposition 3.1 we see that for any 0 < ε < V and δ > 0, for k sufficiently
large

inf {μk(�) : � ∈ Od , |�| ≤ V − ε, diam(�) ≤ 1} ≥ Wd

(V − ε)2/d
k2/d − δ

Thus, for any 0 < ε < V , for k sufficiently large

μk(B) < inf {μk(�) : � ∈ Od , |�| ≤ V − ε, diam(�) ≤ 1}
≤ inf {μk(�) : � ∈ Od , |�| ≤ V − ε, diam(�) = 1} .

(15)

Hence,

inf {μk(�) : � ∈ Od , diam(�) = 1}
= inf {μk(�) : � ∈ Od , |�| ≥ V − ε, diam(�) = 1} .

(16)

By Lemma 3.3, the infimum on the right hand side of (16) is taken over a set which
is sequentially compact, up to possible translations of elements of a given sequence.
Moreover, Neumann eigenvalues are continuous with respect to Hausdorff conver-
gence of convex domains, see for example [39], and so a simple application of the
extreme value theorem shows that a minimiser must necessarily exist for k sufficiently
large.

As 0 < ε < V was arbitrary in (15), it is clear that one necessarily has for
any sequence �∗

k of minimisers, |�∗
k | → V as k → +∞. Using the quantitative

isodiametric inequality [36, Thm. 1], one can deduce that the�∗
k necessarily Hausdorff

converge, up to possible rigid transformations, to B as k → +∞, which completes
the proof. ��
Proof of Theorem 1.5 As the assumptions on the function f : N → (0,+∞) in Theo-
rem 1.5 are the same as those in Proposition 3.1, following the same lines of argument
of the proof of Theorem 1.4, and using the quantitative isoperimetric inequality results
due to Fuglede in [21], one can prove Theorem 1.5 analogously. ��
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Proof of Theorem 1.6 A simple application of Proposition 3.1 shows that for any ε > 0

lim inf
k→+∞ k−2/d

[
inf {μk(�) : � ⊂ D, � convex domain, |�| ≤ |D| − ε}

]
≥ Wd

(|D| − ε)2/d
.(17)

In the same way as in the proof of Theorem 1.3, one can show by comparing (17) with
Weyl’s law for μk(D), that minimisers must exist for k sufficiently large. Moreover,
Weyl’s law for μk(D) and (17) also imply that for any sequence of minimisers �∗

k we
have that |�∗

k | → D as k → +∞, as ε > 0 was arbitrary. Hence, using Lemma 3.3
and the continuity of volume under Hausdorff convergence of convex domains, one
immediately deduces that the �∗

k must Hausdorff converge to D as k → +∞. ��
Proof of Theorem 1.9 We first show that minimisers exist for each k ≥ 1. Fix k ≥ 1,
using Proposition 2.3 in [2], we see that

inf
{
λ

β
k (�) : � ∈ Od , |�| ≤ ε

}
↑ +∞

as ε ↓ 0. Hence, there exists ε0 > 0 such that

inf
{
λ

β
k (�) : � ∈ O2, diam(�) = 1

}

= inf
{
λ

β
k (�) : � ∈ O2, diam(�) = 1, |�| ≥ ε0

}
. (18)

By Lemma 3.3, the set on the right-hand side of (18) is sequentially compact, up to
possible translation of the elements of a given sequence, with respect to the Hausdorff
metric. Thus, any minimising sequence �n in this set has a Hausdorff convergent
subsequence, up to translations, which we also denote by �n , converging to some
�∗ ∈ Od as n → +∞ with diam(�) = 1 and |�∗| ≥ ε0. Hence, using semi-
continuity of Robin eigenvalues under Hausdorff convergence of bounded convex
domains, see [15, Prop. 3.1.], one obtains that

λ
β
k (�∗) ≤ lim inf

n→+∞ λ
β
k (�n) = inf

{
λ

β
k (�) : � ∈ O2, |∂�| = 1

}
.

And so minimisers exist for all k ≥ 1.
The proof of the asymptotic behaviour of minimisers follows completely analo-

gously to the proof of Theorem 1.4 using the inequality μk(�) ≤ λ
β
k (�) and that

λ
β
k (�) satisfies Weyl’s law. ��

4 Geometric Stability of Weyl’s Law

In this section, we discuss further applications of the bounds obtained in Sect. 2 to
stability results concerning Weyl’s law, see Theorem 4.2. These results will become
of use when one wants to obtain asymptotic shape optimisation results for mixed
Dirichlet–Neumann eigenvalues in Sect. 5.
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Recall again that Od denotes the collection of bounded convex domains endowed
with the Hausdorff topology induced by the metric given by (6) and Wd denotes the
Weyl constant from (1).

Firstly, we can carry out similar reasoning to that in the last section to yield asymp-
totic uniform upper bounds for Dirichlet eigenvalues.

Proposition 4.1 For any V > 0 and any f : N → R>0 such that f (k)  k1/d as
k → +∞,

lim sup
k→+∞

k−2/d
[
sup {λk(�) : � ∈ Od , |�| ≥ V , |∂�| ≤ f (k)}

]
≤ WdV

−2/d

as k → +∞, provided that the set

{λk(�) : � ∈ Od , |�| ≥ V , |∂�| ≤ f (k)}

remains non-empty.

Proof For an arbitrary � ∈ Od with |�| ≥ V and |∂�| ≤ f (k), observe that

k ≥ N D
� (λk(�)) ≥ n|�|

(λ∗
n)

d/2 λk(�)d/2 − 2nd1/2|∂�|
(λ∗

n)
(d−1)/2

λk(�)(d−1)/2

≥ nV

(λ∗
n)

d/2 λk(�)d/2 − 2nd1/2 f (k)

(λ∗
n)

(d−1)/2
λk(�)(d−1)/2,

using the bound from Proposition 2.6. Setting

Mk := sup {λk(�) : � ∈ Od , |�| ≥ V , |∂�| ≤ f (k)} ,

we have that

k ≥ nV

(λ∗
n)

d/2 λk(�)d/2 − 2nd1/2 f (k)

(λ∗
n)

(d−1)/2
(Mk)

(d−1)/2 (19)

by the definition of Mk . Now, by taking the supremum over the RHS of (19) and
dividing through by k,

1 ≥ nV

(λ∗
n)

d/2

(
Mk

k2/d

)d/2

− 2nd1/2 f (k)

k1/d(λ∗
n)

(d−1)/2

(
Mk

k2/d

)(d−1)/2

. (20)

Since f (k)  k1/d , we see that k−1/d f (k) is a bounded sequence and so taking n = 1,
we have that there exist constants C1,C2 > 0 such that

C1

(
Mk

k2/d

)d/2

− C2

(
Mk

k2/d

)(d−1)/2

− 1 ≤ 0.
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From which it immediately follows that there exists a constant C > 0 such that

Mk ≤ Ck2/d .

Now in view of Eq. (20), we have

1 ≥ nV

(λ∗
n)

d/2

(
Mk

k2/d

)d/2

− 2nd1/2 f (k)

k1/d(λ∗
n)

(d−1)/2
C (d−1)/2,

Taking the limsup as k → +∞ and rearranging yields that

lim sup
k→+∞

k−2/dMk ≤ λ∗
n

n2/dV 2/d .

Since n ∈ N was arbitrary we see that

lim sup
k→+∞

k−2/dMk ≤ WdV
−2/d

using Weyl’s law, which completes the proof. ��

As a direct consequence of Propositions 3.1 and 4.1 one can deduce the following
variation of Weyl’s law for bounded convex domains.

Theorem 4.2 Let �k ⊂ R
d be a sequence of bounded convex domains of volume

V > 0 and diam(�k)  k1/(d(d−1)) as k → +∞, then

λk(�k) ∼ μk(�k) ∼ 4π2
(

k

ωdV

)2/d

(21)

as k → +∞.

Proof Noting that the condition diam(�k)  k1/(d(d−1)) as k → +∞ implies that
|∂�k |  k1/d as k → +∞ and that by classical variational arguments μk(�k) ≤
λk(�k), combining a simple application of Propositions 3.1 and 4.1 gives the result.

��

The condition diam(�k)  k1/(d(d−1)) is sharp in the sense that one can construct
sequences of domains with diam(�k) � k1/(d(d−1)) for which (21) does not hold.
For example, in two dimensions one can consider the sequence of domains �k =
(0, (4k)1/2)× (0, (4k)−1/2). The philosophy of Theorem 4.2 is that if we do not allow
the geometry of the �k to degenerate too quickly as k → +∞ then the leading Weyl
term will dominate against both the Dirichlet and Neumann remainder terms. This, at
least heuristically, explains why Theorem 1.5 holds true.
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5 Mixed Dirichlet–Neumann Boundary Conditions

As discussed in the introduction, the minimisation problem (2) for Dirichlet eigen-
values under perimeter constraint is well-posed but the minimisation problem (4)
for Neumann eigenvalues under perimeter constraint is ill-posed. Here we consider
a non-trivial minimisation problem for eigenvalues of the Laplacian under mixed
Dirichlet–Neumann, so-called Zaremba, boundary conditions under perimeter con-
straint which is well-posed and has the same asymptotic behaviour as in Theorem
1.1.

To do this we define a subcollection Od,L of Od such that for each domain in the
collection there is a canonical way of prescribing the mixed boundary conditions and
the minimisation problem itself is well-posed. The definition of this subcollection
is subtle and may appear somewhat odd at first but it allows us to obtain uniform
lower bounds on the Zaremba eigenvalues and deduce the continuity of the Zaremba
eigenvalues overOd,L .Without further ado, we give the definition of this subcollection
below.

Let ℘ be the canonical projection R
d → R

d−1 which omits the final coordinate.
Throughout the rest of this paper, ℘ will denote this projection. Given � ∈ Od , its
image under ℘, denoted ℘(�), is a convex domain in R

d−1. For each x ′ ∈ ℘(�) we
can define two functions h+, h− : ℘(�) → R by

h+(x ′) = sup{y ∈ R : (x ′, y) ∈ �}, h−(x ′) = inf{y ∈ R : (x ′, y) ∈ �}.

We call h+ and h− the upper and lower profiles of� and as functions they are concave
and convex respectively. These functions are well defined as any line passing through a
convex domain intersects the boundary precisely twice. Given L > 0, we say that� is
a convex L-Lip domain if h+ and h− are both L-Lipschitz and agree on the boundary
of ℘(�), denoted ∂℘ (�). We denote the collection of all convex L-Lip domains in
R
d byOd,L . We define the upper boundary of � by �+ := �+(�) := {(x ′, h+(x ′)) :

x ′ ∈ ℘(�)} ⊂ ∂� and define the lower boundary �− := �−(�) analogously.
Let � ∈ Od,L . We define the Zaremba Sobolev spaceH1

0,�−(�) as the completion
of the space

C∞
0,�−(�) = {φ|� ∈ C∞(�) : φ ∈ C∞

0 (Rd), d(supp(φ), �−) > 0}

in the Sobolev norm

‖u‖H1 :=
(∫

�

|∇u|2 +
∫

�

u2
)1/2

.

Then, in the usual way, we define the Zaremba Laplacian −�Z
� on L2(�) via the

Friedrich’s extension with domain

dom(−�Z
�) =

{
u ∈ H1

0,�−(�) : �u ∈ L2(�), ∂nu|�+ = 0
}

,
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where the conditions in the definition of dom(−�Z
�) are understood in the distri-

butional sense. The Zaremba Laplacian −�Z
� has the associated symmetric bilinear

form

Q(u, v) =
∫

�

∇u · ∇v

with domain dom(Q) = H1
0,�−(�) and one can deduce that −�Z

� has a discrete
collection of positive eigenvalues accumulating only at +∞, which we denote

0 < ζ1(�) < ζ2(�) ≤ ζ3(�) ≤ · · · ↑ +∞,

that have the variational characterisation

ζk(�) = min
S⊆H1

0,�− (�)

dim(S)=k

max
u∈S
u �=0

∫
�

|∇u|2∫
�
u2

. (22)

For our purposes we only need the definition of H1
0,�−(�) and the variational

characterisation given in (22). For a fuller discussion on defining Zaremba eigenvalues
we direct the reader to [31, §2] and [30, §3.1.3], and the references therein.

Now that Od,L has been defined and we have defined Zaremba eigenvalues on
domains lying in Od,L we are ready to state our main results.

Theorem 5.1 For any d ≥ 2 and L > 0, for all k ≥ 1 there exists a minimiser �∗
k to

the problem

inf{ζk(�) : � ∈ Od,L , |∂�| = 1}. (23)

Moreover, any sequence�∗
k of minimisers is non-degenerate, i.e. lim infk→+∞ |�∗

k | >

0, and any accumulation point, up to possible rigid planar motions, of �∗
k is a solu-

tion to the isoperimetric problem over Od,L , which is necessarily symmetric, up to a
translation, about the hyperplane {xd = 0}.

As we shall soon argue, for any k ≥ 1 and d ≥ 3,

inf

{
ζk(�) : � ∈

⋃
L>0

Od,L , |∂�| = 1

}
= 0 (24)

and so without a uniform L-Lipschitz constraint the conclusion of Theorem 5.1 fails
to hold. Moreover, for any k ≥ 1 and d ≥ 3,

inf
{
μk(�) : � ∈ Od,L , |∂�| = 1

} = 0 (25)

for all k ∈ N and so the Zaremba eigenvalues behave fundamentally differently to
Neumann eigenvalues over the collection Od,L .
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We now briefly illustrate (24) and (25) as an example when d = 3, the higher
dimensional cases can be done similarly.

Example 5.2 Let 0 < ε < 1 and set Rε = (0, ε) × (0, ε). Define fL,ε : Rε → R by
fL,ε(x, y) = min{Ld((x, y), ∂Rε), ε

−1} and let

�L,ε := {(x, y, z) : (x, y) ∈ Rε, 0 < z < fL,ε(x, y)},

which lies in O3,L . Let u j (x, y, z) = sin(π( j + 1/2)εz) for 1 ≤ j ≤ k and let
V = span{u1, . . . , uk}. Note that the collection {u1, . . . , uk} is a linearly independent
set and so V can be used as a test space in the variational characterisation of the k-th
Zaremba eigenvalue for �L,ε, see (22). Then we see that

ζk(�L,ε) ≤ max
0 �=v∈V

∫
�L,ε

|∇v|2
∫

�L,ε

|v|2
= max

0 �=v∈V

∫
R3

|∇v|2 1�L,ε∫
R3

|v|2 1�L,ε

.

Noting that 1�L,ε
→ 1Rε×(0,ε−1) in Lp(R3) for any p ∈ [1,+∞), we see that

max
0 �=v∈V

∫
R3

|∇v|2 1�L,ε∫
R3

|v|2 1�L,ε

→ max
0 �=v∈V

∫
Rε×(0,ε−1)

|∇v|2
∫
Rε×(0,ε−1)

|v|2
= π2(k + 1/2)2ε2

as L → +∞. Moreover, |∂�L,ε| → 4 + 2ε2 as L → +∞. Since 0 < ε < 1 was
arbitrary, by the properties of Zaremba eigenvalues under homothety, i.e. ζk(s�) =
s−2ζk(�) for any s > 0, we see that (24) indeed holds for any k ≥ 1 when d = 3.
Note that Od,L is closed under homothety here.

Now set Sε := (0, ε−1) × (0, ε) and set gL,ε : Sε → (0,+∞) by gL,ε(x, y) :=
Ld((x, y), ∂Sε) and define the domain Dε by

Dε := {(x, y, z) : (x, y) ∈ Sε, −gL,ε(x, y) < z < gL,ε(x, y)}.

We have that Dε ∈ O3,L and that |∂Dε| = 2
√
1 + L2 for all 0 < ε < 1. Letting

u j (x, y, z) = cos(π jεx) for 1 ≤ j ≤ k, one sees that the collection {u1, . . . , uk} is a
linearly independent set. Denoting V = span{u1, . . . , uk}, we can use V as a test space
in the variational characterisation of the k-th Neumann eigenvalue for Dε. Doing this,
where we L2-normalise functions in V by assumption to remove the denominator, we
obtain

μk(Dε) ≤ max
v=α1u1+···+αkuk∈V‖v‖L2(Dε)

=1

∫
Dε

|∇v|2
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= max
v=α1u1+···+αkuk∈V‖v‖L2(Dε)

=1

∫ ε−1

0
dx

∫ ε

0
dy

∫ gε(x,y)

−gε(x,y)
dz

∣∣∣∣∣∣∇
∑
j

α j u j (x, y, z)

∣∣∣∣∣∣
2

≤ Lε2 max
v=α1u1+···+αkuk∈V‖v‖L2(Dε)

=1

∫ ε−1

0
dx

∣∣∣∣∣∣∇
∑
j

α j cos(π jεx)

∣∣∣∣∣∣
2

= Lπ2k2ε4.

Since 0 < ε < 1 was arbitrary, by the scaling properties of Neumann eigenvalues
under homothety, i.e. μk(s�) = s−2μk(�) for any s > 0, we see that (25) indeed
holds for any k ≥ 1 when d = 3. Again, note that Od,L is closed under homothety
here.

In the same way as one proves Theorem 5.1, one can also deduce the analogous
result in the case of diameter constraint.

Theorem 5.3 For any d ≥ 2 and L > 0, for all k ≥ 1 there exists a minimiser �∗
k to

the problem

inf{ζk(�) : � ∈ Od,L , diam(�) = 1}.

Moreover, any sequence �∗
k of minimisers is non-degenerate and any accumulation

point, up to possible rigid planar motions, of �∗
k is a solution to the isodiametric

problem over Od,L .

To make our results clearer, let us illuminate Theorem 5.1 through an example in
two dimensions.

Example 5.4 Fix 0 < δ ≤ π
4 . Let � ⊂ R

2 be a kite of unit perimeter, let � be the
line of symmetry of � and assume that the angles that � passes through are less than
or equal to π − 2δ, see Fig. 1 for an example of this. The collection of such kites is
closed in the Hausdorff metric. Partition the boundary of the kite into two disjoint
relatively open components �+ and �− which lie on either side of � and, up to a set of
measure zero, cover ∂�. Then one can define the Zaremba Laplacian for kites in the
way described earlier in this subsection. Then, arguing as in the proof of Theorem 5.1,
this gives that for k ≥ 1 there exists a minimiser �∗

k of the k-th Zaremba eigenvalue
among such kites with unit perimeter, and the isoperimetric problem for kites implies
that any sequence of such optimisers must converge to the square of unit perimeter as
k → +∞.

As a corollary, one can carry out the same for rhombiiwhere � is the line of symmetry
passing through the smallest opposite pair of interior angles. Then under perimeter
constraint, again one has existence of optimisers for k ≥ 1 and that the optimisers
necessarily converge to the square of unit perimeter as k → +∞.

We now turn our attention to proving Theorems 5.1 and 5.3. An easy but key
observation to make is that Od,L is closed under homothety. We begin the section by
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Fig. 1 An example of symmetric
Zaremba boundary conditions
on a kite about its axis of
symmetry, with Dirichlet
boundary conditions denoted in
blue and Neumann boundary
conditions denoted in red (Color
figure online)

showing Od,L is closed in the Hausdorff topology provided that one does not have
degeneracy of the volume in the limit. Then we use the definition of Od,L to prove
the continuity of these Zaremba eigenvalues in the Hausdorff topology and then prove
a Li-Yau type lower bound for these eigenvalues. Both the proofs of the continuity
and the lower bound require the use of Sobolev extension operators and the choice of
definition of Od,L will become more apparent throughout this section.

5.1 Properties ofOd,L

Lemma 5.5 If �n ∈ Od,L is a sequence of domains Hausdorff converging to � ∈ Od

as n → +∞, then � ∈ Od,L .

Proof By the invariance ofOd,L under homothety and translations and standard prop-
erties of Hausdorff convergence of convex domains, it suffices to prove the result
in the case of sequences �n that lie in Od,L which Hausdorff converge to some
bounded convex domain � as n → +∞ and for which �n ⊂ � for each n. Let
h+
n : ℘(�n) → R be the upper height function of �n and h+ the upper height func-

tion of �. Now fix x ′, y′ ∈ ℘(�) and let ε = 1
2 min{d(x ′, ∂℘ (�)), d(y′, ∂℘ (�))}.

Then it is easy to see that ℘(�n) Hausdorff converges to ℘(�) as n → +∞ so
we have that B(x ′, ε), B(y′, ε) ⊂ ℘(�n) for n sufficiently large. Now also for n
sufficiently large we see that d(∂�, ∂�n) < ε by standard results of Hausdorff con-
vergence of convex domains and so, as �n ⊂ �, it is clear that there exist sequences
(x ′

n, h
+
n (x ′

n)), (y
′
n, h

+
n (y′

n)) ∈ ∂�n converging to (x ′, h+(x ′))(y′, h+(y′)) ∈ ∂� as
n → +∞. In particular, we see that these sequences can be chosen so that

‖(x ′
n, h

+
n (x ′

n)) − (x ′, h+(x ′))‖2, ‖(y′
n, h

+
n (y′

n)) − (y′, h+(y′))‖2 ≤ dH (∂�n, ∂�).

Then

|h+(x ′) − h+(y′)| ≤ |h+(x ′) − h+
n (x ′

n)| + |h+
n (x ′

n) − h+
n (y′

n)| + |h+
n (y′

n) − h+(y′)|
≤ 2dH (∂�n, ∂�) + L|x ′

n − y′
n|.

Taking the limit as n → +∞ we see that h+ is L-Lipschitz. Similarly one can show
that h−, the lower height function of �, is L-Lipschitz. The fact that h+ and h− agree
on the boundary ∂℘ (�) is easy to argue by contradiction. ��
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Lemma 5.6 If�n is a sequence of domains inOd,L Hausdorff converging to a domain
� ∈ Od,L as n → +∞, then �−

n := �−(�n) Hausdorff converges to �− := �−(�)

as n → +∞.

Proof As in the proof of Lemma 5.5, we may assume that �n ⊂ � for each n ∈ N.
For δ > 0 define the compact subset

Kδ := {(x ′, y) ∈ ℘(�) × R : h−(x ′) + δ ≤ y ≤ h+(x ′) − δ} ⊂ �.

Then for n sufficiently large, we see that Kδ ⊂ �n . Fix (x ′, h−(x ′)) ∈ �−(�), then
let x ′

δ be the closest point in ℘(Kδ) to x ′. Then clearly |x ′ − x ′
δ| ≤ dH (Kδ,�) and so

|h−(x ′) − h−
n (x ′

δ)| ≤ |h−(x ′) − h−(x ′
δ)| + |h−(x ′

δ) − h−
n (x ′

δ)|
≤ LdH (Kδ,�) + δ.

Since δ > 0 was arbitrary we see that supx∈�−(�) inf y∈�−(�n)‖x − y‖2 → 0 as n →
+∞. One can then deduce that supx∈�−(�n)

inf y∈�−(�)‖x − y‖2 → 0 as n → +∞
similarly. ��

5.2 Continuity of the �k

Wenowmove on to prove the continuity of these Zaremba eigenvalues in theHausdorff
topology. In [14], Chenais proved the continuity of solutions to the Neumann problem
for domains satisfying a uniform cone condition with respect to the Hausdorff metric.
A crucial part of Chenais’ proof is to show that over such a collection of domains
there exists a uniform constant such that there exists a Sobolev extension operator
H1(�) → H1(Rd) whose norm is at most this uniform constant. Then from the
continuity of the solutions to the Neumann problem, one can prove the continuity of
Neumann eigenvalues with respect to the Hausdorff metric, see [25, §3]. The issue that
arises in the Zaremba problem is that one wants to extend by zero on the Dirichlet parts
of the boundary and extend non-trivially along the Neumann parts of the boundary.
This is an inherently tricky situation as you wish to extend by zero near/on Dirichlet
parts of the boundary but cannot do so on the Neumann parts of the boundary. Our
definition of Od,L allows us to define an extension operator which for any � ∈ Od,L

extends any u ∈ H1
0,�−(�) by zero below �− and ‘into H1 above �+’. Moreover,

we can uniformly bound such operators over Od,L . For a precise formulation of this
see Corollary 5.8. Then by similar arguments to Chenais, we prove the continuity of
Zaremba eigenvalues over the collection.

Lemma 5.7 [19, Lemma 2.91] There exists a constant CL > 0 depending only on
L > 0 such that for any L-Lipschitz function f : R

d−1 → R, there exists a Sobolev
extension operator E : H1(� f ) → H1(Rd), where

� f := {(x ′, y) ∈ R
d−1 × R : y < f (x ′)}, (26)
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with ‖E[u]‖L2(Rd\� f )
≤ √

2‖u‖L2(� f )
and ‖∇E[u]‖L2(Rd\� f )

≤ CL‖∇u‖L2(� f )
for

any u ∈ H1(� f ). Explicitly, we have that

E[u](x ′, y) =
{
u(x ′, y), y < f (x ′),
u(x ′,−y + 2 f (x ′)), y > f (x ′).

(27)

A detailed analysis of this Sobolev extension operator is not necessary for our
means, the only important point for us here is the following immediate corollary.

Corollary 5.8 There exists a constant CL > 0 depending only on L > 0 such that for
any � ∈ Od,L there exists an extension operator E� : H1

0,�−(�) → H1
0(�∞), where

�∞ = {(x ′, y) ∈ ℘(�) × R : y > h−(x ′)},

with ‖E�[u]‖L2(Rd\�) ≤ √
2‖u‖L2(�) and ‖∇E�[u]‖L2(Rd\�) ≤ CL‖u‖L2(�) for any

u ∈ H1
0,�−(�).

Proof Take any φ ∈ C∞
0,�−(�) ∩ C∞(�). By a theorem of McShane in [35], we can

extend h+ : ℘(�) → R to an L-Lipschitz function h̃+ : R
d−1 → R. Defining �h̃+

as in (26), by extending by zero φ ∈ H1(�h̃+), and by the definition of E in (27) it

is clear that one must have E[φ] ∈ H1
0(�∞). Define E�[φ] in this way. Then by the

density of C∞
0,�−(�) ∩ C∞(�) inH1

0,�−(�), the result immediately follows. ��
Lemma 5.9 For each k ∈ N, if �n ∈ Od,L Hausdorff converges to � ∈ Od,L as
n → +∞ then ζk(�n) → ζk(�) as n → +∞.

Proof Since we know that �n Hausdorff converges to �, we know that there exists
βn → 1 such that βn�n ⊆ �, up to a possible translation, for n sufficiently large.
From here onwards, we follow the ideas of the proof of Proposition IV.1 in [14].
Fix f ∈ L2(�). By the Riesz–Fréchet representation theorem there exists a unique
un ∈ H1

0,�−(βn�n) such that

∫
�

1βn�n∇un · ∇φ +
∫

�

1βn�n unφ =
∫

�

1βn�n f φ, ∀φ ∈ C∞
0,�−(βn�n)

with ‖un‖H1(βn�n)
= ‖ f ‖L2(βn�n)

≤ ‖ f ‖L2(�). Then we see that we can extend
each un ∈ H1

0,�−(βn�n) via E�n , as defined in Corollary 5.8, to a function ūn ∈
H1

0,�−(�) with ‖ūn‖H1(�) ≤ CL‖ f ‖L2(�). By the Banach–Alaoglu theorem, up to

a subsequence, ūn⇀u in H1
0,�(�) as n → +∞. We now show that u must be the

unique solution to

∫
�

∇u · ∇φ +
∫

�

uφ =
∫

�

f φ, ∀φ ∈ C∞
0,�−(�). (28)
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Fix φ ∈ C∞
0,�−(�). Then by Lemma 5.6, we see that the support of φ is at a positive

distance from �−(�n) for n sufficiently large, and so φ|βn�n
∈ H1

0,�−(βn�n) for n
sufficiently large. Thus, for n sufficiently large

∫
�

1βn�n∇ūn · ∇φ +
∫

�

1βn�n ūnφ =
∫

�

1βn�n f φ.

Following the arguments in [14, Prop. IV.1], it is clear that if we take the limit
n → +∞,

∫
�

∇u · ∇φ +
∫

�

uφ =
∫

�

f φ.

Since φ ∈ C∞
0,�−(�) was arbitrary, u is indeed the solution to (28) as desired. More-

over, ūn → u in L2(�) by the Rellich–Kondrachov compactness theorem since
ūn⇀u in H1

0,�−(�). Now following the proof of Theorem 2.3.2. in [25], we see

that ζk(βn�n) → ζk(�). Then noting that ζk(βn�n) = (βn)
−2ζk(�n) we obtain the

result. ��

5.3 Proof of Theorems 5.1 and 5.3

With the continuity of Zaremba eigenvalues over Od,L in hand, we now prove the
existence of minimisers using the extension operator from Corollary 5.8.

Lemma 5.10 For each k ≥ 1 there exists a minimiser �∗
k to (23).

Proof Let δ = ‖h+ − h−‖∞. Then one sees that, up to a possible translation, � ⊂
℘(�) × (0, δ). We can extend the first Zaremba eigenfunction of � to the Sobolev
spaceH1

0,℘ (�)×{0}(℘ (�)× (0, δ)). Hence, from the variational characterisation of the
first Zaremba eigenvalue, we see that

ζ̃1(℘ (�) × (0, δ)) ≤ CLζ1(�)

where ζ̃1(℘ (�) × (0, δ)) is the first eigenvalue of the Zaremba Laplacian on ℘(�) ×
(0, δ) with Dirichlet boundary conditions on ℘(�) × {0}. By separation of variables
one can deduce that

ζ̃1(℘ (�) × (0, δ)) = μ1(℘ (�)) + π2

4δ2
= π2

4δ2
.

And so we see that

ζk(�) ≥ ζ1(�) ≥ π2

4CLδ2
↑ +∞

as δ ↓ 0. Hence, we must have that δ is uniformly bounded and so the inradii of the
sets must be uniformly bounded from below. Let �n be a minimising sequence for
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the infimum, then since the inradius is uniformly bounded from below we have that,
up to a sequence of translations, there exists a Hausdorff convergent subsequence �n j

converging to some domain � ∈ Od,L as j → +∞ by Lemmas 3.3 and 5.5. Since
the Zaremba eigenvalues are continuous in this topology, see Lemma 5.9, ζk(�n j ) →
ζk(�) as j → +∞ and we are done. ��

We now give a lower bound for Zaremba eigenvalues in the spirit of the classical
Li–Yau bound, see [32, Cor. 1], for Dirichlet eigenvalues.

Lemma 5.11 There exists a constant Cd,L > 0, depending only on d ≥ 2 and L > 0,
such that for any ε > 0

ζk(�) ≥ Cd,Lk2/d

(|�| + ε|℘(�)|d/(d−1))2/d
− ((d − 1)L2 + 1)

1

ε2|℘(�)|2/(d−1)

for all � ∈ Od,L .

Proof Let ε > 0. Fix � ∈ Od,L and define the set

�ε = {(x ′, y) ∈ ℘(�) × R : h−(x ′) < y < h+(x ′) + ε}.

Further for ε > 0, define the function χε : ℘(�) × R → [0, 1] by

χε(x
′, y) :=

⎧⎪⎨
⎪⎩
1, y ≤ h+(x ′),
1 − (y−h+(x ′))

ε
, h+(x ′) < y < h+(x ′) + ε,

0 y ≥ h+(x ′) + ε

Let E be the Sobolev extension operator given in Corollary 5.8. For any u ∈
H1

0,�−(�), we have that χεE[u] ∈ H1
0(�

ε). Moreover, let Sk = {u1, . . . , uk} denote
the span of the first k orthonormal eigenfunctions of −�Z

�. Then the collection
{χεE[u1], . . . , χεE[uk]} ⊂ H1

0(�
ε) is linearly independent and so we pass the span

of these functions as a trial space into the variational formulation for the k-th Dirichlet
eigenvalue of �ε.

Before proceeding let us make some relevant observations. Namely that, for any
u ∈ H1

0,�−(�): ‖E[u]‖L2(�ε) ≥ ‖u‖L2(�) since E[u] ≡ u in �; ‖E[u]‖L2(Rd\�) ≤√
2‖u‖L2(�); and, ‖∇E[u]‖L2(Rd\�) ≤ CL‖∇u‖L2(�) as stated in Corollary 5.8.
By repeated use of the uniform bounds given in Corollary 5.8 and removing the

denominator from the variational characterisation of the k-th Dirichlet eigenvalue of
�ε by L2-normalising functions in Sk in the definition of the maximum, we have that
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λk(�
ε) ≤ max

u∈Sk‖u‖L2(�)
=1

∫
�ε

|∇ (χεE[u])|2

≤ max
u∈Sk‖u‖L2(�)

=1

{∫
�

|∇u|2 +
∫

�ε\�
|χε∇E[u] + E[u]∇χε|2

}

≤ max
u∈Sk‖u‖L2(�)

=1

{∫
�

|∇u|2 + 2
∫

�ε\�
|χε∇E[u]|2 + 2

∫
�ε\�

|E[u]∇χε|2
}

≤ max
u∈Sk‖u‖L2(�)

=1

{∫
�

|∇u|2 + 2
∫
Rd\�

|∇E[u]|2 + 2((d − 1)L2 + 1)ε−2
∫
Rd\�

|E[u]|2
}

≤ max
u∈Sk‖u‖L2(�)

=1

{
(1 + 2CL )

∫
�

|∇u|2 + 2
√
2((d − 1)L2 + 1)ε−2

}

≤ C ′
L

⎛
⎜⎝ max

u∈Sk‖u‖L2(�)
=1

{∫
�

|∇u|2
}

+ ((d − 1)L2 + 1)ε−2

⎞
⎟⎠

= C ′
L (ζk(�) + ((d − 1)L2 + 1)ε−2).

By the classical Dirichlet eigenvalue lower bound of Li and Yau [32, Cor. 1], we see
that

λk(�
ε) ≥ dWdk2/d

(d + 2)|�ε|2/d .

Now, observing that |�ε| = |�| + ε|℘(�)|, we obtain that

ζk(�) ≥ Cd,Lk2/d

(|�| + ε|℘(�)|)2/d − ((d − 1)L2 + 1)ε−2.

Taking ε = |℘(�)|1/(d−1)ε′ for some ε′ > 0, the result immediately follows. ��
Before proving Theorem 5.1, we now briefly look at the isoperimetric problem

sup
{|�| : � ∈ Od,L , |∂�| = 1

}
(29)

for domains inOd,L . It is clear that there exists a solution to the isoperimetric problem
over Od,L , however we cannot say too much immediately as balls do not lie in Od,L .
We now give some remarks on properties of solutions to (29).

By the results of Fuglede in [21], for L > 0 large one can note that any solution to the
isoperimetric problem must be (quantifiably) close to the ball of the same perimeter.
Moreover, for any � ∈ Od,L , its Steiner symmetrisation �# about the hyperplane
{xd = 0} defined by

�# := {
(x ′, y) ∈ ℘(�) × R : −h(x ′) < y < h(x ′)

}
,
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Fig. 2 Numerically computed optimal solutions to the isoperimetric problemwith unit perimeter overO2,L
with L = 0.5 (top left), L = 1 (top right), L = 2 (bottom left) and L = 4 (bottom right) (Color figure
online)

where h(x ′) := (h+(x ′)−h−(x ′))/2, also lies inOd,L . Thus, we have that |�#| = |�|
and |∂�#| ≤ |∂�|, with equality if and only if �# and � are isometric. Hence, any
solution to the isoperimetric problem over Od,L is necessarily symmetric about the
hyperplane {xd = 0}.

As far as the author is aware, it is not knownwhether the solution to the isoperimetric
problem overOd,L is unique. In dimension two, it appears to be unique and the author
has numerically computed solutions to the isoperimetric problem forO2,L , see Fig. 2.

We now show for any � ∈ Od,L that imposing the condition |∂�| = 1 imposes
constraints on |℘(�)|, which is the final ingredient needed to prove Theorem 5.1.

Lemma 5.12 Fix � ∈ Od,L and suppose that |∂�| = 1, then 1
2
√
L2+1

≤ |℘(�)| ≤ 1
2 .

Proof For � ∈ Od,L observe that
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2|℘(�)|
√
1 + L2 ≥ |∂�| =

∫
℘(�)

√
1 + |∇h+|2 +

√
1 + |∇h−|2 ≥ 2|℘(�)|

and the result immediately follows. ��
Proof of Theorem 5.1 With our previous results in hand, we now follow the outline of
the proof of Theorem 1.1 in [6] to prove Theorem 5.1. We already know the existence
of minimisers to (23) from Lemma 5.10. Let �∗

k be any sequence of minimisers to
(23) and let �′ ∈ Od,L with |∂�′| = 1 be fixed. Using Lemmas 5.11 and 5.12, taking
ε > 0, we see that

ζk(�) ≥ Cd,Lk2/d

(|�| + ε|℘(�)|d/(d−1))2/d
− ((d − 1)L2 + 1)

1

ε2|℘(�)|2/(d−1)

≥ Cd,Lk2/d

(|�| + ε|℘(�)|d/(d−1))2/d
− ((d − 1)L2 + 1)

(4 + 4L2)1/(d−1)

ε2

for any � ∈ Od,L with |∂�| = 1. Then observe that

Cd,Lk2/d

(|�∗
k | + ε|℘(�∗

k )|d/(d−1))2/d
− ((d − 1)L2 + 1)

(4 + 4L2)1/(d−1)

ε2
≤ ζk(�

∗
k ) ≤ ζk(�

′)

= Wdk2/d

|�′|2/d + o(k2/d )

and dividing through by k2/d and taking the limsup, we have, using Lemma 5.12 again,

lim inf
k→+∞ |�∗

k | + ε

2
≥ lim inf

k→+∞

[
|�∗

k |2/d + ε|℘(�∗
k)|d/(d−1)

]
≥ Cd,L(Wd)

−1|�|2/d > 0.

As ε > 0 was arbitrary, we see that the sequence of minimisers is non-degenerate.
Now the only moot point to cover is that any accumulation point of the sequence �∗

k ,
possibly up to translations of elements of the sequence, is indeed a solution to the
isoperimetric problem over Od,L . Knowing the non-degeneracy, by Lemmas 3.3, 5.5
and the inequalities on p. 146 of [5], up to a sequence of translations, the�∗

k lie inside a
sequentially compact subcollection ofOd,L . Hence, there is a convergent subsequence
�∗

k j
, up to translating elements of the sequence, converging to some �∞ ∈ Od,L as

j → +∞. By Theorem 4.2 we see that

lim
j→+∞

ζk j (�k j )

(k j )2/d
= Wd

|�∞|2/d ,

using Dirichlet–Neumann bracketing i.e. μk(�) ≤ ζk(�) ≤ λk(�) for � ∈ Od,L .
Now if �∞ is not a solution to the isoperimetric problem then we see that this would
violate the optimality of the sequence �∗

k . Moreover, �∞ is necessarily symmetric
about the hyperplane {xd = 0}, up to a translation, by our previous discussion. ��

The proof of Theorem 5.3 follows entirely analogously to the proof of Theorem
5.1 by noting that the condition diam(�) = 1 implies that |℘(�)| ≤ 2−(d−1)ωd−1
via the (d − 1)-dimensional isodiametric inequality.
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