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Abstract
Artificial Intelligence significantly enhances the visual art industry by analyzing, identify-
ing and generating digitized artistic images. This review highlights the substantial benefits 
of integrating geometric data into AI models, addressing challenges such as high inter-
class variations, domain gaps, and the separation of style from content by incorporating 
geometric information. Models not only improve AI-generated graphics synthesis qual-
ity, but also effectively distinguish between style and content, utilizing inherent model 
biases and shared data traits. We explore methods like geometric data extraction from 
artistic images, the impact on human perception, and its use in discriminative tasks. The 
review also discusses the potential for improving data quality through innovative annota-
tion techniques and the use of geometric data to enhance model adaptability and output 
refinement. Overall, incorporating geometric guidance boosts model performance in clas-
sification and synthesis tasks, providing crucial insights for future AI applications in the 
visual arts domain.

Keywords Artificial intelligence · Machine learning · Feature extraction · Geometrical 
analysis · Content synthesis
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1 Introduction

Artificial intelligence (AI) techniques find use in the art industry for tasks such as 3D scan 
analysis, art recommendation systems, identification of art design principles, deconstructiv-
ism art generation with fragment models (Bellaiche et al. 2023; Hirsch et al. 2021). These 
techniques mainly involve three key processes: extraction, analysis, and synthesis. Extrac-
tion methods classify paintings based on style, identify and authenticate artwork, and pro-
vide exhibit and tour information to establishments like museums (Rani et al. 2023) and 
historic cathedrals (Sklodowski et al. 2014) to enhance their visitors’ experience. Analysis 
techniques interpret and facilitate searching and comparing art elements such as geometric 
patterns of compositional elements across multiple scales in art collections (Pintus et al. 
2016). Synthesis methods are used for scanning and enhancing the details of artifacts in the 
Cultural Heritage field (Borg et al. 2020, Remondino et al. 2011) and deal with the preser-
vation, documentation and collection of historical and cultural objects. They classify paint-
ings based on style, identify and authenticate artwork, and provide virtual access to historic 
cathedrals to enhance their consumers’ experience. It is used for scanning and enhancing 
the details of artifacts in the Cultural Heritage field (Borg et al. 2020; Pintus et al. 2016, 
Remondino et al. 2011) which deals with the preservation, documentation and collection of 
historical and cultural objects.

This paper explores a broad spectrum of AI techniques applied to artworks, encompass-
ing both deep learning and non-deep learning methods. While deep learning models, such 
as CNNs and GANs, have shown significant success in tasks like object detection and image 
synthesis, we also discuss traditional methods, including Deformable Part Models (DPM), 
Histogram of Oriented Gradients (HoG), and Thin Plate Spline (TPS) interpolation. These 
non-deep learning techniques are crucial for understanding specific geometric features and 
enhancing overall model performance when integrated with deep learning approaches.

Learning from Art datasets using artificial intelligence models is challenging due to 
the generally smaller dataset size and larger inter-class variations (Redmon et al. 2016; 
Mathieu et al. 2014), as well as incomplete or inaccurate data annotations (Milani et al. 
2022; Crowley and Zisserman 2013). This review paper broadly covers 3D art such as 
sculptures, archaeological sites and surface art such as walls, cloth or tattoos. Additionally, 
it also considers 2D forms such as paintings, sketches, digital art, cartoons, logos, anime 
and manga. Synthetic art through the stylization of real-world data without content separa-
tion commonly suffers from the bleeding of colors from the foreground to the background 
and the blurring of boundaries. Despite depicting the same content, the stylistic differences 
between various art media highlight the importance of separating style and content in model 
design for different art-related tasks. To illustrate these problems, we use t-distributed Sto-
chastic Neighbor Embedding (T-SNE), which is a commonly used nonlinear dimensionality 
reduction algorithm to visualize embeddings and understand similar images from the data-
set according to the model, VGG-19, embedding the data. From the T-SNE visualization 
in Fig. 1, we see that art domains of one type cluster closely, with some overlap for those 
sharing similar shape representations with cartoons and sketches. The large inter-class vari-
ations in the art modalities lead to their distributions looking roughly like anisotropic Gauss-
ians, with their spread creating overlaps with images of similar subjects between the other 
classes. The stylization of real-world data without content separation leads to the bleeding 
of colors from the foreground to the background and the blurring of boundaries. Our paper 
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discusses paintings, sketches, digital art, cartoons, logos, anime and manga as visual art 
media. It covers a variety of styles and genres such as abstract art, realism, impressionism, 
expressionism, surrealism, cubism, pop art. These styles range from those that resemble real 
world objects, leaning towards figurative art, to the other end of the spectrum using basic 
shapes and geometric deformations that diverge from reality.

1.1 Background

Computational art is a field that finds applications in the visual art industry for modeling 
collections of art (Özgün and Alaçam 2023), simulating visual art for artwork exploration 
(Stork 2006), and replicating artworks for preservation (Li et al. 2018). As the field grows, 
it is essential to recognize that the distinction between human-created and AI-generated art-
work remains subjective (Bellaiche et al. 2023; Hertzmann 2018; Augello et al. 2016). The 

Fig. 1 T-SNE visualization of the art domain as compared to the real-world images using the PACS datas-
et. The art modalities with paintings, cartoons and sketches showcase the clustering of art modalities close 
to photos, exaggerated geometries and no color or texture respectively. The dimensionality reduction uses 
a pre-trained VGG-19 model as a feature extractor and removes the fully connected head
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papers discussed in the literature use datasets from the art domain for training, thus modeling 
the domain, even if the art dataset is a subtask or a subset of the training dataset at least. For 
clarity, we use the term ’AI-generated graphics’ to refer to AI-generated works, acknowl-
edging the ongoing debate over whether AI art qualifies as visual artwork. Additionally, 
when using the terms ‘art’, ‘visual art’ and ‘artwork’ we refer to the input data collection. 
The survey paper discusses research where AI image synthesis and generation models result 
in different interpretations of artworks from existing styles, diversifying visual arts datasets 
(Ernst 2023) or producing artistic counterparts to real-world images in the introduction and 
synthesis sections. AI tools assist in the extraction and analysis of growing collections of art 
to enhance interactive experiences while expanding interpretation across selected geometry 
priors in collections (Fan and Liang 2023; Rani et al. 2023).

It evolved from a form of static procedural art, building from preset rules with random 
perturbations through models such as the AARON model in the 1960 s. Its later iterations 
were more data-centric, allowing for generation of more dynamic art using computer graph-
ics through non-photorealistic rendering techniques that distilled artistic styles to simple 
parameters such as brush strokes and other learned statistics forming popular techniques 
such as style transfer (Hertzmann 2018). These artworks were used to form interactive art 
pieces where both the artist and the audience influence the displayed design. Computational 
art evolved to include dynamic content generation with the evolution of image generative 
models, data-driven approaches learn how to synthesize AI-generated graphics through 
GAN-based models in the form of CAN, pix2pix, Cycle-GAN and GANVAS or learnable 
style transfer from DeepArt (Anantrasirichai and Bull 2022), digital art proliferated depic-
tions of various media in different existing styles. Other styles involved repurposing exist-
ing computer vision models for hallucinating emergent styles from natural images such as 
DeepDream. With a demand for controllable AI-generated graphics with the insertion and 
deletion of objects of varying poses and views, the AI art community developed text-to-
image models such as DALL-E and Muse. Current iterations of image generative models 
aim towards high-quality AI-generated graphics using diffusion models such as GLIDE or 
Stable Diffusion. They currently suffer from mitigating data biases from the confounding of 
the style and color choices of particular art movements (Srinivasan and Uchino 2021) that 
result in hallucinating structures.

Art museums broadly use AI tools to collect user statistics regarding exhibit visitations 
and tours (Rani et al. 2023). Additionally, they use computer vision in wider areas such as 
the Museum of Modern Art’s Thinking Machines exhibit use computational machines for 
artistic production(James 2018), or the National Gallery reconstructing old master paint-
ings using imaging techniques developed in the Art-ICT conferences. The Metropolitan 
Museum of Art of New York City, colloquially referred to as ‘The MET’ even sources its 
data, thereby helping improve the retrieval and classification performance of these tools 
(Ypsilantis et al. 2021). Others use computer vision for object detection and recognition, 
artwork cataloging and curation, 3D tours of sculptures, and augmented reality experiences 
with captions describing a piece. For example, Augello et al. (2016) cognitive architectures 
for artificial agents creating paintings, and other deep learning tools used in creative pro-
cesses and analysis of fine art. In addition to the more passive art exhibitions, AI art has 
been used for enhancing the interactivity in art, such as Duan et al. (2021) emotion analysis 
to create personalized art derivatives based on Van Gogh’s paintings, and Nawar (2020) 
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interactive art project exploring bread as a representation of one’s peculiar voice and politi-
cal statement.

1.2 Geometry in the visual arts industry

Identifying and analysis of artworks often use geometries ranging from global cues such 
as composition, perspective and proportions to identify stylistic characteristics common to 
an artist, to local cues such as stroke patterns, directions and shapes. Geometry is widely 
used in the art industry to represent perspective and lighting, as well as to reconstruct 3D 
shapes and locations of objects from 2D pictures. Models that incorporate proxy geometry 
onto artworks (Anantrasirichai and Bull 2022; Cox and Berns 2015) find applications in 
animations and VR-/AR-based museum tourism. The learned proxy geometry are geomet-
ric features or model embeddings that learn style invariances or shape and geometric data 
information. The 3D proxy or 3D geometric features is an intermediate representation upon 
which these creative applications perform operations such as relighting and novel views 
from their 2D projections or 2D geometric features. The use of the generation of 3D gener-
ated models extends to content recovery for art conservation projects (Pintus et al. 2016) 
in image searching for art historians and experts. Depending on the art style the object 
geometry is similar or exaggerated compared to their real-world counterparts (Cohen et al. 
2022). The geometry data, such as pose (Madhu et al. 2022), keypoints (Lorente et al. 2021) 
or bounding-box (Ufer et al. 2020), can then be used as labels to retrieve and match images 
with objects that range from highly structured to highly varied geometries. They also take 
the form of extra input maps along with the photographs of artworks like murals or paint-
ings on surfaces like pots, walls and robes (Borg et al. 2020) provide extra information when 
projected together to form 3D models. Table 1 shows examples of visual arts datasets using 
such geometric data for various tasks discussed over the duration of the survey paper. A 
3D proxy is an intermediate representation upon which these creative applications perform 
operations such as relighting and novel views from their 2D projections. The use of the 
generation of 3D models extends to content recovery for art conservation projects (Pintus 
et al. 2016) in image searching for art historians and experts. Depending on the art style the 
object geometry is similar or exaggerated compared to their real-world counterparts (Cohen 
et al. 2022). The geometry features, such as pose (Madhu et al. 2022), keypoints (Lorente et 
al. 2021) or bounding-box (Ufer et al. 2020), can then be used as labels to retrieve and match 
images with objects that range from highly structured to highly varied geometries. Extra 
input maps along with the photographs of artworks like murals or paintings on surfaces like 
pots, walls and robes (Borg et al. 2020) provide extra information when projected together 
to form 3D models.

Computer vision and machine learning for extraction and analysis from art collection 
meta data and images or 3D models provide an alternative to visual formal analysis of art 
collections that can be subjective, time intensive and inconsistent between experts. Geomet-
ric priors from data or those learned from models help detections in cases such as complex 
or cluttered scenes (Milani et al. 2022; Ufer et al. 2020; Kadish et al. 2021), exaggerated 
or abstract poses (Jenicek and Chum 2019; Khungurn and Chou 2016; Wan and Lu 2020; 
Islam et al. 2011; Marsocci et al. 2021), and perspective distortions or low dynamic range 
(Bernasconi et al. 2023; Bernasconi 2022).
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Additionally, variants of such geometric conditionals find use in generative art to cre-
ate controlled and diverse outputs while preventing repetitive or biased patterns that may 
emerge from the underlying data or model generation process [39]. This mitigates problems 
such as incoherence (Farid 2022), stereotypes and prejudice (Luccioni et al. 2023) in cur-
rent AI-generated graphics that lead to texture bleeding from parts of objects to each other, 
deformed hands or badly constructed objects. With aspects of geometry modeled separately 
in the model through proxy objects, shading and illumination stages, researchers can even 
model impossible, inconsistent and incoherent shapes in input painting images (Akleman et 
al. 2024) on purpose.

Table 1 Artwork datasets used in the training of models discussed in the geometric features extraction, dis-
criminative geometric features analysis, and synthesis with geometric features sections
Source Dataset Task description Dataset 

size
Num-
ber of 
classes

 Castellano et al. (2021); Castel-
lano and Vessio (2021)

best-artworks-of-all-
time (Kaggle dataset)

Image retrieval 8.4K 50

 Madhu et al. (2022) Christian archeology 
(CHA)

Object detection 16K 16

 Ahmad and Schich (2023) StyleObject7K Object detection 7K 10
 Ahmad and Schich (2023) ClipArt1K Object detection 1K 8
 Ahmad and Schich (2023) Watercolor2K Object detection 17.8K 6
 Ahmad and Schich (2023) Comic2K Object detection 52.7K 6
 Fuertes et al. (2022) QMUL-OpenLogo Logo detection 27K 352
 Kadish et al. (2021) StyleCOCO Human detection 61K –
 Smirnov and Eguizabal (2018); 
Zhao et al. (2023); Saleh et al. 
(2015)

WikiArt Paintings Object detection 81K 27

 Jeon et al. (2020) Brueghel Object detection 1.5K 10
 Kadish et al. (2021) People-Art Human detection 4.5K –
 Smirnov and Eguizabal (2018) IconArt-v2 (IA) Object detection 6.5K 10
 Zhao et al. (2023) Artsy scrapped dataset Orientation detection 2.8K –
 Sandoval et al. (2021) Pandora 18K Style classification 18K 18
 Anwer et al. (2016) Painting-91 Style classification 4.2K 13
 Castrejon et al. (2016) CMPlaces Scene classification 2.5M 205
 Cohen et al. (2022) DRAM Semantic segmentation 2.5K 12
 Huang et al. (2023) ArtSem Semantic segmenation 

and Image generation
40K 5

 Wechsler and Toor (2019) MAFD-150 Face detection 150 29
 Madhu et al. (2022) ClassArch Human pose estimation 1.7k –
 Yaniv (2019) Artistic-Faces Face detection 160 –
 Khungurn and Chou (2016) Drawings Human pose estimation 2.5K –
 Schneider and Vollmer (2023) Poses of People in Art Human pose estimation 2.4K 22
 Ciortan et al. (2021) Dunhuang Image Inpainting 5.6K –
 Xue (2021) Chinese-Landscape-

Painting-Dataset
Conditional Image 
generation

2.1K –

The table describes the dataset names, the tasks they are utilized in along with the total size of the dataset 
for training, testing and validation. Finally, the number of classes in the dataset is counted, with entries left 
blank for single-class datasets or those using paired inputs and outputs, such as images with their ground 
truth semantic maps or pose skeletons
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1.3 Paper organization

To understand how geometry contributes to artwork tasks, we discuss the artificial intel-
ligence techniques facilitating the use of geometry in extracting, analyzing and synthesizing 
artworks. We believe that discussing extraction, analysis, and synthesis is pertinent as these 
are the primary applications of AI tools in the art industry, utilized by experts, critics, and 
visitors in art collections. These processes are interconnected through the common thread 
of geometric considerations in various learned representations or additional constraints, 
which play a crucial role in enhancing the understanding and appreciation of art. We aim 
to emphasize the evolving nature of art and how AI tools are increasingly being integrated 
into creative processes and their interpretations. The focus on geometry in this discussion 
aims to improve the quality of the generated media by providing form guidance amidst the 
fluidity and variety of styles while allowing more control for artistic expression. Addition-
ally, it addresses common failings in these AI tools (Jenicek and Chum 2019) with regards 
to generated images, visual composition and geometric deformations.

We first discuss the extraction of geometric labels for humans and objects from 2D 
images to 3D models in Sect. 2. The object labels are divided into bounding boxes, key 
points and segmentation masks whereas people range from pose skeletons, landmarks and 
gestures. The 3D features range from explicit surfaces to implicit surfaces, and parametric 
models. Then, we explain the analysis of the effectiveness of the extracted geometric data 
on discriminative tasks in Sect. 3. The feature extraction section discusses the extraction 
of entities or subsets of visual art collections where geometric information is used directly 
as constraints or selection criteria to improve discrimination or indirectly by augmenting 
the collection to improve model classification. Next, we detail the synthesis and manipula-
tion of artwork for novel view synthesis, relighting and content restoration in Sect. 4. The 
section mainly discusses the use of geometry for visual art collection modification which 
provides new perspectives or renditions of existing artwork where any changes made are 
geometrically and stylistically consistent with the original artist’s vision. Additionally, it 
discusses content recovery where the geometric consistency is towards the original artistic 
medium in addition to the entity’s geometry for both global and local consistency preser-
vation. Finally, we discuss the future directions for better incorporating geometry into the 
model architecture such that it is fully differentiable to use the full strengths of deep learning 
methods.

1.4 Related surveys

Using Geometric information in artificial intelligence models facilitates the learning of rep-
resentations that encode the inherent structure of visual elements. This paper covers 2D and 
3D artistic visual media while discussing the extractable geometric features following it 
with the discriminative and generative tasks they can be incorporated into. The closest work 
related to ours considers geometric features at the local and image level through feature 
descriptors or hardware (e.g. 3D printers and scanners) for 3D models in cultural heritage 
(Pintus et al. 2016). Unlike our work, they focus on preservation, registration, reconstruc-
tion and enhancement, and do not consider deep learning based techniques. In this section, 
we first cover more recent surveys in the field before covering the works that incorporate AI 
and geometry in visual art.
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AI-based methods have found use in creative applications such as content generation 
in multimedia, captioning, spoofing and AR/VR (Anantrasirichai and Bull 2022). These 
involve models deployed for production in games such as GameGAN, storyline genera-
tion with MADE or Vid2Vid, and artwork generation from Hypercube-based NEAT that 
utilizes geometric regularities. A survey on computer vision in art history highlighted its 
applications in image search and retrieval (Foka 2021) for art historians. They identify the 
importance of recognizing contexts such as clothing, architecture, materials, faces, patterns 
on objects, and artist signatures for recognizing time periods, geography and culture. Other 
papers focus on deep learning approaches in paintings (Castellano and Vessio 2021) and 
digital art collections (Cetinic and She 2022) for content recognition such as classifica-
tion, retrieval and detection in images or multimodal domains. They also cover a subset of 
art synthesis using image generative models with losses that exaggerate styles or through 
latent space guidance with other models such as Contrastive Language-Image Pre-Training 
(CLIP). We cover the discriminative and generative tasks only if they consider geometric 
information in the form of annotations or pseudo geometry in the form of intermediate rep-
resentations, model functions or dataset transformations to induce model invariance.

A study on mixed 2D and 3D non-photorealistic media covers the task of art conservation 
using multiple input spectrums (Borg et al. 2020). They only use machine learning or statis-
tical information for detection when dealing with the visual spectrum, with the majority of 
their study covering technologies for diagnosis and imaging. A similar review covers these 
multispectral inputs for paintings only, which extracts 3D geometric information through 
correspondence matching with feature descriptors such as SIFT (Remondino et al. 2011). 
However, we explore not only art restoration but also the repurposing of material properties, 
symmetries, and corrupted regions within 3D representations. This enables us to simulate 
missing contents lost due to deterioration or the image sensing process.

2 Geometric features extraction

Object detection uses geometric features that act as descriptors learned from special clas-
sifier architectures to learn external geometry data (Smirnov and Eguizabal 2018) from 
labeled boxes or pixels that enclose the object using bounding boxes or semantic maps. 
These descriptors can be specialized (Nguyen et al. 2016) for human detection by adding 
more structure and robustness to affine transformations via pose skeletons at different hier-
archical levels. Common geometric data capture regions of interest for both humans and 
objects at the semantic and instance level. The latter has not been explored in the existing 
works in favor of the problems of domain adaptation and limited data. Some data augmenta-
tion techniques and extra input induce style invariance and other context invariances such 
as time periods respectively to force models to process the input data as geometric feature 
embeddings that capture structure information, thereby forming geometric techniques.

Paintings are challenging to computer vision models due to their background clutter and 
object composition (Hall et al. 2015). With their high diversity in poses and shapes as com-
pared to their real-world counterparts, they can even lead to spurious detections, mistaking 
people for other mammals (Westlake et al. 2016) or from occlusions. Furthermore, some 
painting datasets do not have reliable annotations with some subjects missing. To relax the 
problem, existing works account for the deviation of the geometry and depictions from the 
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real world to the artistic image domain with modifications to their real-world detector train-
ing and inference pipelines.

2.1 Object-centric features

Object-based geometrical feature annotations involve varying amounts of information con-
tained in excess for bounding boxes, exactly in segmentation masks and minimally in key-
points. Alternatively, data pre-processing induces the underlying class of transformations 
during model training or removes non-geometric information. These labels are summarized 
and visualized in Table 2.

2.1.1 Bounding boxes

Bounding boxes provide the target objects’ position and scale in paintings with rectangles 
by manual or automatic annotation using object detection techniques. Object detection is 
divided into single-stage or two-stage models for speed-accuracy trade-off, and scores the 
overlap between their proposed regions of interests and the bounding boxes (Arkin et al. 
2023). In the painting domain, these models account for the gap between the artistic depic-
tion of the object and its real-world counterpart by transforming the input data (Jeon et al. 
2020) or modifying its stages (Ufer et al. 2020; Milani et al. 2022; Kadish et al. 2021; Bai et 
al. 2021) depending on the architecture choice. Modifications to one-stage models proceed 
in an end-to-end fashion to classify detected objects while multi-stage detectors optimize 
their constituent stages to produce better candidate regions (Shen et al. 2019).

Single-stage detectors such as You Only Look Once (YOLO) directly classify objects 
and perform regression using Convolutional Neural Networks (CNN) to get their location 
and size from the predicted box coordinates and object aspect ratio. They utilize spatial 
consistency in datasets to implicitly embed the geometric and content information together 
and do not use intermediate features to represent object regions. In fine-art paintings, asso-
ciations between objects provide a non-destructive means for identifying visual connec-
tions for investigations into its history or authenticity (Shen et al. 2019). However, datasets 
with nonnatural collections lack strong spatial correspondences among highly diverse 
objects, limiting the effectiveness of pre-trained detectors. Furthermore, the shape abstrac-
tions in paintings and sketches vary drastically from photographs in the resultant high-level 
feature space (Cai et al. 2015). To address these challenges, detectors often employ data 
augmentation techniques like style transfer (Jeon et al. 2020; Fuertes et al. 2022) to align 
real-world images with artistic image styles and structures, thereby increasing the artistic 
images dataset size. However, these augmentation techniques require further processing to 
maintain semantic consistency (Ernst 2023) since failed samples actively detriment model 
performance. These augmentations may compromise semantic consistency (Jeon et al. 
2020) unless complemented by techniques such as mask content mixing, which combines 
valid regions of objects from multiple images without overlap or obfuscation (Fuertes et 
al. 2022). Nevertheless, style transfer is useful for texture-biased models like CNN-based 
object detectors (Jeon et al. 2020), unlike shape-biased models (Duan et al. 2021). For 
example, style transfer is unsuitable for certain artistic image styles such as stick figures 
and sketches (Kadish et al. 2021) where careful content mixing that preserves semantic cor-
respondences is preferred instead (Wang et al. 2023).
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Multi-stage detectors add an additional feature extraction stage before classification and 
regression which customizes the learned object representation, size and shape. It is com-
monly based on Region-Based Convolutional Neural Networks (R-CNNs) that have a fea-
ture extractor to extract and warp the regions of interest into a uniform aspect ratio with 
a CNN for model prediction (Arkin et al. 2023). In paintings, the learned deep features 
help detect near duplicate objects that only differ in style (Shen et al. 2019) that pay hom-
age to popular artists and schools by copying or modifying their composition. This ability 
enables tasks, like grouping styles or achieving texture, invariance by replacing (Ufer et al. 
2020) or modifying architecture stages (Milani et al. 2022). Earlier methods extract static 
features using style templates (Ufer et al. 2020; Schlecht et al. 2011) to capture the appear-
ance variation of an object so that the feature extractor works with a robust representation 
that accounts for a small variation of style, color, scale and orientation. The template-based 
detection finds use in objects with standard configurations such as paintings authentication 
which requires artist signature attribution from small motifs in architecture and heteroge-
neous paintings of still life, portraits and landscapes. Some later work improves parts of 
pre-trained R-CNNs with multi-head attention modules (Milani et al. 2022) for improved 
model performance to extract and exaggerate the most class discriminative subregions to 
improve detection for cases in the Art-DL dataset’s rarer classes Dominic and Paul or those 
that co-occur such as Mary and Jesus. The selection stage in detectors helps separate the 
foreground from the background in crowded scenes composed of objects of varying sizes, 
unlike single-stage detectors. Furthermore, unlike single-stage detectors, the modifications 
to the feature extractor allow generalization to object geometry in terms of scale and propor-
tions, but they limit the adaptability to novel tasks based on the choice of the feature extrac-
tion strategy. Depending on the method of feature representation learning, detectors can 
enhance their performance for classes with small sample sizes, which are often considered 
anomalous in accordance with their training dataset. This process involves separating the 
inputs’ appearances from their other attributes (Liu et al. 2023, 2023). In cases where the 
classes are not imbalanced, the representations can be robust enough to handle label shifts 
or produce consistent activations with specific groups (Liu et al. 2023, 2023).

Transfer learning involves training the detector’s pre-trained layers on a different data 
domain, using additional components and data augmentation to adapt the model for a new 
task. The performance of a pre-trained model relies on how the second stage of multistage 
detectors is trained. These training choices may involve training parts of the models in 
stages to bias the detector toward the desired task. Alternatively, bootstrapping the model 
can provide weak supervision by using a small subset of clean, labeled images to propagate 
to the remaining data (Gonthier et al. 2018). For Japanese Ukiyo-e paintings, although pre-
trained models accurately detect faces, the model’s classification of the cropped face bound-
ing boxes is poor without fully tuning the model weights (Vijendran et al. 2023; Feng et al. 
2021). Fully fine-tuning classifiers can significantly improve model performance, especially 
when coupled with data-efficient learning methods like contrastive learning (Feng et al. 
2021). However, this approach depends on the sampling strategy for the training data, and 
the compatibility of data augmentation with the pre-training dataset and task at hand.

Instead of retraining or modifying a model for a specific task, we can leverage informa-
tion from multiple domains and utilize relationships in the latent space between multiple 
models for domain adaptation with multi-stage detectors. For instance, multitopic language 
modeling (Bai et al. 2021) can provide context for image captioning by using scene relation-
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ship embeddings from the painting description dataset SemArt alongside pre-trained Faster 
R-CNN and Residual Network (ResNet) models. This approach requires fewer annotations 
for generating image descriptions, but the domain gap among the models results in signifi-
cant variation in image description evaluation metrics. In some image captioning tasks (Lu 
et al. 2022; Bai et al. 2021), the object detector acts as either a feature extractor or a caption 
generator. Features from different modalities’ outputs are fused using the attention mecha-
nism of transformers. The detectors play dual roles as image captioners and intermediate 
feature extractors, facilitating semantic alignment at either the image-text (Bai et al. 2021) 
or image-image (Lu et al. 2022) level, thereby bridging different domains. In the former 
case, the detector can also categorize detected objects into a hierarchy of textual categories. 
Moreover, semantic metadata can enhance object detection performance (Marinescu et al. 
2020) by filtering out objects incompatible with the periods depicted in scenes, eliminating 
the need for auxiliary models.

2.1.2 Patch-based region selection

In the absence of labelled bounding boxes, patch-based selection methods approximate 
object locations with feature engineering and simple classifiers. They enforce faithful geom-
etry through spatial correspondences (Shen et al. 2019) embedded in model features with a 
further selection stage that accounts for a particular class of transformations. These matches 
at the feature level narrow down the area of interest from the image to a patch level to return 
the target object. Object retrieval for paintings typically uses a multistage model for feature 
engineering and better detection and localization using part-based models. These multistage 
detectors are useful for noisy datasets where the target classes are absent in the object. 
The first stage clusters related image-level candidates through text mining and choosing 
patch-level candidates through segmentation and MLDPs through a Histogram of Gradients 
(HoG) while the second stage trains class-wise DPMs as a detector.

During the feature engineering stage, the fusion of different data modalities provides the 
model with a shared representative space within the same domain (Sizyakin et al. 2020) or 
between different domains (Bai et al. 2021) and robustness to noise from different sources. 
Additionally, their feature embeddings often require heavy pre-processing with dimen-
sionality reduction into embeddings such as fisher vector(Crowley and Zisserman 2014), 
histograms and templates to encode image content. Other common embeddings involve 
model-specific image embeddings such as HoG as a learned feature encoding method (Dalal 
and Triggs 2005) for a middle-level discriminative patch as a robust template matching 
alternative after hyperparameter tuning.

For detection, part-based models work with a smaller number of proposals and utilize 
the patch statistics alongside coarse geometric information from the preprocessed features. 
Deformable Part Model (DPM) (Dalal and Triggs 2005) is a popular choice as a class-
specific sliding window detector (Crowley and Zisserman 2013; Westlake et al. 2016) since 
it is robust to object detection under a lot of arrangements of its sub-parts. Detector robust-
ness is crucial for domain adaptation in problems such as detecting gods or animals in vases 
(Crowley and Zisserman 2013) where there is a lot of subject ambiguity. Siamese networks 
as the detector architecture provide another solution by contextualizing the data as a strategy 
to capture the scene with co-occurring object embeddings (Madhu et al. 2022).
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2.1.3 Geometric transformations for content selection

Simple geometric transformations like affine transformations and cropping (Smirnov and 
Eguizabal 2018) also help models train on small datasets while learning invariance proper-
ties from the data.

Data augmentation techniques provide the additional benefit by mitigating the need for 
extensive data labeling by generating additional training examples that capture variations in 
object appearance and their contexts. There are techniques for generating new data from the 
image level to preserve the training distribution. LogoMix (Fuertes et al. 2022) synthesizes 
samples from overlapping different logo patches, effectively preventing the model from 
overfitting to synthetic data and ensuring it learns robust features from real-world data.

Style transfer creates a hybrid image that preserves the structure of the content image of 
the real-world while its style takes after the painting images. Other data augmentation tech-
niques often drastically transform the training distribution to account for the gap in diversity 
between domains (Li et al. 2017). They can have fidelity towards different aspects of the 
input pair depending on if they were trained on multiple styles, a single style, or through 
iterative optimization. The synthetic data aggressively transforms the training dataset, pro-
vided the input data is not independent of texture such as edge maps while needing only a 
limited set of style images.

Style transfer also suffers in diversifying images with structures (Kadish et al. 2021) 
like stick figures, but it can still provide robustness to textural distortions to adapt object 
detection in the painting domain. Their classifier uses ResNet-152 and Faster-RCNN that 
are fine-tuned on stylized COCO dataset and showcases the improvement in detection on 
larger training datasets, even if they are simply stylized versions. While style transfer pro-
vides a large shift in the color and texture information, without trading off the content loss 
fidelity towards the style image, it does not correspondingly warp shapes. In object detec-
tion, style transfer helps reduce the cross depiction problem to that of color and structure 
(Lang and Ommer 2018) attributes in the image while ignoring geometric information that 
is context dependent like gesture, shape and pose. Artistic representations can be more 
shape-biased (Kadish et al. 2021) for stronger geometric features and better model per-
formance. The Computer Vision Group (CVG) system (Lang and Ommer 2018) performs 
image retrieval using contours from images for stroke information and negative example 
training after expert annotation with five bounding boxes to determine spatial extent and 
geometric relation.

2.2 Human-centric features

Human detection on the other hand involves highly regular structures at the face, body and 
hand level captured by bounding boxes, pose skeletons and landmarks. Pose and body shape 
information provides information for perception and identities (Islam et al. 2011) through 
the proportion of their parts. Human poses can vary in depiction across time periods and 
represented with different topology or motifs (Schneider and Vollmer 2023) where the ref-
erential deviations can represent artistic signatures or movements. They can also increase 
the difficulty in detecting poses by blurring contours, distorting proportions or occluding 
joints through apparel or other objects or lighting, sometimes even changing the cardinal-
ity of the parts to indicate mythological creatures. Face detection in uncontrolled settings 
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like modern artistic styles (Wechsler and Toor 2019) is very challenging due to occlusion 
as well as variations in shape, color, texture and face size. In end-to-end training, the ratio 
of the preservation of the geometric features or the pose regression loss to the style transfer 
loss is vital, unlike training them as separate parts for achieving high pose accuracy (Wan 
and Lu 2020). There is still a cross-domain generalization problem since the joint position-
ing is more accurate with real-world images compared to artistic images, but more data 
from stylization gives better performance after a cutoff. Paintings retrieval can benefit from 
pose annotations at different levels of abstractions (Carneiro et al. 2012) to compensate for 
mislabeling. Inverted label propagation produces these levels of poses through producing 
annotations induced from the source to the target image provided that the dataset size is 
sufficiently large.

2.2.1 Hand gestures

The detection of hand poses involves the position and orientation of the hands and their 
fingers with respect to the body in the form of templates or pose skeletons. In portraits and 
paintings, they commonly form hand signs and iconographic meaning with irregular finger 
positions or unnatural gestures with hand actions (Lazzeri et al. 2019). They indicated a 
group’s, family or religious memberships and ranks, personality traits and an artist’s sig-
nature style. Learnable hand templates (Schlecht et al. 2011) strongly separated the hand 
from the background, which convolve with Laplacian of Gaussian filters across the image 
and give strong responses on contour alignment. While their collections capture the primary 
variation of appearances across scale and rotations with data augmentations and principle 
component projections, they do not encode relations between the hand and body. This results 
in detecting false positives for speaking gestures and other semantically ambiguous actions.

Follow-up works found that the use of deep pose estimators alone results in poorer accu-
racies in western fine-art paintings (Bernasconi et al. 2023; Bernasconi 2022) due to distor-
tions of perspective and low contrast of the body against the background. They used the 
OpenPose model (Zheng et al. 2023), a multistage convolutional model to detect and match 
part-wise confidence and affinity maps, to detect the skeletal pose of the hand with 21 key-
points and if it is left or right-handed. The model learns body part relations, their locations 
and orientations with their corresponding confidences with learned heatmaps and vector 
maps. The detection improves with better representations learned by pose descriptors. For 
example, the ResNet-50 pre-finetuned on a large sign language dataset can effectively rec-
ognizes gestures involving both hands when compared with their simple angle pose key 
point descriptor (Bernasconi et al. 2023), but fails on the less represented classes with hand-
object interactions. Such misclassifications also result from low interclass variations in ges-
tures in which similar poses belong to different classes.

2.2.2 Facial landmarks

Facial landmarks in paintings have more variations compared to their real-world counter-
parts leading to its architectures disentangling the style and pose into separate multistage 
models or a need for data augmentation.

Multistage models such as the Cascaded Pose Transform network (CPTNetV2) can sim-
ulate head and face pose animation (Zhang et al. 2023) to model pose displacements while 

1 3

   64  Page 14 of 47



Artificial intelligence for geometry-based feature extraction, analysis and…

inpainting the facial features separately to disentangle the problem into the two separate 
poses transformations. These models need a refinement stage to add details while maintain-
ing consistency. Then, a fusion generator utilizes both the pose information that was disen-
tangled by imposing masks to guide their individual generations. Other two-stage models 
can detect modalities like bounding boxes and keypoints for the human figure (Springstein 
et al. 2022) from the photograph domain to that of paintings using a semi-supervised learn-
ing method with transformers through a teacher-student model distillation. It predicts a fixed 
set of proposals for each image, removing the need to account for overlapping boxes and 
imbalance between the foreground and background. Distilling geometric information for 
domain adaptation provides better results than fine-tuning or style transfer with additional 
label conditioning.

Artistic augmentation (Yaniv 2019) for landmark detection requires image transforma-
tion through style transfer techniques followed by a part-based feature correction step for 
landmark warping to account for structural shifts and decorrelating parts. Techniques like 
part-based correction and tuning and Geometric style transfer account for extreme styles 
and higher variation in landmark points. The stylized portraits’ landmarks are warped to 
the mean facial shape vector of the target style to capture a signature structure using Thin 
Plate Spine (TPS) interpolation, but the method cannot handle fundamental shape variations 
from natural faces in anime or manga portrayals. A ResNet encoder-decoder and region 
networks can account for global and local landmark arrangements (Sindel et al. 2022) and 
result in accurate prediction of inner facial features in high-resolution images. Style transfer 
and geometric augmentations, to randomly shift or resize facial landmarks along with their 
movements on a TPS displacement field, account for their changed arrangements in artistic 
faces. Despite suffering from jawline landmark localization due to ambiguous labeling, the 
method works well for salient portrait features for the eyes, nose and mouth.

2.2.3 Body skeleton

Poses between people in paintings and photographs (Jenicek and Chum 2019) can be 
effectively aligned by pose detections and matching them through geometric transforma-
tions. The latter validates and measures similarity under different scales and positioning 
while making the detection robust to noise and missing parts. The method is not robust to 
unknown poses, occlusions, ambiguous poses, or any spurious connections that arise from 
these challenges. Style transfer can bridge the gap between photographs and paintings for 
both person and pose detection in curvilinear surfaces like vases and create a dataset to fine-
tune the HRNet (Wang et al. 2021) model for the tasks. With a perceptual loss on both tasks, 
the model can adapt the annotations to the pose and detection losses with the stylized data.

To compensate for limited painting data, the pose estimators can also be pre-trained from 
3D renderings (Khungurn and Chou 2016) of artistic media like anime or manga which 
provides joint positions from the underlying rigging. These models can simply be fine-
tuned on a smaller dataset of drawings to effectively ignore the problem of domain gap from 
models pre-trained on photographs. The pose information can be utilized in other tasks such 
as image retrieval. Pose similarity followed by clustering helps retrieve similar paintings 
(Marsocci et al. 2021) through methods like K-medians with metrics which are invariant 
to scaling, rotations and translations after detecting them through pre-trained models like 
OpenPose.

1 3

Page 15 of 47    64 



M. Vijendran et al.

2.3 Segmentation masks

Image segmentation partitions the image into pixels that group into multiple classes which 
can be further grouped into individual objects that belong to the same class in the case 
of instance segmentation. This requires fine localization of objects in the scene regardless 
of scale, occlusions from clutter or other objects, or appearance changes from lighting or 
environmental conditions. Earlier works use deformable models, which provide an object 
shape template representing a distribution of warped objects, and graph cut to partition an 
image into regions while providing boundary separation (He and Lu 2011). By rephras-
ing the image segmentation as a deformable model optimization problem, they represent 
the Chinese paintings by their unique color choice in neighborhoods and the direction of 
texture. The deformation model splits the image into connected regions, while the texture 
directions represent flexible sparse foreground/background features like edge convolution 
filters to detect orientations.

Deep learning based segmentation networks like DeepLab v3, a fully convolutional 
model segmenting objects at various scales with spatial pyramid modules and cascading 
dilated and upsampling convolutions, transfer well to the artistic domain with transfer learn-
ing and style transfer (Heitzinger and Stork 2022). When trained only on natural images, 
the baseline model on modern human portraits outputs faulty segmentations due to weak 
lighting cues, different color and texture choices compared to photorealistic images, and 
similar contours in the object and its background (e.g. striped sleeves and sofa). The model 
improves when fine-tuning once on style-transferred images, before training it on the real 
portrait images. Despite the unnatural color tone transfer in some regions, the model only 
fails with extreme shadows, reduced style, flat regions and unnatural skin tones.

Similarly, style transfer augmentation (Kamann and Rother 2020; Cohen et al. 2022) 
improves the result of segmentation models by increasing their shape-bias while simulta-
neously providing robustness against various image corruptions (e.g. noise, blur, adverse 
weather conditions such as fog, motion blur from fast-moving objects). By separating the 
task into coarse binary mask proposals and fine mask refinements (Wang et al. 2023), the 
segmentation model becomes robust to domain shifts. The detector, without any fine-tuning, 
is robust enough to find objects of various styles from watercolor, clip-arts to comics. The 
binary mask extracts multiple objects that belong to the foreground or the background using 
cosine similarity measures on features from models like self DIstillation with NO labels 
(DINO), a self-supervised transformer that learns object semantics from global representa-
tions forming from local image patches. The detector with their novel loss refines these 
masks and adds undetected regions from the mask proposal step.

Going forward, more advanced input and output features could enhance segmentation 
performance. Multimodal image input features (Sizyakin et al. 2020) could be extended 
beyond artistic object segmentation, as they derive from various data sources and feature 
extractions, and compensate for missing information across modalities. Additionally, they 
address issues like low-contrast cracks in photographs, absent cracks in IRP, and noise in 
X-ray images. Incorporating pseudo segmentation maps as an output feature has proven 
effective, leveraging discriminative features via Class Activation Maps. This approach not 
only improves image localization and detection simultaneously in paintings (Milani et al. 
2022) but also holds potential for adaptation in human segmentation.
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2.4 3D features

The feature representation of 3D models can take generic forms such as implicit neural 
structures and explicit geometric structures or specific versions from parametric constrained 
deformable models. Implicit neural networks represent 3D shapes and surfaces in a point-
wise manner with their learned function, while Explicit models represent the objects as a 3D 
point collection and differ in usage by the efficiency and ease of use of their data structure 
for different tasks. Parametric models, on the other hand, use a small number of shape and 
pose parameters to efficiently represent objects in a class like Skinned Multi-Person Linear 
(SMPL) for human bodies with strong constraints to prevent large structural deviations. 
These representations are summarized with visualizations in Table 3.

2.4.1 Implicit models

Implicit geometry structures can separate the natural scene geometry from artistic styliza-
tion by utilizing a two-stage model with a Neural Radiance Field (NeRF) and a 2D styliza-
tion decoder which gets the projected view to style (Huang et al. 2022). The desired style 
can be customized by conditioning the latent code that is the input to the decoder which 
also serves to deblur the rendered scene from the NeRF depth output. The model requires 
multiple stages (Tseng et al. 2022) for view projections and style transfer to mix their out-
puts to get a stylized scene. When transferring style onto a mesh, unseen style inputs result 
in blurry reconstructions with naïve methods transferring only the overall color tone of 
the style image. By rendering the geometry and stylistic aspects separately, the ARF paper 

Table 3 The extraction of 3D geometric data in the form of parametric representations, explicit and implicit 
surfaces
3D representation Explicit Implicit Parametric
Existing works Chen et al. (2022); Carroll 

et al. (2010); Sahay and 
Rajagopalan (2015); Kim et 
al. (2013)

Huang et al. (2022); Tseng et 
al. (2022); Zhang et al. (2022); 
Srinivasan et al. (2021); Chan et 
al. (2022); Chang et al. (2022)

Pang et al. 
(2023); Casati 
et al. (2019); 
Zeidler and 
McGin-
ity (2023); 
Jetchev (2021)

Sub types Point clouds
Voxel grids
Mesh structures

Neural radiance field
Gaussian splatting
Signed distance field

Skinned 
multi-person
Linear model

Visualization

The table mentions the papers under these categories along with the representation types used in the 
subsections under 3D Features. The explicit model is a triangular mesh of sculpture and its wireframe 
representation. The implicit model is a Gaussian splatting rendering from a single view using the 
DreamGaussian architecture. Finally, the SMPL visualization is a rendering from a Contrastive Language-
Image Pre-Training (CLIP) based text prompt of an Asian mermaid
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(Zhang et al. 2022) showcases the transfer of the subtle textural details of the watercolor 
feather image onto their Family statue scene example.

To optimize the transfer process (Zhang et al. 2022) for better representations in view 
extraction, the image level style transfer uses a deferred back-propagation at a patch level 
to accumulate over all the patches at the neural field. To reduce computational complexity, 
the final model can only consider the components in the visible field of view (Srinivasan et 
al. 2021) but still requires all direction illumination and material information. Alternatively, 
better representations can be learned using an image generative model like a Style-GAN 
(Chan et al. 2022) and fed to the NeRF module, facilitating detailed feature extraction while 
conditioning the generator on geometric priors such as pose. For specific types of extrac-
tions such as human sculptures, implicit models like Pixel-Aligned Implicit Function (PIFu) 
that are trained on human data produce better results while accounting for domain shifts by 
adapting the intermediate features with a Maximum Mean Discrepancy (MMD) loss that 
aligns their moments and handles topology shifts (Chang et al. 2022).

2.4.2 Mesh structures

Direct 3D representative models such as voxel grids (Chen et al. 2022) ignore object arti-
facts found in the neural field representations in two-stage scene stylization. These are 
limited by the resolution of the extracted 3D model and the computational size of the inter-
mediate features. Perspective changes warp the projected image from moving the lines of 
convergence constraints (Carroll et al. 2010), thereby changing the vanishing point. They 
achieve this view emphasis by warping the quad mesh and the corresponding homographic 
matrices while constraining the projection geometry.

It is possible to extract more faithful 3D models using a dictionary of surface gradients 
and exploiting the symmetry of such mesh structures in other views. The utilization of such 
self-similarity with inpainting in point clouds (Sahay and Rajagopalan 2015) finds applica-
tions in reconstructing damaged and structurally deformed architecture and sculptures.

Stylistic renderings of multiple views for stereo paintings can use 3D paint strokes on top 
of partial grid mesh structures as a two-stage model (Kim et al. 2013).

2.4.3 Parametric models

Artistic 3D models such as sculptures closely resemble the human figure, but are limited 
in dataset size or consist of larger variations in pose or structure to provide emphasis to 
foreground or background characters, sometimes exaggerating the shape from certain 
viewpoints. The SMPL model provides a minimal, resilient pose and shape representation 
through low-dimensional vectors. The customizability of intrinsic parameters accounts for 
the anatomical differences in artistic statues, making it handy for reconstructing statues 
like the Wounded Amazon with a different sized arm or for those with missing limbs such 
as the Esquiline Venus (Fu et al. 2020). By adding a Signed Distance Field (SDF) to check 
the occupancy of particle effect selected by the artist, the body can be textured and locally 
manipulated by keeping track of the normals and tangents on the SMPL’s deformable mesh 
(Zeidler and McGinity 2023). Instead of manual deformation and texturing, the SMPL 
model can be simply extended with a CLIP loss to make the mesh representation similar 
to that of text control with a differentiable renderer (Jetchev 2021). Integrating these joint 
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interactions and their confidence coefficients with transformers increases the accuracy of 
human reconstruction and the speed of the mesh extraction (Pang et al. 2023). The model 
works well when the character images are clear, but failing in abstract paintings in Picasso’s 
works where parts of the head are missing or incomplete. When the body parts are occluded, 
it leverages joint relations to recover the skeleton topology and pose but encounters sig-
nificant errors, particularly with parts like feet that have fewer adjacent joints. They use a 
High-Resolution Net (HRNet) to extract these human features. Representative keypoints 
from all of its output keypoints (e.g. nose representing the face) are then selected and the 
model fuses the joint and mesh information using a graph transformer model. In 3D scene 
extraction, template skeletons can be conditioned with bas-relief geometry, contours and sil-
houette information, for particular styles of sculpting to estimate 3D skeletal poses from 2D 
poses (Casati et al. 2019). The choice of the 3D mesh, such as B-mesh that provides good 
deformation for animation and edge flow, is separated from the rest of the scene while keep-
ing distance information to jointly model trees, animals, and environment cues like drapery 
that are commonly found in these bas-relief sculptures.

2.5 Effectiveness of geometry-based methods in extraction

Object-centric tasks benefit from input region proposal selection strategies and additional 
geometric labels to add context to the input or act as pseudo-ground labels. Region selection 
by voting helps find and localize small motifs, achieving a maximum retrieval performance 
of 91.3 mAP for the LTLL dataset where other models suffer from selecting regions with 
low correspondences (Ufer et al. 2020). Mixing of regions selected without overlap and 
missing content helps in data augmentation for small datasets for logo detection for an 
improvement of 7.05% mAP (Fuertes et al. 2022). Encoding the context instead of missing 
regions from cropping helps improve fine-tuning object detectors by 3.5% mAP for unseen 
categories with an additional 2.5% for seen categories (Madhu et al. 2022). Leveraging this 
prior knowledge of pre-trained models and semantically aligning them with a newer domain 
helps improve performance even with difficult subdomains such as abstract paintings (Lu et 
al. 2022). Geometrically enhanced annotations also enhance the quality of the training data-
set with maps enhancing salient regions (Sizyakin et al. 2020) while eliminating irrelevant 
areas in crack detection or time-specific label predictions for object detection in paintings 
(Marinescu et al. 2020) (Table 4).

Human-centric labels such as facial landmarks and hand or body pose differ in depictions 
in the paintings domain, resulting in poor results with simply fine-tuning the model on the 

Table 4 This table represents methods in the surveyed geometric feature and data extraction papers, showcas-
ing their datasets, tasks, highest performance measure score, and sources
 Method  Dataset  Task  Metric: value  Source
 MMD and PiFU  Scan the world

scrapped meshes
 3d model 
extraction

 Chamfer distance: 
0.047

Chang et 
al. (2022)

 Styled Deeplabv3  Neural style transfer
on the Baidu people
Segmentation dataset

 Segmentation  IoU: 74.9%  Heitzinger 
and Stork 
(2022)

 Multi-style feature 
fusion

 LTLL  Object detection  Accuracy: 90.9%  Ufer et al. 
(2020)

 Styled HRNet  ClassArch  Human pose 
estimation

 mAP: 49.4%  Madhu et 
al. (2022)
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task. Without accounting for style, body pose estimators reach less than 60% AP (Westlake 
et al. 2016) while face detection algorithms reach less than 35% F1 score on modern face 
datasets (Wechsler and Toor 2019). When stylizing images without modifying the corre-
sponding pose, models can get an improvement of 6% on the mAP even without labeled 
data (Madhu et al. 2022). Style-tuned models that pre-train on stylized content and poses 
gain an improvement of 36.7 mAP for the specific task of pose estimation and 34.5 mAP for 
the more generic person detection task. In image retrieval, performing geometric verifica-
tion after fast annotation matching retrieves a longer sequence of visually similar links as 
compared to other models that simply match feature embeddings.

Parametric model-based extraction methods utilize prior knowledge to account for 
lower-quality data, modeling complex environments with missing information, and lever-
aging geometric information in the modeled latent space. They provide additional benefits 
in terms of a reduced computation time due to the strong prior with FAKIR (Fu et al. 2020) 
extracting each iteration of a modeled statue in 9 s. Additionally, it provides precise joint 
positions and bone radii with better shoulder location estimates compared to its counter-
parts, thereby producing geometrically consistent artistic 3D models. JointMETRO (Pang 
et al. 2023) also achieves painted sculpture reconstruction despite occluded human poses 
for incomplete models by utilizing this prior knowledge of human body joints. While the 
parametric model provides an alternative to explicit ground labels, other techniques such 
as domain adaptation can build upon them to reconstruct higher-quality sculptures with a 
Chamber Distance of 0.04 (Chang et al. 2022).

3 Discriminative geometric features analysis

Various painting analysis tasks utilize geometric features from low level (i.e., local feature 
descriptors such as brushstrokes or optical flow maps encoding direction ) and intermediate 
level (i.e., cross spatial correspondences between objects to identify keypoints and land-
marks). These analysis methods even utilize outputs from feature extraction methods such 
as a list of bounding boxes. These geometric features and data are utilized in the tasks that 
are sub-categorized into scene classification, retrieval and style classification.

Scene classification relies on similarity measures to determine object arrangement and 
assign scene labels. It involves three core stages: feature extraction (e.g ResNet without 
fully connected layers), spatial correspondence encoding (e.g Attention, K-means cluster-
ing), and output mapping (e.g. Aggregation of bounding boxes, multiclass classifiers with 
Softmax activations). In contrast, style classification focuses on identifying unique styles in 
artistic images, which can vary in visual cues rather than content. Notably, stylistic manipu-
lations in images can impact feature extraction and geometry due to object detectors, posing 
challenges on both scene classification and retrieval. Scene retrieval aims to find images 
resembling a reference by mapping output features to identify closely matching candidate 
images of a specific scene class.

3.1 Object detection

Objects in paintings have large shape exaggerations in modalities such as cartoons, vary 
drastically in their composition with cluttered scenes consisting of objects of different scales 
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and spatial arrangements. The spatial layouts are crucial in scene understanding (Madhu et 
al. 2022; Milani et al. 2022), with objects representing visual motifs for artists or indicating 
time periods and culture by their co-occurrence with other objects. These artistic datasets 
are small in size (Ahmad and Schich 2023), with some providing only image-level annota-
tions (Thomas and Kovashka 2019; Seo et al. 2016) or missing object-level labels (Madhu 
et al. 2022; Milani et al. 2022).

Traditionally, object detectors in landscape scenes focused on analyzing and understand-
ing low-level features, such as brushstrokes, for capturing scene dynamics using optical 
flow although the result can be suboptimal when noisy object regions are not effectively 
detected as principal components. By integrating these low-level details with region-based 
segmentation algorithms like Comaniciu’s mean shift clustering, which groups input scenes 
by color, the system provided a deeper understanding of the composition at the object-level. 
The segmentation information encoded by the clustering method contains the region infor-
mation distribution according to the object thereby capturing the variations in appearances 
and their relationship with each other through. This data-driven approach allowed for more 
refined scene interpretation when fed into a threshold-based classifier, facilitating a clearer 
distinction between objects and background elements (Seo et al. 2016). More recent com-
puter vision techniques used models pre-trained on a larger domain for the same classes in a 
target domain by fusing the style from the artistic target image modality and the content of 
the source modality. To create the synthetic pair, methods like arbitrary style transfer using 
Ada-IN, which learns a style transformation network to translate images from one domain 
to another (Thomas and Kovashka 2019). Such a method provided easier access from faster 
training and no fine-tuning to multiple sub-tasks (when considering multiple modalities in 
domain adaptation) is needed, unlike learning generative models such as GANs. The work 
shares the pre-trained backbone and fully connected classifiers with multinomial logistic 
losses from a domain confusion loss to predict the domain of the image and an object classi-
fication loss. Multiple modalities force the network to learn a general representation, enforc-
ing style invariance with the choice of style transfer affecting the retained structure and 
details of the synthetic image. Realistic paintings get limited improvement while modalities 
that emphasize shapes with their contours like cartoons and sketches gain substantial per-
formance gains.

When the feature alignment process between domains uses a generative model such as 
Cycle-GAN (Pasqualino et al. 2022) instead of style transfer, it loosens the requirement of 
pairwise source and target domains for image translation. It also provides a fully differen-
tiable domain adaption method where the multiscale detector, Retina-Net, acts as another 
discriminator for multiple adversarial losses, one for domain confusion and the other for 
object prediction to understand the variations in artistic content across domains while con-
straining the learned transformation to produce an object of the target style. In galleries, 
these models are utilized to study how variations in lighting conditions, viewpoints, and 
mixed environments affect the model’s ability to correctly interpret and adapt to painting 
or sculpture regions. The interaction between artistic images or 3D models and real-world 
surroundings creates complex and varied input data, and analyzing these variations helps 
reveal strengths and weaknesses in the model’s alignment process. While the model excels 
at translating artistic styles and maintaining target domain features, it struggles with scenes 
that involve multiple artistic images ranging from paintings, clip-art and comics, where the 
co-occurrence of certain object classes can mislead the interpretation of the discriminative 
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regions. Effective analysis of detected objects depends on the quality of feature alignment 
from the source and target domains, particularly when the dataset comes from varied artistic 
image modalities (Ahmad and Schich 2023). By modeling parallel object proposal net-
works, the classifier can better handle variations in data from fusing regions and adjusting 
its parameters based on the distribution through XGBoost. The boosting algorithm helps 
emphasize more difficult or rare cases, which is crucial for understanding less frequent 
objects or features within the dataset. However, despite the model’s strong performance in 
multi-scale analysis and fast inference provided by YoloV5, it often struggles with datasets 
heavily focused on people, where searching for other, (e.g. ess common) objects becomes 
more challenging without further modifications to the pipeline.

3.2 Style classification

Style classification involves artist identification and the common visual elements, tech-
niques and forms used in their works. The artists attribute the forms to lower-level textures, 
such as their choice of color palette, brushstroke, or materials, up to the higher-level choice 
of fine-art painting compositions. Style classifiers benefit from feature fusion techniques 
that merge geometric image representations with deep learning features as input to a multi-
class classifier. These geometric representations are handcrafted for the problem to account 
for the large inter-class variation in styles and class imbalances stemming from artist-based 
classification, which result from variations in the artists’ prolificity. In older works, CNNs, 
were used purely as object feature extractors which is less effective in capturing image 
representations compared to learned ensembles of handcrafted features like Classemes or 
PiCoDes (Saleh et al. 2015). However, their performance improved significantly when the 
object region was first extracted and used as input to the model. This approach highlights 
the importance of isolating relevant regions for analysis, enabling CNNs to better under-
stand and represent the essential characteristics of the image, thus offering a more accurate 
interpretation. When a DPM provides class-specific regions to a multiscale CNN to pro-
vide a holistic encoding and learn a distribution of local encodings through a GMM, their 
joint embedding after aggregation through techniques like Fisher vector gives better perfor-
mance (Anwer et al. 2016). More recent work has enhanced CNNs’ ability to analyze and 
understand image representations by incorporating discriminative signals from an SVM-
based classifier. This approach refines the clustering criteria, allowing the model to generate 
centroids that more closely align with the original target label distribution (Sandoval et 
al. 2021). This combination of deep learning and SVM-based analysis facilitates a deeper 
understanding of the underlying data structure, ensuring that the representations captured by 
CNNs better reflect the true characteristics of the target labels.

3.3 Scene classification

Scene classification involves the general subject matter or the semantics in the painting 
and considers categories like outdoor and indoor-based scenes, landscapes and portraits, 
seascapes and landscapes, still life or other labels describing the scene type. Simple meth-
ods like segmentation (eg. Normal Cuts) can extract visual descriptors like HOG or GIST 
from regions at the image level (Condorovici et al. 2013) for representing the structure and 
texture within each segmented region. These object descriptors are used as the input to a 
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Bayes classifier to form the RoI pooling operation in a multistage object detection model. 
Due to the simplicity, the classifier focuses on colors and results in mistaking images from 
nudes and portraits since they both contain skin colors or they can not distinguish between 
cityscapes and landscapes due to the latter being the superset. Later models use CNNs to 
represent generalizable feature representations for multiple modalities alongside constraints 
like MMD that force a shared representation among different CNN heads (Castrejon et al. 
2016). With modality-specific fine-tuning, the target dataset can have a smaller number of 
samples while the distribution constraint enables an emergent alignment of objects shared 
across multiple representations.

3.4 Human perception analysis

Objects in paintings can appear distorted despite being portrayed with the correct geometry 
based on the viewer’s vantage point from large visual angles that tilt and straighten, reduced 
saliency of peripheral objects, to depth-wise elongations (Todorovic 2009). Experiments 
involving participants to move towards the painting until they saw the object of interest take 
the desired shape or subtend an angle showcased similar results to that of projective geo-
metric analysis, but to varying extents. When measuring their response, the farther vantage 
points had varying perceptions of distance in peripheral objects for large paintings or those 
approximating 3D scenes. A case study of Piranesi’s painting composition hints at possible 
approaches to balance the trade-off between accurate scene geometry against perceptive 
distortion (Rapp 2008) with the pieces utilizing projections from multiple viewpoints along 
the central vantage line. While this reconstruction shows inconsistency using geometric 
restitution as a tool for analysis, it does provide a view to different proportions, sizes and 
relative distances of non-distorted objects from different viewing angles.

3.5 Effectiveness of geometry-based methods in analysis

In the task of cross-domain object detection, additional representations such as CAM 
(Milani et al. 2022) or context encoding (Madhu et al. 2022) can compensate for a lack of 
ground truth (GT) label while bringing in contextual information as learned by pre-trained 
models on a larger, well-annotated dataset. CAM acts as a pseudo-GT beating the SOTA on 
the weakly supervised object detection task in the IconArt dataset by 14%, while with the 
context encoding the finetuned model beat the SOTA in the mean average precision (mAP) 
by about 3.5% at 0.25 intersection over union (IoU) for UnSeen categories (Table 5).

Table 5 This table represents methods in the surveyed discriminative analysis papers, showcasing their data-
sets, tasks, highest performance measure score, and sources
 Method  Dataset  Task  Metric: value  Source
 Faster R-CNN with 
CAM and ResNet-50 
backbone

 ArtDL 2.0  Object detection  mAP: 41.5% Milani et 
al. (2022)

 MLCNN  Artsy, WikiArt 
paintings

 Orientation 
classification

 Accuracy: 92.42%  Zhao et al. 
(2023)

 DPM detector  Painting-91  Style classification  Accuracy: 74.8%  Anwer et 
al. (2016)

 GMM  CMPlaces  Scene retrieval  mAP:14.2%  Castrejon 
et al. (2016)
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For the broader task of scene and style classification, the content of the painting has the 
greatest effect on the classification accuracy favoring methods that process the local and 
global regions separately before integrating the results. For example, the number of classes 
from both painting categories and the number of directions can be reduced to an umbrella, 
holistic classes to increase the average accuracy to 90% for orientation classification (Zhao 
et al. 2023). In the latter task, part-based models or models that extract text and style sepa-
rately improve model accuracies by 6.4% and 13% respectively, compared to the non-con-
textual cases. This approach allows a more detailed understanding of the distinct elements 
within the data, enabling the model to better capture and interpret the contextual relation-
ships between features, and thus leading to more accurate predictions. In other cases, the 
feature representation can be conditioned to include context such as meta-data (Fumanal-
Idocin et al. 2023) for an improvement of 26% as compared to a 6% increase from building 
upon context-aware solutions.

4 Synthesis with geometric features

The synthesis section covers the generation and manipulation of artistic images or 3D mod-
els ranging from paintings, cartoons, sketches to sculptures. The generative models include 
components to separate style from structure, including geometric deformation modules or 
networks along with a separate module to blend the separated components together. Part 
of the model store or use the geometric feature as input to a different part of the generative 
pipeline. Geometric data in the form of masks and semantic maps, 3D representations such 
as point clouds or polygon meshes, are used as additional input to these models. In image 
manipulation, some regions of the image are changed by adding and removing objects or 
to match the deformations as in a reference image. The task of novel view synthesis covers 
unseen artistic 2D/3D data sampling using image generation models, relighting to provide 
a view of the image with different lighting, time lapses or seasons, and rendering to change 
the local geometric details. These main techniques are summarized with visualizations in 
Table 6.

The synthesis section covers the generation and manipulation of images or 3D models of 
artistic data ranging from paintings, cartoons, sketches to sculptures.

4.1 Image manipulation

Image manipulation involves deforming the contents of the image to that of a reference 
image or editing the objects into or out of the source image. The objects immersed in the 
scene can belong to the same or different artistic modality while the region deleting the 
object uses the neighbouring area to fill in candidate outputs. The main challenges during 
the manipulation of artistic images are artifacts around the boundary or bad correspondence 
matches indicating a semantic gap.

4.1.1 Style transfer

Style transfer offers the benefit of considering the holistic geometry as compared to tra-
ditional image processing techniques at the cost of smooth and artifact-free stylizations. 
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Artistic 2D and 3D data can benefit from this separation since it often geometrically deforms 
images as a stylistic choice. It can be formulated as optimization or transformation of the 
stylization and geometric modules at the pre-processing, model-level and post-processing 
stage (Table 7).

During style transfer pre-processing, we learn the distribution of shapes (Liu et al. 
2022) while promoting textural invariance using augmentation to improve object detec-
tor performance by tackling implicit model bias. However, there is overlap through style 
per-training to projection or shapes and geometric augmentations from deformations or 
distortions of size and orientation. We can pre-process style transfer in the extracted mask 
for the structural warp (Yang et al. 2022), but we need to refine the mask boundaries for 
better texture transfers. We could also embed class-specific warp feature fields through style 
content image pairs and their corresponding vector field (Liu et al. 2021). These warp fields 
account for intra-domain and cross-domain generalization. Alternatively, we can trade off 
the mesh style to structure integrity by weighting the topological optimization against the 
style loss(Vulimiri et al. 2021). These geometric deviations include unconnected objects 
or unfaithfulness to the overall main design, requiring post-processing filters for imposing 
global geometric features.

The methods that use a specialized model for handling geometry in tandem with style 
transfer require preconditioning or pretraining and cannot handle multiple representations. 
Stroke-based rendering can model strokes and the image content separately with a neural 
painter as an image generative model and style transfer’s content loss respectively(Nakano 
2019). These strokes can be approximated as a joint fusion problem in the Fourier 
domain(Geng et al. 2022) by shifting the brush stroke from the source image patch to that 
of the mean patch. Vector fields along with noise can also model brush stroke stylizations 
of the input image (Papari and Petkov 2009) while preserving object-level details with their 
contours untouched. In facial transfer, geometric flow models (Yin et al. 2019; Kim et al. 
2020) with facial landmarks blend and warp details together with an adversarial or deforma-
tion loss model the addition and subtraction of the attribute while preserving the person’s 
identity.

By using style transfer as a post-processing task, it can be treated as a separate optimiza-
tion task on the output of an existing pipeline (Kopanas et al. 2021; Wan and Lu 2020). This 
extends its application to input and output images in the 2D and 3D domains.

To preserve geometric features in 2D images, we need three images to provide the style 
and geometry information of the stylization, as well as the target geometry or matching 
algorithms to provide the correspondences at the image or model-level. Geometric Style 
Transfer(Liu et al. 2020) uses a geometric warping network with a specialized style image 
alongside loss pairs for structure and style. When transferring style to objects detected 
in bounding boxes, geometry-aware style transfer can fail if there are no good semantic 
matches between the style and content images (Alexandru et al. 2022). Neural style transfer 
can synthesize designs with a mesh reference and a novel topology optimization inspired 
compliance loss (Vulimiri et al. 2021) to separate the geometric information from texture. 
Bounding boxes facilitate the warping of specific matches of regions of the content and style 
images (Alexandru et al. 2022) before applying style transfer for the desired texture while 
retaining multiple object structures. Alternatively, the selected regions can constrain the 
style loss, providing spatial and aesthetic effects, error correction and controlled transfer-
ence of styles according to the masked regions (Kolkin et al. 2019). Thus, the structural loss 
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can be modified with warping, reconstruction or geometric consistency terms to achieve 
geometric deformations and projections that match the style images.

When translating an image to a 3D model, stylized outputs could preserve their pose 
after style transfer (Wan and Lu 2020) using a novel style reconstruction loss on the 2D 
stylized image which is lifted to the 3D depth image as a pose regression task. Arbitrary 
style transfer allows the stylistic transfer of the pose only, where the style loss adds a new 
HSV colorspace loss for color insensitive style transfer along with a slightly modified style 
and content loss to follow the general direction of the style and content features than a 
reconstruction loss. The added self-supervision loss corrects the lifted stylized pose in the 
3D space when reconstructing the stylized image, thereby using the geometric nature of the 
bone map with style transfer.

3D stylistic modeling uses a separate stylistic module or loss to transfer the style while 
preserving the geometric features in an implicit or explicit representation. By sketching 
the contours at an angle of a sparse point cloud (Du et al. 2022), the artist can interactively 
reimagine the generated 3D model from the initial models of pre-existing categories, with 
contours retrieved from viewpoint matrices. With the help of the pre-existing dataset, the 
user input contours can be matched and retrieved for that part of the viewed model. Simi-
larly, we can represent the structure of 3D point cloud vases as features extracted (Upadhyay 
et al. 2022) to transfer shapes with style transfer losses and a laplacian loss to preserve local 
details such as edges, contours and patterns better.

4.1.2 Inpainting

Inpainting in artistic 2D/3D data structures is used in applications for image (Bird 2021) and 
region level(Sahay and Rajagopalan 2015) completion, editing(Zhang and Agrawala 2023) 

Table 7 Visualization of stylized outputs from different style transfer techniques
Image domain Content 

image
Style image Stylized image

Neural style 
transfer

Adaptive instance 
normalization

Deform-
able style 
transfer

The style and content images are either from the same 2D/3D artistic data domain or the content is from 
real-world images to represent the case of using style transfer as purely a data augmentation technique. 
These style transfer techniques are covered in the Synthesis section and show the difference in outputs 
from the simple iterative style transfer method to one that uses the style transformation network and finally, 
one that is geometrically aware. The style of the abstract depiction of the lady’s face is muted for the first, 
while the correspondence between the facial features is preserved in the 2nd style transfer output. When 
the geometric deformations of the style are also taken into consideration by matching correspondences, the 
source images of a painting or photo of a person match the abstractness of the style
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and restoration(Ciortan et al. 2021). They do not preserve part of the content in the reference 
image but transform the style of the target object to that of the source. They perform image 
completion in selected patches or masks.

Structure completion in Inpainting incorporates the target boundary-based patch selec-
tion as a search and voting optimization task (Datta et al. 2017). This patch matching 
incorporates geometric transformations such as reflections, non-uniform scaling and other 
perspectives through affine transform approximation. Alternatively, region filling is possible 
from data fusion from overlapping local patches with gradient-based self-similarity (Sahay 
and Rajagopalan 2015). Using cropped patches, we can achieve image completion, which 
produces ringing artifacts (Bird 2021) with vanilla image generators like Generative Adver-
sarial Networks (GANs) that follow a loss of high-frequency information. These methods 
help remove boundary artifacts within the patches but not on the patch edges themselves.

Mask-based inpainting commonly incorporates explicit geometric features such as object 
masks from scene segmentations (Heitzinger and Stork 2022). Their flaws are mainly from 
the properties not included in the mask types themselves such as scene segmentations with 
depth discontinuities and changing boundaries from ghost pixels (He and Lu 2011) that are 
mistakenly attributed to different objects. Inpainting specific aspects such as high-frequency 
details of a painting is possible through edge maps(Ciortan et al. 2021) in a different domain 
or colorspace. These masked images allow editing of subjects in the erased area with gen-
erative models like latent diffusion models and Large Language Model based prompt guid-
ance (Cipolina-Kun et al. 2022; Zhang and Agrawala 2023).

4.1.3 Conditional image generation

Generative Adversarial Networks help in the quick sampling of outputs with multiple con-
trollable attributes embedded as a conditional vector, an additional input that commonly 
represents a style or shape vector. Its attributes are formulated as disentangled representa-
tions to form independent control factors, with multiple modalities (such as other input 
domains for artistic modalities or geometric labels) encoded with Cycle-GAN variants (Hou 
et al. 2021; Huang et al. 2023) to facilitate unpaired domain-wise translations and learn-
ing their correspondences. Variants of Generative Adversarial Networks can be used for 
synthesizing warped stylization images, for example, using facial landmarks or edges from 
line-art (Ci et al. 2018) as the conditioning vector in conditional Cycle-GAN. Conditioning 
inputs such as segmentation maps provide size and location cues, however, the model pro-
duces worse results if the semantic classes and their object appearances diverge significantly 
from the pretraining data distribution. On the other hand, keypoints indicate local relation-
ships and correspondences, which help generate results with significant shape exaggera-
tion. However, the mismatches or deformations can generate implausible results that do not 
match the input distribution. The choice of conditional for GAN style guidance influences 
the geometric embedding network’s ability to capture finer, localized details like strokes 
through directional fields, thereby shaping the diversity of synthesized styles. (Abrahamsen 
and Yao 2023). By borrowing the stylistic deformations from the source image and the ref-
erence’s colors and content, the model generates samples that belong to a new synthesized 
AI-graphics movement with its real-world natural input distribution. In place of external 
conditional inputs, the correspondences between parts of the paintings can be approximated 
by cycle consistency losses while additional losses such as brush stroke and ink wash losses 
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help the model simulate geometric textures such as brush strokes or the washed-out effects 
of paints such as Chinese inks (He et al. 2018).

Diffusion models (Chang et al. 2023) extend the level of control to different shapes and 
styles while also learning attributes that adapt the conditional’s data distribution. These 
models learn an iterative mapping from a simple distribution, such as the Standard Normal, 
to a complex distribution. In the case of latent diffusion models, they learn the latent space’s 
distribution to better represent and mix the input distributions. The encoder of the geometric 
labels (Yang et al. 2022) such as sketches and segmentation maps are frozen and the outputs 
are fused with the input image embeddings. For the former, the temporal order of sketches 
can be encoded into another latent space with part-wise Autoencoders or Variational Auto-
encoders to reduce computation (Chen 2023; Peng et al. 2023). Compared to GAN-based 
methods, they can generate better results with people with accessories and facial features, 
as well as supporting different levels of part abstractions. Conditioning on segmentation 
maps (Zeng et al. 2023) provides coarse geometry that can be enhanced with other labels 
such as text that make them adaptable instance labelled maps. While these pseudo-labels 
can be weighted to control their influence in the result, the properties of the geometric label 
are not shared with the text descriptions without clearly defined instance boundaries. Text 
labels serve to offer global and semantic context clues within spatial layouts, yet they do 
not directly enable manipulation of the layout itself (Chen et al. 2024). This helps to clarify 
and rectify ambiguous and erroneous learned correlations that may arise from coarser maps. 
Since the encoders do not share information, the embeddings cannot learn the shape separa-
tions in the mask encoder which extends to other embeddings of geometric cues.

4.2 Novel view synthesis

Novel view synthesis in artistic image and 3D model datasets refers to techniques that 
change the perspective of the scene and its objects by relighting and recolorization. This 
changes the focus of the subject in the scene and aligns the illumination process to be closer 
to real-world settings to better convey the artist’s intentions. In these artistic images, the 
illumination sources can drastically vary from realistic sources in terms of color, direction, 
and intensity which encourages modulating the lighting on the extracted geometric shape 
of the painting.

4.2.1 Relighting

The manipulation of directional lighting in paintings (Stork 2006) allows art historians to 
gain new interpretations of the artistic images by determining the nature and effectiveness of 
optical instruments in the past. Adjusting the lighting to account for cast shadows, specular 
reflections, and self-shadows, while incorporating point source illumination information, 
can reveal previously unnoticed elements of the composition. By examining the direction 
of illumination, new insights can emerge, such as identifying geometric inconsistencies or 
uncovering occluding contours, which may hint at image tampering or offer alternative real-
ist painting compositions.

Simple techniques like illumination template matching (Chen et al. 2012) help in lighting 
transfer from the source to the target image by warping the matched face descriptor if the 
light source is simplistic and there is only one subject. In interior lighting, the light sources 
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from the style image can be transferred to the content by extracting the perspective infor-
mation with key-point detection to warp the surface map according to the style elements 
(Chen et al. 2021) before restoring the perspective. Similarly, face illumination descrip-
tors on an active shape model along with deformation transformations can perform facial 
illumination transfer (Chen et al. 2012). Utilizing 3D models as shading proxies allows for 
lighting transfer from the user-provided light source direction (Henz and Oliveira 2017) or 
segmented reference object (Henz 2014) to the target shading proxy. This proxy contains 
artistic style, brush strokes and color information to learn an implicit normal and depth map, 
which overcomes the limitations of previous methods on handling highly stylistic scenes. 
Alternatively, the use of CLIP (Mishra and Granskog 2022) for obtaining physical lighting 
properties and local geometry information can transfer lighting using explicit normals and 
materials. Similarly, a 3D mesh structure can be stylized according to the text prompt with 
CLIP guidance (Jin et al. 2022) while keeping the differentiable rendering of the correct 
viewpoint and lighting of the final 3D mesh.

4.2.2 Recolorization for artistic time lapse

Artistic Time Lapse decomposes the painting into its constituent objects with the help of 
frames of the video creating the artistic animation to relight them according to the environ-
ment’s illumination source for a day or across seasons. The methods detect keyframes with 
color shifts to get the art’s decomposition into layers indicating depth from the artist’s per-
spective and predict the next frame by learning the sequencing using a Conditional Varia-
tional Autoencoder (Zhao et al. 2020) that conditions on the previous frame. To generate 
time lapses of the painting itself instead of the painting process, the albedo map is estimated 
for each frame, clustered with their linear layering to pick the colors not affected by lighting 
and hue shifted with the artist’s choice of colors to produce the time-lapse effect (Tan et al. 
2015). The decomposition process can be differentiable to extend the process to other mate-
rials and allow the artist to control the levels of lighting across the layers (Koyama and Goto 
2018). These methods do not consider a data-driven approach due to the lack of availability 
of a digital art dataset with layer information which can encode the relationships between 
layers for more complex lighting.

4.3 Content recovery

Damaged artistic mediums such as paintings or sculptures can be recovered by remodeling 
them as 3D structures and in-painting the missing regions from noise and occlusions during 
the imaging process or from material wear and tear. The deformations in the imaged data 
can occur at the surface or subsurface level in the case of paintings. Depending on the nature 
of the artistic image or 3D model, the data acquisition method varies from Photogrammetry 
for paintings and generating structure from motion with LiDAR sensors for sculptures.

4.3.1 Remodeling

Art conservation helps in the objective diagnostic and documentation using photogrammet-
ric remodeling tools (Abate 2019) to annotate parts while allowing comparison study with 
its representation and the acquired data. Furthermore, it helps in the objective diagnostic 
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and documentation using photogrammetric remodeling tools (Abate 2019) to annotate parts 
while allowing comparison study with its representation and the acquired data. When mod-
eling rock paintings while considering ease of extraction, details preservation and accuracy 
of the reconstruction for the non-domain experts (Castagnetti et al. 2018), the following 
characteristics of 3D point clouds were observed. They generated highly detailed models 
at short distances to the camera with a large number of redundant photos, regardless of the 
camera quality.

Many 3D reconstruction techniques require the 3D modellers and art critics, historians 
or curators to work in tandem with the extracted model (Carrozzino et al. 2014; Bent et al. 
2022) with regular geometry to add in missing context or clean the rendered structure. The 
quality of the reconstruction depends on the retained details while trading off the computa-
tional expense of the generated representation. The former can utilize inpainting using self-
similarity in point clouds (Sahay and Rajagopalan 2015) to help in reconstructing damaged 
and structurally deformed architecture and sculptures. It allows the creation of more faithful 
3D models using a dictionary of surface gradients and exploiting the symmetry created from 
artistic intent in other views of such mesh structures. If the paintings have subjects with geo-
metric features close to real-world people, the images can be used directly with off-the-shelf 
models such as 3DME (Jackson et al. 2017) for 3D face reconstruction from 2d egocentric 
portraits. The latter uses modifications on the 3D reconstructed point cloud to reduce their 
structure computation, with more points needed for ornate structures as compared to flat 
surfaces. The point cloud is compressed using a multi-resolution Octree (3D representations 
using tree data structures) and converted to a polygon mesh with a photographic texture 
overlayed upon it, with the overlaying requiring extensive pre-processing for cleaning the 
rendered model. The 3D reconstruction gives problems in perspective inconsistencies and 
changes in the pose without explicit geometric guidance (Carrozzino et al. 2014), some of 
which are unnatural due to artistic liberty.

4.3.2 Painting medium surfaces

Western paintings on surfaces with various shapes were previously studied in detail (Pintus 
et al. 2016) at different scales and curvatures, forming murals, frescoes and pottery decora-
tions depicting different numbers of subjects in each piece. Macro-level objects are highly 
variable in condition, nature and global shape, and thus typically contain a single subject. 
Data collection is highly dependent on the acquisition strategy, retrieval and characteriza-
tion algorithms for collections such as statues and pottery. Curvilinear paintings require 
their canvas to be collinear with the surface curvature to prevent distortion and stretching 
(Sklodowski et al. 2014). The folds and warps along with the tensile strength of the canvas 
are necessary to model the deformation instead.

4.3.3 Subsurfaces

Painting restoration is interested in the surface topology of paintings and it requires infor-
mation such as material, subsurface, layers or deformations. It involves data acquisition 
from non-intrusive scanning and stitching the overlapping spectral scans (Zhou et al. 2020) 
before detecting cracks and restoring the artistic image (Moradi et al. 2022). The crack 
patterns can be simulated for authenticating paintings (Léang et al. 2017) for the behavior 
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of the outer film, the interaction between their layers and shrinkage from drying using a 
physics-based system. Any inconsistencies between the paint layers stress amongst each 
other and elasticity from an estimated time period could imply painting fabrications. These 
misalignments can be highlighted as a learning or visualization tool (Carrozzino et al. 2014) 
by superimposing the elements in the reconstruction with that of the paintings. During 3D 
printing of oil or other substrate paintings (Yuan et al. 2020), the reproduced image is sus-
ceptible to staircasing effects due to the thickness of the layering of colors that differ in ink 
density and viscosity. The paintings must maintain accurate geometries and color informa-
tion which is obtained through a Point Cloud after matching and decoding images taken 
from different orientations. Using their novel color layering order, they account for the 
curvatures of the pigments and boundaries of their overlaps to reduce the staircase effect 
while simultaneously maintaining the quality of the color reproduction. The identification 
and restoration of damaged paintings utilizes nondestructive testing methods like infrared 
thermograms that measure heat emissions, over time from absorption and emissions, and 
over the pixels in the image. These use Multistage models that focus separately on the 
temporal aspect using an MLP which returns patches for spatial processing using a U-Net 
(Ronneberger et al. 2015) segmentation model to generate the reconstructed image.

Multispectral imaging opens new interpretative possibilities in painting restoration and 
3D surveying by exploring material features while capturing spectral data that are often 
missed with traditional imaging techniques such as X-ray radiography and infrared reflec-
tography. Furthermore, they reveal hidden layers, underdrawings, and pigment composi-
tions that are invisible to the naked eye (Barazzetti et al. 2010). Geometric deformation 
analysis using close-range photogrammetric techniques can evaluate deformations such as 
craquelure patterns, color raisings, detachments or engravings in the range of ±0.1mm with 
more advanced equipment putting the range in 50µm or sensor triangulation (Blais et al. 
2005).

4.4 Evaluation for synthesis methods

The main evaluation methods for AI-graphics synthesis tasks can be divided into 3 types:

 ● User studies to quantify human perception
 ● Quality measures through deep learning models or at the pixel level
 ● Performance measures through loss terms and statistical measurementsTable 8 indi-

cates the novel evaluation measures introduced in these papers to evaluate regions of 
AI-generated graphics focused around geometric labels. Finally, the section includes a 

Table 8 The novel evaluation metrics as used for the task of AI-graphics synthesis (Sect. 4.4)
Novel evaluation metric Paper Description Usage Task
Faithfulness score Yin 

et al. 
(2019)

Distance of two cropped facial land-
marked regions of a source and target 
attribute on a normalized feature space

The lower the 
better for a more 
faithful transfer

Style 
trans-
fer

Semantically correspond-
ing PSNR (SC-PSNR)

Lee 
et al. 
(2020)

PSNR on the MSE of fixed patches sur-
rounding the corresponding key-points 
of two images to provide a patch-level 
ground truth measure

Higher the bet-
ter for similar 
matches

Novel 
view 
syn-
thesis

It lists the metrics introduced in the cited papers before their definition and usage description. Finally, it 
mentions the task for which each metric is used
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discussion on the effectiveness of incorporating geometry into various synthesis tasks.

4.4.1 User studies

To study the quality of the generated results, existing works conduct user studies of differ-
ent group sizes, with larger studies conducted with the Amazon Mechanical Turk (AMT) 
(Schaldenbrand and Oh 2021; Zhao et al. 2020; Zhang et al. 2020). The smaller studies 
range from visual assessments, comparison studies and the likeliness to the human creation 
processes. To evaluate the image quality and the aesthetics of the AI-generated graphics, 
they employ Likert scales (Tseng et al. 2022; Yuan et al. 2023; Zhang et al. 2022; Shahid et 
al. 2023) or mean opinion score tests (Tong et al. 2022) of different ranges with 3 (Huang et 
al. 2024) as the lowest and 10 as the highest (Alexandru et al. 2022). However, they could 
be used as a comparison study to compare the researcher’s models with baselines (Yin et al. 
2019; Singh et al. 2022), [182] under multiple criteria, such as realism and consistency in 
style or the coherence of attributes like text. Visual Turing tests (Xue 2021) form a branch 
of these comparative tests, where the users have to judge whether the artistic output data 
is human-made or machine-made along with their level of confidence in their answer. The 
AMT tests find use in reaching a broader audience (Zhang et al. 2020) and designing studies 
to help sequential stroke-based models identify salient regions in generating AI-graphics 
and mimicking the human creation process (Schaldenbrand and Oh 2021; Zhao et al. 2020). 
Finally, user studies can evaluate the ease of use and the versatility of the proposed tool, 
such as in tasks like relighting objects and people in different environments(Henz 2014).

4.4.2 Quality measures

Quality metrics are those that measure salience, image quality in pixel or feature space 
and semantic relevance by alignment of different modal features. We consider the salience 
measures that specifically incorporate geometric information to evaluate the importance of 
regions or pixels. The metrics that involve explicit geometric labels are faithfulness score 
(Yin et al. 2019) and SC-PSNR (Lee et al. 2020). The former uses facial landmarks and 
the latter employs keypoints, as detailed in Table 8. Others evaluate the geometric labels 
estimations like SOA score (Shahid et al. 2023) that uses an object detector. It follows with 
other metrics like IoU for segmentation maps (Li et al. 2023), foreground L2 distance with 
a pre-trained Deeplab-v2 model (Singh and Zheng 2021) and shape quality through MSE 
on estimated depth maps and poses (Zhao et al. 2020; Han et al. 2023). However, Seman-
tic relevance measures change their evaluation process by using instance segmentation to 
mask out the image background and crop to the object (Yang et al. 2021). This allows for 
using image quality measures like PSNR, SSIM and LPIPS without background interfer-
ence (Ciortan et al. 2021; Han et al. 2023; Tseng et al. 2022). These geometric evaluation 
metrics have distinct advantages over image quality measures. For example, metrics like 
SSIM are less sensitive to color changes and are susceptible to blurring and low contrast, 
similar to PSNR (Park et al. 2021).

1 3

   64  Page 34 of 47



Artificial intelligence for geometry-based feature extraction, analysis and…

4.4.3 Performance measures

Performance measures are used to evaluate other properties of the model beyond data qual-
ity, such as diversity, identity and task accuracy. To model diversity, some works use aver-
age gradients (Han et al. 2023) to consider both clarity and texture variation in the image 
while influencing the content detail. Some papers use accuracy for preserving the identity 
(Chan et al. 2022) and semantic relevance (Zhang et al. 2022; Shahid et al. 2023) of the 
detected regions, which mitigates inconsistent results from the identity shift with better 
results from applying the metric to both the geometric label prediction and the AI-generated 
graphics. Moreover, models can generate finer geometric labels with better shape quality 
through metrics such as IoU (Singh and Zheng 2021; Li et al. 2023) for similarity matches 
and fine-tuning coarse mask predictions. Additionally, loss metrics such as L2 with Nearest 
Best Buddies (NBB) correspondences help closely reconstruct keypoints (Alexandru et al. 
2022). Other error measures include MAE, RMSE and Classification error (Zhang et al. 
2023) to add constraints for class and pose consistency.

4.4.4 Effectiveness of geometry-based methods in synthesis

Geometry can be utilized in many ways for the task of AI-generation of graphics, rang-
ing from geometric-style embeddings, separate geometry and style latent spaces, geomet-
ric annotations to condition the generator, and refining geometric annotations to form fine 
geometry conditionals. The first case shows improvements of 10% compared to baselines 
without geometric reference (Vulimiri et al. 2021) in the case of topology transfer, but has 
little constraint over local to global geometry consistency. The second case shows varying 
results in diversity of geometry and visual quality as in the case of MW-GAN (Huang et 
al. 2022) with improvements from the worst-case geometry generations but a better aver-
age visual score. The third case produces outputs similar to Chinese landscape paintings in 
the case of SAPGAN with an agreement of 55% compared to baseline GANs with 11%. 
Finally, fine-tuning the geometry of the conditional provides generators with better data to 
start training with an average improvement of 3.7 IoU across its datasets for unsupervised 
segmentation generation.

Qualitative experiments on these methods indicate aspects such as color and detail of the 
generated results that these geometry-aided models excel in. In image restoration, geom-
etry guidance with features such as edges improves color coherence and sharpness in local 
regions. Other models overlap regions undefined by the stroke or pose models leading to 
ghosting effects (Tong et al. 2022) or blurry regions (Han et al. 2023). The generated regions 
sometimes fail to preserve the appearance, detail and color information (Zhang et al. 2023; 
Mishra and Granskog 2022) in the case of extreme poses for the task of anime head anima-
tion. Conditional maps also force the model to reduce uncolored regions or in the opposite 
case, leaving out topological features such as legs in the case of sculptures (Chang et al. 
2022). They are particularly useful in 3D AI graphics generation, where detailed meshes 
help with ambiguous geometry, view consistency or artifacts (Park et al. 2021). More free-
flowing AI-generated graphics models, on the other hand, could use elastic regularization or 
coarser geometry to help with under-constrained problem domains. Poor correspondences 
from mismatching geometric annotations result in unwanted behavior in the output like 
spatial discontinuities, overlapping objects (Alexandru et al. 2022) and their misalignment 
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(Zhao et al. 2023). The deformation and blending operations of objects in the final rendering 
partly attribute to this malformation.

5 Limitations

The papers discussed in the extraction, analysis, and synthesis sections frequently introduce 
new datasets as part of the technique’s novelty, which complicates benchmarking against 
existing state-of-the-art (SOTA) techniques and diminishes the reliability of evaluating their 
effectiveness. Many of the cited papers in the synthesis section lack datasets with ground 
truth for image or 3D model manipulation tasks, instead employing techniques such as neu-
ral style transfer to bridge the domain gap. Consequently, the geometry of synthetic datasets 
becomes more aligned with real-world data, but they lack the stylistic composition choices 
inherent in artistic image and 3D model collections. Some other papers train and test on 
web-scrapped collections that lack curation.

One significant limitation of the synthesis section is the lack of comprehensive experi-
ments evaluating various models on different artistic modality datasets. While we explored 
multiple synthesis techniques, our evaluation was restricted to a limited set of models that 
were mostly ablation studies comparing model components and capacities. This constraint 
hampers our ability to fully understand the comparative strengths and weaknesses of each 
technique across different scenarios. Additionally, the use of a narrow range of datasets 
limits the generalizability of our findings. To provide a more robust and conclusive analy-
sis, future work should include extensive experiments with a broader selection of models 
and diverse datasets of artistic images, including those from various geographic regions 
and demographics, with a particular focus on sculptures and 3D models. Additionally, 
implementing a standardized performance metric that evaluates the quality of AI-generated 
graphics quality beyond qualitative experiments, is crucial, since measures like PSNR, 
SSIM, FID miss image semantics.

6 Future directions

The papers in the literature point towards promising future directions by exploiting better 
similarities in data and data or model-level transformations. We cover the following four 
main directions:

 ● Improving Data Quality: To utilize human-in-the-loop annotations for better data tai-
lored to a problem by learning the refinement of model predictions using experts.

 ● Addressing Domain Gaps: To learn correspondences between two domains to account 
for domain gaps while preserving semantic regions as determined by the geometric 
conditional.

 ● Fine-tuning Geometric Controls: To control the behavior of the conditioning input on 
the output to provide soft, learnable levels of constraints on the trade-off between style 
and content in the final stylized output.

 ● Conditional Geometric Labels: To use conditional geometric labels to constrain the la-
tent space to allow model simplification by abstractions across multiple levels.
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6.1 Automatic data annotations

The encoding of interactive annotations allows the model to learn and generalize artists 
annotating data. This provides an advantage over differentiable augmentation techniques 
by providing targeted annotation as compared to changes in the augmentation to maximize 
the model performance not completing the geometric label. Off-the-shelf models provide 
an initial annotation of artistic 2D and 3D data that are missing geometric label informa-
tion. These can include the interactive annotation UI with which the corrected annotation 
or its editing click controls (Sofiiuk et al. 2022; Bragantini et al. 2022) is encoded as the 
conditional with the input. A refinement stage or module corrects the annotation to go from 
coarse to fine labelling, filling in missing or undetected structures. Alternatively, we obtain 
accurate object annotations by refining the model prediction by alternating between the 
model learning stage and the human annotator correction stage(Groenen et al. 2023). Thus, 
learnable labelling provides an added benefit of resolving overlapping predictions due to 
multiple input sources with the expert curating the predicted labels. Finally, we can build 
upon these concepts to form a fully automated annotation model from SAM (Kirillov et al. 
2023), an object segmentation model that produces high-quality masks for both real-world 
and artistic images. By using model-predicted annotations with their user-corrected ver-
sions, it forms semi-automated annotations which the model can finetune upon to generate 
reliable, fully automated masks.

6.2 Attention-based cross-correspondences

The domain gap between real and non-photorealistic images depends on the learned cor-
respondences between modalities, whether they are from different artistic mediums or 
between text descriptions and images. The attention mechanism mixes up features between 
the multiple input domains, resulting in a shared representation bridging the inputs’ domain 
gap (Wang et al. 2022). The mismatches between the domains result in extractions of poor 
geometric labels such as segmentation maps (Zhang et al. 2022) that fail in fine-grained 
alignment of classes. Although the learned alignment produces noisy results that make the 
training process unstable, the refinement of the outputs mitigates the issue by correcting 
these false positives. Using the cross-attention mechanism, the structure of the resultant 
object depends on the interaction between the conditional and image embedding (Hertz et 
al. 2022). Injecting cross-attention maps across the model layers can bias the model towards 
spatial layout and geometric relationships, such as spatial co-occurrences derived from 
learned feature correspondences.

6.3 Controlled guidance

Existing multi-attribute guided AI-graphics generation pre-define attributes to incorporate 
in the resultant images, and keep the controls independent. The choice of the guidance 
mechanism in diffusion models allows control in the influence of multiple attributes in the 
geometric labels or text prompts in the resultant image. Controlling the influence of geo-
metric labels on the output lets the model bias outcomes toward input domains or indirectly 
from the disentangled content and style representations. Fine-tuning the model with learn-
able adaptors that transform geometric annotations to embeddings provides structure infor-
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mation to the resultant output (Zhao et al. 2023) while preserving the generator’s learned 
latent distribution representing the input. These adaptors represent individual attributes with 
their weights needing manual adjustments to combine into the desired output. They also 
lack consistency between the local changes to the global view. With energy-based genera-
tion models, the conditional information can influence the intermediate steps of the genera-
tion while keeping the artistic images dataset distribution intact (Wu and Torre 2022). The 
geometry labels can affect the trajectory of the latent space interpolation and get removed at 
the output sampling step by treating it as the stochastic term that vanishes at the end of the 
Stochastic Gradient Langevin Dynamics model. This allows the model to select the contri-
bution of the conditioning labels and their constituent parts towards the output.

6.4 Geometric-aware models with object embeddings

Flow-based and multistage hybrid models incorporate geometric information to represent 
the input globally, which does not allow for granular control of geometric details. These 
use geometry information to redistribute salient regions, but do not implicitly allow the 
articulated parts as multiple attributes to control generations. The correspondences of the 
embeddings of the disentangled geometric labels and learned structure information in the 
generator models result in complex shapes (Tertikas et al. 2023). These require heavily 
annotated labels to condition the inputs, but allow the models to learn the relations between 
the attributes while allowing the label to define the level of granularity in a controllable 
generation. The latent geometry provides additional benefits such as transferability to non-
photorealistic images preserving the overall shape and pose of semantically similar subjects, 
but produces less details and robust generations if the labels lack descriptiveness (Aygün 
and Mac Aodha 2023). Additionally, any learned appearance variations are constrained to 
the part regions, thereby providing local control. This learned joint correspondence com-
monly fails with highly stylistic inputs with inconsistent views and drastic poses (Zheng et 
al. 2023) which are common in more abstract painting styles.

7 Conclusion

This review delves into the effects of leveraging geometric data within deep learning 
architectures for artistic tasks for extraction, analysis and synthesis. During extraction, we 
examine the choice of models and their transferability to the artistic images, 3D models 
and animation domains. This evaluation handles rough versus fine data annotations, rang-
ing from region-based detectors of multiple stages to fine-tuning with data augmentation. 
During analysis, we consider their performance in discriminative tasks according to the 
granularity of the available geometric labels. Models with coarser geometric labels typically 
require task-specific visual features that encode spatial relationships, while those with finer 
annotations generally need fewer additional modules to achieve higher accuracy. In finer 
geometry, Region-based object detectors outperform parts-based models in large-scale data-
sets but have poorer outcomes in abstract paintings or occlusion-heavy datasets. Moreover, 
the review highlights the effectiveness of deep learning models like DeepPose, OpenPose, 
and Mask-RCNN in detecting fine geometric labels compared to traditional computer vision 
methods, despite limitations in detecting atypical poses or occlusions in special cases. The 
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significance of 3D geometric data surfaces is demonstrated by their advantages in accurately 
capturing object shapes and providing depth information, employing volumetric meshes, 
implicit functions, and parametric models. Furthermore, it outlines their utilization in com-
paring poses between statues and paintings, exploiting pose tracking, and leveraging artistic 
medium attributes. The extracted geometric data has a wide variety of applications in digital 
artwork analysis, ranging from image retrieval and scene classification to style identifica-
tion and semantic relationship identification, are thoroughly examined. This highlights the 
effectiveness of deep learning techniques and geometric priors in scene classification and 
object identification. Lastly, the paper underscores the pivotal role of geometry in synthesis 
and manipulation tasks within computer vision, showcasing its contribution to maintaining 
object geometry, stylizing novel views, and enhancing image details without color bleeding 
or loss of local information. Additionally, it sheds light on how shape constraints and con-
ditioning priors facilitate image refinement, super-resolution, and digital art conservation, 
harnessing geometric data to guide brush strokes, enhance image details, and simulate 3D 
models in conservation efforts.

Acknowledgements This project is supported in part by the EPSRC NortHFutures project (Ref: EP/
X031012/1).

Author contributions M. V. and H. S. formulate the initial concept for the research. M. V. investigated the 
research topic. M. V. and J. D. wrote the initial draft of the paper. M. V., J. D. and H. S. wrote the initial sub-
mission of the paper. M. V., S. C. and E. H. wrote the revised version of the paper. M. V. and S. C. prepared 
and revised all figures and tables. S. C. and E. H. conducted English improvements and proof reading. H. S., 
J. D. and E. H. supervised M. V. in this research project. H. S. oversaw and administrated the project as the 
corresponding author.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare that they have no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abate D (2019) Documentation of paintings restoration through photogrammetry and change detection algo-
rithms. Herit Sci. https://doi.org/10.1186/s40494-019-0257-y

Abrahamsen N, Yao J (2023) Inventing painting styles through natural inspiration. arXiv preprint 
arXiv:2305.12015

Ahmad T, Schich M (2023) Toward cross-domain object detection in artwork images using improved yolov5 
and xgboosting. IET Image Processing

Akleman E, Kurt M, Akleman D, Bruins G, Deng S, Subramanian M (2024) Hyper-realist rendering: a theo-
retical framework. arXiv preprint arXiv:2401.12853

1 3

Page 39 of 47    64 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40494-019-0257-y
http://arxiv.org/abs/2305.12015
http://arxiv.org/abs/2401.12853


M. Vijendran et al.

Alexandru I, Nicula C, Prodan C, Rotaru R-P, Voncilua M-L, Tarbua N, Boiangiu C-A (2022) Image style 
transfer via multi-style geometry warping. Appl Sci 12(12):6055

Anantrasirichai N, Bull D (2022) Artificial intelligence in the creative industries: a review. Artificial intel-
ligence review, pp 1–68

Anwer RM, Khan FS, Van De Weijer J, Laaksonen J (2016) Combining holistic and part-based deep repre-
sentations for computational painting categorization. In: Proceedings of the 2016 ACM on international 
conference on multimedia retrieval, pp 339–342

Arkin E, Yadikar N, Xu X, Aysa A, Ubul K, Tools M (2023) A survey: object detection methods from cnn to 
transformer. Multimed Tools Appl. https://doi.org/10.1007/s11042-022-13801-3

Augello A, Infantino I, Manfré A, Pilato G, Vella F (2016) Analyzing and discussing primary creative traits of 
a robotic artist. Biol Inspired Cognit Archit 17:22–31. https://doi.org/10.1016/j.bica.2016.07.006

Aygün M, Mac Aodha O (2023) Saor: Single-view articulated object reconstruction. arXiv preprint 
arXiv:2303.13514

Bai Z, Nakashima Y, Garcia N (2021) Explain me the painting: multi-topic knowledgeable art descrip-
tion generation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 
5422–5432

Barazzetti L, Remondino F, Scaioni M, Lo Brutto M, Rizzi A, Brumana R et al (2010) Geometric and radio-
metric analysis of paintings. Int Arch Photogramm Remote Sens Spatial Inf Sci 38:5

Bellaiche L, Shahi R, Turpin MH, Ragnhildstveit A, Sprockett S, Barr N, Christensen A, Seli P (2023) 
Humans versus ai: whether and why we prefer human-created compared to ai-created artwork. Cognit 
Res: Princ Implic 8(1):42

Bent GR, Pfaff D, Brooks M, Radpour R, Delaney J (2022) A practical workflow for the 3d reconstruction of 
complex historic sites and their decorative interiors: florence as it was and the church of orsanmichele. 
Herit Sci. https://doi.org/10.1186/s40494-022-00750-1

Bernasconi V (2022) Gab - gestures for artworks browsing. In: 27th International conference on intelligent 
user interfaces. IUI ’22 Companion. Association for Computing Machinery, New York, NY, USA, pp 
50–53. https://doi.org/10.1145/3490100.3516470

Bernasconi V, Cetinić E, Impett L (2023) A computational approach to hand pose recognition in early modern 
paintings. J Imaging 9(6):120

Bird JJ (2021) Continuation of famous art with ai: a conditional adversarial network inpainting approach. 
arXiv preprint arXiv:2110.09170

Blais F, Taylor J, Cournoyer L, Picard M, Borgeat L, Dicaire L, Rioux M, Beraldin J, Godin G, Lahanier 
C (2005) Ultra-high resolution imaging at 50µ m using a portable xyz-rgb color laser scanner. In: 
International workshop on recording, modeling and visualization of cultural heritage. NRC Ascona, 
Switzerland, p 48099

Borg B, Dunn M, Ang A, Villis C (2020) The application of state-of-the-art technologies to support artwork 
conservation: literature review. J Cult Herit 44:239–259

Bragantini J, Falcão AX, Najman L (2022) Rethinking interactive image segmentation: feature space annota-
tion. Pattern Recogn 131:108882

Cai H, Wu Q, Corradi T, Hall P (2015) The cross-depiction problem: computer vision algorithms for recog-
nising objects in artwork and in photographs. arXiv preprint arXiv:1505.00110

Carneiro G, Da Silva NP, Del Bue A, Costeira JP (2012) Artistic image classification: An analysis on the 
printart database. In: Computer Vision–ECCV 2012: 12th European conference on computer vision, 
Florence, Italy, October 7–13, 2012, Proceedings, Part IV 12. Springer, pp 143–157

Carroll R, Agarwala A, Agrawala M (2010) Image warps for artistic perspective manipulation. In: ACM SIG-
GRAPH 2010 Papers, pp 1–9

Carrozzino M, Evangelista C, Brondi R, Tecchia F, Bergamasco M (2014) Virtual reconstruction of paintings 
as a tool for research and learning. J Cult Herit 15:308–312. https://doi.org/10.1016/j.culher.2013.06.003

Casati P, Ronfard R, Hahmann S (2019) Approximate reconstruction of 3d scenes from bas-reliefs. In: GCH 
2019-EUROGRAPHICS Workshop on Graphics and Cultural Heritage. The Eurographics Association, 
pp 109–118

Castagnetti C, Rossi P, Capra A (2018) 3d reconstruction of rock paintings: a cost-effective approach based 
on modern photogrammetry for rapidly mapping archaeological findings, vol. 364.  h t t p s  : / / d o i  . o r g /  1 0 . 1  
0 8 8 / 1 7 5 7 - 8 9 9 X / 3 6 4 / 1 / 0 1 2 0 2 0       

Castellano G, Vessio G (2021) Deep learning approaches to pattern extraction and recognition in paintings 
and drawings: an overview. Neural Comput Appl 33(19):12263–12282

Castellano G, Lella E, Vessio G (2021) Visual link retrieval and knowledge discovery in painting datasets. 
Multimed Tools Appl 80:6599–6616

Castellano G, Vessio G (2021) Deep convolutional embedding for digitized painting clustering. In: 2020 25th 
International conference on pattern recognition (ICPR), pp 2708–2715.  h t t p s  : / / d o i  . o r g /  1 0 . 1  1 0 9 / I C P R 4 
8 8 0 6 . 2 0 2 1 . 9 4 1 2 4 3 8       

1 3

   64  Page 40 of 47

https://doi.org/10.1007/s11042-022-13801-3
https://doi.org/10.1016/j.bica.2016.07.006
http://arxiv.org/abs/2303.13514
https://doi.org/10.1186/s40494-022-00750-1
https://doi.org/10.1145/3490100.3516470
http://arxiv.org/abs/2110.09170
http://arxiv.org/abs/1505.00110
https://doi.org/10.1016/j.culher.2013.06.003
https://doi.org/10.1088/1757-899X/364/1/012020
https://doi.org/10.1088/1757-899X/364/1/012020
https://doi.org/10.1109/ICPR48806.2021.9412438
https://doi.org/10.1109/ICPR48806.2021.9412438


Artificial intelligence for geometry-based feature extraction, analysis and…

Castrejon L, Aytar Y, Vondrick C, Pirsiavash H, Torralba A (2016) Learning aligned cross-modal representa-
tions from weakly aligned data. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp 2940–2949

Cetinic E, She J (2022) Understanding and creating art with ai: review and outlook. ACM Trans Multimed 
Comput Commun Appl (TOMM) 18(2):1–22

Chan ER, Lin CZ, Chan MA, Nagano K, Pan B, De Mello S, Gallo O, Guibas LJ, Tremblay J, Khamis S 
(2022) Efficient geometry-aware 3d generative adversarial networks. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, pp 16123–16133

Chang Z, Koulieris GA, Shum HP (2022) 3d reconstruction of sculptures from single images via unsuper-
vised domain adaptation on implicit models. In: Proceedings of the 28th ACM symposium on virtual 
reality software and technology, pp 1–10

Chang Z, Koulieris GA, Shum HPH (2022) 3d reconstruction of sculptures from single images via unsuper-
vised domain adaptation on implicit models

Chang Z, Koulieris GA, Shum HPH (2023) On the design fundamentals of diffusion models: a survey. arXiv 
preprint arXiv: 2306.04542

Chen D-Y (2023) Conditional human sketch synthesis with explicit abstraction control. arXiv preprint 
arXiv:2306.09274

Chen M, Laina I, Vedaldi A (2024) Training-free layout control with cross-attention guidance. In: Proceed-
ings of the IEEE/CVF winter conference on applications of computer vision, pp 5343–5353

Chen W-Y, Ople JJM, Si MJ, Tan DS, Hua K-L (2021) Perspective preserving style transfer for interior por-
traits. IEEE Access 9:7033–7042

Chen X, Jin X, Zhao Q, Wu H (2012) Artistic illumination transfer for portraits. Comput Graph Forum 
31:1425–1434

Chen Y, Yuan Q, Li Z, Xie YLWWC, Wen X, Yu Q (2022) Upst-nerf: universal photorealistic style transfer 
of neural radiance fields for 3d scene. arXiv preprint arXiv:2208.07059

Ci Y, Ma X, Wang Z, Li H, Luo Z (2018) User-guided deep anime line art colorization with conditional 
adversarial networks. In: Proceedings of the 26th ACM international conference on multimedia, pp 
1536–1544

Ciortan I-M, George S, Hardeberg JY (2021) Colour-balanced edge-guided digital inpainting: applications 
on artworks. Sensors 21(6):2091

Cipolina-Kun L, Papadakis SM, Caenazzo S (2022) Discriminative candidate selection for image inpainting 
applications to the fine arts. LatinX in AI at International Conference on Machine Learning.  h t t p s : / / d o i 
. o r g / 1 0 . 5 2 5 9 1 / l x a i 2 0 2 2 0 7 1 7 6       

Cohen N, Newman Y, Shamir A (2022) Semantic segmentation in art paintings. Comput Graph Forum 
41:261–275

Condorovici RG, Florea C, Vertan C (2013) Painting scene recognition using homogenous shapes. In: 
Advanced concepts for intelligent vision systems: 15th international conference, ACIVS 2013, Poznan, 
Poland, October 28–31, 2013. Proceedings 15. Springer, pp 262–273

Cox BD, Berns RS (2015) Imaging artwork in a studio environment for computer graphics rendering. Mea-
suring, Model Reprod Mater Appear 9398:939803. https://doi.org/10.1117/12.2083388

Crowley EJ, Zisserman A (2013) Of gods and goats: weakly supervised learning of figurative art. Learning 
8:14

Crowley EJ, Zisserman A (2014) The state of the art: object retrieval in paintings using discriminative 
regions. In: Proceedings of the British machine vision conference

Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer 
society conference on computer vision and pattern recognition (CVPR’05), vol. 1, pp 886–8931.  h t t p s : 
/ / d o i . o r g / 1 0 . 1 1 0 9 / C V P R . 2 0 0 5 . 1 7 7       

Datta R, Ghorai M, Mandal S (2017) Image inpainting using geometric transformations for digital circuit 
images. In: 2017 Ninth international conference on advances in pattern recognition (ICAPR). IEEE, 
pp 1–6

Delgado A, Alba-Carcel’en L, Murillo-Fuentes JJ (2023) Crossing points detection in plain weave for old 
paintings with deep learning. arXiv preprint arXiv:2302.11924

Duan Y, Zhang J, Gu X (2021) A novel paradigm to design personalized derived images of art paintings using 
an intelligent emotional analysis model. Front Psychol. https://doi.org/10.3389/fpsyg.2021.713545

Du X, He Y, Yang X, Chang C-M, Xie H (2022) Sketch-based 3d shape modeling from sparse point clouds. 
arXiv, https://doi.org/10.1117/12.2626116

Ernst H (2023) Artificial: a study on the use of artificial intelligence in art
Fan X, Liang Y (2023) The research on the characteristics of ai application in art field and its value. In: 4th 

International conference on language, art and cultural exchange (ICLACE 2023). Atlantis Press, pp 
146–160

Farid H (2022) Perspective (in) consistency of paint by text. arXiv preprint arXiv:2206.14617

1 3

Page 41 of 47    64 

http://arxiv.org/abs/2306.04542
http://arxiv.org/abs/2306.09274
http://arxiv.org/abs/2208.07059
https://doi.org/10.52591/lxai202207176
https://doi.org/10.52591/lxai202207176
https://doi.org/10.1117/12.2083388
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
http://arxiv.org/abs/2302.11924
https://doi.org/10.3389/fpsyg.2021.713545
https://doi.org/10.1117/12.2626116
http://arxiv.org/abs/2206.14617


M. Vijendran et al.

Feng Y, Jiang J, Tang M, Jin R, Gao Y (2021) Rethinking supervised pre-training for better downstream 
transferring. arXiv preprint arXiv:2110.06014

Foka AF (2021) Computer vision applications for art history: reflections and paradigms for future research. 
In: Proceedings of EVA London 2021. BCS Learning & Development, pp 73–80

Fu T, Chaine R, Digne J (2020) Fakir: an algorithm for revealing the anatomy and pose of statues from raw 
point sets. Comput Graph Forum 39:375–385

Fuertes D, del-Blanco CR, Jaureguizar F, Giarcia N (2022) Logomix: a data augmentation technique for 
object detection applied to logo recognition. In: 2022 IEEE International conference on consumer elec-
tronics (ICCE). IEEE, pp 1–2

Fumanal-Idocin J, Andreu-Perez J, Cordon O, Hagras H, Bustince H (2023) Artxai: explainable artificial 
intelligence curates deep representation learning for artistic images using fuzzy techniques. arXiv pre-
print arXiv:2308.15284

Geng J, Ma L, Li X, Yan Y (2022) Ptgcf: printing texture guided color fusion for impressionism oil painting 
style rendering. arXiv e-prints, 2207

Gonthier N, Gousseau Y, Ladjal S, Bonfait O (2018) Weakly supervised object detection in artworks. In: 
Proceedings of the European conference on computer vision (ECCV) workshops

Groenen I, Rudinac S, Worring M (2023) Panorams: automatic annotation for detecting objects in urban 
context. IEEE Transactions on Multimedia

Hall P, Cai H, Wu Q, Corradi T (2015) Cross-depiction problem: recognition and synthesis of photographs 
and artwork. Comput Visual Media 1:91–103

Han X, Wu Y, Wan R (2023) A method for style transfer from artistic images based on depth extraction gen-
erative adversarial network. Appl Sci 13(2):867

He B, Gao F, Ma D, Shi B, Duan L-Y (2018) Chipgan: a generative adversarial network for chinese ink wash 
painting style transfer. In: Proceedings of the 26th ACM international conference on multimedia, pp 
1172–1180

Heitzinger T, Stork DG (2022) Improving semantic segmentation of fine art images using photographs ren-
dered in a style learned from artworks. Electronic Imaging 34(13):169–11691.  h t t p s  : / / d o i  . o r g /  1 0 . 2  3 5 2 
/ E I . 2 0 2 2 . 3 4 . 1 3 . C V A A - 1 6 9       

He N, Lu K (2011) An image segmentation method for chinese paintings by combining deformable models 
with graph cuts. In: Human-computer interaction: design and development approaches: 14th interna-
tional conference, HCI International 2011, Orlando, FL, USA, July 9-14, 2011, Proceedings, Part I 14. 
Springer, pp 571–579

Henz B (2014) Image relighting using shading proxies
Henz B, Oliveira MM (2017) Artistic relighting of paintings and drawings. Vis Comput 33(1):33–46.  h t t p s : / 

/ d o i . o r g / 1 0 . 1 0 0 7 / s 0 0 3 7 1 - 0 1 5 - 1 1 5 0 - 7       
Hertzmann A (2018) Can computers create art? Arts 7:18
Hertz A, Mokady R, Tenenbaum J, Aberman K, Pritch Y, Cohen-Or D (2022) Prompt-to-prompt image edit-

ing with cross attention control. arXiv preprint arXiv:2208.01626
Hirsch AJ, Stocker G, Jandl M (2021) The practice of art and ai. Hatje Cantz Verlag
Hou H, Huo J, Wu J, Lai Y-K, Gao Y (2021) Mw-gan: multi-warping gan for caricature generation with 

multi-style geometric exaggeration. IEEE Trans Image Process 30:8644–8657
Huang Y-H, He Y, Yuan Y-J, Lai Y-K, Gao L (2022) Stylizednerf: consistent 3d scene stylization as stylized 

nerf via 2d-3d mutual learning. In: Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition, pp 18342–18352

Huang Y, Iizuka S, Simo-Serra E, Fukui K (2024) Controllable multi-domain semantic artwork synthesis. 
Comput Visual Media 10(2):355–373

Huang Y, Iizuka S, Simo-Serra E, Fukui K (2023) Controllable multi-domain semantic artwork synthesis. 
arXiv preprint arXiv:2308.10111

Islam MT, Nahiduzzaman KM, Why YP, Ashraf G (2011) Informed character pose and proportion design. 
Vis Comput 27:251–261

Jackson AS, Bulat A, Argyriou V, Tzimiropoulos G (2017) Large pose 3d face reconstruction from a single 
image via direct volumetric cnn regression. In: Proceedings of the IEEE international conference on 
computer vision, vol. 2017-October, pp 1031–1039. https://doi.org/10.1109/ICCV.2017.117

James B (2018) Thinking machines: art and design in the computer age, 1959–1989, the museum of modern 
art, New York, USA, November 13, 2017-April 8, 2018. Des Cult 10(2):219–223

Jenicek T, Chum O (2019) Linking art through human poses, pp 1338–1345.  h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / I C D A 
R . 2 0 1 9 . 0 0 2 1 6       

Jeon H-J, Jung S, Choi Y-S, Kim JW., Kim JS (2020) Object detection in artworks using data augmentation. 
In: 2020 International conference on information and communication technology convergence (ICTC), 
pp 1312–1314. IEEE

Jetchev N (2021) Clipmatrix: Text-controlled creation of 3d textured meshes. arXiv preprint arXiv:2109.12922

1 3

   64  Page 42 of 47

http://arxiv.org/abs/2110.06014
http://arxiv.org/abs/2308.15284
https://doi.org/10.2352/EI.2022.34.13.CVAA-169
https://doi.org/10.2352/EI.2022.34.13.CVAA-169
https://doi.org/10.1007/s00371-015-1150-7
https://doi.org/10.1007/s00371-015-1150-7
http://arxiv.org/abs/2208.01626
http://arxiv.org/abs/2308.10111
https://doi.org/10.1109/ICCV.2017.117
https://doi.org/10.1109/ICDAR.2019.00216
https://doi.org/10.1109/ICDAR.2019.00216
http://arxiv.org/abs/2109.12922


Artificial intelligence for geometry-based feature extraction, analysis and…

Jin B, Tian B, Zhao H, Zhou G (2022) Language-guided semantic style transfer of 3d indoor scenes. In: 
Proceedings of the 1st workshop on photorealistic image and environment synthesis for multimedia 
experiments

Ju X, Zeng A, Wang J, Xu Q, Zhang L (2023) Human-art: a versatile human-centric dataset bridging natural 
and artificial scenes. Comput Vision Pattern Recogn. https://doi.org/10.1109/CVPR52729.2023.00067

Kadish D, Risi S, Lovlie AS (2021) Improving object detection in art images using only style transfer. In: 
2021 International joint conference on neural networks (IJCNN). IEEE, pp 1–8

Kadish D, Risi S, Lovlie AS (2021) Improving object detection in art images using only style transfer. In: 
2021 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

Kamann C, Rother C (2020) Increasing the robustness of semantic segmentation models with painting-by-
numbers. In: European conference on computer vision. Springer, pp 369–387

Khungurn P, Chou D (2016) Pose estimation of anime/manga characters: a case for synthetic data. 
10(1145/3011549):3011552

Kim SS, Kolkin N, Salavon J, Shakhnarovich G (2020) Deformable style transfer. In: Computer vision–
ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 
16. Springer, pp 246–261

Kim Y, Winnemoller H, Lee S (2013) Wysiwyg stereo painting. In: Proceedings of the ACM SIGGRAPH 
symposium on interactive 3d graphics and games, pp 169–176

Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg AC, Lo W-Y 
(2023) Segment anything. In: Proceedings of the IEEE/CVF international conference on computer 
vision, pp 4015–4026

Kolkin N, Salavon J, Shakhnarovich G (2019) Style transfer by relaxed optimal transport and self-simi-
larity. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 
10051–10060

Kopanas G, Philip J, Leimkuhler T, Drettakis G (2021) Point-based neural rendering with per-view optimiza-
tion. Comput GraphForum 40:29–43

Koyama Y, Goto M (2018) Decomposing images into layers with advanced color blending. Comput Graph 
Forum 37:397–407

Lang S, Ommer B (2018) Attesting similarity: supporting the organization and study of art image collections 
with computer vision. Digit Scholarship Humanities. https://doi.org/10.1093/llc/fqy006

Lazzeri D, Nicoli F, Zhang YX (2019) Secret hand gestures in paintings. Acta Bio Medica: Atenei Parmensis 
90(4):526

Léang M, Giorgiutti-Dauphiné F, Lee LT, Pauchard L (2017) Crack opening: from colloidal systems to paint-
ings. Soft Matter 13:5802–5808. https://doi.org/10.1039/c7sm00985b

Lee J, Kim E, Lee Y, Kim D, Chang J, Choo J (2020) Reference-based sketch image colorization using 
augmented-self reference and dense semantic correspondence. In: 2020 IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR), pp 5800–5809

Li Q, Zou Q, Ma D, Wang Q, Wang S (2018) Dating ancient paintings of mogao grottoes using deeply learnt 
visual codes. Inf Sci 61:1–14

Li X, Lin C-C, Chen Y, Liu Z, Wang J, Raj B (2023) Paintseg: training-free segmentation via painting. arXiv 
preprint arXiv:2305.19406

Liu X-C, Li X-Y, Cheng M-M, Hall P (2020) Geometric style transfer. arXiv preprint arXiv:2007.05471
Liu X-C, Yang Y-L, Hall P (2021) Learning to warp for style transfer. In: Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition, pp 3702–3711
Liu X-C, Yang Y-L, Hall P (2022) Geometric and textural augmentation for domain gap reduction. In: Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 14340–14350
Liu J, Liu Y, Zhu W, Zhu X, Song L (2023) Distributional and spatial-temporal robust representation learning 

for transportation activity recognition. Pattern Recogn 140:109568
Liu Y, Liu J, Yang K, Ju B, Liu S, Wang Y, Yang D, Sun P, Song L (2023) Amp-net: appearance-motion 

prototype network assisted automatic video anomaly detection system. IEEE Transactions on Industrial 
Informatics

Liu Y, Xia Z, Zhao M, Wei D, Wang Y, Liu S, Ju B, Fang G, Liu J, Song L (2023) Learning causality-inspired 
representation consistency for video anomaly detection. In: Proceedings of the 31st ACM international 
conference on multimedia, pp 203–212

Liu Y, Yang D, Wang Y, Liu J, Liu J, Boukerche A, Sun P, Song L (2023) Generalized video anomaly event 
detection: systematic taxonomy and comparison of deep models. ACM Computing Surveys

Li D, Yang Y, Song Y-Z, Hospedales TM (2017) Deeper, broader and artier domain generalization. In: Pro-
ceedings of the ieee international conference on computer vision, pp 5542–5550

Lorente O, Riera I, Chaudhuri S, Catalan O, Casales V (2021) Museum painting retrieval. arXiv preprint 
arXiv:2105.04891

1 3

Page 43 of 47    64 

https://doi.org/10.1109/CVPR52729.2023.00067
https://doi.org/10.1093/llc/fqy006
https://doi.org/10.1039/c7sm00985b
http://arxiv.org/abs/2305.19406
http://arxiv.org/abs/2007.05471
http://arxiv.org/abs/2105.04891


M. Vijendran et al.

Lourakis M, Alongi P, Delouis D, Lippi F, Spadoni F, SpA, P.A.S.: Recover: photorealistic 3d reconstruction 
of perspective paintings and pictures. http://www.ics.forth.gr/recover/

Luccioni AS, Akiki C, Mitchell M, Jernite Y (2023) Stable bias: analyzing societal representations in diffu-
sion models. arXiv preprint arXiv:2303.11408

Lu Y, Guo C, Dai X, Wang FY (2022) Data-efficient image captioning of fine art paintings via virtual-real 
semantic alignment training. Neurocomputing 490:163–180.  h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . n e u c o m . 2 0 2 2 . 0 
1 . 0 6 8       

Madhu P, Villar-Corrales A, Kosti R, Bendschus T, Reinhardt C, Bell P, Maier A, Christlein V (2022) Enhanc-
ing human pose estimation in ancient vase paintings via perceptually-grounded style transfer learning. 
ACM J Comput Cult Herit 16:1–17

Madhu P, Meyer A, Zinnen M, Muhrenberg L, Suckow D, Bendschus T, Reinhardt C, Bell P, Verstegen U, 
Kosti R (2022) One-shot object detection in heterogeneous artwork datasets. In: 2022 Eleventh interna-
tional conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6

Marinescu M-C, Reshetnikov A, Lopez JM (2020) Improving object detection in paintings based on time 
contexts. In: 2020 International conference on data mining workshops (ICDMW). IEEE, pp 926–932

Marsocci V, Lastilla L, Pozo SD, Kainz W (2021). Geo-information pose-id-on-a novel framework for art-
work pose clustering. https://doi.org/10.3390/ijgi10040257

Mathieu A, Inria TMU, Russell BC, Aubry M, Sivic J (2014) Painting-to-3d model alignment via discrimina-
tive visual elements. ACM Trans Graph. https://doi.org/10.1145/2591009

Milani F, Vago NOP, Fraternali P (2022) Proposals generation for weakly supervised object detection in 
artwork images. J Imaging. https://doi.org/10.3390/jimaging8080215

Mishra S, Granskog J (2022) Clip-based neural neighbor style transfer for 3d assets. ArXiv abs/2208.04370
Moradi M, Ghorbani R, Sfarra S, Tax DMJ, Zarouchas D (2022) A spatiotemporal deep neural network useful 

for defect identification and reconstruction of artworks using infrared thermography. Sensors.  h t t p s : / / d 
o i . o r g / 1 0 . 3 3 9 0 / s 2 2 2 3 9 3 6 1       

Nakano R (2019) Neural painters: a learned differentiable constraint for generating brushstroke paintings. 
arXiv preprint arXiv:1904.08410

Nawar H (2020) Collective bread diaries: cultural identities in an artificial intelligence framework. AI Soc 
35:409–416

Nguyen DT, Li W, Ogunbona PO (2016) Human detection from images and videos: a survey. Pattern Recogn 
51:148–175

Özgün FNK, Alaçam S (2023) A computational approach for analysis of art compositions. Gestão Tecnol 
Projetos 18(2):109–121

Pang S, Peng R, Dong Y, Yuan Q, Wang S, Sun J (2023) Jointmetro: a 3d reconstruction model for human 
figures in works of art based on transformer. Neural Comput Appl, pp 1–15

Papari G, Petkov N (2009) Glass patterns and artistic imaging. In: Advances in image and video technol-
ogy: third pacific rim symposium, PSIVT 2009, Tokyo, Japan, January 13–16, 2009. Proceedings 3. 
Springer, pp 1034–1045

Park K, Sinha U, Barron JT, Bouaziz S, Goldman DB, Seitz SM, Martin-Brualla R (2021) Nerfies: deform-
able neural radiance fields. In: Proceedings of the IEEE/CVF international conference on computer 
vision, pp 5865–5874

Pasqualino G, Furnari A, Farinella GM (2022) A multi camera unsupervised domain adaptation pipeline 
for object detection in cultural sites through adversarial learning and self-training. Comput Vis Image 
Underst 222:103487

Peng Y, Zhao C, Xie H, Fukusato T, Miyata K (2023) Difffacesketch: high-fidelity face image synthesis with 
sketch-guided latent diffusion model. arXiv preprint arXiv:2302.06908

Pintus R, Pal K, Yang Y, Weyrich T, Gobbetti E, Rushmeier H (2016) A survey of geometric analysis in cul-
tural heritage. Comput Graph Forum 35:4–31. https://doi.org/10.1111/cgf.12668

Pintus R, Pal K, Yang Y, Weyrich T, Gobbetti E, Rushmeier H (2016) A survey of geometric analysis in cul-
tural heritage. Comput Graph Forum 35:4–31

Rani S, Jining D, Shah D, Xaba S, Singh PR (2023) Exploring the potential of artificial intelligence and com-
puting technologies in art museums. In: ITM web of conferences, vol. 53. EDP Sciences

Rapp JB (2008) A geometrical analysis of multiple viewpoint perspective in the work of Giovanni Battista 
Piranesi: an application of geometric restitution of perspective. J Archit 13(6):701–736

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788

Remondino F, Rizzi A, Barazzetti L, Scaioni M, Fassi F, Brumana R, Pelagotti A (2011) Review of geometric 
and radiometric analyses of paintings. Photogram Rec 26(136):439–461.  h t t    p  s :  /  / d   o i  . o  r g  /  1 0  . 1 1 1 1 / j . 1 4 7 
7 - 9 7 3 0 . 2 0 1 1 . 0 0 6 6 4 . x       

1 3

   64  Page 44 of 47

http://www.ics.forth.gr/recover/
http://arxiv.org/abs/2303.11408
https://doi.org/10.1016/j.neucom.2022.01.068
https://doi.org/10.1016/j.neucom.2022.01.068
https://doi.org/10.3390/ijgi10040257
https://doi.org/10.1145/2591009
https://doi.org/10.3390/jimaging8080215
https://doi.org/10.3390/s22239361
https://doi.org/10.3390/s22239361
http://arxiv.org/abs/1904.08410
http://arxiv.org/abs/2302.06908
https://doi.org/10.1111/cgf.12668
https://doi.org/10.1111/j.1477-9730.2011.00664.x
https://doi.org/10.1111/j.1477-9730.2011.00664.x


Artificial intelligence for geometry-based feature extraction, analysis and…

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. 
In: medical image computing and computer-assisted intervention–MICCAI 2015: 18th international 
conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18. Springer, pp 234–241

Sahay P, Rajagopalan A (2015) Geometric inpainting of 3d structures. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops, pp 1–7

Saleh B, Elgammal A (2015) Large-scale classification of fine-art paintings: learning the right metric on the 
right feature. arXiv preprint arXiv:1505.00855

Sandoval C, Pirogova E, Lech M (2021) Adversarial learning approach to unsupervised labeling of fine art 
paintings. IEEE Access 9:81969–81985

Schaldenbrand P, Oh J (2021) Content masked loss: human-like brush stroke planning in a reinforcement 
learning painting agent. In: Proceedings of the AAAI conference on artificial intelligence, vol. 35, pp 
505–512

Schlecht J, Carque B, Ommer B (2011) Detecting gestures in medieval image. IEEE International conference 
on image processing, pp 1285–1288

Schneider S, Vollmer R (2023) Poses of people in art: a data set for human pose estimation in digital art his-
tory. arXiv preprint arXiv:2301.05124

Seo S, Lee H, Kim Y, Son W (2016) Video motion analysis for landscape image abstraction. In: 2016 Inter-
national conference on platform technology and service (PlatCon). IEEE, pp 1–4

Shahid M, Koch M, Schneider N (2023) Paint it black: generating paintings from text descriptions. arXiv 
preprint arXiv:2302.08808

Shen X, Efros AA, Aubry M (2019) Discovering visual patterns in art collections with spatially-consistent 
feature learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 9278–9287

Sindel A, Maier A, Christlein V (2022) Artfacepoints: high-resolution facial landmark detection in paintings 
and prints

Singh J, Zheng L (2021) Combining semantic guidance and deep reinforcement learning for generating 
human level paintings. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp 16387–16396

Singh J, Zheng L, Smith C, Echevarria J (2022) Paint2pix: interactive painting based progressive image syn-
thesis and editing. In: European conference on computer vision. Springer, pp 678–695

Sizyakin R, Cornelis B, Meeus L, Dubois H, Martens M, Voronin V, Pizurica A (2020) Crack detection in 
paintings using convolutional neural networks. IEEE Access.  h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / A C C E S S . 2 0 2 0 . 2 
9 8 8 8 5 6       

Sklodowski M, Pawlowski P, Górecka K (2014) Geometrical models of old curvilinear paintings. Lecture 
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics) 8671:578–585. https://doi.org/10.1007/978-3-319-11331-9_69

Smirnov S, Eguizabal A (2018) Deep learning for object detection in fine-art paintings. In: 2018 Metrology 
for archaeology and cultural heritage (MetroArchaeo). IEEE, pp 45–49

Smirnov S, Eguizabal A (2018) Deep learning for object detection in fine-art paintings. In: 2018 Metrology 
for archaeology and cultural heritage (MetroArchaeo). IEEE, pp 45–49

Soddu C. Generative art geometry. logical interpretations for generative algorithms
Sofiiuk K, Petrov IA, Konushin A (2022) Reviving iterative training with mask guidance for interactive seg-

mentation. In: 2022 IEEE international conference on image processing (ICIP). IEEE, pp 3141–3145
Springstein M, Schneider S, Althaus C, Ewerth R, Ew R (2022) Semi-supervised human pose estimation in 

art-historical images. In: Proceedings of the 30th ACM international conference on multimedia (MM 
’22), Oct, 2022, Lisboa, Portugal, vol. 1. https://doi.org/10.1145/3503161.3548371

Srinivasan PP, Deng B, Zhang X, Tancik M, Mildenhall B, Barron JT (2021) Nerv: neural reflectance and 
visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp 7495–7504

Srinivasan R, Uchino K (2021) Biases in generative art: a causal look from the lens of art history. In: Proceed-
ings of the 2021 ACM conference on fairness, accountability, and transparency, pp 41–51

Stork DG (2006) Mathematical foundations for quantifying shape, shading, and cast shadows in realist mas-
ter drawings and paintings, vol. 6315, p 63150. https://doi.org/10.1117/12.681141

Tan J, Dvorožňák M, Sỳkora D, Gingold Y (2015) Decomposing time-lapse paintings into layers. ACM Trans 
Graph (TOG) 34(4):1–10

Tertikas K, Paschalidou D, Pan B, Park JJ, Uy MA, Emiris I, Avrithis Y, Guibas L (2023) Generating part-
aware editable 3d shapes without 3d supervision. In: Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, pp 4466–4478

Thomas C, Kovashka A (2019) Artistic object recognition by unsupervised style adaptation. In: Computer 
vision–ACCV 2018: 14th Asian conference on computer vision, Perth, Australia, December 2–6, 2018, 
Revised Selected Papers, Part III 14. Springer, pp 460–476

1 3

Page 45 of 47    64 

http://arxiv.org/abs/1505.00855
http://arxiv.org/abs/2301.05124
http://arxiv.org/abs/2302.08808
https://doi.org/10.1109/ACCESS.2020.2988856
https://doi.org/10.1109/ACCESS.2020.2988856
https://doi.org/10.1007/978-3-319-11331-9_69
https://doi.org/10.1145/3503161.3548371
https://doi.org/10.1117/12.681141


M. Vijendran et al.

Todorovic D (2009) The effect of the observer vantage point on perceived distortions in linear perspective 
images. Attent Percept Psychophys 71:183–193. https://doi.org/10.3758/APP.71.1.183

Tong Z, Wang X, Yuan S, Chen X, Wang J, Fang X (2022) Im2oil: stroke-based oil painting rendering with 
linearly controllable fineness via adaptive sampling. In: Proceedings of the 30th ACM international 
conference on multimedia, pp 1035–1046

Tseng K-W, Lee Y-C, Chen C-S (2022) Artistic style novel view synthesis based on a single image. In: Pro-
ceedings of the IEEE/cvf conference on computer vision and pattern recognition, pp 2258–2262

Ufer N, Lang S, Ommer B (2020) Object retrieval and localization in large art collections using deep multi-
style feature fusion and iterative voting. In: Computer vision–ECCV 2020 workshops: Glasgow, UK, 
August 23–28, 2020, Proceedings, Part II 16. Springer, pp 159–176

Upadhyay A, Dubey A, Kuriakose SM, Mahato D (2022) 3dstnet: neural 3d shape style transfer. In: 2022 
IEEE International conference on multimedia and expo workshops (ICMEW). IEEE, pp 1–6

Vijendran M, Li FWB, Shum HPH (2023) Tackling data bias in painting classification with style transfer. In: 
Proceedings of the 2023 international conference on computer vision theory and applications. VISAPP 
’23, pp 250–261. https://doi.org/10.5220/0011776600003417

Vulimiri PS, Deng H, Dugast F, Zhang X, To AC (2021) Integrating geometric data into topology optimiza-
tion via neural style transfer. Materials 14(16):4551

Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, Liu D, Mu Y, Tan M, Wang X, Liu W, Xiao B (2021) 
Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach 
Intell 43(10):3349–3364. https://doi.org/10.1109/TPAMI.2020.2983686

Wang X, Girdhar R, Yu SX, Misra I (2023) Cut and learn for unsupervised object detection and instance 
segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 
pp 3124–3134

Wang X, Guo P, Zhang Y (2022) Domain adaptation via bidirectional cross-attention transformer. arXiv 
preprint arXiv:2201.05887

Wan Q, Lu O (2020) Napa: neural art human pose amplifier. arXiv preprint arXiv:2012.08501
Wechsler H, Toor AS (2019) Modern art challenges face detection. Pattern Recogn Lett 126:3–10.  h t t p s : / / d o 

i . o r g / 1 0 . 1 0 1 6 / J . P A T R E C . 2 0 1 8 . 0 2 . 0 1 4       
Westlake N, Cai H, Hall P (2016) Detecting people in artwork with cnns. In: Computer vision–ECCV 2016 

workshops: Amsterdam, The Netherlands, October 8–10 and 15–16, 2016, Proceedings, Part I 14. 
Springer, pp 825–841

Wu CH, Torre F (2022) Unifying diffusion models’ latent space, with applications to cyclediffusion and guid-
ance. arXiv preprint arXiv:2210.05559

Xue A (2021) End-to-end chinese landscape painting creation using generative adversarial networks. In: 
Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 3863–3871

Yang J, Guo F, Chen S, Li J, Yang J (2022) Industrial style transfer with large-scale geometric warping and 
content preservation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp 7834–7843

Yang B, Zhang Y, Xu Y, Li Y, Zhou H, Bao H, Zhang G, Cui Z (2021) Learning object-compositional neural 
radiance field for editable scene rendering. In: Proceedings of the IEEE/CVF international conference 
on computer vision, pp 13779–13788

Yaniv J (2019) The face of art: landmark detection and geometric style in portraits. 10(1145/3306346):3322984
Yin W, Liu Z, Loy CC (2019) Instance-level facial attributes transfer with geometry-aware flow. In: Proceed-

ings of the AAAI conference on artificial intelligence, vol. 33, pp 9111–9118
Ypsilantis N-A, Garcia N, Han G, Ibrahimi S, Van Noord N, Tolias G (2021) The met dataset: instance-level 

recognition for artworks. In: Thirty-fifth conference on neural information processing systems datasets 
and benchmarks track (Round 2)

Yuan J, Chen C, Yao D, Chen G (2020) 3d printing of oil paintings based on material jetting and its reduction 
of staircase effect. Polymers 12:1–12. https://doi.org/10.3390/polym12112536

Yuan S, Dai A, Yan Z, Liu R, Chen M, Chen B, Qiu Z, He X (2023) Learning to generate poetic Chinese 
landscape painting with calligraphy. arXiv preprint arXiv:2305.04719

Zeidler D, McGinity M (2023) Bodylab: in virtuo sculpting, painting and performing of full-body avatars. 
Proc ACM Comput Graph Interact Techn 6(2):1–12

Zeng Y, Lin Z, Zhang J, Liu Q, Collomosse J, Kuen J, Patel VM (2023) Scenecomposer: any-level semantic 
image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 22468–22478

Zhang L, Agrawala M (2023) Adding conditional control to text-to-image diffusion models
Zhang X, Chen Y, Shen Z, Shen Y, Zhang H, Zhang Y (2022) Confidence-and-refinement adaptation model 

for cross-domain semantic segmentation. IEEE Trans Intell Transp Syst 23(7):9529–9542

1 3

   64  Page 46 of 47

https://doi.org/10.3758/APP.71.1.183
https://doi.org/10.5220/0011776600003417
https://doi.org/10.1109/TPAMI.2020.2983686
http://arxiv.org/abs/2201.05887
http://arxiv.org/abs/2012.08501
https://doi.org/10.1016/J.PATREC.2018.02.014
https://doi.org/10.1016/J.PATREC.2018.02.014
http://arxiv.org/abs/2210.05559
https://doi.org/10.3390/polym12112536
http://arxiv.org/abs/2305.04719


Artificial intelligence for geometry-based feature extraction, analysis and…

Zhang K, Kolkin N, Bi S, Luan F, Xu Z, Shechtman E, Snavely N (2022) Arf: artistic radiance fields. In: 
Computer vision–ECCV 2022: 17th European conference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XXXI. Springer, pp 717–733

Zhang J, Liu C, Xian K, Cao Z (2023) Large motion anime head animation using a cascade pose transform 
network. Pattern Recogn. https://doi.org/10.1016/J.PATCOG.2022.109181

Zhang Y, Zhang Z, DiVerdi S, Wang Z, Echevarria J, Fu Y (2020) Texture hallucination for large-factor paint-
ing super-resolution. In: European conference on computer vision. Springer, pp 209–225

Zhao A, Balakrishnan G, Lewis KM, Durand F, Guttag JV, Dalca AV (2020) Painting many pasts: synthesiz-
ing time lapse videos of paintings. In: Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition, pp 8435–8445

Zhao Y, Barnes C, Zhou Y, Shechtman E, Amirghodsi S, Fowlkes C (2023) Geofill: reference-based image 
inpainting with better geometric understanding. In: Proceedings of the IEEE/CVF winter conference on 
applications of computer vision (WACV), pp 1776–1786

Zhao Q, Chang Z, Wang Z (2023) Research on the factors affecting accuracy of abstract painting orientation 
detection. Multimed Tools Appl, pp 1–24

Zhao S, Chen D, Chen Y-C, Bao J, Hao S, Yuan L, Wong K-YK (2023) Uni-controlnet: all-in-one control to 
text-to-image diffusion models. arXiv preprint arXiv:2305.16322

Zheng X-Y, Pan H, Wang P-S, Tong X, Liu Y, Shum H-Y (2023) Locally attentional sdf diffusion for control-
lable 3d shape generation. arXiv preprint arXiv:2305.04461

Zheng C, Wu W, Chen C, Yang T, Zhu S, Shen J, Kehtarnavaz N, Shah M (2023) Deep learning-based human 
pose estimation: a survey. ACM Comput Surv 56(1):1–37

Zhou X, In D, Chen X, Liu X, Yang Y (2020) Spectral 3d reconstruction of impressionist oil painting based 
on macroscopic oct imaging. Optics InfoBase Conf Papers. https://doi.org/10.1364/ao.390326

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

1 3

Page 47 of 47    64 

https://doi.org/10.1016/J.PATCOG.2022.109181
http://arxiv.org/abs/2305.16322
http://arxiv.org/abs/2305.04461
https://doi.org/10.1364/ao.390326

	﻿Artificial intelligence for geometry-based feature extraction, analysis and synthesis in artistic images: a survey
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Background
	﻿1.2﻿ ﻿Geometry in the visual arts industry
	﻿1.3﻿ ﻿Paper organization
	﻿1.4﻿ ﻿Related surveys

	﻿﻿2﻿ ﻿Geometric features extraction
	﻿2.1﻿ ﻿Object-centric features
	﻿2.1.1﻿ ﻿Bounding boxes
	﻿2.1.2﻿ ﻿Patch-based region selection
	﻿2.1.3﻿ ﻿Geometric transformations for content selection


	﻿2.2﻿ ﻿Human-centric features
	﻿2.2.1﻿ ﻿Hand gestures
	﻿2.2.2﻿ ﻿Facial landmarks
	﻿2.2.3﻿ ﻿Body skeleton

	﻿2.3﻿ ﻿Segmentation masks
	﻿2.4﻿ ﻿3D features
	﻿2.4.1﻿ ﻿Implicit models
	﻿2.4.2﻿ ﻿Mesh structures
	﻿2.4.3﻿ ﻿Parametric models

	﻿2.5﻿ ﻿Effectiveness of geometry-based methods in extraction
	﻿﻿3﻿ ﻿Discriminative geometric features analysis
	﻿3.1﻿ ﻿Object detection
	﻿3.2﻿ ﻿Style classification
	﻿3.3﻿ ﻿Scene classification
	﻿3.4﻿ ﻿Human perception analysis
	﻿3.5﻿ ﻿Effectiveness of geometry-based methods in analysis

	﻿﻿4﻿ ﻿Synthesis with geometric features
	﻿4.1﻿ ﻿Image manipulation
	﻿4.1.1﻿ ﻿Style transfer
	﻿4.1.2﻿ ﻿Inpainting
	﻿4.1.3﻿ ﻿Conditional image generation


	﻿4.2﻿ ﻿Novel view synthesis
	﻿4.2.1﻿ ﻿Relighting
	﻿4.2.2﻿ ﻿Recolorization for artistic time lapse

	﻿4.3﻿ ﻿Content recovery
	﻿4.3.1﻿ ﻿Remodeling
	﻿4.3.2﻿ ﻿Painting medium surfaces
	﻿4.3.3﻿ ﻿Subsurfaces

	﻿﻿4.4﻿ ﻿Evaluation for synthesis methods
	﻿4.4.1﻿ ﻿User studies
	﻿4.4.2﻿ ﻿Quality measures
	﻿4.4.3﻿ ﻿Performance measures
	﻿4.4.4﻿ ﻿Effectiveness of geometry-based methods in synthesis

	﻿5﻿ ﻿Limitations
	﻿6﻿ ﻿Future directions
	﻿6.1﻿ ﻿Automatic data annotations
	﻿6.2﻿ ﻿Attention-based cross-correspondences
	﻿6.3﻿ ﻿Controlled guidance
	﻿6.4﻿ ﻿Geometric-aware models with object embeddings

	﻿7﻿ ﻿Conclusion
	﻿References


