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Abstract. We study Steiner Forest on H-subgraph-free graphs, that
is, graphs that do not contain some fixed graph H as a (not necessarily
induced) subgraph. We are motivated by a recent framework that com-
pletely characterizes the complexity of many problems on H-subgraph-free
graphs. However, in contrast to, e.g. the related Steiner Tree problem,
Steiner Forest falls outside this framework. Hence, the complexity of
Steiner Forest on H-subgraph-free graphs remained tantalizingly open.
We make significant progress on this open problem: our main results are
four novel polynomial-time algorithms for different excluded graphs H
that are central to further understand its complexity. Along the way,
we study the complexity of Steiner Forest for graphs with a small
c-deletion set, that is, a small set X of vertices such that each component
of G−X has size at most c. Using this parameter, we give two algorithms
that we later employ as subroutines. First, we present a significantly
faster parameterized algorithm for Steiner Forest parameterized by
|X| when c = 1 (i.e. the vertex cover number), which by a recent result
is best possible under ETH [Feldmann and Lampis, arXiv 2024]. Second,
we prove that Steiner Forest is polynomial-time solvable for graphs
with a 2-deletion set of size at most 2. The latter result is tight, as the
problem is NP-complete for graphs with a 3-deletion set of size 2.

Keywords: Steiner forest · forbidden subgraph · complexity dichotomy ·
vertex cover number · deletion set

1 Introduction

We consider the complexity of a classical graph problem, Steiner Forest,
restricted to graphs that do not contain some fixed graph H as a subgraph. Such
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graphs are said to be H-subgraph-free, that is, they cannot be modified to H
by a sequence of edge deletions and vertex deletions. A graph G is H-free if G
cannot be modified into H by a sequence of vertex deletions only. Even though
H-free graphs are more widely studied in the literature, H-subgraph-free graphs
are also highly interesting, as was recently shown through the introduction of a
large, general framework for the subgraph relation [15,16,17,19].

For a set of graphs H, a graph G is H-subgraph-free if G is H-subgraph-free for
every H ∈ H. In order to unify known classifications for Independent Set [1],
Dominating Set [1], List Colouring [14], Long Path [1] and Max-Cut [18]
on H-subgraph-free graphs (for finite H), a systematic approach was developed
in [15]. We first explain this framework.

For k ≥ 1, the k-subdivision of an edge e = uv of a graph replaces e by a path
of length k + 1 with endpoints u and v (and k new vertices). The k-subdivision
of a graph G is the graph obtained from G after k-subdividing each edge. For a
graph class G and an integer k, let Gk consist of the k-subdivisions of the graphs
in G. A graph problem Π is NP-complete under edge subdivision of subcubic
graphs if for every integer j ≥ 1, there is an integer ℓ ≥ j such that: if Π is
NP-complete for the class G of subcubic graphs (graphs with maximum degree at
most 3), then Π is NP-complete for Gℓ. Now, Π is a C123-problem if:

C1. Π is polynomial-time solvable for every graph class of bounded treewidth,
C2. Π is NP-complete for the class of subcubic graphs, and
C3. Π is NP-complete under edge subdivision of subcubic graphs.

A subdivided claw is a graph obtained from a claw (4-vertex star) by subdividing
each of its three edges zero or more times. The disjoint union of two vertex-
disjoint graphs G1 and G2 is the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). The
set S consists of all graphs that are disjoint unions of subdivided claws and paths.
We can now state the complexity classification of [15].

Theorem 1 ([15]). Let Π be a C123-problem. For a finite set H, the problem Π
on H-subgraph-free graphs is polynomial-time solvable if H contains a graph from
S (or equivalently, if the class of H-subgraph-free graphs has bounded treewidth)
and NP-complete otherwise.

See the (long) table of problems in [15], for examples of C123-problems other
than the ones above and for examples of problems that do not satisfy C2 or C3.
There are also problems that only satisfy C2 and C3 but not C1. For example,
Subgraph Isomorphism is NP-complete even for input pairs of path-width 1.
A few years ago, Bodlaender et al. [6] settled the complexity of Subgraph
Isomorphism for H-subgraph-free graphs apart from essentially two open cases.
(H = P5 and H = 2P5). Hence, the following question is challenging:

How do C23-problems, i.e., problems that satisfy C2 and C3 but not C1, behave
for H-subgraph-free graphs? Can we still classify their computational complexity?

We consider this question for Steiner Forest. A Steiner forest of an undirected
graph G, with a set T = {(s1, t1), . . . , (sp, tp)} of specified pairs of vertices called
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terminals, is a subgraph F of G, such that si and ti, for every i ∈ {1, . . . , p},
belong to the same connected component of F . This leads to the problem:

Steiner Forest
Instance: A graph G, a set T of terminal pairs and an integer k.
Question: Does (G,T ) have a Steiner forest F with |E(F )| ≤ k?

Steiner Forest generalizes the C123-problem Steiner Tree [15], which is to
decide if for a given integer k, a graph G with some specified set T of vertices has
a tree S with |E(S)| ≤ k containing every vertex of T : take all pairs of vertices
of T as terminal pairs to obtain an equivalent instance of Steiner Forest.

For a constant c, a c-deletion set of a graph G = (V,E) is a set T ⊆ V such
that each connected component of G− T has size at most c. The c-deletion set
number (or (c+ 1)-component order connectivity) of G is the size of a smallest
c-deletion set (see also [3,7,8,9,11,12]). The following theorem is a crucial result
of Bateni, Hajiaghayi and Marx [4] and plays an important role in our paper:

Theorem 2 ([4]). Steiner Forest is polynomial-time solvable for graphs of
treewidth at most 2, but NP-complete for graphs of treewidth 3, tree-depth 4, and
3-deletion set number 2.

This shows that Steiner Forest does not satisfy C1, unlike Steiner Tree [2].
As Steiner Tree satisfies C2 and C3 [15], Steiner Forest satisfies C2 and
C3 and is a C23-problem, unlike Steiner Tree which is C123 [15]. This leaves
the complexity of Steiner Forest on H-subgraph-free graphs open.

Our Results. Let Ka,b be the complete bipartite graph with a vertices on one
side and b on the other. Let Sa,b,c be the graph obtained from the claw (K1,3)
by subdividing its three edges a− 1, b− 1 and c− 1 times, respectively. Let Pr

be the path on r vertices. For two graphs H1 and H2, we write H1 ⊆ H2 if H1 is
a subgraph of H2, i.e., V (H1) ⊆ V (H2) and E(H1) ⊆ E(H2). We write H1 +H2

for the disjoint union of H1 and H2 and sH1 to denote the disjoint union of s
copies of H1. Our results on Steiner Forest for H-subgraph-free graphs are:

Theorem 3. For a graph H, Steiner Forest on H-subgraph-free graphs is

– polynomial-time solvable if H ⊆ 2K1,3 + P3 + sP2, 2P4 + P3 + sP2, P9 + sP2

or S1,1,4 + sP2 for each s ≥ 0, and

– NP-complete if H ⊇ 3K1,3, 2K1,3 + P4,K1,3 + 2P4, 3P4 or if H /∈ S.

The gap between the easy and hard cases could be significantly reduced if we
could resolve an intriguing open problem (see Section 5). As graphs of tree-depth 3
are P8-subgraph-free, Theorems 2 and 3 yield the following dichotomy:

Corollary 1. For a constant t, Steiner Forest on graphs of tree-depth t is
polynomial-time solvable if t ≤ 3 and NP-complete if t ≥ 4.
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The NP-hardness part of Theorem 3 follows from the gadget from Theorem 2 and
NP-completeness of Steiner Forest when H /∈ S [5], as shown in Section 2. For
the polynomial part, proven in Section 4, we first make some useful observations
in Section 3.

Gima et al. [13] showed that Steiner Forest has an nO(k)-time algorithm in

the weighted case and an (2k22kk2
k

)O(k)nO(1)-time algorithm in the unweighted
case, where k is the vertex cover number. We need their result as a subroutine
for several of our algorithms, but we were able to significantly improve on it, as
we show in the following result (proof omitted).

Theorem 4. Steiner Forest has a 2O(k log k)nO(1) time algorithm, where k is
the vertex cover number of the input graph, even in the weighted case.

Afterwards, Feldmann and Lampis [10] showed our 2O(k log k)nO(1) algorithm is best
possible under the Exponential Time Hypothesis. They also gave an alternative
algorithm with the same runtime that relies on an algorithm of Bateni et al. [4].
In contrast, our algorithm is self-contained.

Another important subroutine for some of our algorithms is the polynomial-
part of the following dichotomy. We prove this part in Lemma 3 in Section 3,
while the NP-completeness part is taken from Theorem 2, which is due to [4].

Theorem 5. For a constant c, Steiner Forest on graphs with a c-deletion set
of size at most 2 is polynomial-time solvable if c ≤ 2 and NP-complete if c ≥ 3.

2 NP-Completeness Results

Bateni, Hajiaghayi and Marx [4] explicitly proved that Steiner Forest is NP-
complete for graphs of treewidth 3, see also Theorem 2. The additional properties
in the lemma below can be easily verified from inspecting their gadget, which is
displayed in Figure 1.

Lemma 1. Steiner Forest is NP-complete for (3K1,3, 2K1,3 + P4,K1,3 +
2P4, 3P4)-subgraph-free graphs of tree-depth 4 with 3-deletion set number 2.

We can now show the NP-completeness part of Theorem 3. It is known that
Steiner Tree, and thus Steiner Forest, is NP-complete for H-subgraph-
free graphs if H /∈ S [5]. The NP-completeness part of Theorem 3 now follows
immediately from this observation and Lemma 1.

3 Polynomial Subroutines

A minimum Steiner forest for an instance (G,T ) is one with the smallest number
of edges. Denote the number of edges of such a forest by sf(G,T ). We assume
that for any terminal pair (s, t) ∈ T , s and t are distinct (as any pair where
s = t can be removed without affecting the feasibility or the size of a minimum
solution). A vertex v is a terminal vertex if there is a pair (s, t) ∈ T with v = s
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Fig. 1. The graph G (gadget from [4]) used in the proof of Lemma 1. On the left
there are vertices x1 . . . xn representing the boolean variables. On the right, each P3

represents a clause of the given R-formula ϕ.

or v = t. A cut vertex of a connected graph is a vertex whose removal yields a
graph with at least two connected components. A graph with no cut vertices is
2-connected. A 2-connected component is a maximal subgraph that is 2-connected.
A graph class is hereditary if it is closed under deleting vertices.

Lemma 2. For every hereditary graph class G, if Steiner Forest is polynomial-
time solvable for the subclass of 2-connected graphs of G, then it is polynomial-time
solvable for G.

Proof (Sketch). Assume G is connected. If G is not 2-connected, then let G1

be a 2-connected component of G with only one cut-vertex v of G. Let G2 =
G−(V (G1)\{v}). For i = 1, 2, let Ti be the set of all terminal pairs inGi with both
terminals in V (Gi), to which we add the pair (sj , v) for each (sj , tj) ∈ T such that
sj ∈ V (Gi) and tj ̸∈ V (Gi). Similarly, if (sj , tj) ∈ T such that sj /∈ V (Gi) and
tj ∈ V (Gi), then we add (v, tj) to Ti. Now apply the algorithm for 2-connected
graphs to (G1, T1), and recurse on (G2, T2). ⊓⊔

The contraction of an edge e = (u, v) in a graph G replaces u and v by a new
vertex w that is adjacent to all former neighbours of u and v in G. Our next
result shows the polynomial part of Theorem 5.

Lemma 3. Steiner Forest is polynomial-time solvable for graphs with a 2-
deletion set of size at most 2.

Proof. Let G be an n-vertex graph that, together with a set T of terminal pairs,
is an instance of Steiner Forest. If G has a 2-deletion set of size 1, then
this vertex forms a cut vertex of G. Hence, we can apply Lemma 2 to reduce
to the case of graphs of size 3, which is trivial. So, we assume that G has a
2-deletion set C of size 2, say C = {u, v}. By Lemma 2 we may assume that G is
2-connected.

First suppose u and v are adjacent. If the edge uv is part of the solution, we
may contract uv to form a 2-deletion set of size 1. We remember the size of the
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Steiner Forest found. If uv is not part of the solution, we reduce to the case when
u and v are not adjacent. From now on, we assume u and v are non-adjacent.

We first search for a minimum solution for (G,T ) over all solutions with one
connected component. We compute a minimum solution over all solutions that
contain u but not v, and a minimum solution over all solutions that contain v
but not u. This takes polynomial time, as we reduce to the case of graphs of
size 3 by applying Lemma 2. We now compute a minimum solution for (G,T )
over all solutions with one connected component that contain both u and v. As
G is 2-connected, there exists a path from u to v in G. As C is a 2-deletion set,
every path from u to v has at most two inner vertices. We check each of the
O(n2) paths from u to v (with at most two inner vertices). For each choice of P ,
we contract the path P to a single vertex and apply Lemma 2 to reduce to the
case of graphs of of size 3 by applying Lemma 2.

u v

sitja b

u v

sitja b

Fig. 2. Left: a solution containing two non-terminal vertices a and b. Right: the
conversion to an equivalent solution containing b as the only non-terminal vertex.

It remains to find a minimum solution for (G,T ) over all solutions with two
connected components, one containing u and the other one v, and to check this
minimum solution with the minimum solutions of the other types found above.

If some connected component D of G \ {u, v} does not contain any terminal
vertex, we can safely delete D. Hence, we assume that every connected component
of G \ {u, v} contains at least one terminal vertex. We now show that we can
restrict ourselves to solutions that contain at most one non-terminal vertex.

Suppose that there exists an optimal solution F with two non-terminal vertices
a and b. We may assume without loss of generality that v is adjacent to b, and
that b is adjacent to terminal si. Hence, F contains the edges vb and bsi. As G
is 2-connected, the edge usi must exist in G as well. Consider another connected
component of G \ {u, v}, say atj , where tj is a terminal. First assume that
au ∈ E(G). As G is 2-connected, we also have vtj ∈ E(G). As a ∈ V (F ), the
edges ua and atj must belong to E(F ). We now remove the edges ua and atj
from F and add the edges usi and vtj to F . This yields a minimum Steiner Forest
F ′ with fewer non-terminal vertices. If au /∈ E(G), we have that av ∈ E(G). In
this case we can make a similar replacement and come to the same conclusion.

Due to the above, we may restrict ourselves to finding minimum solutions for
(G,T ) with two connected components that contain at most one non-terminal
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vertex. Hence, we branch by considering all O(n) options for the set of non-
terminal vertices used in a minimum solution. We consider each of the O(n)
branches separately and as follows.

First, we remove all non-terminal vertices that we did not guess to be in the
solution. For the guessed non-terminal vertex we do as follows. By construction,
such a guessed non-terminal vertex z is adjacent to u or v, and we contract the
edge zu or zv, respectively. Afterwards, we apply Lemma 2 again such that we
may assume that the resulting instance, which we denote by (G,T ) again, is
2-connected. Now every vertex of V (G) \ {u, v} is a terminal vertex. Hence, every
vertex of V (G) \ {u, v} will be in the solution we are trying to construct.

For every connected component D of G− {u, v} we do as follows. As C is a
2-deletion set, D consists of at most two vertices. We only consider D if D has
exactly two vertices, x and y. If (x, y) ∈ T and neither x nor y appears in any
other terminal pair, then we add the edge xy to the solution; remove the vertices
x and y from G; and also remove the pair (x, y) from T . This is indeed optimal,
as edges from x and y to u or v would not be involved in connecting any other
terminal pairs. So we may assume that (x, y) ̸∈ T , or x or y appears in some
other pair than (x, y) in T .

We now apply the following operation on the component D, depending on its
adjacency to u and v. First suppose x and y are both adjacent to both u and v.
Then we may remove the edge xy for the following reason. Recall that x and y
are terminal vertices such that (x, y) ̸∈ T , or x or y appears in some other pair
than (x, y) in T . Hence, we need to connect x to either u or v, and we also need
to connect y to either u or v. For doing this, we do not need to use the edge xy.
Now suppose one of x, y, say x, is adjacent to u and v, whereas the other one,
y, is adjacent to only one of u and v, say to u. For the same reasons as before,
we need to connect x to either u or v, and we also need to connect y to either u
or v. If we use xu, then we must also use yu, and in that case we can replace xu
by xy. Hence, we may remove xu from G.

So, afterwards, we reduced the instance in polynomial time to a new instance,
which we will also denote by (G,T ), with the following properties. Every connected
component of G− {u, v} has at most two vertices. By 2-connectivity, for every
connected component that contains exactly one vertex z we have the edges uz
and vz. Moreover, for every connected component that contains exactly two
vertices x and y, we have the edges ux and vy but not uy and not vx.

As every vertex in V (G) \ {u, v} is a terminal vertex and we search for a
minimum solution for (G,T ) with two connected components, we need one edge
in the solution for each 1-vertex connected component of G − {u, v} and two
edges for each 2-vertex connected component. First, suppose one of u, v, say u,
is not a terminal vertex. Then G− {v} is a minimum solution, so we can stop
(note that we already found this solution before).

Now suppose that both u and v are terminal vertices. We discard the branch
if u and v represent terminals of the same pair (as then the solution must be
connected). Else we do as follows. If u represents si, then we connect the terminal
vertex that represents ti to u. This can only be done in one way: if the terminal
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vertex representing ti is not adjacent to u, it contains a unique neighbour adjacent
to u. Afterwards, we remove the terminal pairs that we connected in this way
from G. We repeat these steps for v. If it was not possible to connect some
terminal pair, then we discard the branch. Otherwise, we apply Lemma 2 again,
such that the resulting instance, which we denote by (G,T ) again, is 2-connected.
The other properties are maintained, and neither u nor v is a terminal vertex.
Hence, we can take as solution for (G,T ) either G − {u} or G − {v}. We now
construct a solution for the original graph and terminal set, and out of all the
solutions found take a minimum one. ⊓⊔

For some of our polynomial-time results we need to extend Lemma 3 as follows
(proof omitted).

Lemma 4. Steiner Forest is polynomial-time solvable for graphs G with a
set X ⊆ E(G) of bounded size such that G −X has a 2-deletion set C of size
at most 2 and each end-point of every edge of X is either an isolated vertex of
G−X or a vertex of C.

4 Polynomial Cases

To prove the polynomial part of Theorem 3, we start with a general lemma. To
prove it we use Theorem 4; we omit the details.

Lemma 5. For a graph H, if Steiner Forest can be solved in polynomial time
on the class of H-subgraph-free graphs, then Steiner Forest can be solved in
polynomial time on the class of (H + P2)-subgraph-free graphs.

We now consider specific graphs H. The first one is the case H = 2K1,3. We omit
the proof.

Lemma 6. Steiner Forest is polynomial-time solvable for 2K1,3-subgraph-free
graphs.

By using Lemma 4 (which generalized Lemma 3) we can extend Lemma 6 (again
we omit the proof details).

Lemma 7. Steiner Forest is polynomial-time solvable for (2K1,3 + P3)-
subgraph-free graphs.

We now consider the case H = S1,1,4. We omit the proof.

Lemma 8. Steiner Forest is polynomial-time solvable for S1,1,4-subgraph-free
graphs.

We use Lemma 8 to prove the case H = P9. We also need Lemma 3 again.

Lemma 9. Steiner Forest is polynomial-time solvable for P9-subgraph-free
graphs.
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Proof. Let G = (V,E) be a P9-subgraph-free graph that is part of an instance
of Steiner Forest. By Lemma 2 we may assume that G is 2-connected. Let
P = u1 · · ·ur, for some r ≥ 2, be a longest (not necessarily induced) path in G. As
G is P9-subgraph-free, we have that r ≤ 8. If r ≤ 5, then G is P6-subgraph-free,
and thus S1,1,4-subgraph-free, and we can apply Lemma 8. Hence, r ∈ {6, 7, 8}.

Case 1. r = 6.
Then G is P7-subgraph-free. Suppose G− V (P ) has a connected component D
with more than one vertex. As G is P7-subgraph-free and |V (D)| ≥ 2, no vertex
of D is adjacent to u1, u2, u5 or u6. As G is connected, at least one of u3 or
u4, say u3, has a neighbour v in D. Suppose w ∈ V (D) is adjacent to u4 (where
w = v is possible). Let vQw be a path from v to w in D; note that Q might be
empty. Now the path u1u2u3vQwu4u5u6 has at least seven vertices, contradicting
that G is P7-subgraph-free. Hence, no vertex of D is adjacent to u4. This means
that u3 is a cut-vertex of G, contradicting the 2-connectivity. We conclude that
every connected component of G− V (P ) consists of one vertex. In other words,
{u1, . . . , u6} is a vertex cover of G, and we can apply Theorem 4.

Case 2. r = 7.
Then G is P8-subgraph-free. Suppose G− V (P ) has a connected component D
with more than one vertex. As G is P8-subgraph-free and |V (D)| ≥ 2, no vertex
of D is adjacent to u1, u2, u6 or u7. As G is connected, at least one of u3, u4 or
u5 has a neighbour v in D.

First assume that u3 or u5, say u3, has a neighbour v in D. As |V (D)| ≥ 2, v
has a neighbour w in D. If w has a neighbour x ≠ v in D, then xwvu3u4u5u6u7

is a path on eight vertices, contradicting that G is P8-subgraph-free. Hence, v
is the only neighbour of w in D. As G is 2-connected, w has a neighbour on P .
Recall that no vertex of D is not adjacent to u1, u2, u6 or u7. If w is adjacent
to u4, then u1u2u3vwu4u5u6 is a path on eight vertices. If w is adjacent to u5,
then u1u2u3vwu5u6u7 is a path on eight vertices. Hence, w must be adjacent
to u3 (and u3 is the only neighbour of w on P ). We now find that w is the
only neighbour of v in D, as otherwise, if v has a neighbour w′ ̸= w on D, then
w′vwu3u4u5u6u7 is a path on eight vertices. In other words, V (D) = {v, w}. By
the same arguments, but now applied on v, we find that u3 is the only neighbour
of v on P . Hence, u3 is a cut-vertex of G, contradicting the 2-connectivity of G.

From the above we conclude that no vertex of D is adjacent to u3. By the
same reason, no vertex of D is adjacent to u5. We find that u4 disconnects D
from the rest of G, contradicting the 2-connectivity of G. We conclude that
every connected component of G− V (P ) consists of one vertex. In other words,
{u1, . . . , u7} is a vertex cover of G, and we can apply Theorem 4.

Case 3. r = 8.
Recall that G is P9-subgraph-free, so this is the last case to consider. If every
connected component of G− V (P ) consists of one vertex, then {u1, . . . , u8} is a
vertex cover of G, and we can apply Theorem 4. Now suppose that G−V (P ) has
a connected component D with more than one vertex. As G is P9-subgraph-free
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and |V (D)| ≥ 2, no vertex of D is not adjacent to u1, u2, u7 or u8. As G is
connected, at least one of u3, u4, u5 or u6 has a neighbour in D.

First, suppose that neither u3 nor u6 has a neighbour in D. Then u4 or u5,
say u4, has a neighbour v in D. As G is 2-connected, there exists a path vQu5

from v to u5 that does not contain u4. As no vertex from {u1, u2, u3, u6, u7, u8}
has a neighbour in D, the vertices of Q belong to D. Now, u1u2u3u4vQu5u6u7u8

is a path on nine vertices, contradicting that G is P9-subgraph-free.
Hence, at least one of u3 or u6, say u3, has a neighbour v in D. As |V (D)| ≥ 2,

we find that v has a neighbour w in D. If w has a neighbour x ̸= v in D, then
xwvu3u4u5u6u7u8 is a path on nine vertices, contradicting that G is P9-subgraph-
free. Hence, v is the only neighbour of w in D. As G is 2-connected, this means
that w has a neighbour on P . Recall that no vertex of D is adjacent to u1,
u2, u7 or u8. If w is adjacent to u4, then u1u2u3vwu4u5u6u7 is a path on nine
vertices. If w is adjacent to u5, then u1u2u3vwu5u6u7u8 is a path on nine vertices.
Hence, w must be adjacent to either or both u3 and u6 (and w has no other
neighbours on P ). We now find that w is the only neighbour of v in D for the
following reason. Suppose v has a neighbour w′ ̸= w on D. If w is adjacent to u3,
then w′vwu3u4u5u6u7u8 is a path on nine vertices. If w is adjacent to u6, then
w′vwu6u5u4u3u2u1 is a path on nine vertices. In other words, V (D) = {v, w}.
By the same arguments, but now applied on v, we find that apart from u3, it
holds that v may have only u6 as a neighbour of P .

We have proven for any path Q = q1 . . . q8 on eight vertices that every
connected component of size at least 2 inG−Q has size exactly 2, and moreover, q3
and q6 are the only vertices of Q with neighbours in such a connected component.
We may assume without loss of generality that v is adjacent to u3 and w is
adjacent to u6, as otherwise one of u3, u6, v, w is a cut-vertex of G, contradicting
the 2-connectivity of G. By replacing P with P ′ = u1u2u3vwu6u7u8, we find
that u4 and u5 have no neighbours outside {u3, u6}. By replacing P with P ′ =
u5u4u3vwu6u7u8, we find that u2 has no neighbours outside {u3, u6} (just like
u1). By symmetry, u7 has no neighbours outside {u3, u6} (just like u8). Hence,
every connected component of G − {u3, u6} has at most two vertices. Thus,
{u3, u6} is a 2-deletion set of size at most 2, and we can apply Lemma 3. ⊓⊔

We use Lemma 9 to show the case H = 2P4 + P3 (proof details are omitted).

Lemma 10. Steiner Forest is polynomial-time solvable for (2P4+P3)-subgraph-
free graphs.

We now prove the polynomial part of Theorem 3 by combining Lemma 5 with
each of the other lemmas in this section.

5 Conclusions

Our aim was to increase our understanding of the complexity of Steiner Forest
and more generally, C23-problems, that is, graph problems that are not only
NP-complete on subcubic graphs (C2) and under edge division of subcubic graphs
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(C3), but also NP-complete for graphs of bounded treewidth (not C1). Therefore,
we studied Steiner Forest for H-subgraph-free graphs. We significantly nar-
rowed the number of open cases, thereby proving a number of boundary cases
(see Theorem 3). So far, we could not generalize Lemma 5 from P2 to P3:

Open Problem 1 Let H be a graph. Is Steiner Forest polynomial-time
solvable on (H + P3)-subgraph-free graphs if it is so for H-subgraph-free graphs?

An affirmative answer to this question would reduce the number of open cases in
Theorem 3 to a finite number. However, this requires a polynomial-time algorithm
for Steiner Forest on graphs with a 2-deletion set of size d for any constant d.

The question of whether such an algorithm exists turned out to be challenging.
One important attempt that we made to solve this question was to reduce
instances to highly structured instances. In particular, we were able to reduce
it to the case where the vertices of the deletion set itself belong to different
connected components of a minimum Steiner forest, and all vertices not in the
deletion set are terminals. However, even solving such highly structured instances
seems difficult. We managed to reduce it to a Constraint Satisfaction Problem
(CSP). Interestingly, this CSP can be solved in polynomial time for 2-deletion
sets of size 2 (cf. Lemma 3). The same CSP is NP-complete when we consider
deletion sets of size 3. Unfortunately, our reduction is only one way, so this does
not directly imply NP-completeness of Steiner Forest in this case. Still, this
hints that the problem might be NP-complete for H = sP3 for some s ≥ 4.

Finally, the C123 problem Steiner Tree is also classified with respect to
the induced subgraph relation: it is polynomial-time solvable for H-free graphs if
H ⊆i sP1 +P4 for some s ≥ 0 and NP-complete otherwise [5]. The hardness part
of this result immediately carries over to Steiner Forest. However, we do not
know the complexity of Steiner Forest on (sP1 + P4)-free graphs.
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helpful comments and suggestions.
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