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Abstract

For a fixed set H of graphs, a graph G is H-subgraph-free if G does not contain any H ∈ H as a (not
necessarily induced) subgraph. A recent framework gives a complete classification on H-subgraph-free
graphs (for finite sets H) for problems that are solvable in polynomial time on graph classes of
bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under
edge subdivision. While a lot of problems satisfy these conditions, there are also many problems
that do not satisfy all three conditions and for which the complexity in H-subgraph-free graphs is
unknown. We study problems for which only the first two conditions of the framework hold (they are
solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs,
but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the
classification of the complexity of four such problems: Hamilton Cycle, k-Induced Disjoint
Paths, C5-Colouring and Star 3-Colouring. Although we do not complete the classifications,
we show that the boundary between polynomial time and NP-complete differs among our problems
and also from problems that do satisfy all three conditions of the framework, in particular when we
forbid certain subdivisions of the “H”-graph (the graph that looks like the letter “H”). Hence, we
exhibit a rich complexity landscape among problems for H-subgraph-free graph classes.
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1 Introduction

Graph containment relations, such as the (topological) minor and induced subgraph relations,
have been extensively studied both from a graph-structural and algorithmic point of view. In
this paper, we focus on the subgraph relation. If a graph H can be obtained from a graph G

by a sequence of vertex deletions and edge deletions, then G contains H as a subgraph;
otherwise, G is H-subgraph-free. For a set of graphs H, a graph G is H-subgraph-free if G

is H-subgraph-free for every H ∈ H; if H = {H1, . . . , Hp}, then we also write that G is
(H1, . . . , Hp)-subgraph-free. Graph classes closed under deletion of edge and vertices are
called monotone [2, 8], and every monotone graph class G can be characterized by a unique
(and possibly infinite) set of forbidden induced subgraphs HG . We determine the complexity
of two connectivity problems Hamilton Cycle and k-Induced Disjoint Paths, and two
colouring problems C5-Colouring and Star 3-Colouring on H-subgraph-free graphs for
various families H. We focus on families H consisting of certain subdivided “H”-graphs Hi,
where H1 looks like the letter “H” (see Fig. 1 for the definition of the graphs Hi). At first
sight, these problems appear to have not much in common. Moreover, the graphs Hi might
also seem arbitrary. However, these problems turn out to be well suited for a combined study,
as they fit in a more general framework, in which the graphs Hi play a crucial role.

Context

If a graph problem is computationally hard, it is natural to restrict the input to some special
graph class. Ideally we would like to know exactly which properties P such a graph class G
must have such that any hard graph problem that satisfies some conditions C becomes easy
on G. The distinction between “easy” and “hard” means, in this paper, P versus NP-complete,
but could also mean P versus ΠP

2k-complete [13], or almost-linear versus at-least-quadratic [20].
We first discuss some natural conditions C.

A graph is subcubic if every vertex has degree at most 3, or equivalently if is K1,4-subgraph-
free, where K1,4 denotes the 5-vertex star. For p ≥ 1, the p-subdivision of an edge e = uv of
a graph G replaces e by a path of p + 1 edges with endpoints u and v. The p-subdivision of a
graph G is the graph obtained from G after p-subdividing each edge; see also Fig. 1. For
a graph class G and an integer p, we let Gp be the class consisting of the p-subdivisions of
the graphs in G. A graph problem Π is hard under edge subdivision of subcubic graphs if for
every j ≥ 1 there is an ℓ ≥ j such that: if Π is hard for the class G of subcubic graphs, then
Π is hard for Gℓ. We can now say that a graph problem Π has property:

C1 if Π is easy for every graph class of bounded tree-width;
C2 if Π is hard for subcubic graphs (or equivalently, K1,4-subgraph-free graphs);
C3 if Π is hard under edge subdivision of subcubic graphs;
C4 if Π is hard for planar graphs;
C5 if Π is hard for planar subcubic graphs.

We say that Π is a C123-problem if it satisfies C1, C2 and C3, while for example Π is a
C1̸3-problem if it satisfies C1 but not C3, and so on.

Classical results of Robertson and Seymour [29] yield the following two meta-classifications.
For all sets H, a C14-problem Π is easy on H-minor-free graphs if H contains a planar graph,
or else it is hard. For all sets H, a C15-problem Π is easy on H-topological-minor-free graphs
if H contains a planar subcubic graph, or else it is hard. No meta-classification for the
induced subgraph relation exists (apart from a limited one [20] that is a direct consequence
of the treewidth dichotomy [26]). However, for the subgraph relation, known results on
Independent Set [3], Dominating Set [3], Long Path [3], Max-Cut [22] and List
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Figure 1 [7] Left: A graph in S: the graph S3,3,3 + P2 + P3 + P4, where S3,3,3 is the 2-subdivision
of the claw K1,3. Right: the “H”-graph H1 and the graph H3; for i ≥ 2, the graph Hi (i ≥ 2) is
obtained from H1 by (i − 1)-subdividing the edge that joins the middle vertices of the two P3s.

Colouring [17] for monotone graph classes that are finitely defined (so, where the associated
set of forbidden subgraphs H is finite) were recently unified and extended in [20]. This led
to a new meta-classification, where the set S consists of all graphs, in which every connected
component is either a path or a subcubic tree with exactly one vertex of degree 3 (see Fig. 1).

▶ Theorem 1 ([20]). For any finite set of graphs H, a C123-problem Π is easy on H-
subgraph-free graphs if H contains a graph from S, or else it is hard.

The easy part of Theorem 1 holds because a class of H-subgraph-free graphs satisfies C1 if
and only if H contains a graph from S [28]. The hard part follows from combining C2 and
C3, as discussed below. In [20], 20 C123-problems were identified on top of the five above.

Our Focus

Many graph problems are not C123. See [6] and [7] for partial complexity classifications
of the C̸123-problems Subgraph Isomorphism and Steiner Forest, respectively, for
H-subgraph-free graphs and [21] for partial complexity classifications of the C1̸23-problems
(Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring (see
also [18]) and Matching Cut for H-subgraph-free graphs (note that if a problem does
not satisfy C2, then C3 is implied). Here, we consider the question: Can we classify the
complexity of C12̸3-problems on monotone graph classes?

Why the Graphs Hi

All C1-problems are easy on H-subgraph-free graphs if H has a graph from S [28]. The
infinite set M = {C3, C4, . . . , K1,4,H1,H2, . . .} of minimal graphs not in S is a maximal
antichain in the poset of connected graphs under the subgraph relation. Conditions C2 and
C3 ensure that for every finite set M′, C123-problems are hard on M′-subgraph-free graphs
if M′ ⊆ M. If C3 is not satisfied, this is no longer guaranteed. Hence, a natural starting
point to answer our research question is to determine for which finite subsets M′ ⊆ M,
C12-problems are still easy on M′-subgraph-free graphs. So consider a C12-problem Π
that is not C3. Let M′ be a finite subset of M. If M′ = {K1,4}, then Π is hard for
M′-subgraph-free graphs due to C2. Hence, M′ must contain at least one Cs or Hi. The
girth of a graph (that is not a forest) is the length of a shortest cycle in it. We say that Π
has property:

C2’ if for all g ≥ 3, Π is hard for subcubic graphs of girth at least g.

A graph is subcubic and of girth g ≥ 4 if and only if it is (K1,4, C3, . . . , Cg−1)-subgraph-
free. So if Π is not only C12, but even a C12’-problem, then Π is hard on M′-subgraph-free
graphs unless M′ contains some Hi. This makes studying the graphs Hi even more pressing.

ISAAC 2024
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Our Testbed Problems

We take, as mentioned, the following four testbed problems:
(i) Hamilton Cycle, which is to decide if a graph G has a Hamiltonian cycle, i.e., a

cycle through all vertices of G. This problem satisfies C1 [4], and it is NP-complete
even for bipartite subcubic graphs of girth g, for every g ≥ 3 [2]. Hence, it is even a
C12’-problem.

(ii) k-Induced Disjoint Paths, which is to decide, given a graph G and pairwise disjoint
vertex pairs (s1, t1), (s2, t2), . . . (sk, tk) for some fixed k ≥ 2, if G has k mutually induced
si-ti-paths P i, i.e., P 1, . . . , P k are pairwise vertex-disjoint and there are no edges
between vertices from different P i and P j . For every k ≥ 2, this problem satisfies C1
due to Courcelle’s Theorem [10] and also satisfies C2 [24]. Hence, it is a C12-problem
for all k ≥ 2.

(iii) C5-Colouring, which is to decide if a graph G has a homomorphism (C5-colouring)
to the 5-cycle C5 , i.e., a mapping f : V (G) → V (C5) such that for every uv ∈ E(G), it
holds that f(u)f(v) ∈ E(C5). The problem satisfies C1 [12] and C2 [15]. Hence, it is a
C12-problem.

(iv) Star 3-Colouring, which is to decide if a graph G has a star 3-colouring, i.e.,
a mapping f : V (G) → {1, 2, 3} such that for every i, the set Ui of vertices of G

mapped to i is independent (so, f is a 3-colouring), and moreover, U1 ∪ U2, U1 ∪ U3,
U2 ∪ U3 all induce a disjoint union of stars. The problem satisfies C1 due to Courcelle’s
Theorem [10], and it is NP-complete for bipartite planar subcubic graphs of girth at
least g, for every g ≥ 3 [31]. Hence, it is even a C12’-problem.

We do not know if k-Induced Disjoint Paths and C5-Colouring are C12’, even though
C5-Colouring is NP-complete for graphs of maximum degree 6 · 513 and girth at least g,
for all g ≥ 3 (see Section 2.1).

All four problems violate C3. For p ≥ 3, C5-Colouring and Star 3-Colouring
become true (all yes-instances) under p-subdivision, while Hamilton Cycle becomes false
(all no-instances, unless we started with a cycle), and k-Induced Disjoint Paths reduces
to the polynomial-time solvable problem k-Disjoint Paths [30, 33], which only requires
the paths in a solution to be pairwise vertex-disjoint. See Section 3. We also note the
following. First, when k is part of the input, Disjoint Paths and Induced Disjoint
Paths are C123-problems [20]. Second, instead of C5-Colouring we could have considered
C2i+1-Colouring, which is a C12-problem for all i ≥ 2 [12, 15]. Third, Star-k-Colouring
does not satisfy C2 for large k, as all subcubic graphs are star 10-colourable (as shown in
Section 3).

Our Results

We show that the complexity of our four problems differ from each other and also from
C123-problems, when we forbid certain graphs Hi. We first show that C1-problems, and
thus C12-problems, are easy on (Hℓ,Hℓ+1, . . .)-subgraph-free graphs for every ℓ ≥ 1 and on
(Hi,H2i,H3i, . . .)-subgraph-free graphs for every i ≥ 1 (so, in particular if we forbid all even
Hi), as all these graph classes have bounded treewidth, as we show in Section 4. In contrast,
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any hard problem for bipartite graphs in which one partition class has maximum degree 2 is
hard on (H1,H3, . . .)-subgraph-free graphs (so, if we forbid all odd Hi): every path between
vertices of degree at least 3 has even length. The NP-hardness reduction in [1] shows that
Star 3-Colouring is such a problem (see also Section 2.2).

The above results immediately give us Theorem 5. For the other three problems, we prove
additional results. In Section 5 we show that Hamilton Cycle is polynomial-time solvable
for Hℓ-subgraph-free graphs if ℓ = 3 by doing this for the superclass of T -subgraph-free graphs
(T is the tree shown in Figure 2). For ℓ ∈ {1, 2} this was proven in [25]. On a side note, there
exist trees T ∗ for which Hamilton Cycle is NP-complete over T ∗-subgraph-free graphs.
We refer to [23, 25] for examples of such trees T ∗, which are not subdivided “H”-graphs Hi.

In Section 6 we prove that for all k ≥ 2, k-Induced Disjoint Paths is polynomial-
time solvable for Hℓ-subgraph-free graphs for ℓ ∈ {1, 2}, but NP-complete for subcubic
(H4, . . . ,Hℓ)-subgraph-free graphs for all ℓ ≥ 4. For the first result, we first apply the
algorithm for k-Disjoint Paths [30]. If this yields a solution that is not mutually induced,
we apply a reduction rule and repeat the process on a smaller instance. For the second result,
we carefully adapt the proof of [24] that shows that the problem of deciding if a subcubic
graph contains an induced cycle between two given degree 2-vertices is NP-complete.

In Section 7 we determine all C5-critical H3-subgraph-free graphs, which are not C5-
colourable unlike every proper subgraph of them. We show that this leads to a polynomial-time
algorithm for H3-subgraph-free graphs that is even certifying. In contrast, the problem is
NP-complete for the “complementary” class of (H1,H2,H4,H5,H7,H8, . . .)-subgraph-free
graphs (see Section 2.3).

The above results yields the following state-of-the-art summaries:

▶ Theorem 2. Hamilton Cycle is polynomial-time solvable for (Hℓ,Hℓ+1, . . .)-subgraph-free
graphs (ℓ ≥ 1), for (Hi,H2i,H3i, . . .)-subgraph-free graphs (i ≥ 1) and for Hℓ-subgraph-free
graphs (ℓ ∈ {1, 2, 3}).

▶ Theorem 3. For all k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for
Hℓ-subgraph-free graphs (ℓ ∈ {1, 2}), for (Hℓ,Hℓ+1, . . .)-subgraph-free graphs (ℓ ≥ 1) and for
(Hi,H2i,H3i, . . .)-subgraph-free graphs (i ≥ 1), but NP-complete for subcubic (H4, . . . ,Hℓ)-
subgraph-free graphs (ℓ ≥ 4).

▶ Theorem 4. C5-Colouring is polynomial-time solvable for H3-subgraph-free graphs, for
(Hℓ,Hℓ+1, . . .)-subgraph-free graphs (ℓ ≥ 1) and for (Hi,H2i,H3i, . . .)-subgraph-free graphs
(i ≥ 1), but NP-complete for (H1,H2,H4,H5,H7,H8, . . .)-subgraph-free graphs.

▶ Theorem 5. Star 3-Colouring is polynomial-time solvable for (Hℓ,Hℓ+1, . . .)-subgraph-
free graphs (ℓ ≥ 1) and (Hi,H2i,H3i, . . .)-subgraph-free graphs (i ≥ 1), but NP-complete for
(H1,H3,H5 . . .)-subgraph-free graphs.

We note that the complexity classifications above indeed differ except perhaps for Hamilton
Cycle and k-Induced Disjoint Paths. Hence, Theorems 2–5 give clear evidence of a
rich landscape for C12-problems on H-subgraph-free graphs. In Section 8 we discuss open
problems resulting from our study.

2 Some Basic Results

In this section, we provide further details for some statements made in Section 1.

ISAAC 2024
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2.1 C5-Colouring for Bounded Degree and Large Girth
The k-Colouring problem is to decide if a graph G has a k-colouring, which is a mapping
c : V (G) → {1, . . . , k} such that c(u) ̸= c(v) for any two adjacent vertices u and v of G. We
need a result of Emden-Weinert, Hougardy and Kreuter:

▶ Theorem 6 ([14]). For all k ≥ 3 and all g ≥ 3, k-Colouring is NP-complete for graphs
with girth at least g and with maximum degree at most 6k13.

We now repeat the proof of Chudnovsky et al. [9], which comes down to replacing each
edge of an input graph G of 5-Colouring, which we may assume has girth at least g and
maximum degree at most 6 · 513 due to Theorem 6, by a path of length 3. This yields a new
graph G′ of girth at least g, such that G and G′ have the same maximum degree. Hence, we
derive the following result.

▶ Proposition 7. For every g ≥ 3, C5-Colouring is NP-complete for graphs with girth at
least g and with maximum degree at most 6 · 513.

2.2 The Standard NP-hardness Reduction to Star-3-Colouring
For reference, we explain the gadget from Albertson et al. [1] that yields the following result.

▶ Theorem 8 ([1]). Star 3-Colouring is NP-complete for planar bipartite graphs in which
one partition class has size 2.

Proof. Reduce from 3-Colourability which is known to be NP-complete even for planar
graphs [11]. Let G be a planar graph. Replace each edge e by three new vertices ae, be,
ce that are made adjacent only to the two end-vertices of e in G. Let G′ be the resulting
graph. Then every vertex of V (G′) \ V (G) has degree 2 in G. Moreover, G′ is planar and
bipartite with partition classes V (G′) \ V (G) and V (G). It remains to observe that G has a
3-colouring if and only if G′ has a star 3-colouring. ◀

2.3 The Standard NP-hardness Reduction to C5-Colouring
We make the following observation.

▶ Proposition 9. C5-Colouring is NP-complete for (H1,H2,H4,H5, . . .)-subgraph-free
graphs.

Proof. It is well known [19] and easy to see that there is a reduction from K5-Colouring,
which is to decide if a graph has a K5-colouring, that is, a homomorphism from G to the
complete graph K5 on five vertices. This problem is well known to be NP-complete [19]. Let
G be a graph, and let G′ be the 2-subdivision of G. We note that G′ is (H1,H2,H4,H5, . . .)-
subgraph-free (but may contain many instances of Hℓ where ℓ = 0 mod 3). Moreover, G

has a K5-colouring if and only if G′ has a C5-colouring. ◀

3 The Four Testbed Problems Do Not Satisfy C3

In this section we show that none of our four problems satisfy C3. We use the following
notation in this section: for a graph G and an integer p ≥ 1, let Gp be the p-subdivision of
G (which we recall is the graph obtained from G after subdividing each edge of G exactly p

times).
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▶ Proposition 10. Hamilton Cycle does not satisfy C3.

Proof. We observe that for every graphs G and every p ≥ 1, Gp is a no-instance of Hamilton
Cycle unless G was a cycle. ◀

▶ Proposition 11. k-Induced Disjoint Paths does not satisfy C3.

Proof. Under any kind of subdivision, k-Induced Disjoint Paths reduces to k-Disjoint
Paths over the same graph, which is in P for all k ≥ 2, as shown in [33] for k = 2 and in [30]
for every k ≥ 3. ◀

▶ Proposition 12. C5-Colouring does not satisfy C3.

Proof. We first prove that for all p ≥ 4, and for all x, y ∈ V (C5), there is a walk of length
p in C5 from x to y. First let p = 4. To walk a distance of zero: walk two forward then
two back. To walk at distance one (without loss of generality) forward: walk four backward.
To walk at distance two (without loss of generality) forward: walk one back, one forward,
and two forward. Now let p = 5. To walk a distance of zero: walk five forward. To walk
at distance one (without loss of generality) forward: walk two forward, two back and one
forward. To walk at distance two (without loss of generality) forward: walk one back, one
forward, and three back. Finally, let p ≥ 6. Keep moving one forward then one back until
one of the two previous cases applies.

Now let G be a graph. We give each vertex in G a label from {1, . . . , 5}. From the above
it follows that for every p ≥ 3, we can extend c to a homomorphism from Gp to C5; in other
words, Gp is a yes-instance of C5-Colouring. ◀

▶ Proposition 13. Star 3-Colouring does not satisfy C3.

Proof. Let G be a graph. We show that for all p ≥ 3, Gp is a yes-instance of Star 3-
Colouring. We do this by giving each vertex in G a label from {1, 2, 3}. The resulting
labelling c might not be a 3-colouring, but this is not important: we will show that we can
extend c to a star 3-colouring of Gp as follows.

Consider an edge e in G and let P be the corresponding path (of p + 1 edges) in Gp. It
suffices to give two star 3-colourings of this path, so that the first three vertices are distinct
colours and the last three vertices are distinct colours: one in which the first and last vertices
are the same colour and one in which they are a different colour. Let us identify a 3-colouring
of P by a sequence of length p + 1 over {1, 2, 3}. If p + 1 is a multiple of three, then use
(123)

p+1
3 for the different colour and (123)

p+1
3 −1231 for the same colour. If p + 1 is 1 mod 3,

then use (123)
p
3 −12132 for the different colour and (123)

p
3 1 for the same colour. If p + 1 is

2 mod 3, then use (123)
p−1

3 12 for the different colour and (123)
p−1

3 21 for the same colour. ◀

We finish this section with another small observation. Namely, we cannot generalise our
result for Star 3-Colouring to Star k-Colouring for any k ≥ 3, as for large k the
problem no longer satisfies C2. In fact, we prove even a stronger statement. A k-colouring of
a graph G is said to be injective if for every vertex u ∈ V (G), every neighbour of u is assigned
a different colour, or in other words, the union of any two colour-classes induce a disjoint
union of isolated vertices and edges. So, any injective k-colouring is a star k-colouring (but
the reverse does not necessarily hold, for instance the P3 is star 2-colourable but has no
injective 2-colouring).

▶ Proposition 14. For k ≥ 10, all subcubic graphs have an injective 10-colouring.

ISAAC 2024
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Proof. It suffices to prove the statement for k = 10. We do this by induction. For the
base case, a graph with one vertex is star 10-colourable. Now take a vertex v in a graph G

and assume G \ {v} has an injective 10-colouring. As G is subcubic, v has at most three
neighbours, each of which have at most two more neighbours each. Thus there are at most
nine vertices whose colour we wish to avoid. As we have ten colours in total, this means that
we can safely colour v. ◀

4 Bounded Treewidth Results

A graph G contains H as a minor if G can be modified to H by a sequence of vertex deletions,
edge deletions and edge contractions; if not, then G is H-minor-free.

▶ Proposition 15. For every ℓ ≥ 1, the class of (Hℓ,Hℓ+1, . . .)-subgraph-free graphs has
bounded treewidth.

Proof. For ℓ ≥ 1, a (Hℓ,Hℓ+1, . . .)-subgraph-free graph is Hℓ-minor-free. For every forest F ,
all F -minor-free graphs have pathwidth, and thus treewidth, at most |V (F )| − 2 [5]. ◀

▶ Proposition 16. For every n ≥ 1, the class of (Hn,H2n,H3n, . . .)-subgraph-free graphs has
bounded treewidth.

Proof. If a class of graphs has unbounded treewidth, then every grid appears as a minor in
some graph [29]. Let us explain the argument for n = 2 first. We consider that the 3 × 3-grid
appears as a minor in some graph G in our class and let f be the minor map from G to the
3 × 3-grid. Consider the three vertices in the 3 × 3-grid that form the central row as u, v, w

(in succession). Choose u′ ∈ f−1(u), v′ ∈ f−1(v), w′ ∈ f−1(w) so that u′, v′, w′ have degree
greater than 2, noting that such vertices must exist. If the distance in G between u′ and v′

is even, of length 2i, then there is an H2i subgraph in G with central path from u′ to v′. If
the distance in G between v′ and w′ is even, of length 2i, then there is an H2i subgraph in G

with central path from v′ to w′. Else, there is a path of even length 4i from u′ to w′ and
then there is an H4i subgraph in G with central path from u′ to w′.

For (Hn,H2n, . . .)-subgraph-free graphs, we consider the Abelian group (Z/nZ). The
Davenport constant of an Abelian group G is the minimum d so that any sequence of elements
of G contains a non-empty consecutive subsequence of zero-sum (that adds to the identity
element 0). It is known that for (Z/nZ) the Davenport constant is n (see page 24 in [16]). Take
an (n+1)×(n+1)-grid and consider some row not at the top or bottom of the grid with vertices
w1, . . . , wn+1 in succession. Consider some w′

1 ∈ f−1(w1), . . . , w′
n+1 ∈ f−1(wn+1) where f is

the minor map as before, and the distances xi between w′
i+1 and w′

i. Using the Davenport
constant, there is a subsequence xj , . . . , xj′ (j′ > j) such that xj + . . . + xj′ = 0 mod n. Now
choose w′

j , . . . , w′
j′+1 as the central path in some Hin. ◀

5 Hamilton Cycle

In this section we show Theorem 17. Due to the page limit we have omitted the proofs of
some of the claims in the proof of Theorem 17.

▶ Theorem 17. Hamilton Cycle is polynomial-time solvable for T -subgraph-free graphs.

Proof. Let G be a T -subgraph-free graph. We call vertices of degree 2 in G white and vertices
of degree at least 3 black. The black graph is a subgraph of G induced by black vertices and
a black component is a connected component in the black graph.
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We first describe some helpful rules to solve the problem and a set of reductions simplifying
the input graph, i.e. reductions transforming G into a graph G′ that has fewer edges and/or
vertices and that has a Hamiltonian cycle if and only if G has. We emphasize that by deleting
an edge or a vertex from an H-subgraph-free graph, we obtain an H-subgraph-free graph
again.

We start with some obvious rules:
(R1) if the graph has vertices of degree 0 or 1, then stop: G has no Hamiltonian cycle.
(R2) if the graph contains a vertex adjacent to more than two white vertices, then stop: G

has no Hamiltonian cycle.
(R3) if the graph is disconnected, then stop: G has no Hamiltonian cycle.
(R4) if the graph contains a vertex v adjacent to exactly two white vertices, then delete the

edges connecting v to all other its neighbours (if there are any).
Now we introduce a reduction applicable to a graph G containing an induced subgraph shown
on the left in Figure 3, in which vertices a, b, c have degree 3 in G. The reduction depends
on the degree of x. If the degree of x is also 3, the reduction consists in deleting the edges ab

and xc. Otherwise, it transforms the graph as shown in Figure 3. We refer to this reduction
as the diamond reduction and denote it by (R5).

s
s
s s�
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@
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-

a b c

x

s
s

s�
��

@
@@

a c

x

Figure 3 The diamond reduction: it is applicable to a graph G containing an induced subgraph
shown on the left, in which vertices a, b, c have degree 3 in G. If the degree of x is also 3, the
reduction consists in deleting the edges ab and xc. Otherwise, the reduction consists in deleting
vertex b and introducing the edge ac.

We omit the proof of the next two claims.

▷ Claim 18. Let G′ be a graph obtained from G by the diamond reduction. Then G has a
Hamiltonian cycle if and only if G′ has a Hamiltonian cycle. Moreover, if G is T -subgraph-free,
then so is G′.

In Figure 4, we illustrate the butterfly reduction denoted by (R6).
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Figure 4 The butterfly reduction: it is applicable to a graph G with an induced subgraph shown
on the left, in which vertices a, b, c have degree 3 in G, and moreover, a and b have white neighbours.

▷ Claim 19. Let G′ be a graph obtained from G by the butterfly reduction. Then G has a
Hamiltonian cycle if and only if G′ has a Hamiltonian cycle.

In our algorithm we implement the above rules and reductions whenever they are applicable.
We now develop more reductions allowing us to bound the number of vertices in black
components. We assume that none of the above rules and reductions is applicable to G.

We omit the proof of the next claim.
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▷ Claim 20. Let x be a vertex of degree at least 13. If the neighbourhood of x does not
contain two adjacent vertices of degree 3, then G has no Hamiltonian cycle. Otherwise, G

has a Hamiltonian cycle if and only if G − x has.

Application of Claim 20 to vertices of large degree either shows that G has no Hamiltonian
cycle or reduces the input graph to a graph of maximum degree 12. We will refer to this
reduction as the large degree reduction and will denote it by (R7).

We omit the proof of the next claim.

▷ Claim 21. The black graph has no induced paths of length 8.

Since graphs of diameter D and maximum degree ∆ have fewer than ∆
∆−2 (∆ − 1)D vertices,

we conclude that after eliminating vertices of large degree, every black component has fewer
than 12

10 117 vertices.
To develop more rules and reductions, assume G has a Hamiltonian cycle C. We can

further assume that not all vertices of the graph are black, since otherwise the graph contains
fewer than 12

10 117 vertices, in which case we can solve the problem by brute-force. A sequence
of consecutive vertices of C surrounded by white vertices will be called a black interval.
Observe that each black interval consists of at least two vertices (according to (R4)).

Let K be a black component of G. We will call the vertices of K that have white
neighbours the contact vertices. Note that K may consists of one or more intervals. Each
interval gives rise to exactly two contact vertices. Hence, the number of contact vertices in
K is even.

In our next claim, whose proof we omit, we show that for T -subgraph-free graphs, the
number of intervals is at most 2.

▷ Claim 22. Any black component consists of at most two intervals.

By Claim 22, if G has a Hamiltonian cycle, then every black component has two or four
contact vertices.

(R8) If a black component K has exactly two contact vertices, check if K has a Hamiltonian
path connecting the contact vertices. If such a path does not exist, then stop: the
input graph has no Hamiltonian cycle. Otherwise, choose arbitrarily a Hamiltonian path
connecting the contact vertices, include the edges of the path in the solution and delete
all other edges from K.

Rule (R8) destroys black components with two contact vertices, i.e. after its implementation
all vertices in such components become white.

Now we discuss the case where each black component has exactly four contact vertices.
Let K be such a component with contact vertices v1, v2, v3, v4. If G has a Hamiltonian
cycle, then the vertices of K can be partitioned into two parts each of which forms a path
connecting a pair of contact vertices. We will call such a partition a pairing (of contact
vertices) and will refer to a pairing as the set of edges in the two paths. Also, we will say
that two pairings are of the same type, if they pair the contact vertices in the same way.
Clearly, if all possible pairings in K have the same type, then it is irrelevant which one to
choose, since non-contact vertices of K have no neighbours outside of K.

The above discussion justifies the following two rules.

(R9) If a black component K with four contact vertices does not admit any pairing, then
stop: the input graph has no Hamiltonian cycle.
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(R10) If in a black component K with four contact vertices all possible pairings have the
same type, then choose arbitrarily any such pairing and delete all other edges from K. If
this procedure disconnects the graph, then stop: the input graph has no Hamiltonian
cycle.

Finally, we analyse the situation when each black component of G admits pairings of at least
two different types.

▷ Claim 23. If each black component of the (connected) graph G admits pairings of at least
two different types, then G has a Hamiltonian cycle.

Proof. Let K be a black component with contact vertices v1, v2, v3, v4 and let B and R be
two pairings of different types, say B pairs v1 with v2 and v3 with v4, while R pairs v1 with
v3 and v2 with v4. Assume that
(1) the deletion of all edges of K except for the edges of B disconnects the graph into two

components C12 (containing vertices v1 and v2) and C34 (containing vertices v3 and v4),
and

(2) the deletion of all edges of K except for the edges of R disconnects the graph into two
components C13 (containing vertices v1 and v3) and C24 (containing vertices v2 and v4).

Note that (1) separates v1 from v3 and v4, while (2) separates v1 from v4. Therefore, after
the deletion of all edges of K vertex v1 is separated from all other contact vertices. In other
words, after the deletion of all edges of K, vertices v1, v2, v3, v4 belong to pairwise different
connected components, say V1, V2, V3, V4, respectively.

We observe that in each connected component Vi vertex vi has degree 1 (it is adjacent
to a white vertex only). Any other vertex of odd degree in Vi (if there is any) is black, i.e.
appears in some black component K ′. In the graph G[K ′] the number of odd vertices is even
(by the Handshake lemma). Attaching to G[K ′] four white neighbours changes the parity of
exactly four vertices of K ′ and hence leaves the number of vertices of K ′ with odd degrees
in the graph G even. Since all vertices of K ′ belong to only one of the components Vi, we
conclude that in each component Vi the number of vertices of odd degree is odd. This is not
possible by the Handshake lemma and hence either (1) or (2) is not valid, i.e. we can keep
one of the pairings and delete all other edges of K without disconnecting G. This operation
destroys K, i.e. makes all vertices of K white.

Applying the above arguments to all black components, one by one, we transform G into
a connected graph in which all vertices are white, i.e. to a Hamiltonian cycle. ◁

We summarize the discussion in the following algorithm to solve the problem.

1. Apply rules and reductions (R1) – (R7) as long as they are applicable.
2. If the algorithm did not stop at Step 1 and the graph has fewer than 12

10 117 vertices, then
solve the problem by brute-force. Otherwise, check the number of contact vertices in
black components. If there is a black component with the number of contact vertices
different from 2 or 4, then stop: G has no Hamiltonian cycle.

3. If the algorithm did not stop at Step 2, then apply (R8) to black components with two
contact vertices, and (R9) and (R10) to black components with four contact vertices.

4. If the algorithm did not stop at Step 3, then find a Hamiltonian cycle according to
Claim 23.

Reductions (R8), (R9), (R10) can be implemented in constant time, because the number
of vertices in each black component is bounded by a constant. It is also obvious that all
other rules, and hence all steps of the algorithm can be implemented in polynomial time.
The correctness of the algorithm follows from the proofs of the claims. ◀
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Figure 5 Rule 1. Possible connections in our subgraph (left). What we replace this subgraph
with (right). Dotted lines are possible additional edges.
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Figure 6 Rule 2. Possible connections in our subgraph (left). What we replace this subgraph
with (right). Dotted lines are possible additional edges.

6 k-Induced Disjoint Paths

The case H = H1 follows from the observation that solutions of k-Induced Disjoint Paths
with long paths are solutions of k-Disjoint Paths, which is polynomial-time solvable [30].
We omit the proof details. The case H = H2 is more involved.

▶ Theorem 24. For all k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for
H1-subgraph-free graphs.

▶ Theorem 25. For all k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for
H2-subgraph-free graphs.

Proof. First, branch on all O(2kn3k) options (so a polynomial number, as k is fixed) of
solution paths that have at most three internal vertices. For each branch, we remove the
guessed solution paths and the neighbours of the vertices on these paths. Let k still be the
number of terminal pairs. We now only look for solution paths with at least four vertices.
Branch on all O(n4k) options of choosing the first two vertices az, bz on the solution path
from every terminal z ∈ {si, ti} for i ∈ {1, . . . , k}. In each branch, we remove all other
neighbours of z, az from the graph, so every terminal z now has degree 1, while az has
degree 2. We discard the branch if (†) {az, bz} ∩ {az′ , bz′} ̸= ∅ for some terminals z, z′ or
one of az, bz is the same or neighbours one of az′ , bz′ for some terminals z, z′ not from the
same terminal pair.

We now start a recursive procedure. We first preprocess the input. If bsi
and bti

are
adjacent for some i ∈ {1, . . . , k}, then we remove the solution path si, asi , bsi , bti , ati , ti and
their neighbours from the graph. If bz and bz′ are adjacent for some terminals z, z′ that do
not form a terminal pair, we discard the branch.

We run the polynomial-time algorithm for k-Disjoint Paths from [30] on the remaining
terminal pairs. If this results in a no-answer, we discard the branch. Else, we found a
solution P1, . . . , Pk. We may assume that each path Pi is induced, or we may shortcut it. If
P1, . . . , Pk is also a solution of k-Induced Disjoint Paths, then we return “yes”. Otherwise,
there is (say) an edge (x1, x2) between paths x1 ∈ P1 and x2 ∈ P2. We pick x1 such that it
is closest to t1 on P1 and under that condition we pick x2 such that it is closest to t2 on P2.
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Let z1, z3 be the two neighbours of x1 on P1 and z2, z4 the two neighbours of x2 on P2. We
let S = {z1, x1, z3, z2, x2, z4}. Observe that S contains no terminal by † and the preprocessing.
If any z ∈ {z1, z2, z3, z4} has two neighbours outside of S, then G has a H2 as a subgraph.
Thus we may assume (‡) that each z ∈ {z1, z2, z3, z4} has at most one neighbour not in S.

By the choice of (x1, x2) and as P1 is induced, z3 has no neighbours in S except x1.
Suppose the edge (z1, z2) exists and one of {x1, x2} has a neighbour outside of S. Then there
is an H2 with middle path x1, z1, z2 since s2 ̸∈ S. Suppose the edge (z1, z4) exists and one of
{x1, x2} has a neighbour outside of S. Then there is an H2 with middle path x1, z1, z4 since
s2 ̸∈ S. Now either the edges (z1, z2) and (z1, z4) do not exist (see Figure 5), or at least one
of them exists and x1, x2 have no neighbours outside S (see Figure 6). In the former case, we
apply Rule 1, while in the latter case, we apply Rule 2; see Fig. 5 and 6 for their description.

Rule 1 is safe: Suppose that we have a solution to k-Induced Disjoint Paths in G. If this
solution uses no vertices in S, then it is already a solution to k-Induced Disjoint Paths
in G′. Thus, it must use some vertex in S. If the solution does not use x1 nor x2, then recall
that by ‡, each of z1, z2, z3, z4 has at most one neighbour outside of S, and thus the solution
must avoid thus S entirely, a contradiction. If the solution uses both x1 and x2, then it must
use the edge (x1, x2). We can substitute the edge (x1, x2) in the solution to k-Induced
Disjoint Paths in G with x to obtain a solution to k-Induced Disjoint Paths in G′.
Hence, without loss of generality, suppose the solution uses x1. We can substitute this for x

to obtain a solution to k-Induced Disjoint Paths in G′, unless some other solution path
runs through a neighbour q of x2. Note q cannot be a terminal due to our preprocessing.
Hence it has two neighbours p and r on this other solution path, and these are outside
of {z1, x1, z3} because this path must avoid x1 and any of its neighbours. But now p, q, r,
q, x2, x1, z1, x1, z3 forms an H2 (with middle path q, x2, x1), a contradiction.

Suppose we have a solution to k-Induced Disjoint Paths in G′. If this solution does
not involve x, then it maps to a solution of k-Induced Disjoint Paths in G. Suppose
now it does involve x. Suppose mapping x to either of x1 or x2 does not produce a solution
to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x1, x2) (or the
symmetric (x2, x1)) must produce a solution to k-Induced Disjoint Paths in G.

Rule 2 is safe: Suppose we have a solution to k-Induced Disjoint Paths in G. If it uses
no vertices in S, then it is already a solution to k-Induced Disjoint Paths in G′. Thus, it
must use some vertex in S. Suppose the edge (z1, z2) exists, and the solution uses (z1, z2).
Then by ‡, the solution does not use any other vertex from S and we can keep this edge to
obtain a solution for k-Induced Disjoint Paths in G′. Suppose the edge (z1, z4) exists
and the solution uses (z1, z4). Then by ‡, the solution does not use any other vertex from S

and we can keep this edge to obtain a solution for k-Induced Disjoint Paths in G′.
If the solution uses both x1 and x2, then it must use the edge (x1, x2), and we can

substitute (x1, x2) in the solution to k-Induced Disjoint Paths in G with x to obtain a
solution to k-Induced Disjoint Paths in G′. Suppose it uses neither x1 nor x2. Then by
‡ and the fact that S is used, the solution must use either the edge (z1, z4) or (z1, z2) and
we are in a previous case. Hence, without loss of generality, suppose the solution uses x1.
We can substitute this for x to obtain a solution to k-Induced Disjoint Paths in G′. This
is safe, as x1, x2 have no neighbours outside S.

Suppose we have a solution to k-Induced Disjoint Paths in G′. If this solution does
not involve x then it maps to a solution of k-Induced Disjoint Paths in G. Suppose
now it does involve x. Suppose mapping x to either of x1 or x2 does not produce a solution
to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x1, x2) (or the
symmetric (x2, x1)) must produce a solution to k-Induced Disjoint Paths in G.
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Next, we show that any graph G′ obtained after applying Rule 1 or 2 is also H2-subgraph-free.
Suppose G′ has an H2. Then this H2 must contain x. If x is a leaf in H2, then G already had
this H2 involving either x1 or x2. Suppose x is a degree-3 vertex in this H2. If the neighbours
of x in the H2 were all neighbours of x1 or all neighbours of x2 in G, then G already had
this H2, a contradiction. Let z′

1 and z′
2 be the leafs of the H2 adjacent to x in G′.

Suppose z′
1 and z′

2 are both adjacent to x2 and both not to x1. Then the middle vertex
of the H2 is only adjacent to x1. Ideally, we would replace x by x1, z′

1 by z1 and z′
2 by z3.

This does not work if (say) z1 is part of the H2. However, z′
1 and z′

2 are both not z1, as z1 is
adjacent to x1, and we would contradict our assumption on the adjacency of z′

1 and z′
2. We

now consider three cases, depending on where z1 is in the H2.
Suppose z1 is a leaf of the H2. By ‡ and the inducedness of paths, its neighbouring

degree-3 vertex cannot be one of z2, z3, z4. Hence, this must be the unique neighbour p of z1
outside S. The other neighbours q, r of p on the H2, where r is the middle vertex, are both
not z3, as P1 is induced. Hence, q, p, z1, p, r, x1, x2, x1, z3 form an H2, a contradiction.

Suppose that z1 is the middle vertex of the H2. By ‡, the other degree-3 vertex of the
H2 cannot be z2 or z4, so it must be the unique neighbour p of z1 outside S. The other
neighbours q, r of p on the H2, which are both leafs of the H2, are both not z3 since P1 is
induced. Hence, G has a H2 formed by q, p, r, p, z1, x1, x2, x1, z3, a contradiction.

Suppose that z1 is a degree-3 vertex of the H2. Let p be the unique neighbour of z1
outside S; it is unique by ‡. Then one of p, z2, z3 must be the middle vertex of the H2 and
the other two the leafs neighbouring z1. If the middle vertex is z2, then z′

1, x2, z′
2, x2, z2, z1,

p, z1, z4 is a H2 in G, a contradiction. The other cases are similar. This concludes the
argument when z′

1 and z′
2 are both adjacent to x2 and both not to x1.

Suppose instead that, say z′
1, is adjacent to x1 and the other, z′

2, is adjacent to x2. Let
x′, x′′, z′′

1 , z′′
2 form the remaining vertices of the H2 where x, x′, x′′ and z′′

1 , x′′, z′′
2 are both

paths of length 2 in this H2. Thus, z′
1, x, z′

2, x, x′, x′′ and z′′
1 , x′′, z′′

2 form the H2 in G′.
Without loss of generality, suppose x′ was adjacent to x1 in G. Now it is clear that z′

1, x1, x2,
x1, x′, x′′ and z′′

1 , x′′, z′′
2 formed an H2 in G.

Finally, suppose that x is the degree-2 vertex in H2. Let z′
1, x′, z′

2, x′, x, x′′, z′′
1 , x′′, z′′

2 be
the paths that form the H2 in G′. Suppose, without loss of generality, that x′ was adjacent
to x1 in G. If x′′ was also adjacent to x1 in G, then z′

1, x′, z′
2, x′, x1, x′′, z′′

1 , x′′, z′′
2 are paths

that form an H2 in G. Suppose now that x′′ was adjacent to x2 but not x1 in G and we
may also assume that x′ is adjacent to x1 but not x2. Now z′

1, x′, z′
2, x′, x1, x2, z2, x2, z4 are

paths that form a H2 in G, unless {z2, z4} ∩ {z′
1, z′

2} ≠ ∅. Without loss of generality, suppose
z2 = z′

1. Note that z2 ̸= s2 (recall that S does not contain any terminal). Let p be the next
vertex on the path from t2 to s2 after z2. Then p, z2, x2, z2, x′, x1, z1, x1, z3 is an H2 in G

(note that {z1, z3} ∩ {x′, z2, p} = ∅), a contradiction.

Finally, note that x1 and x2 cannot be z or az for some terminal z, as these vertices have
degree 1 and 2 respectively, while x1, x2 have degree at least 3. Moreover, {x1, x2} ≠ {bz, b′

z}
for some terminals z, z′ by our preprocessing. Hence, Rules 1 and 2 preserve †.

We can recognize and apply Rules 1 and 2 in polynomial time. This decreases the size of
the graph by one vertex and we recurse. Hence, our algorithm runs in polynomial time. ◀

For our next result we follow the proof from Section 2.4 in [24] by carefully p-subdividing
some of the edges of that construction. We omit the proof details.

▶ Theorem 26. For all k ≥ 2, k-Induced Disjoint Paths is NP-complete for subcubic
(H4, . . . ,Hℓ)-subgraph-free graphs for all ℓ ≥ 4.
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Figure 7 The C5-flower Fn and the H3-subgraph-free C5-critical graphs E1, E2 and E3.

7 C5-Colouring

In this section, we give our polynomial-time certifying algorithm for C5-Colouring on
H3-subgraph-free graphs. The C5-flower Fn is the graph (see Figure 7) that we get from
C3n (for n ≥ 3) by adding a new central vertex with an edge to every third vertex of C3n. If
n is odd, we call Fn an odd C5-flower, and if it is even we call Fn an even C5-flower. We
refer to the graphs E1, E2 and E3 shown in Figure 7 as exceptional graphs.

The following lemma (whose proof is a simple exercise) shows that all these graphs are
C5-critical, that is, they are not C5-colourable but every proper subgraph of them is.

▶ Lemma 27. The graph K3, the odd flowers Fn for odd n ≥ 3 and the exceptional graphs
E1, E2 and E3 are all H3-subgraph-free and C5-critical.

We can now show a structural result, which we use to prove our algorithmic result. We
omit its proof.

▶ Theorem 28. The only H3-subgraph-free C5-critical graphs are K3, odd flowers Fn (n ≥ 3)
and exceptional graphs E1, E2, E3. Equivalently, the following statements all hold:
1. All H3-subgraph-free graphs of girth at least 6 are C5-colourable.
2. The only H3-subgraph-free C5-critical graphs of girth 5 are E1, E2 and odd C5-flowers Fn.
3. The only H3-subgraph-free C5-critical graph of girth 4 is E3.

▶ Theorem 29. There exists a polynomial-time certifying algorithm for C5-Colouring on
H3-subgraph-free graphs.

Proof. As every graph that does not map to C5 must contain a C5-critical subgraph, it
suffices, due to Theorem 28, to detect the non-existence of the graphs K3, E1, E2, E3 and Fn

(odd n ≥ 3) in a H3-subgraph-free graph G. For the graphs K3, E1, E2 and E3 we can simply
use brute force. To detect an odd C5-flower Fn in polynomial time, we observe that for a
fixed centre vertex, v0 we can make an auxiliary graph on its neighbours putting an edge
between two if there is a path on three edges between them in G. Now, G contains an odd
C5-flower with centre v0 if and only if this auxiliary graph has an odd cycle. We can check
this in polynomial time for each v0, so can find an odd C5-flower in G polynomial time. ◀

8 Conclusions

We took four classic problems, Hamilton Cycle, k-Induced Disjoint Paths, C5-
Colouring and Star 3-Colouring, that are “easy” on bounded treewidth, but for
which we showed that their hardness on subcubic graphs is not preserved under edge subdivi-
sion. We gave polynomial and NP-completeness results for H-subgraph-free graphs when H
is some subset of {H1,H2, . . .}, but we need to better understand the case H = {Hi} (i ≥ 1).
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▶ Open Problem 1. Is there a graph Hℓ such that Hamilton Cycle is NP-complete for
Hℓ-subgraph-free graphs?

We note that the case H3 is the only missing case for obtaining a dichotomy for k-Induced
Disjoint Paths on Hi-subgraph-free graphs,

▶ Open Problem 2. What is the complexity of k-Induced Disjoint Paths for H3-subgraph-
free graphs?

If C5-Colouring on Hi-subgraph-free graphs is polynomial-time solvable when i = 0 mod 3,
then we would get a dichotomy for C5-Colouring on Hi-subgraph-free graphs based on
i mod 3.

▶ Open Problem 3. What is the complexity of C5-Colouring for Hi-subgraph-free graphs,
when i = 0 mod 3?

If Star 3-Colouring on H2i-subgraph-free graphs is polynomial-time solvable for i ≥ 1,
then we would get a dichotomy for Star 3-Colouring on Hi-subgraph-free graphs based
on i mod 2.

▶ Open Problem 4. What is the complexity of Star 3-Colouring for H2i-subgraph-free
graphs for i ≥ 1?

Moreover, even though Star k-Colouring is not C2 for k ≥ 10 (Proposition 14), this is not
known for 4 ≤ k ≤ 9. In particular, Shalu and Antony asked about the case k = 4 in [31],
and we recall their open problem.

▶ Open Problem 5. What is the complexity of Star 4-Colouring for subcubic graphs?

We also still need to determine whether the C12-problems k-Induced Disjoint Paths and
C5-Colouring are even C12’ just like Hamilton Cycle and Star 3-Colouring. In order
to know this, we must solve the following two problems.

▶ Open Problem 6. What is the complexity of k-Induced Disjoint Paths for subcubic
graphs of girth g for g ≥ 3?

▶ Open Problem 7. What is the complexity of C5-Colouring for subcubic graphs of girth g

for g ≥ 3?

We also do not know the complexity of k-Induced Disjoint Paths, for k ≥ 2, on
graphs of girth at least g with an additional degree bound, whereas the best degree bound
for C5-Colouring is 6 · 513. Namely, for every g ≥ 3, C5-Colouring is NP-complete for
graphs with girth at least g and with maximum degree at most 6 · 513 (Theorem 6).

Finally, there exist other problems that are NP-complete for bipartite graphs in which
one partition class has maximum degree 2 and thus on (H1,H3, . . .)-subgraph-free graphs.
One example of such a problem is Matching Cut [27]. Another example is Acyclic 3-
Colouring, for which we can show the same results as for Star 3-Colouring in Theorem 5
by using the same arguments. However, in contrast to Star 3-Colouring, we do not know
if Acyclic 3-Colouring satisfies C2 and we recall the following open problem from Shalu
and Antony [32].

▶ Open Problem 8. What is the complexity of Acyclic 3-Colouring for subcubic graphs?
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