
Finding d-Cuts in Graphs of Bounded Diameter,
Graphs of Bounded Radius and H-Free Graphs

Felicia Lucke1[0000−0002−9860−2928], Ali Momeni2[0009−0009−8280−7847], Daniël
Paulusma3[0000−0001−5945−9287], and Siani Smith4[0000−0003−0797−0512]

1 Department of Informatics, University of Fribourg, Fribourg, Switzerland
felicia.lucke@unifr.ch

2 Faculty of Computer Science, UniVie Doctoral School Computer Science DoCS,
University of Vienna, Austria
ali.momeni@univie.ac.at

3 Department of Computer Science, Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

4 University of Bristol, Heilbronn Institute for Mathematical Research, Bristol, UK
siani.smith@bristol.ac.uk

Abstract. The d-Cut problem is to decide if a graph has an edge cut
such that each vertex has at most d neighbours at the opposite side of
the cut. If d = 1, we obtain the intensively studied Matching Cut
problem. The d-Cut problem has been studied as well, but a systematic
study for special graph classes was lacking. We initiate such a study and
consider classes of bounded diameter, bounded radius and H-free graphs.
We prove that for all d ≥ 2, d-Cut is polynomial-time solvable for graphs
of diameter 2, (P3 + P4)-free graphs and P5-free graphs. These results
extend known results for d = 1. However, we also prove several NP-
hardness results for d-Cut that contrast known polynomial-time results
for d = 1. Our results lead to full dichotomies for bounded diameter and
bounded radius and to partial dichotomies for H-free graphs; for d ≥ 3,
our classification of d-Cut for H-free graphs only has three open cases.

Keywords: matching cut · d-cut · diameter · H-free graph

1 Introduction

We consider the generalization d-Cut of a classic graph problem Matching
Cut (1-Cut). First, we explain the original graph problem. Consider a connected
graph G = (V,E), and let M ⊆ E be a subset of edges of G. The set M is an
edge cut of G if it is possible to partition V into two non-empty sets B (set
of blue vertices) and R (set of red vertices) in such a way that M is the set of
all edges with one end-vertex in B and the other one in R. Now, suppose that
M is in addition also a matching, that is, no two edges in M have a common
end-vertex. Then M is said to be a matching cut. See Figure 1 for an example.

Graphs with matching cuts were introduced in the context of number the-
ory [14] and have various other applications [1, 8, 11, 26]. The Matching Cut

2 F. Lucke, A. Momeni, D. Paulusma, S. Smith

u v. . .
i edges

Fig. 1: Left: a graph with a matching cut (1-cut). Middle: a graph with a 3-cut
but no d-cut for d ≤ 2. Right: the graph H∗

i .

problem is to decide if a connected graph has a matching cut. This problem was
shown to be NP-complete by Chvátal [7]. Several variants and generalizations
of matching cuts are known. In particular, a perfect matching cut is a matching
cut that is a perfect matching, whereas a disconnected perfect matching is a per-
fect matching containing a matching cut. The corresponding decision problems
Perfect Matching Cut [15] and Disconnected Perfect Matching [6]
are also NP-complete; see [3, 10, 18, 20, 24] for more complexity results for these
two problems. The optimization versions Maximum Matching Cut and Min-
imum Matching Cut are to find a matching cut of maximum and minimum
size in a connected graph, respectively; see [19, 23] for more details.

Our Focus. Matching cuts have also been generalized as follows. For an inte-
ger d ≥ 1 and a connected graph G = (V,E), a set M ⊆ E is a d-cut of G if it is
possible to partition V into two non-empty sets B and R, such that: (i) the set
M is the set of all edges with one end-vertex in B and the other one in R; and
(ii) every vertex in B has at most d neighbours in R, and vice versa (see also
Figure 1). Note that a 1-cut is a matching cut. We consider the d-Cut problem:
does a connected graph have a d-cut? Here, d ≥ 1 is a fixed integer, so not
part of the input. Note that 1-Cut is Matching Cut. The d-Cut problem was
introduced by Gomes and Sau [13] who proved its NP-completeness for all d ≥ 1.

Our Goal. To get a better understanding of the hardness of an NP-complete
graph problem, it is natural to restrict the input to belong to some special graph
classes. We will first give a brief survey of the known complexity results for
Matching Cut and d-Cut for d ≥ 2 under input restrictions. As we will see,
for Matching Cut many more results are known than for d-Cut with d ≥ 2.
Our goal is to obtain the same level of understanding of the d-Cut problem for
d ≥ 2. This requires a currently lacking systematic study into the complexity of
this problem. We therefore consider the following research question:

For which graph classes G does the complexity of d-Cut, restricted to graphs
from G, change if d ≥ 2 instead of d = 1?

As testbeds we take classes of graphs of bounded diameter, graphs of bounded
radius and H-free graphs. The distance between two vertices u and v in a con-
nected graph G is the length (number of edges) of a shortest path between u
and v in G. The eccentricity of a vertex u is the maximum distance between u
and any other vertex of G. The diameter of G is the maximum eccentricity over
all vertices of G, whereas the radius of G is the minimum eccentricity over all

Finding d-Cuts in Graphs 3

vertices of G. A graph G is H-free if G does not contain a graph H as an induced
subgraph, that is, G cannot be modified into H by vertex deletions.

Existing Results. We focus on classical complexity results; see [2, 13] for exact
and parameterized complexity results for d-Cut. Let K1,r denote the (r + 1)-
vertex star, which has vertex set {u, v1, . . . , vr} and edges uvi for i ∈ {1, . . . , r}.
Chvátal [7] showed that Matching Cut is NP-complete even for K1,4-free
graphs of maximum degree 4, but polynomial-time solvable for graphs of max-
imum degree at most 3. Gomes and Sau [13] extended these results by proving
that for every d ≥ 2, the d-Cut problem is NP-complete for graphs in which
every vertex has degree 2d+2, but polynomial-time solvable for graphs of max-
imum degree at most d + 2. Feghali et al. [10] proved that for every d ≥ 1 and
every g ≥ 3, there is a function f(d), such that d-Cut is NP-complete for bipar-
tite graphs of girth at least g and maximum degree at most f(d). The girth of a
graph G that is not a forest is the length of a shortest induced cycle in G. It is
also known that Matching Cut is polynomial-time solvable for graphs of diam-
eter at most 2 [5, 17], and even radius at most 2 [22], while being NP-complete
for graphs of diameter 3 [17], and thus radius at most 3. Hence, we obtain:

Theorem 1 ([17, 22]). For r ≥ 1, Matching Cut is polynomial-time solvable
for graphs of diameter r and graphs of radius r if r ≤ 2 and NP-complete if r ≥ 3.

To study a problem in a systematic way on graph classes that can be character-
ized by forbidden induced subgraphs, an often used approach is to first focus on
the classes of H-free graphs. As Matching Cut is NP-complete for graphs of
girth g for every g ≥ 3 [10] and for K1,4-free graphs [7], Matching Cut is NP-
complete for H-free graphs whenever H has a cycle or is a forest with a vertex
of degree at least 4. What about when H is a forest of maximum degree 3?

We let Pt be the path on t vertices. We denote the disjoint union of two
vertex-disjoint graphs G1 +G2 by G1 +G2 = (V (G1)∪V (G2), E(G1)∪E(G2)).
We let sG be the disjoint union of s copies of G. Feghali [9] proved the existence of
an integer t such that Matching Cut is NP-complete for Pt-free graphs, which
was narrowed down to (3P5, P15)-free graphs in [24] and to (3P6, 2P7, P14)-free
graphs in [18]. Let H∗

1 be the “H”-graph, which has vertices u, v, w1, w2, x1, x2

and edges uv, uw1, uw2, vx1, vx2. For i ≥ 2, let H∗
i be the graph obtained from

H∗
1 by subdividing uv exactly i−1 times; see Figure 1. It is known that Match-

ing Cut is NP-complete for (H∗
1 , H

∗
3 , H

∗
5 , . . .)-free bipartite graphs [25] and for

(H∗
1 , . . . ,H

∗
i)-free graphs for every i ≥ 1 [10].

On the positive side, Matching Cut is polynomial-time solvable for claw-
free graphs (K1,3-free graphs) and for P6-free graphs [24]. Moreover, if Match-
ing Cut is polynomial-time solvable for H-free graphs for some graph H, then
it is so for (H + P3)-free graphs [24].

For two graphs H and H ′, we write H ⊆i H
′ if H is an induced subgraph

of H ′. Combining the above yields a partial classification (see also [10, 23]):

Theorem 2 ([4, 7, 10, 18, 22, 24, 25]). For a graph H, Matching Cut on
H-free graphs is

4 F. Lucke, A. Momeni, D. Paulusma, S. Smith

– polynomial-time solvable if H ⊆i sP3 +K1,3 or sP3 + P6 for some s ≥ 0;
– NP-complete if H ⊇i K1,4, P14, 2P7, 3P5, Cr for some r ≥ 3, or H∗

i for
some i ≥ 1.

Our Results. We first note that d-Cut is straightforward to solve for graphs
of radius 1 (i.e., graphs with a dominating vertex) and extend Theorem 1:

Theorem 3. Let d ≥ 2. For r ≥ 1, d-Cut is polynomial-time solvable for graphs
of diameter r if r ≤ 2 and NP-complete if r ≥ 3.

Theorem 4. Let d ≥ 2. For r ≥ 1, d-Cut is polynomial-time solvable for graphs
of radius r if r ≤ 1 and NP-complete if r ≥ 2.

Comparing Theorem 1 with Theorems 3 and 4 shows no difference in complexity
for diameter but a complexity jump from d = 1 to d = 2 for radius.

For every d ≥ 2, we also give polynomial-time algorithms for d-Cut for (P3+
P4)-free graphs and P5-free graphs. Our proof techniques use novel arguments, as
we can no longer rely on a polynomial-time algorithm for radius 2 or a reduction
to 2-SAT as for d = 1 [17, 22]. Moreover, we show that for d ≥ 2, d-Cut is
polynomial-time solvable for (H + P1)-free graphs whenever d-Cut is so for H-
free graphs, thus the cases {H+sP1 | s ≥ 0} are all (polynomially) equivalent. All
these results extend the known results for d = 1, as can be seen from Theorem 2.

As negative results, we prove that d-Cut is NP-complete for 3P3-free graphs
for d = 2, which we can strengthen to 3P2-free graphs for d ≥ 3. We also show
that for d ≥ 2, d-Cut is NP-complete for (H∗

1 , H
∗
2 , . . . ,H

∗
i)-free graphs for every

i ≥ 1. Finally, we prove that d-Cut is NP-complete for K1,4-free graphs for
d = 2, which we can strengthen to line graphs for d ≥ 3. The NP-completeness
for graphs of large girth from [10] implies that for d ≥ 2, d-Cut is NP-complete
for H-free graphs if H has a cycle. Hence, by combining the above results, we
obtain the following two partial complexity classifications for d = 2 and d ≥ 3:

Theorem 5. For a graph H, 2-Cut on H-free graphs is

– polynomial-time solvable if H ⊆i sP1 +P3 +P4 or sP1 +P5 for some s ≥ 0;
– NP-complete if H ⊇i K1,4, 3P3, Cr for some r ≥ 3, or H∗

i for some i ≥ 1.

Theorem 6. Let d ≥ 3. For a graph H, d-Cut on H-free graphs is

– polynomial-time solvable if H ⊆i sP1 +P3 +P4 or sP1 +P5 for some s ≥ 0;
– NP-complete if H ⊇i K1,3, 3P2, Cr for some r ≥ 3, or H∗

i for some i ≥ 1.

Theorem 5 leaves an infinite number of non-equivalent open cases for d = 2.
In contrast, Theorem 6 leaves only three non-equivalent open cases for d ≥ 3,
namely when H = 2P4, H = P6 and H = P7.

From Theorems 2–6 we can make the following observations. First, the case
where H = K1,3 is still open for d = 2. We could only prove NP-completeness
of d-Cut for K1,4-free graphs. However, for K1,3-free graphs, there is still a
complexity jump from d = 1 to d = 3 (which might possibly occur even at

Finding d-Cuts in Graphs 5

d = 2). Second, there are complexity jumps from d = 1 to d = 2 for sP3-free
graphs when s = 3, and from d = 1 to d = 3 for sP2-free graphs when s = 3; we
do not know if the latter jump even occurs at d = 2.

We prove our polynomial-time results in Section 3 and our NP-completeness
results in Section 4. We finish our paper with several open problems in Section 5.
We start with providing some basic results in Section 2.

2 Preliminaries

The line graph L(G) of a graph G = (V,E) has the edges of G as its vertices,
with an edge between two vertices in L(G) if and only if the corresponding edges
in G share an end-vertex. Let u ∈ V . The set N(u) = {v ∈ V | uv ∈ E} is the
neighbourhood of u, and |N(u)| is the degree of u. Let S ⊆ V . The neighbourhood
of S is the set N(S) =

⋃
u∈S N(u) \ S, and G[S] denotes the subgraph of G

induced by S. If every vertex of V \S has a neighbour in S, then S is a dominating
set of G. We also say that G[S] dominates G. The domination number of G is
the size of a smallest dominating set of G. Let T ⊆ V \ S. The sets S and T are
complete to each other if every vertex of S is adjacent to every vertex of T .

A red-blue colouring of a graph G assigns every vertex of G either the colour
red or blue (see, e.g., [9, 22]). For d ≥ 1, a red-blue colouring is a red-blue d-
colouring if every blue vertex has at most d red neighbours; every red vertex has
at most d blue neighbours; and both colours red and blue are used at least once.
See Figure 1 for examples of a red-blue 1-colouring and a red-blue 3-colouring.

Observation 7 For every d ≥ 1, a connected graph G has a d-cut if and only
if it has a red-blue d-colouring.

If every vertex of a set S ⊆ V has the same colour (either red or blue) in a
red-blue colouring, then S, and also G[S], are monochromatic. An edge with a
blue and a red end-vertex is bichromatic. Note that for every d ≥ 1, the graph
K2d+1 is monochromatic in every red-blue d-colouring, and that every connected
graph with a red-blue d-colouring contains a bichromatic edge.

We now generalize a known lemma for Matching Cut (see, e.g., [22])).

Lemma 8. For d, g ≥ 1, it is possible to find in O(2gndg+2)-time a red-blue
d-colouring (if it exists) of a graph G with n vertices and domination number g.

Proof. Let d, g ≥ 1 and G be a graph on n vertices with domination number g.
Let D be a dominating set D of G that has size at most g.

We consider all 2|D| ≤ 2g options of giving the uncoloured vertices of D
either colour red or blue. For each red-blue colouring of D we do as follows.
For every red vertex of D, we consider all O(nd) options of colouring at most d
of its uncoloured neighbours blue, and we colour all of its other uncoloured
neighbours red. Similarly, for every blue vertex of D, we consider all O(nd)
options of colouring at most d of its uncoloured neighbours red, and we colour
all of its other uncoloured neighbours blue. As D dominates G, we obtained a

6 F. Lucke, A. Momeni, D. Paulusma, S. Smith

red-blue colouring c of the whole graph G. We discard the option if c is not a
red-blue d-colouring of G.

We note that any red-blue d-colouring of G, if it exists, will be found by the
above algorithm. As the total number of options is O(2gndg) and checking if a
red-blue colouring is a red-blue d-colouring takes O(n2) time, our algorithm has
total running time O(2gndg+2). ⊓⊔

Let X = {x1, x2, ..., xn} be a set of variables and C = {C1, C2, ..., Cm} be a
set of clauses over X. The problem Not-All-Equal Satisfiability asks if
(X, C) has a satisfying not-all-equal truth assignment ϕ that is, ϕ sets, in each
Ci, at least one literal true and at least one literal false. The next theorem is
well-known (where the second part follows from a folklore trick; see e.g. [12]).

Theorem 9 ([27]). Not-All-Equal Satisfiability is NP-complete even for

– instances, in which each literal occurs only positively, and in which each
clause contains exactly three literals;

– instances, in which each literal occurs only positively and in two or three dif-
ferent clauses, and in which each clause contains either two or three literals.

3 Polynomial-Time Results

We now show our polynomial-time results for d-Cut for d ≥ 2, which comple-
ment corresponding known polynomial-time results for d = 1 (see Section 1) and
their proofs yield alternative proofs for d = 1. We omit the proof of our first
result.

Theorem 10. For d ≥ 2, d-Cut is polynomial-time solvable for graphs of di-
ameter at most 2.

Theorem 11. For d ≥ 2, d-Cut is polynomial-time solvable for P5-free graphs.

Proof. Let d ≥ 2. Let G = (V,E) be a connected P5-free graph on n vertices.
As G is P5-free and connected, G has a dominating set D, such that either D
induces a cycle on five vertices or D is a clique [21]. Moreover, we find such a
dominating set D in O(n3) time [16]. If |D| ≤ 3d, then we apply Lemma 8. Now
assume that |D| ≥ 3d + 1 ≥ 7, and thus D is a clique. If D = V , then G has
no d-cut, as |D| ≥ 3d+ 1 and D is a clique. Assume that D ⊊ V , so G−D has
at least one connected component. Below we explain how to find in polynomial
time a d-cut of G, or to conclude that G does not have a d-cut. By Observation 7,
we need to decide in polynomial time if G has a red-blue d-colouring.

We first enter the blue phase of our algorithm. As |D| ≥ 3d + 1 and D is
a clique, D is monochromatic in any red-blue d-colouring of G. Hence, we may
colour, without loss of generality, all the vertices of D blue, and we may colour
all vertices of every connected component of G−D except one connected com-
ponent blue as well. We branch over all O(n) options of choosing the connected

Finding d-Cuts in Graphs 7

D

L1

. . .D1

L2

...D2

D

Di

Li

z y1

xj x1

wj w1

Fig. 2: The graph G in the blue phase (left) and in the red phase: Case 2 (right).

component L1 of G−D that will contain a red vertex.5 For each option, we are
going to repeat the process of colouring vertices blue until we colour at least one
vertex red. We first explain how this process works if we do not do this last step.

As L1 is connected and P5-free, we find in O(n3) time (using the algorithm
of [16]) a dominating set D1 of L1 that is either a cycle on five vertices or a
clique. We colour the vertices of D1 blue. As we have not used the colour red
yet, we colour all vertices of every connected component of L1 −D1 except one
connected component blue. So, we branch over all O(n) options of choosing the
connected component L2 of L1 − D1 that will contain a red vertex. Note that
every uncoloured vertex of G, which belongs to L2, has both a neighbour in D
(as D dominates G) and a neighbour in D1 (as D1 dominates L1). We now find
a dominating set D2 of L2 and a connected component L3 of G − D2 with a
dominating set D3, and so on. See also Figure 2.

If we repeat the above process more than d times, we have either coloured ev-
ery vertex of G blue, or we found d+1 pairwise disjoint, blue sets D,D1, . . . , Dd,
such that every uncoloured vertex u has a neighbour in each of them. The latter
implies that u has d + 1 blue neighbours, so u must be coloured blue as well.
Hence, in each branch, we would eventually end up with the situation where all
vertices of G will be coloured blue. To prevent this from happening, we must
colour, in each branch, at least one vertex of Di red, for some 1 ≤ i ≤ d− 1. As
soon as we do this, we end the blue phase for the branch under consideration,
and our algorithm enters the red phase.

Each time we have O(n) options to select a connected component Li and,
as argued above, we do this at most d times. Hence, we enter the red phase for
O(nd) branches in total. From now on, we call these branches the main branches

5 For d = 1, up to now, the same approach is used for P5-free graphs [9]. But the
difference is that for d = 1, the algorithm and analysis is much shorter: one only has
to check, in this stage, if there is a component of G −D, whose vertices can all be
safely coloured red. Then one either finds a matching cut, or G has no matching cut.

8 F. Lucke, A. Momeni, D. Paulusma, S. Smith

of our algorithm. For a main branch, we say that we quit the blue phase at level i
if we colour at least one vertex of Di red. If we quit the blue phase for a main
branch at level i, for some 1 ≤ i ≤ d−1, then we have constructed, in polynomial
time, pairwise disjoint sets D, D1, . . . , Di and graphs L1, . . . , Li, such that:

– for every h ∈ {1, . . . , i− 1}, Lh+1 is a connected component of Lh −Dh;
– every vertex of G that does not belong to Li has been coloured blue;
– for every h ∈ {1, . . . , i}, Dh induces a cycle on five vertices or is a clique;
– D dominates G, so, in particular, D dominates Li; and
– for every h ∈ {1, . . . , i}, Dh dominates Lh.

We now prove the following claim, which shows that we branched correctly.

Claim 11.1 The graph G has a red-blue d-colouring that colours every vertex of
D blue if and only if we have quit a main branch at level i for some 1 ≤ i ≤ d−1,
such that G has a red-blue d-colouring that colours at least one vertex of Di red
and all vertices not in Li blue.

Proof of the Claim. Suppose G has a red-blue d-colouring c that colours every
vertex of D blue (the reverse implication is immediate). By definition, c has
coloured at least one vertex u in G −D red. As we branched in every possible
way, there is a main branch that quits the blue phase at level i, such that u
belongs to Li for some 1 ≤ i ≤ d − 1. We pick a main branch with largest
possible i, so u is not in Li+1. Hence, u ∈ Di. We also assume that no vertex u′

that belongs to some Dh with h < i is coloured red by c, as else we could take u′

instead of u. Hence, c has coloured every vertex in D1∪ . . .∪Di−1 (if i ≥ 2) blue.
Therefore, we may assume that every vertex v /∈ D ∪ D1 ∪ . . . ∪ Di−1 ∪ V (Li)
has been coloured blue by c. If not, may just recolour all such vertices v blue
for the following reasons: u is still red and no neighbour of v is red, as after a
possible recolouring all red vertices belong to Li, while v belongs to a different
component of G− (D ∪D1 ∪ · · · ∪Di−1) than Li. So, we proved the claim. ◁

Claim 11.1 allows us to do some specific branching once we quit the blue phase
for a certain main branch at level i. Namely, all we have to do is to consider all
options to colour at least one vertex of Di red. We call these additional branches
side branches. We distinguish between the following two cases:

Case 1. |Di| ≤ 2d+ 1.
We consider each of the at most 22d+1 options to colour the vertices of Di

either red or blue, such that at least one vertex of Di is coloured red. Next, for
each vertex u ∈ Di, we consider all O(nd) options to colour at most d of its
uncoloured neighbours blue if u is red, or red if u is blue. Note that the total
number of side branches is O(22d+1nd(2d+1)). As Di dominates Li and the only
uncoloured vertices were in Li, we obtained a red-blue colouring c of G. We
check in polynomial time if c is a red-blue d-colouring of G. If so, we stop and
return c. If none of the side branches yields a red-blue d-colouring of G, then by
Claim 11.1 we can safely discard the main branch under consideration.

Finding d-Cuts in Graphs 9

Case 2. |Di| ≥ 2d+ 2.
Recall that Di either induces a cycle on five vertices or is a clique. As |Di| ≥
2d + 2 ≥ 6, we find that Di is a clique. As |Di| ≥ 2d + 2, this means that Di

must be monochromatic, and thus every vertex of Di must be coloured red. We
check in polynomial time if Di contains a vertex with more than d neighbours
in D (which are all coloured blue), or if D contains a vertex with more than d
neighbours in Di (which are all coloured red). If so, we may safely discard the
main branch under consideration due to Claim 11.1.

From now on, assume that every vertex in Di has at most d neighbours in D,
and vice versa. By construction, every uncoloured vertex belongs to Li − Di.
Hence, if V (Li) = Di, we have obtained a red-blue colouring c of G. We check,
in polynomial time, if c is also a red-blue d-colouring of G. If so, we stop and
return c. Otherwise, we may safely discard the main branch due to Claim 11.1.

Now assume V (Li) ⊋ Di. We colour all vertices in Li −Di that are adjacent
to at least d+1 vertices in D blue; we have no choice as the vertices in D are all
coloured blue. If there are no uncoloured vertices left, we check in polynomial
time if the obtained red-blue colouring is a red-blue d-colouring of G. If so, we
stop and return it; else we may safely discard the main branch due to Claim 11.1.

Assume that we still have uncoloured vertices left. We recall that these ver-
tices belong to Li−Di, and that by construction they have at most d neighbours
in D. Consider an uncoloured vertex w1. As Di dominates Li, we find that w1

has a neighbour x1 in Di. As D dominates G, we find that x1 is adjacent to
some vertex y1 ∈ D. We consider all O(n2d) possible ways to colour the un-
coloured neighbours of x1 and y1, such that x1 (which is red) has at most d blue
neighbours, and y1 (which is blue) has at most d red neighbours. If afterwards
there is still an uncoloured vertex w2, then we repeat this process: we choose
a neighbour x2 of w2 in Di (so x2 is coloured red). We now branch again by
colouring the uncoloured neighbours of x2. If we find an uncoloured vertex w3,
then we find a neighbour x3 of w3 in Di and so on. So, we repeat this process
until there are no more uncoloured vertices. This gives us 2p distinct vertices
w1, . . . , wp, x1, . . . , xp for some integer p ≥ 1, together with vertex y1. The total
number of side branches for the main branch is O(n2pd).

We claim that p ≤ d. For a contradiction, assume that p ≥ d + 1 ≥ 3. Let
2 ≤ j ≤ p. As Di is a clique that contains x1 and xj , we find that x1 and xj

are adjacent. Hence, G contains the 4-vertex path wjxjx1y1. By construction,
wj was uncoloured after colouring the neighbours of x1 and y1, so wj is neither
adjacent to x1 nor to y1. This means that wjxjx1y1 is an induced P4 if and only
if xj is not adjacent to y1. Recall that wj and every vertex of Di, so including
x1 and xj , has at most d neighbours in D. As |D| ≥ 3d+ 1, this means that D
contains a vertex z that is not adjacent to any of wj , xj , x1. As D is a clique,
z is adjacent to y1. Hence, xj must be adjacent to y1, as otherwise wjxjx1y1z
is an induced P5; see also Figure 2. The latter is not possible as G is P5-free.
We now find that y1 is adjacent to x1, . . . , xp, which all belong to Di. As we
assumed that p ≥ d + 1 and every vertex of D, including y1, is adjacent to at
most d vertices of Di, this yields a contradiction. We conclude that p ≤ d.

10 F. Lucke, A. Momeni, D. Paulusma, S. Smith

As p ≤ d, the total number of side branches is O(n2d2

). Each side branch
yields a red-blue colouring of G. We check in polynomial time if it is a red-blue
d-colouring of G. If so, then we stop and return it; else we can safely discard the
side branch, and eventually the associated main branch, due to Claim 11.1.

The correctness of our algorithm follows from its description. We now analyze its
running time. We started the algorithm with searching for a set D. If D has size
at most 3d, then we applied Lemma 8, which takes polynomial time. Otherwise
we argue as follows. The total number of main branches is O(nd). For each main
branch we have either O(22d+1nd(2d+1)) side branches (Case 1) or O(n2d2

) side
branches (Case 2). Hence, the total number of branches is O(nd22d+1nd(2d+1)).
As d is fixed, this number is polynomial. As processing each branch takes polyno-
mial time (including the construction of the Di-sets and Li-graphs), we conclude
that our algorithm runs in polynomial time. This completes the proof. ⊓⊔

We omit the proofs of our final two polynomial-time results.

Theorem 12. For every d ≥ 2, d-Cut is polynomial-time solvable for (P3+P4)-
free graphs.

Theorem 13. For every graph H and every d ≥ 2, if d-Cut is polynomial-time
solvable for H-free graphs, then it is so for (H + P1)-free graphs.

4 NP-Completeness Results

In this section we show our NP-completeness results for d-Cut for d ≥ 2 (some
of these results only hold for d ≥ 3). As d-Cut is readily seen to be in NP
for each d ≥ 1, we only show NP-hardness in our proofs. The proof of our first
result, which we omit, generalizes the arguments of the corresponding proof for
Matching Cut [7].

Theorem 14. For d = 2, d-Cut is NP-complete for K1,4-free graphs.

For d ≥ 3, we prove a stronger result than Theorem 14. An edge colouring of a
graph G = (V,E) with colours red and blue is called a red-blue edge colouring of
G, which is a red-blue edge d-colouring of G if every edge of G is adjacent to at
most d edges of the other colour and both colours are used at least once. Now,
G has a red-blue edge d-colouring if and only if L(G) has a red-blue d-colouring.
A set S ⊆ V is monochromatic if all edges of G[S] are coloured alike.

Theorem 15. For d ≥ 3, d-Cut is NP-complete for line graphs.

Proof. We reduce from Not-All-Equal Satisfiability with positive liter-
als only and in which each clause contains exactly three literals. This problem
is NP-complete by Theorem 9. Let (X, C) be such an instance, where X =
{x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm}.

We construct, in polynomial time, a graph G; see also Figure 3:

Finding d-Cuts in Graphs 11

vc

Vxi Vxi VxjVxj

S S

vxi vxj

vSxi vSxi vSxjvSxj

vxi1 vxid−1

.
vxi1 vxid−1 v

xj
1 v

xj
d−1 v

xj
1 v

xj
d−1

.

Vxk Vxk

vxk

v
xk
1 v

xk
d−1

.
v
xk
1 v

xk
d−1

vSxk vSxk

vxic v
xj
c vxkc

vc1 uc1vcd−2 ucd−2

.

Fig. 3: An example of vertices in the reduction related to clause C = {xi, xj , xk}.

– Build a clique S = {vSx1
, . . . , vSxn

} ∪ {vc11 , . . . , vc1d−2} ∪ · · · ∪ {vcm1 , . . . , vcmd−2}.

– Build a clique S = {vSx1
, . . . , vSxn

} ∪ {uc1
1 , . . . , uc1

d−2} ∪ · · · ∪ {ucm
1 , . . . , ucm

d−2}.

– For every x ∈ X, add cliques Vx = {vx1 , . . . , vxd−1} and Vx = {vx1 , . . . , vxd−1}.

– For every x ∈ X, add a vertex vx with edges vxv
S
x , vxvSx , vxvx1 , . . . , vxvxd−1,

vxv
x
1 , . . . , vxv

x
d−1.

– For every C ∈ C, add a clause vertex vc with edges vcvc1, . . . , vcvcd−2, vcu
c
1, . . . ,

vcu
c
d−2, and if C = {xi, xj , xk}, also add a vertex vxi

c to Vxi , a vertex v
xj
c to

Vxj and a vertex vxk
c to Vxk

, and add the edges vcv
xi
c , vcv

xj
c , vcvxk

c .

– Add, if needed, some auxiliary vertices to S, S, Vx1 , . . . , Vxn , Vx1 , . . . , Vxn ,
such that in the end all these sets are cliques of size at least 2d+ 2.

We claim that (X, C) has a satisfying not-all-equal truth assignment if and only
if the line graph L(G) has a d-cut. Recall that, by Observation 7, L(G) has a
d-cut if and only if L(G) has a red-blue d-colouring. Furthermore, L(G) has a
red-blue d-colouring if and only if G has a red-blue edge d-colouring. Hence, we
will show that (X, C) has a satisfying not-all-equal truth assignment if and only
if G has a red-blue edge d-colouring.

First suppose (X, C) has a satisfying not all-equal truth assignment. We
colour all edges in S red and in S blue. For every x ∈ X set to true, we colour the
edges in Vx red and those in Vx blue. For every x ∈ X set to false, we colour the
edges in Vx blue and those in Vx red. Consider an edge uv, with v ∈ {vx, vc | x ∈
X, c ∈ C}. Then u is contained in a clique D ∈ {S, S, Vx1 , Vx1 , . . . , Vxn , Vxn}.
Colour uv with the same colour as the edges of D.

Now, let D ∈ {S, S, Vx1
, Vx1

, . . . , Vxn
, Vxn

}. Every uu′ ∈ E(D) is adjacent to
only edges of the same colour. For u ∈ V (D) and v ∈ {vx, vc | x ∈ X, c ∈ C},
the edge uv has the same colour as all edges in D. Since S and S have different
colours and Vx and Vx have different colours for every x ∈ X, uv has at most
d adjacent edges of each colour. Hence, we obtained a red-blue edge d-colouring
of G.

12 F. Lucke, A. Momeni, D. Paulusma, S. Smith

Now suppose that G has a red-blue edge d-colouring. We prove a series of claims:

Claim 15.1 Every clique D ∈ {S, S, Vx1
, Vx1

, . . . , Vxn
, Vxn

} is monochromatic.

Proof of the Claim. First assume G[D] has a red edge uv and a blue edge uw. As
|D| ≥ 2d+2, we know that u is incident to at least 2d+1 edges. Hence, we may
assume without loss of generality that u is incident to at least d + 1 red edges.
However, now the blue edge uw is adjacent to d+ 1 red edges, a contradiction.
As every u ∈ D is incident to only edges of the same colour and D is a clique, it
follows that D is monochromatic. ◁

By Claim 15.1, we can speak about the colour (either red or blue) of a clique D
if D belongs to {S, S, Vx1 , Vx1 , . . . , Vxn , Vxn}.

Claim 15.2 For each x ∈ X and c ∈ C, each edge from vx or vc to a vertex in
a clique D ∈ {S, S, Vx1

, Vx1
, . . . , Vxn

, Vxn
} has the same colour as D.

Proof of the Claim. This follows directly from the fact that |D| ≥ 2d+ 1. ◁

Claim 15.3 The cliques S and S have different colours if and only if for every
variable x ∈ X, it holds that Vx and Vx have different colours.

Proof of the Claim. First suppose S and S have different colours, say S is red
and S is blue. For a contradiction, assume there exists a variable x ∈ X, such
that Vx and Vx have the same colour, say blue. By Claim 15.2, we have that the
2d− 2 edges between vx and Vx ∪ Vx and the edge vxv

S
x are all blue, while vxv

S
x

is red. Hence, the red edge vxv
S
x is adjacent to at least 2d−1 ≥ d+1 blue edges,

a contradiction.
Now suppose that for all x ∈ X, Vx and Vx have different colours, say Vx

is red and Vx is blue. For a contradiction, assume that S and S have the same
colour, say blue. Let x ∈ X. By Claim 15.2, we have that the edges between vx
and Vx are red, while all other edges incident to vx are blue. Now every (red)
edge between vx and Vx is incident to d+ 1 blue edges, a contradiction. ◁

Claim 15.4 The cliques S and S have different colours.

Proof of the Claim. For a contradiction, assume S and S have the same colour,
say blue. By Claim 15.2, we have that vxvSx is blue. By Claim 15.3, we find that
for every x ∈ X, Vx and Vx have the same colour. If Vx and Vx are both red, then
the 2d−2 edges between vx and Vx∪Vx are red due to Claim 15.2. Consequently,
the blue edge vxv

S
x is adjacent to 2d− 2 ≥ d+ 1 red edges. This is not possible.

Hence, Vx and Vx are blue, and by Claim 15.2, all edges between vx and Vx ∪Vx

are blue as well. This means that every edge of G is blue, a contradiction. ◁

Claim 15.5 For every clause C = {xi, xj , xk} in C, the cliques Vxi
, Vxj

and
Vxk

do not all have the same colour.

Finding d-Cuts in Graphs 13

Proof of the Claim. For a contradiction, assume Vxi
, Vxj

and Vxk
have the same

colour, say blue. By Claim 15.4, S and S are coloured differently, say S is red
and S is blue. By Claim 15.2, we have that the three edges vcv

xi
c , vcv

xj
c and

vcv
xk
c are all blue, just like the d− 2 edges between vc and S, while every edge

between vc and S is red. Consider such a red edge e. We find that e is adjacent
to d+ 1 blue edges, a contradiction. ◁

For each variable x, if the clique Vx is coloured red, then set x to true, and else to
false. By Claim 15.5, this yields a satisfying not-all-equal truth assignment. ⊓⊔

We now show a result for d = 2 and strengthen it for d ≥ 3. The gadgets in
the two proofs, which we omit, are similar to each other. They are not 2P4-free,
P6-free or P7-free.

Theorem 16. For d = 2, d-Cut is NP-complete for 3P3-free graphs of radius 2
and diameter 3.

Theorem 17. For d ≥ 3, d-Cut is NP-complete for 3P2-free graphs of radius 2
and diameter 3.

Our final theorem is a straightforward generalization of the case d = 1 from [24],
and we omit its proof.

Theorem 18. For d ≥ 2 and i ≥ 1, d-Cut is NP-complete for (H∗
1 , . . . ,H

∗
i)-

free graphs.

5 Conclusions

We considered the natural generalization of Matching Cut to d-Cut [13] and
proved dichotomies for graphs of bounded diameter and graphs of bounded ra-
dius. We also started a systematic study on the complexity of d-Cut for H-free
graphs. For d = 2, our results for H-free graphs still left an infinite number of
non-equivalent open cases, just like for d = 1. However, for d = 3 we were able to
obtain an almost-complete complexity classification of d-Cut for H-free graphs,
with only three non-equivalent open cases left. We finish our paper with some
open problems on H-free graphs resulting from our systematic study.

We recall that 1-Cut is polynomial-time solvable for claw-free graphs [4],
while we showed that d-Cut is NP-complete even for line graphs if d ≥ 3. What
is the

complexity of 2-Cut for line graphs and for claw-free graphs? We also ask
whether 2-Cut is polynomial-time solvable for (H + P2)-free graphs if it is for
H-free graphs. A positive answer would reduce the number of non-equivalent
open cases to a finite number for d = 2. In particular, we ask for the complexity
of 2-Cut for 3P2-free graphs. Finally, we recall the only three non-equivalent
open cases H = 2P4, H = P6, H = P7 for d-Cut on H-free graphs for d ≥ 3.
The first and last case are also open for d = 1; for d = 2 all three cases are open.

Acknowledgments. We thank Carl Feghali and Édouard Bonnet for fruitful
discussions.

14 F. Lucke, A. Momeni, D. Paulusma, S. Smith

References

1. Araújo, J., Cohen, N., Giroire, F., Havet, F.: Good edge-labelling of graphs. Dis-
crete Applied Mathematics 160, 2502–2513 (2012)

2. Aravind, N.R., Saxena, R.: An FPT algorithm for Matching Cut and d-Cut.
Proc. IWOCA 2021, LNCS 12757, 531–543 (2021)

3. Bonnet, E., Chakraborty, D., Duron, J.: Cutting Barnette graphs perfectly is hard.
Proc. WG 2023, LNCS 14093, 116–129 (2023)

4. Bonsma, P.S.: The complexity of the Matching-Cut problem for planar graphs and
other graph classes. Journal of Graph Theory 62, 109–126 (2009)

5. Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2.
Theoretical Computer Science 407, 574–582 (2008)

6. Bouquet, V., Picouleau, C.: The complexity of the Perfect Matching-Cut problem.
CoRR abs/2011.03318 (2020)

7. Chvátal, V.: Recognizing decomposable graphs. Journal of Graph Theory 8, 51–53
(1984)

8. Farley, A.M., Proskurowski, A.: Networks immune to isolated line failures. Net-
works 12, 393–403 (1982)

9. Feghali, C.: A note on Matching-Cut in Pt-free graphs. Information Processing
Letters 179, 106294 (2023)

10. Feghali, C., Lucke, F., Paulusma, D., Ries, B.: Matching cuts in graphs of high
girth and H-free graphs. Proc. ISAAC 2023, LIPIcs 283, 28:1–28:16 (2023)

11. Golovach, P.A., Paulusma, D., Song, J.: Computing vertex-surjective homomor-
phisms to partially reflexive trees. Theoretical Computer Science 457, 86–100
(2012)

12. Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring prob-
lems on H-free graphs. Information and Computation 237, 204–214 (2014)

13. Gomes, G., Sau, I.: Finding cuts of bounded degree: complexity, FPT and exact
algorithms, and kernelization. Algorithmica 83, 1677–1706 (2021)

14. Graham, R.L.: On primitive graphs and optimal vertex assignments. Annals of the
New York Academy of Sciences 175, 170–186 (1970)

15. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets.
Nordic Journal of Computing 5, 128–142 (1998)

16. van’t Hof, P., Paulusma, D.: A new characterization of P6-free graphs. Discrete
Applied Mathematics 158, 731–740 (2010)

17. Le, H.O., Le, V.B.: A complexity dichotomy for Matching Cut in (bipartite) graphs
of fixed diameter. Theoretical Computer Science 770, 69–78 (2019)

18. Le, H., Le, V.B.: Complexity results for matching cut problems in graphs without
long induced paths. Proc. WG 2023, LNCS 14093, 417–431 (2023)

19. Le, V.B., Lucke, F., Paulusma, D., Ries, B.: Maximizing matching cuts. CoRR
abs/2312.12960 (2023)

20. Le, V.B., Telle, J.A.: The Perfect Matching Cut problem revisited. Theoretical
Computer Science 931, 117–130 (2022)

21. Liu, J., Zhou, H.: Dominating subgraphs in graphs with some forbidden structures.
Discrete Mathematics 135, 163–168 (1994)

22. Lucke, F., Paulusma, D., Ries, B.: On the complexity of Matching Cut for graphs
of bounded radius and H-free graphs. Theoretical Computer Science 936 (2022)

23. Lucke, F., Paulusma, D., Ries, B.: Dichotomies for Maximum Matching Cut: H-
Freeness, Bounded Diameter, Bounded Radius. Proc. MFCS 2023, LIPIcs 272,
64:1–64:15 (2023)

Finding d-Cuts in Graphs 15

24. Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H-free graphs. Algo-
rithmica 85, 3290–3322 (2023)

25. Moshi, A.M.: Matching cutsets in graphs. Journal of Graph Theory 13, 527–536
(1989)

26. Patrignani, M., Pizzonia, M.: The complexity of the Matching-Cut problem.
Proc. WG 2001, LNCS 2204, 284–295 (2001)

27. Schaefer, T.J.: The complexity of satisfiability problems. Proc. STOC 1978 pp.
216–226 (1978)

Citation on deposit: Lucke, F., Momeni, A.,

Paulusma, D., & Smith, S. (2024, June). Finding d-

cuts in graphs of bounded diameter, graphs of

bounded radius and H-free graphs,. Presented at

WG, Gozd Martuljek, Slovenia

For final citation and metadata, visit Durham Research Online URL:

https://durham-repository.worktribe.com/output/3229797

Copyright statement: This accepted manuscript is licensed under the Creative

Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/2873617

