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Abstract—This article investigates the uplink of a reconfigurable
intelligent surface (RIS)-assisted wireless communication system.
In this uplink, the RIS is powered by the energy harvested from
ambient energy sources, and assists multiple users in uploading
data to a multi-antenna base station (BS). A hybrid architecture
is proposed for the RIS, so that each reflecting unit at the RIS
is enabled to select its working mode among passive, active and
deactivated modes. In this way, the RIS can schedule the energy in
a fined-grained manner. Meanwhile, a new protocol is proposed to
enable the RIS to schedule the harvested energy with a forward-
looking approach. Under the hybrid RIS architecture and the
newly proposed protocol, an optimisation problem is formulated
to jointly optimise the working modes of reflecting units, the
amplitude coefficient of active reflecting units, the receive beam-
forming at the BS, the power allocation at the users, with the goal
to maximize the long-term system throughput by considering a
minimum-rate-requirements constraint at each user and an energy
scheduling constraint at the RIS. The formulated problem is an
intractable dynamic and mixed-integer nonlinear programming.
To solve this problem, a hierarchical deep reinforcement learning
based framework is proposed. Simulation results show that, by
using hybrid RISs, our self-powered wireless system can achieve
up to 12 (5) times of the throughput than the throughput achieved
by a self-powered wireless system with just active (passive) RISs
and myopic energy scheduling.

Index Terms—Reconfigurable intelligent surface, resource allo-
cation, deep reinforcement learning, energy harvesting.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are one of the
innovative technologies that can improve the performance
of wireless communication systems, and thus have attracted
tremendous research attentions in recent years [1]–[9]. Specif-
ically, a RIS generally consists of multiple reflecting units
capable of adjusting the phase of incoming signals by fine-
tuning the phase shifts of the passive meta-surface to achieve
favorable scatterings and reflections. Due to the unique function
of RISs, the deployment of RISs in wireless communication
systems can create improved alternative propagation paths to
bypass obstacles and increase the power of signals received at
wireless devices. Moreover, compared to active base stations
and relays, RISs are usually much cheaper, and the cost for
the deployment of RISs is much lower since they can be
easily installed on ceilings or walls. Therefore, integrating
RISs in wireless communication systems can enhance wireless
coverage and offer high spectral efficiency at a low cost, which
makes RIS-assisted wireless communication become one of the
major technologies that could enable 6G [1].
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In most of the literature on RIS-assisted wireless commu-
nications, it was assumed that RISs were powered by power
grids or batteries [2], [3]. Such an assumption can cause
the deployment of RISs to be infeasible in the scenario that
power grids are unavailable or the cost for deploying RISs is
very high since replacing the batteries for RISs mounted at
high or out-of-reach locations is usually costly. Alternatively,
if RISs can be powered by energy harvested from ambient
energy sources, the above-mentioned power supply issue can
be tackled, and thus the design of self-powered RIS-assisted
wireless communication systems with energy-harvesting (EH)
RISs has become a hot topic in recent years [5]–[9].

However, in these studies, it was assumed that the conven-
tional RISs were employed, where all reflecting units were
either passive [5]–[7] or active [8], [9]. Recently, the concept of
hybrid RIS (HRIS) has been proposed, where each reflecting
unit can switch its working mode between two modes (i.e.,
passive and active modes [2] or passive/active and deactivated
modes [3], [4]). When a reflecting unit works in the passive
mode, it just reflects signals by consuming a relatively small
amount of energy; when a reflecting unit works in the active
mode, it amplifies the signals before reflecting them by con-
suming a relatively large amount of energy; when a reflecting
unit works in the deactivated mode, it does not consume any
energy. Therefore, compared to conventional RISs with only
passive or active reflecting units, HRISs can control its power
consumption more flexibly, and thus the energy consumption
is finer-grained. As a result, the studies in [2]–[4] showed
that higher energy efficiency could be achieved by employing
HRISs in RIS-assisted communication systems.

Although it was revealed that employing HRISs could im-
prove energy efficiency, the HRISs studied in [2]–[4] were
assumed to be powered with fixed power supply. Meawhile, it
is noticed that as for self-powered RIS-assisted communication
systems, the amount of harvested energy is limited, and thus
how to improve energy efficiency at the EH RISs is a critical
issue. Therefore, it can be inferred that the performance of a
self-powered RIS-assisted communication system is promising
to be improved by employing a HRIS in the system. To the
best of our knowledge, how to design a self-powered HRIS-
assisted wireless communication system has not been studied
in the literature.

With a self-powered HRIS, the new challenge is that the
HRIS needs to determine its optimal working modes of reflect-
ing units to gain better performance, based on not only the time-
varying channel quality but also the time-varying amount of en-



ergy available at the HRIS. Thus, the design of a self-powered
HRIS-assisted communication system is more challenging than
that of a fixed-supply-powered HRIS-assisted communication
system. Furthermore, although the two-mode HRISs have been
studied in [2]–[4], the energy consumption at the HRISs needs
to be further fine-grained. If the HRISs can switch its working
mode among three modes (i.e., passive, active and deactivated
modes), the energy consumption at HRISs can be controlled
with more degrees of freedom. As a result, the energy efficiency
at the HRISs can be further improved, and the performance
of HRIS-assisted communication systems is promising to be
enhanced.

Motivated by the aforementioned observation, we investigate
an uplink of a self-powered HRIS-assisted wireless commu-
nication system in this article, where multiple users upload
data to a multi-antenna base station (BS) with the assistance of
the HRIS. Similar to [10]–[12], our objective is to maximize
the long-term system throughput. To achieve this, we provide
a new hybrid architecture that enables the HRIS to work in
the passive, active and deactivated modes, and propose a new
protocol to schedule energy for the HRIS by a forward-looking
approach. With the proposed energy scheduling operation for
the HRIS, we formulate a problem to jointly optimise the
working modes of reflecting units, the amplitude coefficient
of active reflecting units, the receive beamforming at the BS,
the transmission power at the users. The formulated problem is
hard to tackle, because the optimisation variables corresponding
to the working modes of reflecting units are binary variables,
which are highly coupled with the amplitude coefficient, and
energy scheduling among different time slots is coupled with
each other. We develop a hierarchical deep reinforcement
learning (DRL)-based framework to solve this problem. Finally,
we conduct numerical evaluations to verify the throughput per-
formance achieved by our self-powered HRIS-assisted uplink
transmissions. The results show that our design can achieve up
to 12 (5) times of the throughput achieved by the existing self-
powered RIS-assisted design with single-mode passive (active)
RISs and myopic energy scheduling, in which the RIS exhausts
all of the available energy at each time slot.

The remaining part of this article is organized as follows. In
Section II, the system model of the investigated self-powered
HRIS-assisted wireless communication system is described, the
forward-looking protocol is presented, and the optimisation
problem is stated. The solution to the problem based on the
hierarchical DRL-based optimisation approach is demonstrated
in Section III. Simulation results are showed in Section IV, and
the conclusions are made in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The considered uplink of the self-powered HRIS-assisted
wireless communication system is illustrated in Fig. 1, which
consists of a BS with M antennas, a self-powered HRIS
equipped with N reflecting units and EH circuits that can
harvest energy from ambient energy sources (e.g. solar, wind,
and etc.), and J single-antenna user terminals. The reflecting
units of the HRIS is enabled to work in active mode, passive
mode or deactivated mode. To this end, each reflecting unit is
proposed to be equipped with a phase-shift circuit, a reflection-
type amplifier and two switches, just as illustrated on the top
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Fig. 1: System model.

right part of Fig. 1, and the working mode of each reflecting
unit is controlled by the two switches. To be specific, for the
n-th reflecting unit (∀n ∈ N ≜ {1, · · · , N}), let αn ∈ {0, 1}
and βn ∈ {0, 1} indicate the statuses of the two switches,
respectively. Then, according to Fig. 1, if βn = 0, the n-th
reflecting unit works in deactivated mode, whatever the value of
αn is. Otherwise, if βn = 1 and αn = 0, the n-th reflecting unit
works in passive mode, since the phase-shift circuit is activated
to control the phase shift of the RIS. Finally, if βn = 1 and
αn = 1, active mode is to be the working mode of the n-
th reflecting unit, since both the phase-shift circuit and the
reflection-type amplifier are activated in this case.

Denote θn and ρn as the phase shift and amplitude co-
efficient of n-th reflecting unit, respectively. Then, based
on the definition of αn and βn, one can define Γ =
diag

(
β1ρ

α1
1 eiθ1 , . . . , βNραN

N eiθN
)

as the reflection coefficient
matrix for the HRIS.

A. The Proposed Forward-Looking Energy Scheduling Proto-
col

To enable the HRIS to efficiently utilize the harvested energy
to assist communications, a forward-looking energy scheduling
protocol is proposed for the uplink of the HRIS-assisted wire-
less communication system. In this protocol, user information
transmissions to the BS are organized in time slots, with each
time slot having a duration denoted by Tf . In each time slot,
the HRIS harvests energy with the EH circuits, while it may
also assist users in uploading data to the BS. Furthermore, as
in [13], [14], it is assumed that the harvested energy is stored
in rechargeable batteries and the HRIS can only consume the
energy harvested in previous time slots. Note that based on
the three-mode architecture for each reflecting unit illustrated
in Fig. 1, the HRIS can consume the harvested energy in a
fine-grained manner. In other words, when the HRIS needs to
increase or decrease the amount of consumed energy, it just
needs to activate or deactivate a portion of its reflecting units,
or enable a portion of activated reflecting units to work in the
active mode or passive mode. As a result, unlike the protocol
in the existing works on self-powered RIS-assisted wireless
communications where the RIS was required to completely
consume the available energy in each time slot [6]–[9], the
HRIS in our work is enabled to consume an appropriate amount
of energy in each time slot, which is based on the energy status



at the HRIS and the channel state of the system in current and
future time slots. Such an approach provides more degrees of
freedom for the HRIS in energy consumption while assisting
communications, and thus the system performance is promising
to be improved. In this article, the energy scheduling approach
is called the forward-looking energy scheduling protocol, since
it can schedule energy according to the current and future
available amount of energy and channel conditions.

B. Signal Model and Energy Model
For the uplink depicted in Fig. 1, the received signal at the

BS in time slot t can be expressed as

y(t) =

J∑
j=1

(
hUB
j (t) +

(
HRB(t)

)H
Γ(t)hUR

j (t)
)√

pj(t)sj(t)

+
(
HRB(t)

)H
Φ(t)zR(t) + zB(t), (1)

where pj(t) is the transmission power of user j with
j ∈ J ≜ {1, · · · , J}, sj(t) is the signal sent by user j which
is a complex Gaussian random variable with zero mean and
unit variance, hUB

j (t) ∈ CM×1 and hUR
j (t) ∈ CN×1 are the

channel coefficient vectors of the links from user j to the BS
and from user j to the HRIS, respectively, HRB(t) ∈ CN×M is
the channel coefficient matrix of the HRIS-to-BS link, Γ(t) ≜
diag

(
β1(t) (ρ1(t))

α1(t) eiθ1(t), · · · , βN (t) (ρN (t))
αN (t)

eiθN (t)
)

is the reflection coefficient matrix, zR(t) ∼ CN
(
0, σ2

FIN
)

is the introduced thermal noise of active reflecting
units at the HRIS and σ2

W is the variance of
thermal noise, zB(t) ∼ CN

(
0, σ2

BIM
)

denotes
the additive white Gaussian noise (AWGN) at the
BS and σ2

B is the variance of AWGN, Φ(t) =
diag

(
α1(t)β1(t)ρ1(t)e

iθ1(t), · · · , αN (t)βN (t)ρN (t)eiθN (t)
)

is
the noise amplification coefficient matrix of the HRIS.

As the signals are received by the BS, the BS decodes the
signals of user j with linear receiving beamforming wj(t) with
||wj(t)|| = 1. Therefore, the signal to interference plus noise
ratio (SINR) for decoding the signals of user j at the BS can
be expressed as (2) presented at the bottom of this page.

In time slot t, the energy consumption at the HRIS consists
of two parts, i.e., Eo(t) = Epas(t)+Eact(t), where Epas(t) and
Eact(t) denote the energy consumed by passive reflecting units
and active reflecting units, respectively. To be specific, one has
Epas(t) =

∑N
n=1 (1− αn(t))βn(t)PCTf and

Eact(t) =

N∑
n=1

αn(t)βn(t) (PC + PDC)Tf

+ ξ

 J∑
j=1

∥∥Φ(t)hUR
j (t)

∥∥2 pj(t) + σ2
F ∥Φ(t)∥2

Tf , (3)

where PC and PDC are the power consumption of the phase-
shift circuit and amplifier circuit for each reflecting unit,
respectively, and ξ denotes the inverse of amplifier efficiency.

Let Ee(t) denote the energy harvested in time slot t at
the HRIS, and denote Emax as the maximum capacity of the
batteries at the HRIS. Then, when time slot t + 1 starts, the
energy status of the batteries at the HRIS can be expressed by
[13]

E(t+ 1) = min{E(t) + Ee(t)− Eo(t), Emax}. (4)

C. Problem Formulation

The objective of this article is to maximize the long-term
system throughput of the considered uplink system depicted
in Fig.1, subject to a given data uploading constraint at each
user and an energy consumption constraint at the HRIS. The
involved optimisation problem is formulated as follows:

(P1) : max
α(t),β(t),θ(t)
ρ(t),pj(t),wj(t)

1

Tf

Tf∑
t=1

J∑
j=1

Tf log2 (1 + γj(t)) (5a)

s.t. (4) and (5b)
αn(t) ∈ {0, 1}, βn(t) ∈ {0, 1},∀n ∈ N, (5c)

pj(t) ∈

{
h
pmax

H

∣∣∣∣∣h = 1, . . . ,H

}
,∀j ∈ J , (5d)

1 ≤ ρn(t) ≤ ρmax, ∀n ∈ N, (5e)
Tf log2 (1 + γj(t)) ≥ Qmin,∀j ∈ J , (5f)

ϕn(t) ∈
{
2π

L
, . . . ,

2πl

L
, . . . , 2π

}
,∀n ∈ N, (5g)

E(t) ≥ Eo(t), (5h)
∥wj(t)∥ = 1,∀j ∈ J . (5i)

Constraint (5c) includes the binary constraints on the work-
ing mode selection indicators. Constraint (5d) is the discrete
transmission power constraint at each user, where pmax is the
maximum transmission power of each user and H is the num-
ber of transmission power levels. Constraint (5e) denotes the
constraint on the amplitude coefficient. Constraint (5f) indicates
that the amount of uploaded data at each user in each time slot
should be no smaller than the given value Qmin. Constraint (5g)
denotes the discrete phase-shift constraint, where L denotes
the number of phase shift levels. Constraint (5h) indicates that
the energy consumption of the HRIS in time slot t cannot
exceed the battery’s energy level at the beginning of time slot
t. Constraint (5i) denotes the normalization constraint for BS
receive beamforming.

Due to the coupling of the HRIS battery energy scheduling
between different time slots indicated by (5b) and the cou-
pling between the binary variables (i.e., αn(t) and βn(t)) and
the continuous variable ρn(t), problem (P1) is a challenging
dynamic programming (DP) and mixed integer programming
(MIP), which is hard to tackle. To address this issue, a
hierarchical DRL approach is proposed, the details of which
are explained in the following section.

γj(t) =
pj(t) | wH

j (t)
(
hUB
j (t) +

(
HRB(t)

)H
Γ(t)hUR

j (t)
)∣∣∣2

σ2
B +

∑J
i̸=j pi(t)

∣∣∣wH
j (t)

(
hUB
j (t) + (HRB(t))

H
Γ(t)hUR

j (t)
)∣∣∣2 + σ2

F

∥∥∥wH
j (t) (HRB(t))

H
Φ(t)

∥∥∥2 (2)



III. HIERARCHICAL DRL TO SOLVE PROBLEM (P1)

To address problem (P1) using the hierarchical DRL ap-
proach, problem (P1) is decomposed into an upper subproblem
and a lower subproblem. The lower subproblem is to obtain the
optimal wj(t) as α(t), β(t), θ(t), ρ(t) and pj(t) are given,
and the upper subproblem is to obtain the optimal α(t), β(t),
pj(t), ρ(t) and θ(t) based on the optimal wj(t) achieved in
solving the lower subproblem. For the lower subproblem, one
can obtain [3]

wj(t) =


J∑

j=1

pj(t)hj(t)hj(t)
H + σ2

BIM

+σ2
FH

RB(t)Φ(t)Φ(t)H
(
HRB(t)

)H}−1 √
pj(t)hj(t),

(6)

where hj(t) = hUB
j (t) +

(
HRB(t)

)H
Γ(t)hUR

j (t). Then, the
optimal wj(t) can be achieved with wj(t) =

wj(t)
∥wj(t)∥ . For the

upper subproblem, it can be expressed as

(P2) : max
α(t),β(t),θ(t)

ρ(t),pj(t)

1

Tf

Tf∑
t=1

J∑
j=1

Tf log2 (1 + γj(t)) (7a)

s.t. (5b) − (5h). (7b)

For problem (P2), it is still a DP and MIP problem. To solve
this problem, a DRL approach is employed, in which problem
(P2) is first reformulated as a Markov Decision Process (MDP),
and then a Proximal Policy Optimisation (PPO)-based DRL
algorithm is proposed to solve the MDP to learn the optimal
policy, ultimately achieving the optimal solution to problem
(P2).

A. The MDP Formulation for Problem (P2)

To present the MDP for problem (P2), the BS is regarded as
the agent, and there are four critical units to be defined, i.e.,
state, action, reward and discount factor. The specifics of these
units are detailed below.

1) State: Recall that our goal in problem (P2) is to maximize
the long-term throughput performance of the system. Moreover,
because the amount of energy available at the HRIS in the
current time slot is determined by that consumed in the previous
time slot and that harvested in the previous time slot. Thus,
the state st in the current time slot should be related to the
action at−1 taken in the previous time slot. Additionally, it
should include the channel state of the system and the energy
state at the HRIS in the current time slot. Therefore, the state
space is defined as st = {⊓(t), r(t − 1), E(t), Ee(t − 1)},
where r(t − 1) is the reward in time slot t − 1 which will
be defined later and ⊓t = {gj(t)|j ∈ J } with gj(t) ≜
pj(t−1)

∣∣∣hUB
j (t)+(HRB(t))

H
Γ(t−1)hUR

j (t)
∣∣∣2

σ2
B+σ2

F∥(HRB(t))HΦ(t−1)∥2 .

2) Action: The actions of the MDP correspond to all the
optimisation variables in problem (P2). Therefore, one can
obtain that at = {α(t),β(t),Θ(t),ρ(t),p(t)}, where at is an
action set that includes all actions in time slot t.

3) Reward: The reward achieved at the agent is defined as
the achievable transmission rate when the J users upload their
data to the BS. Furthermore, because the actions taken by the

agent required to satisfy equation (5f) and (5h), the reward of
the MDP is defined as

rt =


J∑

j=1

Tf log2 (1 + γj(t)) , if (5f) and (5h) are satisfied

0, otherwise

4) Discount factor γ: The discounting factor plays a crucial
role in reinforcement learning. It is a number between 0 and 1
that is used to adjust the weight of future rewards. For problem
(P2), because energy scheduling at HRIS is coupled among
multiple time slots and the achieved rewards in different time
slots are related with each other, the discount factor γ in the
MDP γ is set as 0.9, which makes the agent focus on long-term
cumulative rewards (i.e., long-term throughput).

B. The PPO Algorithm to Solve the MDP

In the formulated MDP for problem (P2), the action space
has a large dimension due to the typically high number of
reflecting units, making traditional DRL methods (e.g., deep
deterministic policy gradient (DDPG)) unsuitable for solving
the MDP. Thus, the PPO-based DRL algorithm is proposed
to solve the MDP, with the details provided in Algorithm 1.
To be specific, the agent achieves the ⊓(t), r(t− 1), E(t) and
Eh(t−1) to obtain the system state st at the t-th time step. After
that, the agent inputs the st into the policy network, and by
sampling with the output policy πµ(at | st), where µ denotes
the parameter of policy network, the action at is obtained. Once
the action at is obtained, the current reward rt and the next state
st+1 can be achieved. Then, the record {st, at, rt, st+1} can be
obtained, which is to be stored in the buffer σ until the buffer
is full. Once the buffer is full, the agent randomly samples B
transitions from the buffer and updates the parameters of the
policy and value networks multiple times. The update formulas
are listed as follows:

µ = argmax
µ

1

B

B∑
min

(
rt(µ)Ât (st, at) ,

clip (rt(µ), 1− ϵ, 1 + ϵ) Ât (st, at)
) (8)

ω = argmin
ω

1

B

B∑
(rt + γ · v (st;ω)− v (st+1;ω))

2 (9)

In (8), rt(µ) =
πµ(at|st)
πµold (at|st) is the importance sampling weight,

where πµ(at | st) denotes the probability of action at output by
the policy network after the parameter update, and πµold(at | st)
denotes the probability of action at output by the policy net-
work before the parameter update. Ât(st, at) is the advantage
function, which is mathematically expressed as

Ât (st, at) = rt + γ · v (st;ω)− v (st+1;ω) . (10)

The function clip(x, l, r) is used to restrict the probability ratio
of the new and old actions at within the range [1 − ϵ, 1 + ϵ],
where ϵ is a hyperparameter which is set to 0.2.

IV. SIMULATION RESULTS

In this section, the proposed design is compared with the
existing designs with myopic energy scheduling and conven-
tional passive or active RIS-assisted communication (denoted as
passive-myopic design and active-myopic design) by numerical



Algorithm 1: The PPO Algorithm to Solve Problem
(P2)

Initialize: Initialize policy networks µ and value
network ω.

1 for each episode do
2 Reset the environment and observe initial state s0;
3 for time step t = 1, 2, · · · , tmax do
4 Input st and sample action at based on

π̂µ (at|st); Get reward rt according to (P2).
Observe next state st+1;

5 Save transition (st, at, rt, st+1) into buffer;

6 for k = 1, 2, · · · , kmax do
7 repeat
8 Select a random batch set in the buffer;
9 Update µ with (8);

10 Update ω with (9);
11 until all transitions in the replay buffer are

sampled;

12 Reset buffer;

simulations conducted in Python 3.8 and Pytorch 2.0.1. For
the myopic energy scheduling, the RIS consumes all of the
available energy in each time slot. Moreover, to separately
evaluate the impact of forward-looking energy scheduling and
the proposed three-mode RIS architecture on the throughput
performance, four baseline designs are also compared in the
simulations: the first is the myopic energy scheduling design
with the proposed three-mode RIS architecture (denoted as
proposed myopic design), and the remaining three designs are
the forward-looking energy scheduling designs with two-mode
HRIS-assisted communications (denoted as active-deactivated,
active-passive and passive-deactivated designs), in which each
reflecting unit of the HRIS is enabled to switch between
active mode and deactivated mode, between active mode and
passive mode, and between passive mode and deactivated mode,
respectively. The simulation parameters are set as follows. The
users are distributed within a 0.5-meter radius around the point
(0, 0), while the HRIS and BS are positioned at coordinates
(20, 0) and (5, 3), respectively. The path losses for user-BS,
user-HRIS, and HRIS-BS are -30dBm, -20dBm, and -20dBm,
respectively, with path loss exponents of 3.2, 2.2, and 2.2. The
small-scale fading for each channel is modeled by a Rayleigh
distribution, and the energy harvested by the HRIS in time slot
t (i.e., Ee(t) follows a uniform distribution between [0, Eh

max]
[13], [14]). Other parameters are set as Qmin = 1bit/s, N = 16,
PDC = −5dbm, PC = −10dbm, J = 2, Eh

max = 10.5mJ, and
ρmax = 14.

The results in Fig. 2 verify the convergence performance of
the algorithm achieved by our proposed hierarchical approach.
Specially, Fig. 2(a) shows the convergence performance of dif-
ferent DRL algorithms, where the hierarchical PPO algorithm
is our the algorithm provided in Section III, the direct PPO
algorithm is to solve problem (P1) by directly using the PPO
algorithm, and the hierarchical DDPG algorithm is to solve
problem (P2) by using DDPG instead of PPO in our proposed
algorithm. As can be seen from Fig. 2(a), the hierarchical
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Fig. 2: Convergence results

PPO algorithm can achieve a 11.5% performance gain over
the direct PPO algorithm, which verifies the effectiveness
of the hierarchical DRL framework employed in our work.
Meanwhile, the hierarchical PPO algorithm can achieve a 14%
performance gain over the hierarchical DDPG algorithm, which
verifies the effectiveness of employing the PPO approach to
solve problem (P2). Fig. 2(b) shows the convergence of rewards
for the proposed hierarchical PPO algorithm as the quantity
of users varies. It is observed that as the number of training
episodes increases, the rewards gradually converge around 3000
episodes. Additionally, it is observed that in scenarios with 4
users and 3 users, the achieved rewards are similar. This is
because as the quantity of users increases, the interference
among users also increases, leading to a decrease in the
transmission rate for individual users.
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Fig. 3: The long-term throughput and the quantity of the three
working modes of reflecting units versus Eh

max.

The results in Fig. 3 show the long-term throughput achieved
by different designs and the quantity of the three working
modes of reflecting units in our proposed design when Eh

max

varies. To be specific, Fig. 3(a) compares different designs for
different values of Eh

max. From Fig. 3(a), it can be observed
that the throughput achieved by all designs increases with
the increase of Eh

max due to the increase of the amount of
energy harvested at the HRIS. More importantly, it is found that
our proposed design is much more superior than the existing
designs, i.e., the passive-myopic and active-myopic designs. To
be specific, the throughput achieved by the proposed design is
up to 12.3 times and 5.76 times that achieved by the passive-
myopic and active-myopic designs when Eh

max =0.5mJ, respec-
tively. Furthermore, it can be observed that the proposed design



obviously outperforms the proposed-myopic design, which
verifies that the proposed looking-forward energy scheduling
strategy can significantly improve the throughput performance.
Moreover, it can be observed that our proposed design can
outperform the active-passive design for all values of Eh

max,
outperform the active-deactivated design when Eh

max is small
(e.g., Eh

max=0.5mJ), and outperform the passive-deactivated de-
sign when Eh

max is large (e.g., Eh
max ≥ 2.5mJ), which verifies

that enabling each reflecting units to work in the three modes
can improve the throughput performance since the three-mode
reflecting unit has more degrees of freedom as compared with
the two-mode reflecting unit. The results in Fig. 3(a) can be
further verified with the results depicted in Fig. 3(b), which
shows the quantity of the three working modes of reflecting
units in our proposed design when Eh

max varies. To be specific,
as shown in Fig. 3(b), when Eh

max=0.5mJ, the quantity of active,
deactivated and passive reflective units is about 0, 14 and 2,
respectively. Therefore, as shown in Fig. 3(a), our proposed
design performs just like the passive-deactivated design in this
case, but can significantly outperform the active-passive design
since the optimal number of deactivated reflecting units is
relatively large. Meanwhile, as shown in Fig. 3(b), when Eh

max
increases to more than 2.5mJ, the quantity of passive reflecting
units becomes zero. Therefore, correspondingly, it can found
in Fig. 3(b) that the throughput performance realized by our
proposed design is the same as that realized by the active-
deactivated design for Eh

max ≥ 2.5mJ in Fig. 3(a).
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Fig. 4: The long-term throughput performance versus the quan-
tity of reflecting units at the HRIS in the proposed design.

Fig. 4 illustrates the impact of the quantity of HRIS reflecting
units on the long-term throughput for different values of Eh

max

in our proposed design. From Fig. 4, it is found that the
throughput performance can be significantly improved when N
increases within an interval corresponding to relatively small
values (e.g., from 4 to 9). However, when N becomes relatively
large (e.g., N ≥ 25), increasing N cannot result in an obvious
improvement of throughput performance. The reason is that,
when N is relatively small, increasing N can result in that
more reflecting units work in the active mode, and thus the
throughput performance can be significantly improved. How-
ever, when N increases to a relatively large value, increasing

N cannot result in more active reflecting units because more
active reflecting units require more energy and the amount of
harvested energy is limited for a given Eh

max.

V. CONCLUSIONS

This article investigated a self-powered HRIS-assisted com-
munication system, where each reflecting unit can work at one
of the three modes: active mode, passive mode or deactivated
mode. As such, the HRIS was enabled to schedule energy
in a fine-grained manner. Moreover, a forward-looking energy
scheduling protocol was proposed for the investigated system,
and a hierarchical DRL method was proposed to maximize
the long-term throughput of the system under the proposed
protocol. By carrying out numerical simulations in Python 3.8
and Pytorch 2.0.1, it was verified that the proposed design
significantly outperformed the existing design that employed
myopic energy scheduling and conventional RIS-assisted com-
munication with only single passive or active mode. In our
future work, multiple self-powered HRISs will be integrated
in the system studied in this article to further improve the
throughput performance.
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