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Abstract—Deep neural network (DNN) greatly improves the
efficiency of modulation recognition in wireless communication,
but it also suffers from attacks. Generative artificial intelligence
(GAI) possesses powerful data generation capabilities, which can
be used to defend against attacks in modulation recognition. In
practical scenarios, black box attack can be implemented without
information on the model. This is a great security threat. The
existing defense methods are difficult to improve the robustness of
the model while ensuring the recognition accuracy of the original
signals. Therefore, this paper uses GAI to propose an adversarial
decoupled defense method to protect modulation recognition.
Firstly, for weak adversarial perturbations, the empirical mode
decomposition (EMD) is used to highlight the high-frequency
features in the signal, and the adversary detector is designed to
detect the suspiciousness. Then, the signal is regenerated based
on the generative adversarial network (GAN) to weaken the
antagonism in the example. Further, the traditional adversarial
training is decoupled into an original branch and an adversarial
branch, and the outputs of the two branches are fused according
to the suspiciousness. Simulation results show that the proposed
defense method has high recognition accuracy for both original
examples and adversarial examples even under attacks, and can
effectively improve the robustness of the intelligent recognition
model.

Index Terms—Adversarial attack, adversarial defense, gen-
erative artificial intelligence, intelligent modulation recognition,
generative adversarial network.

I. INTRODUCTION

COMMUNICATION devices in wireless networks pro-
duce more and more data, which increases the difficulty

of communication data processing. Artificial intelligence (AI)
gives wireless communication systems the ability to automati-
cally process communication data, serving as a crucial tool for
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intelligent allocation of communication and network resources,
greatly enhancing the efficiency of data processing and com-
munication [1], [2], [3], [4], [5]. In wireless communication
networks, automatic modulation recognition (AMR) is a key
technology in cognitive radio and non-cooperative communi-
cation, which provides important information for subsequent
steps such as demodulation. However, the traditional AMR
relies on manually extracted features or prior knowledge of the
channel, and the recognition efficiency needs to be improved.

In recent years, many researchers have developed deep
learning (DL) methods for recognition, using deep neural
network (DNN) to extract deep features of signals and classify
them, which has greatly improved the recognition speed and
accuracy [6], [7]. In communication scenarios such as cog-
nitive radio [8], edge computing [9], interference recognition
[10] and radio monitoring [11], intelligent recognition models
based on DL have shown great advantages. For the AMR
system with complex and variable channels, DL can auto-
matically extract the features from the signal and accurately
identify the modulation mode of the signal by using its
powerful nonlinear mapping ability [12], [13], [14], [15]. To
cope with the diversity and dynamic changes in signal data
distribution in actual wireless communication environments,
Zhang et al. introduced unknown categories into the source
classifier, achieving feature separation for both known and
unknown modulation categories, thereby enhancing the ac-
curacy of modulation recognition in practical communication
environments [16].

However, the intelligent model based on DL has been
proved to be vulnerable to adversarial attacks [17], [18].
Attackers can use the broadcast nature of the wireless channel
to inject carefully designed small adversarial perturbations
into the receiver, which seriously affects the reliability of the
intelligent recognition model. Depending on the attack stage,
common attacks include poisoning attacks that contaminate
training data during the training phase and evasion attacks
that mislead model prediction during the prediction phase.
Since the poisoning attack needs to understand the training
set information of the target model, which is usually difficult
due to data privacy, the evasion attack is more threatening to
the intelligent modulation recognition model.

According to the understanding of the target model, com-
mon evasion attacks usually include white-box attacks against
known models and black-box attacks against unknown models.
Lin et al. introduced the fast gradient sign method (FGSM),
the basic iterative method (BIM) and the momentum iterative
method (MIM) from the field of image processing to the
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field of communications, proving the vulnerability of the DL-
based modulation recognition model [19]. Liu et al. proposed
a dynamic iterative method (DIM) to attack the white-box
modulation classifier, which improved the success rate of
attack [20]. Ke et al. limited the adversarial perturbation to a
narrow frequency band, so that the filter could not filter it out,
and covertly attacked the intelligent modulation recognition
model [21]. In practice, attackers do not know the structure
and parameters of the model, and often use the migration
of adversarial examples to perform black-box attacks. Hu
et al. proposed a substitute meta-learning black-box attack
method, which combines meta-learning with the training of
surrogate models to improve training efficiency and attack
performance [22]. Dong et al. generated adversarial examples
on the reconstructed surrogate model and transferred them
directly to the unreachable black-box model [23].

To reduce the huge security risks brought by adversarial
attacks to intelligent recognition models, researchers have
carried out works on detecting adversarial examples [24], [25],
[26]. In order to protect the intelligent modulation recognition
model from attacks, Xu et al. realized the detection of adver-
sarial signals by fusing multiple features of radio signals [27].
However, in many application scenarios, it is not enough to
detect whether the input is an adversarial example, and it is
necessary to use an adversarial defense method to identify
the real category of the input. Zhang et al. improved the
robustness of the AMC model by using homomorphic filtering
to attenuate the high-frequency perturbation in the signal [28].
Chen et al. used the principle of distillation learning to extract
multiple knowledge through adversarial training (AT) and
normal training, which improved the robustness of the AMR
model to attacks [29]. AT is a simple and effective defense
method that uses adversarial knowledge to train a classifier to
reduce the vulnerability of the classifier [30], [31]. It has strong
robustness to specific attacks, but it is difficult to adapt to
new types of attacks that are more aggressive. Therefore, Kim
et al. proposed a Gaussian smoothing (GS) method, which
uses Gaussian noise to enhance the training data and improves
the robustness of the modulation classifier to unknown attacks
[32]. Although GS weakens the antagonism of the examples, it
reduces the recognition accuracy of the classifier to the original
examples.

With the rapid development of generative artificial intel-
ligence (GAI), existing work has used autoencoder (AE) and
generative adversarial network (GAN) to eliminate adversarial
features in input data. AE can learn the representation of data
through its encoder and decoder, while GAN can learn the
distribution of data through its generator and discriminator,
which can achieve more advanced data generation tasks.
Sahay et al. developed a denoising autoencoder (DAE), which
learns the mapping relationship between potential adversarial
examples and corresponding original examples, and improves
the reliability of power allocation model based on DL [33].
Zhou et al. proposed a siamese neuron network based on
GAN, which can correctly identify the modulation type of the
signal when the intelligent recognition model is attacked [34].
Dong et al. constructed a defensive end-to-end communication
system based on GAN through triple-training, and used GAN

to enhance the robustness of the communication system [35].
Traditional GAN uses random noise as input, which has the
problem that the training process is easy to fall into mode
collapse [36]. Different from the traditional GAN, Wang et al.
used the adversarial signal as the input of the generator, which
weakened the influence of the adversarial perturbation [37].

Therefore, traditional defense methods face challenges such
as weak detection capabilities for subtle perturbations and
difficulty in balancing the recognition effects between original
clean examples and adversarial examples. In order to accurate-
ly detect the adversarial nature of input signals and identify
their true modulation categories, we utilize empirical mode
decomposition (EMD) and GAN for detection and filtering,
respectively, and enhance the model’s robustness through
decoupled adversarial training. The main contributions of this
paper are summarized as follows:

• We propose an EMD-based intelligent adversary detec-
tion method, which uses an adversary detector to detect
weak adversary perturbations after enhancing the high-
frequency features in the examples with EMD.

• We use GAN to regenerate the input signal and randomly
shape the reconstructed perturbation, which is beneficial
to eliminate the hidden antagonism.

• We propose an adversarial decoupled defense method,
which decomposes the traditional adversarial training and
uses the adversary detection results to identify the mod-
ulation category of the signal to improve the robustness
of the model.

• We use the proposed defense method to deal with ad-
vanced adversarial attacks, which significantly improves
the defense ability of the intelligent recognition model
against attacks while ensuring the recognition accuracy
of the original examples.

The rest of this paper is organized as follows: Section II
introduces the intelligent modulation recognition, adversari-
al attacks and defense in wireless communication systems.
Section III proposes an intelligent adversary detection method
based on EMD, which detects the adversary by enhancing the
high frequency characteristics of the input signal. Section IV
designs an adversarial decoupling defense based on GAN to
improve the robustness of the model to attacks while ensuring
the original accuracy. Section V shows the effectiveness of the
proposed defense method through simulation. Finally, Section
VI summarizes the paper.

II. SYSTEM MODEL

A. Communication Model

In wireless communication, due to the broadcast nature of
the channel, the wireless signal transmitted by the transmitter
will be eavesdropped. If the eavesdropper uses the signal
and the attack algorithm to attack the intelligent modulation
recognition model, it will pose a great threat to the security and
reliability of the wireless communication system. Therefore,
it is necessary to develop some defense frameworks to resist
adversarial attacks. For the intelligent modulation recognition
task, the system model of adversarial attack and defense is
shown in Fig. 1.
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Fig. 1. Adversarial attack and defense system model for intelligent modulation recognition in wireless communication networks.

In Fig. 1, the signal transmitter transmits a wireless signal to
the legitimate receiver. In this process, the attacker eavesdrops
on the signal and uses its local model and adversarial attack
algorithm to generate a perturbation. At the receiving end,
the perturbation is superimposed with the original signal to
generate an adversarial example, which misleads the receiver’s
intelligent recognition model to misidentify the modulation.
In order to reduce the threat of attack, the adversarial defense
strategy can be used to process the signal received by the
receiver. If the input example is detected to be an adversarial
example, it is discarded or filtered before its modulation mode
is identified.

B. Intelligent Modulation Recognition Model

The signal received at the receiver can be expressed as

x (t) = s (t) ∗ h (t) + n (t) , (1)

where s (t) is the modulated signal transmitted by the trans-
mitter, h (t) is the channel response, and n (t) is the additive
white Gaussian noise (AWGN).

For IQ modulation, (1) can be expressed as

x (t) = I (t) + jQ (t) . (2)

The in-phase component I (t) and the quadrature component
Q (t) are sampled as the input of the recognition model.

Intelligent modulation recognition models usually require
excellent classification ability to perform modulation recogni-
tion tasks well, and have natural robustness to noise. We use
ResNet as the modulation recognition model, which can avoid
the disappearance of the gradient and is easier to deepen. It has
strong representation ability and is very suitable for complex
classification tasks such as modulation recognition [38], [39].
After training, the prediction results of the model for the test
examples can be expressed as

argmax
k

{f (yk|x)} , k = 1, 2, 3, · · · ,K, (3)

where f (·) represents the predicted probability distribution of
the model, yk is the one-hot encoding of the real label, and
K is the number of modulation categories.

C. Adversarial Attack Model

In multi-classification tasks such as modulation recognition,
the cross-entropy loss function can be used to characterize the
difference between the prediction probability of the recogni-
tion model and the real label. The cross-entropy loss of the
model for the input signal can be expressed as

L (x, y)=−
K∑

k=1

yk (x) log (fk (x)). (4)

In the black box scenario, attackers use attack algorithms
such as FGSM, BIM, MIM and DIM to design adversarial
perturbations, and use their transferability to mislead the
intelligent modulation recognition model. FGSM is a one-
step attack, which can quickly attack the model by adding
a fixed perturbation size ε to generate adversarial examples in
the direction of increasing the model loss [40]. BIM divides
ε into multiple parts and iteratively generates perturbations,
which can enhance the concealment of the attacks [41]. MIM
introduces momentum into BIM, resulting in an adversarial
perturbation with stronger attack performance and transfer-
ability [42]. DIM improves perturbation size on the basis of
MIM, so that it can be adaptively adjusted according to the loss
gradient during the iteration process, avoiding the redundancy
of the perturbation, and the perturbation generated can be
expressed as [20]

ηn+1 = αnsign

(
µgn +

∇x∗
n
L (x∗

n, y)∥∥∇x∗
n
L (x∗

n, y)
∥∥
1

)
, (5)

where µ is the momentum decay factor, gn is the momentum
accumulation, x∗

n is the adversarial example generated by ηn
after the n-th iteration and x∗

n = x∗
n−1+ηn, ∇x∗

n
L is the loss

gradient of the model, and

αn =
∣∣∣2∇x∗

n
L −∇x∗

n−1
L
∣∣∣ · ∥∥∥2∇x∗

n
L −∇x∗

n−1
L
∥∥∥−1

1
. (6)

Ensemble attack is a mainstream black-box attack, which
generates strong transferable adversarial examples by fusing
the output of different networks in the ensemble model. Dong
et al. pointed out that integrating logit of different networks
can effectively improve the black-box attack ability [42].



IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 4

Therefore, in this paper, we combine FGSM, BIM, MIM, DIM
and ensemble attack to describe the attacker’s attack behavior.

D. Adversarial Defense Model

1) Adversary Detection: Adversary detection is used to
detect adversarial examples and reject them into the model
when the recognition model is attacked. Using the original
examples and adversarial examples to directly train and test
the neural network is a simple binary classification problem,
which can detect the adversarial of the examples to a certain
extent. For example, Aigrain et al. constructed an anomaly
detector Inspection-Net, using the internal representation of
the model to detect adversarial examples [43]. In general,
adversary detection needs to obtain the features of the input
through the detection algorithm, and compare them with the
decision threshold to determine whether it is an adversarial
example, which can be expressed as

B (x)
adv

R
ori

τ, (7)

where B (x) is the output of the binary adversary detector, and
τ is the decision threshold.

2) Adversarial Defense: In general, the input is discarded
when it is detected as an adversarial example, which causes
the loss of communication information. Therefore, it is nec-
essary to further study adversarial defense methods such as
adversarial training (AT), Gaussian smoothing (GS) and GAN,
to restore their original modulation information by learning
or filtering adversarial perturbations. AT makes the model
robust to attack by adding adversarial examples to the training
process of the model [44]. The process of AT can be expressed
as

min
θ

max
∥x∗−x∥p≤ε

E(x,y) [L (f (x∗, θ) , y)] , (8)

where E represents the expectation, θ is the model parameter
and is continuously updated during the training process. The
internal maximization problem in (8) is used to find the
perturbation ε that maximizes the loss of the model under the
p-norm constraint, and the external minimization problem is
used to update θ to make the model robust to the perturbation.

GS uses Gaussian noise to enhance the training set of
the model and improve the robustness of the modulation
recognition model to perturbations that may exist in multiple
directions [32]. By adjusting the standard deviation of the
noise and the number of noise samples added, an example
in the enhanced training set can be expressed as

x̄i = {xi + n1, xi + n2, · · · , xi + ns} , (9)

where n represents the Gaussian noise with mean zero and
standard deviation σ.

GAN can weaken the adversarial perturbation contained in
the signal by reconstructing the signal [37]. GAN consists
of generator G and discriminator D. G generates an output
G (x∗) similar to the real data distribution through the feature
mapping of the adversarial example x∗, and D is used to

distinguish the original example x and the generated exam-
ple G (x∗).During the training process, G and D constantly
complement and optimize each other as

min
G

max
D

Ex∼pdata(x) [log (D (x))]

+ Ex∗∼pdata(x∗) [log (1−D (G (x∗)))] .
(10)

In (10), the first term represents the probability that the real
example is judged as real data, and the second term represents
the probability that the generated G (x∗) is judged as false
data. Finally, G generates the example that is close to the
distribution of the original example, and corrects the offset of
the data distribution caused by the perturbation in x∗.

III. EMD BASED INTELLIGENT ADVERSARY DETECTION

Adversary detection is used to detect whether the input
is adversarial. Due to the high-dimensional characteristics of
DNN, the small differences in the input can be amplified in
the process of propagation between network layers, and even
mislead the output results of the network. This is the reason
why the adversarial examples are aggressive. Therefore, the
output of the last feature extraction layer of the intelligent
recognition model can be used to distinguish the original
example and the adversarial example. Using the logical output
of the recognition model to train a simple binary detector,
good detection results can be achieved without changing the
structure of the model [43]. The output of the detector is usu-
ally a probability indicating the suspiciousness of the example,
which can be regarded as the threat level of the example to the
intelligent recognition model. However, when the adversarial
perturbation power is very small, the detection of this method
is not ideal. In order to solve this problem, this paper proposes
an empirical mode decomposition based adversary detection
(EMD-AD) method to improve the accuracy of detection for
low perturbation. The process of the proposed method is
shown in Fig. 2.

Compared with the original examples, adversarial examples
tend to have higher power at high frequencies [45], [46].
Therefore, the high frequency characteristics can be used to
detect the suspiciousness of examples. EMD is an adaptive
time-frequency signal processing method, which decomposes
the signal according to the time scale characteristics of the data
itself, without pre-setting any basis functions. It can separate
the signal into intrinsic mode function (IMF) and residual
function with different frequencies, which is especially suit-
able for the analysis and processing of nonlinear and non-
stationary signals.

Firstly, the upper envelope emax (t) and the lower envelope
emin (t) are obtained by connecting the local maximum point
and the local minimum point of the signal respectively through
the cubic spline curve, and the average value of the two
envelopes is calculated as

m1 (t) =
emax (t) + emin (t)

2
. (11)

Then, using the difference between the original signal and
(11), the intermediate signal can be expressed as

C1,1 (t) = x (t)−m1 (t) . (12)
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Fig. 2. Illustration of adversary detection process based on empirical mode decomposition.

If the number of extreme points of C1,1 (t) is equal to or at
most one different from the number of zero-crossing points,
and the upper and lower envelopes at any time are locally
symmetric with respect to the time axis, then IMF1 = C1,1 (t)
and the residual component r1 (t) = x (t)−IMF1. Otherwise,
continue to decompose the signal. After several iterations,
when the residual component rn (t) = rn−1 (t) − IMFn is
monotonous, the decomposition process ends and the residual
component is R (t) = rn (t). At this time, the signal is
decomposed into multiple IMF components and a residual
component, which can be expressed as

x (t) =
n∑

i=1

IMFi +R (t) . (13)

In (13), IMF1 has the highest frequency. Therefore, the
main information of adversarial perturbation is hidden in
IMF1. When the perturbation is large, the power in the IMF1

of the adversarial example is significantly larger than that of
the original example, which can easily be detected. However,
when the perturbation is small, the gap is small, making it
difficult for the neural network to learn adversarial features.
Therefore, this paper enhances the antagonism hidden in the
example by increasing the power of IMF1, so as to provide
better feature differences for the network to facilitate detection.
After the high frequency characteristic is enhanced, the signal
can be expressed as

x̂ (t) = λ · IMF1 +

n∑
i=1

IMFi +R (t), (14)

where λ denotes the high-frequency feature enhancement
factor and λ ≥ 0.

After the high-frequency feature enhancement, the example
is used in the recognition model to obtain its logits output
fl (x̂), which is input into the binary detector to obtain the
prediction probability B (fl (x̂)). Then, it is decided whether
the example is adversarial according to (7). The detector
used in this paper has simple structure and consists of only
three fully connected layers, and dropout is used to prevent
overfitting, as shown in Fig. 2.

Therefore, the proposed EMD-AD first enhances the high-
frequency feature in the signal based on EMD, highlighting the
weak adversarial information hidden in the signal. Then, the
enhanced signal is input to the recognition model to obtain its
logits output. Finally, the adversary detector is used to evaluate

the suspiciousness of the signal and determine whether it is
an adversarial example.

IV. GAN-BASED ADVERSARIAL DECOUPLED DEFENSE

The adversary detector only detects if the received signal
is an adversarial example and discards it if it is. However, in
many cases, when the detector finds that the example is adver-
sarial, it is also necessary to accurately identify the modulation
mode of the example. Therefore, in this section, we propose
an adversarial decoupled defense (ADD) method based on
GAN to weaken the adversarial perturbation of coupling in
the example and decouple the traditional adversarial training
process.

A. GAN-based Example Regeneration

The structure of GAN used in this paper is shown in Table
I. To train the generator G, the original example and its
adversarial example are inputs. During the training process, the
waveform reconstructed by G not only needs to approximate
the original signal waveform in the time domain, but also
needs to be able to deceive the discriminator D to make
an error prediction. Therefore, the loss function of G can be
defined as

LG (x, x∗) =
1

MN

M∑
i=1

N∑
j=1

∥xi,j −Gj (x
∗
i )∥

2
2

+
β

M

M∑
i=1

log (1−D (G (x∗
i ))),

(15)

where M is the number of examples, N is the length of
examples, and β is the discriminant loss coefficient.

To train discriminator D, it is necessary to increase the
prediction probability of the discriminator for the original
examples while reducing the prediction probability of the
discriminator for the reconstructed examples. The loss of D
can be defined as

LD (x, x∗) =
1

M

M∑
i=1

(log (D (G (x∗
i ))) + log (1−D (xi)))

=
1

M

M∑
i=1

log (D (G (x∗
i )) (1−D (xi))).

(16)
The training process continuously updates the network

parameters by minimizing LG (x, x∗) and LD (x, x∗), and
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TABLE I
NETWORK STRUCTURE OF GAN

Generator Discriminator

Layer Kernel Output shape Layer Kernel Output shape

Input (batch,128,2) (batch,128,2) Input (batch,128,2) (batch,128,2)

Conv1D (64,3) (batch, 128, 64) Conv1D (4,5) (batch, 128, 4)

MaxPooling1D 2 (batch, 64, 64) MaxPooling1D 2 (batch, 64, 4)

Conv1D (64,3) (batch, 64, 64) BN+Relu - (batch, 64, 4)

MaxPooling1D 2 (batch, 32, 64) Conv1D (4,3) (batch, 64, 4)

Conv1D (64,3) (batch, 32, 64) MaxPooling1D 2 (batch, 32, 4)

UpSampling1D 2 (batch, 64, 64) BN+Relu - (batch, 32, 4)

Conv1D (64,3) (batch, 64, 64) Flatten+Dropout 0.5 (batch, 128)

UpSampling1D 2 (batch, 128, 64) BN+Relu - (batch, 128)

Conv1D (2,3) (batch, 128, 2) Dense 1 (batch, 1)

enhances the reconstruction ability of G and the discrimination
ability of D. After the training, the test example is fed into
G, and G reconstructs a modulated signal waveform that is
similar to the original signal and can mislead D to identify it
as true.

During the test, the test example xt may be either original
or adversarial. The difference of examples before and after
GAN is recorded as reconstruction perturbation

∆xt = xt −G (xt) . (17)

We replace ∆xt with a random noise ∆n with the same power,
and add it to the reconstructed example G (xt) to obtain the
regenerated example

xr = G (xt) + ∆n, (18)

and

∆n = ϕ

√√√√ 1

N

N∑
i=1

(∆xt,i)
2
, (19)

where ϕ denotes a random signal following a standard normal
distribution and has a length of N .

When the input is an adversarial example, ∆xt contains
adversarial information. If it is replaced with random noise,
this part of adversarial information will be destroyed. When
the input is the original example, ∆xt contains only random
noise, and replacing it with random noise has little effect on
signal and model prediction. Compared with the traditional
method of adding random noise directly to the input example,
the proposed method can adaptively adjust the noise power
according to the size of the reconstructed perturbation, and
avoid the influence of unreasonable noise power setting on
the modulation characteristics of the example.

B. Adversarial Training Decoupling

After regenerating the example, the adversarial information
contained in the adversarial example is greatly reduced. The
traditional AT adds adversarial examples to the training set
to train the recognition model with the original examples
during the training process, which can lead to overfitting

and reduce the recognition accuracy of the model for the
original examples. To solve this problem, we decouple the
adversarial training into the original branch and the adversarial
branch. The original branch only uses the original examples
to train the recognition network for identifying the original
examples. The adversarial branch only uses the adversarial
examples to train the network with the same structure as the
original branch, which is used to identify unknown adversarial
examples. Compared with the untreated adversarial examples,
the signal features in the examples regenerated by GAN will
be more obvious. Therefore, we use the regenerated examples
to train the adversarial network.

In this paper, we use the projection gradient descent method
(PGD) to generate adversarial examples to train the adversarial
network. PGD randomly initializes examples before iteration,
which enhances the antagonism of examples in multiple di-
rections. It can be expressed as

xn+1 =
∏
x+S

(
x∗
n + αsign

(
∇x∗

n
L (f (x∗

n) , y)
))
, (20)

where S denotes the introduced random perturbation. In order
to further improve the generalization of the adversarial branch
for unknown attacks, we use the idea of Gaussian smoothing
in [32] to enhance the data of adversarial examples.

Before defense, we use the adversary detector to detect
the suspiciousness of the signal after enhancing IMF1, and
then input the suspiciousness and the signal before feature
enhancement into the defense model. Since the suspiciousness
of the adversary detector indicates the probability that the
input is an adversarial example, it can be used as the fusion
coefficient of the original branch and the adversarial branch.
Then the final output of the modulation recognition model is

f (x) = (1− µ) fori (x) + µfadv (xr) , (21)

where fori and fadv represent the original network and the
adversarial network respectively, and µ = B (fl (x̂)) is the
suspiciousness of the example. If µ = 0, it indicates that
the input example is not threatened and can be completely
treated as the original example. The recognition accuracy of
the model is completely consistent with that of the original
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Algorithm 1 Adversarial Decoupled Defense
Input: Test example set X and label set Y; generator G;

adversary detector B; original recognition network fori and
adversarial recognition network fadv;
Input: High frequency feature enhancement factor λ.
Output: modulation mode set M.
1: for xi ∈ X , yi ∈ Y do
2: Use EMD to enhance the high-frequency feature of xi.

The enhanced signal

x̂i = λ · IMF1 +
n∑

i=1

IMFi +R;

3: Use B to detect suspiciousness

µ = B (fori,l (x̂i)) ;

4: Based on G, regenerate the example

xr = G (xi) + ∆n;

5: Fuse the outputs of networks to obtain the prediction

f (xi) = (1− µ) fori (xi) + µfadv (xr) ;

6: Output the modulation mode

Mi = argmax
k

{f (yi,k|xi)} , k = 1, 2, 3, · · · ,K;

7: end for
8: return M.

recognition model, which avoids the decline of the recognition
accuracy of the original example. If 0 < µ < 1, it shows that
the detector can not fully determine the nature of the input
example. At this time, it is necessary to combine the results
of the original branch and the adversarial branch to identify.
If µ = 1, it shows that the input example is adversarial, and
the recognition result of the model is the same as that of the
adversarial branch.

In this section, we use GAN to regenerate the input signal,
which greatly weakens the antagonism in the example, and
fuses the decoupled original branch and the adversarial branch
according to the suspiciousness to accurately identify the
modulation mode of the example. The steps of the proposed
ADD are shown in Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we verify the effectiveness of the proposed
defense algorithm against black-box attacks through simu-
lation. According to the purpose of the attack, we assume
that the attacker only focuses on the original examples that
are recognized correctly by the intelligent recognition model
and generates corresponding adversarial examples to mislead
the model, and test the recognition accuracy of the model to
these examples after defense. When training the intelligent
recognition model, we set the batch and epoch to 1024 and
100, respectively, and set the initial value of the learning rate
to 0.001 and automatically update it.
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Fig. 3. Recognition accuracy of the model after being attacked.

In this paper, we use the modulation signal data set
RML2016.10b to verify the threat of the attacker to the
AMC model and the performance of the defense method
[47]. The data set contains eight digital signals generated
in simulated harsh propagation environments: 8 phase shift
keying (8PSK), quadrature phase shift keying (QPSK), binary
phase shift keying (BPSK), Gaussian frequency shift keying
(GFSK), continuous phase frequency shift keying (CPFSK),
pulse amplitude modulation 4 (PAM4), quadrature amplitude
modulation 16 (QAM16) and quadrature amplitude modula-
tion 64 (QAM64) and two analog signals: double sideband
amplitude modulation (AM-DSB) and wide band frequency
modulation (WBFM). These signals are affected by AWGN,
multipath fading, sampling rate offset and center frequency
offset. Each signal sample consists of an in-phase component
and an quadrature component. We randomly select 80% of the
examples for training the recognition model, and the rest for
testing.

A. Adversarial Attacks

Before testing the effect of the defense algorithm, we first
simulate the attacker’s attack behavior and test the perfor-
mance of the ResNet recognition model after being attacked
by FGSM, MIM and DIM. When attacking, in order to ensure
the concealment of the attack, the attacker usually uses the
infinite norm to constrain the power of the perturbation. The
perturbation-to-noise ratio (PNR) is often used to measure the
invisibility of an attack, defined as [48]

PNR [dB] =
E
[
∥ε∥22

]
E
[
∥x∥22

] [dB] + SNR [dB] . (22)

In this paper, we study the recognition performance of the
model at SNR = 10 dB. PNR is the ratio of perturbation
power to noise power, which is used to measure the level of
perturbation relative to background noise. When PNR < 0 dB,
it means that the perturbation power is lower than the noise
power, the concealment of the perturbation is strong and
the attack trace is difficult to be detected. At this time, the
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Fig. 4. Spectrum of BPSK original signal and its adversarial example.

perturbation constraint ε < 0.00316 can be obtained according
to (22). Therefore, we choose the perturbation constraint
with interval of 0.0003 in [0, 0.0030] to generate adversarial
examples. Under different perturbation constraints, three attack
algorithms are used to generate adversarial examples in the
ensemble model composed of VTCNN, Inception and VGG.
The recognition accuracy of the recognition model for these
examples is tested, as shown in Fig. 3. It can be seen that
the accuracy of the recognition decreases significantly after
being attacked, and as the perturbation constraint increases,
the accuracy decreases more. Among the attacks tested, DIM
has the best attack effect. For example, when ε = 0.0015,
the accuracy of the recognition model is reduced by 64.91%,
which seriously damages the reliability of the intelligent
modulation recognition model.

B. Adversarial Example Detection

In this section, we use the most adversarial DIM as the
attack method to test the detection performance of Inspection-
Net in [43] and the proposed EMD-AD. We first study the
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Fig. 5. Detection performance of the adversary detector.
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Fig. 6. ROC curves of adversary detectors.

contribution of IMF1 to the adversarial examples under small
and large perturbations in the frequency domain to verify the
effect of high-frequency feature enhancement on adversarial
example detection, as shown in Fig. 4. It can be seen that
when the perturbation is small, the characteristics of the clean
examples are mainly concentrated in the low frequency, and
the spectral curves of the original examples and the adversarial
examples are basically coincident, which is not conducive to
the detection of adversarial examples. When the perturbation
is large, the difference between the two is mainly reflected
in the high frequency, which is also the place where the
adversarial example plays a role, and the spectrum curve
here basically coincides with IMF1. Therefore, enhancing the
high-frequency features of examples based on EMD is helpful
to detect the existence of adversarial perturbations.

When detecting, we regard the original example as ‘neg-
ative’ and mark it as 0, and regard the adversarial example
as ‘positive’ and mark it as 1. In order to quantitatively
measure the overall detection performance of the detector for
the original examples and the adversarial examples, we use
Accuracy, Recall, Precision and F1-Score as metrics, which
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Fig. 7. Time domain waveforms of the original example and the adversarial
example before and after reconstruction.

are expressed as

Accuracy =
TP + TN

TP + TN + FP + FN
, (23)

Recall = TP/ (TP + FN) , (24)

Precision = TP/ (TP + FP ) , (25)

F1-Score =
2 (Precision×Recall)

Precision+Recall
, (26)

where TP represents the count of adversarial examples that are
correctly predicted as adversarial examples, FN represents the
count of adversarial examples that are incorrectly predicted
as original examples, TN represents the count of original
examples that are correctly predicted as original examples,
and FP represents the count of original examples that are
incorrectly predicted as adversarial examples. The detection
results of the adversary detector for adversarial examples
under different perturbation constraints are shown in Fig. 5. It
can be seen that the overall detection effect of the proposed
EMD-AD is better than that of Inspection-Net, especially

(a) DIM Attack

(b) ADD Defense

Fig. 8. Confusion matrix of intelligent modulation recognition model.

when the adversarial perturbation is weak. For example, at
ε = 0.0003, the Accuracy, Recall and F1-Score of EMD-AD
are 2.45%, 5.96% and 7.10% higher than those of Inspection-
Net, respectively. This is because when the perturbation is very
weak, the adversarial information hidden in the example is
difficult to be detected directly by the detector. Since EMD-
AD detects the example after enhancing the high-frequency
features hidden in the example, it has a better detection effect
than Inspection-Net. With the increase of perturbation, the
adversarial features in the example are gradually obvious,
so that Inspection-Net can accurately detect the adversarial
example. As the perturbation continues to increase, the detec-
tion accuracy of EMD-AD and Inspection-Net is basically the
same, both approaching 100%.

In order to further test the detection ability of the adversary
detector under weak perturbations, we generate DIM adversar-
ial examples when the perturbation constraint ε = 0.0003 and
ε = 0.0006, and input the original examples and adversarial
examples into the detector. We calculate true positive rate
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Fig. 9. Visualization of the features of the examples in the recognition model.

0 0.5 1 1.5 2 2.5 3

Perturbation constraint ǫ ×10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

No attack
FGSM
MIM
DIM

(a) AT Defense

0 0.5 1 1.5 2 2.5 3

Perturbation constraint ǫ ×10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

No attack
FGSM
MIM
DIM

(b) GS Defense

0 0.5 1 1.5 2 2.5 3

Perturbation constraint ǫ ×10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

No attack
FGSM
MIM
DIM

(c) ADD Defense

Fig. 10. Effect of different defenses on different attacks.

(TPR) and false positive rate (FPR) by

TPR = TP/ (TP + FN) , (27)

FPR = FP/ (TN + FP ) . (28)

In the test, for a given threshold τ , when the prediction
probability of the detector is greater than the threshold, the
example is predicted to be positive. We set 100000 uniformly
distributed thresholds τ within [0,1], and the detector will get a
TPR and FPR according to each threshold. Then, we draw the
Receiver Operating Characteristics (ROC) curve with (FPR,
TPR), as shown in Fig. 6, and define the area under the ROC
curve as Area Under Curve (AUC). The larger the AUC is, the
closer the ROC is to (0,1), the greater the TPR is than the FPR,
and the better the overall performance of the detector is. It can
be seen from Fig. 6 that under the two weak perturbations, the
AUC values of the proposed EMD-AD are higher than those
of Inspection-Net, and its detection performance is better.

Time complexity is the growth trend of the running time of
the algorithm as the amount of data becomes larger, which
can reflect the efficiency of the algorithm. Inspection-Net
uses a trained adversary detector to detect examples. Its time
complexity is closely related to the test data volume M and the
network parameter scale F including the number of network
layers and the number of neurons in each layer, which can
be expressed as O(MF ). Since the proposed EMD-AD needs

to use EMD to enhance signal features before detection, its
time complexity is O(M) + O(MF ) = O(MF ), which is
consistent with Inspection-Net. In addition, we record the
average detection times for the two methods as 0.0023s and
0.0015s, respectively. Since EMD-AD requires high-frequency
feature enhancement for the examples, its detection time is
slightly longer than that of Inspection-Net. However, it can
more accurately detect the hidden perturbations in the exam-
ples, providing crucial adversarial information for subsequent
defense.

C. Adversarial Defense

In order to observe the generation ability of generator G in
GAN, we draw the time-domain waveforms of a BPSK signal
and its DIM adversarial example before and after passing
through G, as shown in Fig. 7. It can be seen that when
the input is the original example, the example generated by
G is very close to the input, and has little effect on the
original example. When the input is an adversarial example,
the generated example is quite different from the input, and
the reconstructed perturbation contains a lot of adversarial
information. It can be seen that the trained generator can better
regenerate the input example.

In order to intuitively show the defense effect of different
modulation modes, we use the confusion matrix to display
the recognition results of the model before and after the
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defense, and the value on the diagonal represents the prediction
accuracy of each modulation. We use the most adversarial
DIM to generate adversarial examples under the constraint of
ε = 0.0015, and use ADD for defense. The results are shown
in Fig. 8. It can be seen that the prediction results of the model
after being attacked are very confused, and its reliability drops
sharply. After ADD defense, the model can correctly classify
most of these adversarial examples, protecting the intelligent
recognition model from attack.

Then, we verify the impact of GAN-based example re-
generation on the characteristics of adversarial examples. We
use t-SNE to visualize the features of the original examples,
DIM adversarial examples and regenerated examples in the
recognition model, as shown in Fig. 9. It can be seen that
the feature distribution of adversarial examples in the model
is very chaotic, making it difficult for the model to correctly
identify its true category. After regeneration, because some of
the adversarial perturbations in the examples are replaced by
random noise, the influence of the attack is weakened, and the
features become clear.

Finally, we test the defense performance of ADD, AT and
GS against attacks. AT uses PGD adversarial examples to
expand the training set, and GS uses noise standard deviation
σ = 0.003 and example number s = 10. The defense effect
is shown in Fig. 10. It can be seen that compared with the
accuracy in Fig. 3, the three defense methods can improve
the accuracy of the model after the attack. Among them, the
defense effect of ADD under different perturbation constraints
is better than the other two methods. For example, when
ε = 0.0015, ADD improves the accuracy by 10.78% and
15.02% compared with AT and GS, respectively. At the same
time, it is worth noting that the recognition accuracy of ADD
for clean examples is as high as 99.63%, while that of AT and
GS is only 81.61% and 88.71%, respectively. This shows that
ADD can improve the robustness of the model to attacks while
maintaining the recognition accuracy of the original examples.

VI. CONCLUSION

This paper has studied the security problem of intelligen-
t modulation recognition model in wireless communication
system. In response to the risk of intelligent modulation
recognition models being vulnerable to black-box attacks, we
combined the powerful data generation capabilities of GAI
to design an adversarial decoupled defense method, which
effectively enhanced the robustness of the recognition model.
Firstly, we designed an adversary detector and improved the
detection of subtle adversarial effects based on EMD. Then,
we regenerated examples that approximate the true distribution
using GAN, weakening the adversarial perturbations in the
input signals. Finally, we decoupled the adversarial training
into an original branch and an adversarial branch, and fused
the outputs of the two branches using the adversary detection
results to obtain the modulation type of the signal. The simu-
lation results show that the proposed defense method signifi-
cantly enhances the robustness of the attack while ensuring the
recognition accuracy of the model for original examples, and
ensures the safety and reliability of the modulation recognition
model in the intelligent communication network.
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