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Abstract—Blind equalization can not only counteract channel
multi-path fading but also guarantee the transmission efficiency
of a communication system. However, determining an optimal
blind equalizer is typically NP hard. The cost function of such
blind equalizer involves an exponentially increasing number of
local minima. To reduce the complexity, this study develops an
efficient two-stage blind equalization algorithm for quadrature-
amplitude-modulation (QAM) systems. To reduce the number
of local minima, the multimodulus algorithm (MMA) is im-
plemented in the first stage, and to reduce the steady state
error, an improved soft decision-directed algorithm (ISDDA)
is implemented in the second stage. A novel modified least
squares method (MLSM) is proposed to quickly search for the
desired equalizer. The MLSM can converge to the invariance
set of the MMA and ISDDA cost functions and has a quadratic
termination property. In particular, theoretical analysis shows
that the MLSM has a considerably lower computational load
than the Newton methods by computing the constant Hessian
matrix and its inverse only once. Furthermore, to ensure that
the proposed algorithm switches to the second stage as early and
suitably as possible, an attainable switching threshold between
the two stages is provided on the basis of a hypothesis that
the equalizer output error obeys a normal distribution, and the
rationale of this hypothesis is also provided. Simulation results
illustrate that the proposed algorithm has better convergence
stability, superior equalization quality, and considerably faster
convergence speed than the traditional stochastic-gradient-type
dual-mode blind equalization algorithms.

Index Terms—Blind equalization; modified least squares
method; quadrature amplitude modulation; improved soft
decision-directed algorithm; switching threshold.

I. INTRODUCTION

Cognitive communication is the trend of future development
[1]–[3]. In this system, if the duration of the transmitted
symbol becomes smaller than the time dispersion of multipath
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propagation, the received symbol will experience the inter-
symbol interference (ISI) [4]–[6]. Channel equalizer is an
effective approach to compensate such interference [7], [8].
As conventional channel equalizer requires the use of a pre-
determined training sequence, it consumes precious spectrum
resources. Therefore, it is imperative to reduce the need for
training sequence. Specifically, in uncooperative communica-
tions without any suitable training sequence, training-based
methods are not appliable for a channel equalizer. Owing to
these drawbacks of training-based methods [9], [10], blind
equalization (BE) techniques,without resorting to training se-
quences and channel state information, greatly reduces the
system overhead [11]. Theoretically, BE can fully utilize
the channel bandwidth. Therefore, similar to edge caching
[12], BE increases the transmission efficiency in cooperative
communications. In particular, because BE does not require
any training sequence, it may be the only applicable method
to overcome ISI in uncooperative communications. However,
BE has drawbacks, such as slow convergence speed and high
computational complexity, and it easily falls into a local
minimum, resulting in poor equalization quality [13].

On the other hand, high-order QAM signals are frequently
adopted in communication systems owing to its high spectral
efficiency. However, applying classical BE to high-order QAM
systems poses difficulties because of slow convergence rate,
high computational complexity, and low equalization accuracy.
Therefore, efficient BE for higher-order QAM systems need
to be urgently designed.

In classical BE, the exhaustive search method (ESM) is
typically used to yield a satisfactory or even a global optimal
solution. With ESM, BE can theoretically achieve the same
equalization accuracy as the training-based methods, when
the same received samples are used by both methods. Unlike
the training-based methods that use only the received samples
from the training sequence, BE can exploit all the received
samples, thereby yielding the best equalization performance.
However, because of its high computational load, the ESM is
not suitable for real-world communication applications. Thus,
the core function of BE is to incorporate an efficient method
to search for a satisfactory solution.

The most widely used BE techniques are the property
restoral approaches, which can overcome classical BE com-
binatorial explosion problem; for example, the constant mod-
ulus algorithm (CMA) [14], [15], the multimodulus algorithm
(MMA) [16], [17], and the soft decision-directed algorithm
(SDDA) [18], [19]. The CMA and MMA are perhaps the most
popular schemes for BE because of their simplicity and good
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convergence property [20], [21]. These methods reduce the
possible number of combinations by merging discrete states
of each transmitted code into less states. In the 4-QAM signal,
irrespective of which state the signal is, its modulus is always
fixed. If there are 1000 samples, the modulus of the transmitted
signals has only one possible combination sequence. However,
when the CMA and MMA are applied to higher-order constel-
lation systems, its algorithmic performance can be degraded
severely because they only use the partial information of
constellation points to cause the well-known maladjustment
problem [22], [23]. Moreover, the CMA and MMA are adap-
tive and use a step size significantly smaller than its permissi-
ble value, which results in a slower convergence speed. In
contrast, decision-type algorithms, such as the SDDA, can
noticeably decrease maladjustment in the steady state and
improve the convergence speed to a certain extent. However,
when the SDDA is applied to higher-order QAM systems, its
cost function becomes highly nonconvex and it includes too
many local minima, leading to poor convergence performance.
In addition, its computational complexity increases as the order
increases [24]. To overcome these drawbacks, some researches
adopt two-stage algorithms (dual-mode-type algorithms); for
example, the dual-mode generalized Sato algorithm (DMGSA)
[22], the sinusoidal constellation-matched error minimization
algorithm (SCMEMA) [25], the hybrid CMA and radius-
directed algorithm [26] and two-stage method [28]. In most
of these algorithms, the conventional CMA/MMA is used in
the first stage to reduce the local minimum points and to
ensure stable convergence. Once the error level in the first
stage is reasonably low, a decision-directed algorithm is further
utilized to improve the equalization performance. It is worth
mentioning that the switching threshold is a crucial parameter
for two-stage algorithms. If the switching to the decision-
directed algorithm is performed too early, the algorithm may
not converge, whereas if it is performed too late, the algorithm
may converge slowly and incur a high computational cost.
However, to the best of the authors’ knowledge, these existing
algorithms cannot provide a reasonable switching threshold.
Hence, it is essential to give an attainable switching threshold
for two-stage BE algorithms. Moreover, the gradient-descent
method is used by these methods, which results in a slow
convergence speed. Therefore, some Newton-like methods are
proposed to concelebrate the convergence speed, such as the
Newton method-based CMA (CMA-NM) [27].

In this study, we design an efficient two-stage BE algo-
rithm based on the MMA and the proposed improved SDDA
(ISDDA), which separately implements soft decision to the
real and imaginary parts of the equalizer output. The MMA
based on a novel modified least squares method (MLSM) is
implemented in the first stage to avoid phase rotation and im-
prove convergence stability. In the second stage, an adaptively
selected decision region [28] is adopted for soft decision when
the error level is smaller than the given threshold; then the
ISDDA based on the proposed MLSM is applied to enhance
equalization performance. The primary contributions of this
paper are as follows:

• A novel MLSM is proposed to efficiently optimize the

MMA and ISDDA cost functions (CFs). We prove that
the MMA CF JMMA(wk) and ISDDA CF JISDDA(wk)
(where wk is the iteration sequence of the blind equalizer
based on the proposed MLSM) are Lyapunov functions
[29], [30] and that wk can converge to the invariance set
of the MMA CF and ISDDA CF according to the LaSalle
invariance principle [31]. Moreover, we demonstrate that
the proposed MLSM has a quadratic termination property.

• A theoretical analysis shows that the proposed MLSM
reduces the computational load considerably compared
with the Newton methods because the MLSM’s Hessian
matrix and the corresponding inverse matrix remain con-
stant in the iteration.

• We theoretically provide an attainable switching threshold
with good error tolerance on the basis of a hypothesis
that the error of the BE output is a normal distribution
random variable. Moreover, we prove the rationality of
this hypothesis and analyze the error tolerance of the
switching threshold.

• The ISDDA is proposed for fine equalization. In the
adaptively selected decision region, the SDDA is applied
to the real and imaginary parts separately and the results
are combined to yield the BE output. The equalization
accuracy is improved by adaptively selecting the decision
region and the computational load is reduced by separate-
ly applying the SDDA to the real and imaginary parts.

Finally, we perform simulation to illustrate that the proposed
algorithm has favorable equalization accuracy, fast conver-
gence speed, and robust convergence stability.

The rest of the paper is organized as follows. In Section II,
the baseband channel equalization model is introduced. The
proposed equalization algorithm comprising of the MLSM-
based MMA and ISDDA is presented in Section III. In Sec-
tion IV, simulations results are presented. Finally, conclusions
are presented in Section V. Proofs of several key results are
collected in appendixes.

Throughout the paper, scalar, vector, and matrix are de-
noted by plain lowercase, boldface lowercase, and boldface
uppercase letters, respectively. (·)∗, (·)H , and (·)−1 denote
the complex conjugation, Hermitian matrix, and inverse matrix
operators, respectively. Moreover, symbol ∥ · ∥ indicates the
conventional 2-norm, | · | the magnitude, and N (u, σ2) the
normal distribution function with mean value u and variance
σ2. Furthermore, E[·] represents the expectation operator, and
⊗ is the discrete convolution. In addition, Re[·] and Im[·]
denote the real and imaginary parts, respectively. Finally,
j =

√
−1 is the imaginary unit.

In addition, to make the paper easier to follow, the important
variables and notation are given in the table I. (Please the top
of the next page.)

II. SYSTEM MODEL

As shown in Fig. 1, the cognitive communication system
that experiences multipath fading is considered. The receiving
terminal must compensate for signal distortion by channel
equalization. An equivalent baseband block diagram is given at
the bottom of Fig. 1. The sequence a(n), which is assumed to
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Fig. 1. Baseband model of the blind equalization system.

be QAM modulated and independently identically distributed
(i.i.d), is sent through the linear system with impulse response
h(n). The QAM symbol takes the value from the set defined
by

Φ =
{
a1 + ja2 | a1, a2 = ±1,±3, · · ·

}
. (1)

Assuming that the channel order is L, the input-output relation
can be expressed as

x(n) = h(n)⊗ a(n) + v(n) =
L−1∑
l=0

h(l)a(n− l) + v(n), (2)

where the sequence v(n) is the complex additive
white Gaussian white noise with mean 0 and variance
E[|v(n)|2] = σ2

n.
As shown in Fig. 1, to recover the system input, BE is

applied to the system output x(n) to remove channel distortion
without using any predetermined training data. If the impulse
response of a linear blind equalizer with order L̄ is set as
w = [w(0), w(1), · · · , w(L̄ − 1)]T , then the BE output y(n)
satisfies

y(n) =
L̄−1∑
l=0

w∗(l)x(n− l) = wHx(n), (3)

where x(n) = [x(n), x(n − 1), · · · , x(n − L + 1)]T is the
sliding-window vector of the received signal. It is worth
noting that L̄ is usually set to be lager than L to ensure the
accurate recovery of the signal. Because the original sequence
is unknown (except for its statistical property) to the receiver
in BE, the signal recovered from BE will be subject to inherent
delay and phase ambiguity. Therefore, the desirable recovered
signal of BE is y(n) ≈ Ca(n− τ), where τ is the time delay.

III. TWO-STAGE BLIND EQUALIZATION ALGORITHM
BASED ON MODIFIED LEAST SQUARES METHOD

To overcome the problem of poor equalization accuracy as
well as unstable and slow convergence of BE, we propose
a two-stage BE algorithm based on the MLSM for high-
order QAM systems. This can greatly improve the equalization

quality by avoiding maladjustment in the second stage. The
MLSM is designed to accelerate convergence owing to its
quadratic termination property.

A. MMA Based on MLSM (MMA-MLSM)

The CF of the MMA [16] is described as

J(w) = E[(|Re(y(n))|p −R)2] + E[(|Im(y(n))|p −R)2],
(4)

where R is the dispersion constant defined by

R =
E[|Re(a(n))|2p]
E[|Re(a(n))|p]

=
E[|Im(a(n))|2p]
E[|Im(a(n))|p]

and p is generally set to 2. Gradient-type algorithms can be
used to optimize a blind equalizer. However, although such
algorithms are extremely simple, they converge slowly. Here,
we propose a novel MLSM to optimize a blind equalizer.
To facilitate the design of the MLSM in the subsequent
subsection, the constant p is set as 1 and the MMA CF is
formulated as

JMMA(w) = E[(|Re(y(n))| −R)2]+E[(|Im(y(n))| −R)2].
(5)

Remark 1: The actual modulus of the real or imaginary
parts of the transmitted signals does not equal to R. Thus,
according to (4), we know that, irrespective of the value of
the parameter p, the CF given by (4) cannot be zero and
there exists maladjustment even when the equalizer converges
completely for high-order QAM signals. Moreover, comparing
p = 1 and p = 2, the computational complexities of (5) and
its corresponding gradient are slightly lower than those of (4).
Furthermore, the size of |Re(y(n))| or |Im(y(n))| is similar to
Re(y(n)) or Im(y(n)), respectively. Thus, (4) is similar to the
mean squared error criterion. This indicates that (5) may lead
to a better equalization performance than (4). Hence, when
p = 1, a slightly better equalization accuracy is expected than
when p = 2. Therefore, we will use (5) instead of (4).

We only use (5) for coarse equalization for a stable conver-
gence property [20]. To improve the equalization accuracy, a
second stage is needed. Now, using the time average to replace
the ensemble average, the CF in (5) becomes

JMMA(w)
= E[(|Re(y(n))| −R)2] + E[(|Im(y(n))| −R)2]

= 1
N

N∑
n=1

(|Re(y(n))| −R)
2
+(|Im(y(n))| −R)2,

(6)

where N is the number of available samples. Substituting (3)
into (6) and differentiating JMMA(w) with respect to w yields
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the following gradient:

∇JMMA(w)

= 1
N

N∑
n=1

x(n)xH(n)w

− 1
N

N∑
n=1

Rx(n)(sign(Re(y(n)))− jsign(Im(y(n))))

= 1
NXXHw − 1

NXz,
(7)

where sign(x) denotes the signum function, i.e., sign(x) = 1
for x ≥ 0 and sign(x) = −1 for x < 0. Moreover, X =
[x(1),x(2), · · · ,x(N)] is the sample matrix. The vector z is
defined as

z = z(y(w))
= R[sign(Re(y(1)))− jsign(Im(y(1))),
· · · , sign(Im(y(N)))− jsign(Im(y(N)))]T

.

It can be seen that z is the function of y =
[y(1), y(2), · · · , y(N)]T that changes with w.

The Newton’s methods for optimization let the linear ap-
proximation to the gradient of an objective function be equal to
zero. Basically, Newton’s methods belong to stationary-point
algorithms. Similarly, if z is replaced by z(y(wk)), then we
get an alternative gradient approximation to (7). By letting
such gradient approximation of (7) equal to 0, we have

1

N
XXHw − 1

N
Xzk = 0, (8)

where zk = z(y(wk)) and k denotes the iteration number. Let
(8) and (7) to be 0 respectively, it is very difficult to solve for
the optimal w from (7) since z changes with w. By contrast,
the optimal w can be solved though (8) by iteration. Now, the
approximate least square solutions of BE is

w =
(
XXH

)−1
Xzk. (9)

We refer to the above scheme as the MLSM. The formula is
updated as follows:

wk+1 =
(
XXH

)−1
Xzk = R−1Xzk, (10)

where R = XXH .
Remark 2: The MMA-MLSM is a stationary-point algorith-

m; thus, it has a fast convergent speed like Newton’s methods.
However, the Hessian matrix and its inverse in Newton’s
methods vary with iterations and must be computed in each
iteration, which results in high computational load. Moreover,
the Hessian matrix is sometimes a singular or negative definite
one, so that the Newton’s methods sometimes are divergent.
In contrast, the Hessian matrix 1

NXXH in (8) is constant and
positive definite, and such a Hessian matrix and its inverse
only need to be computed once. Hence, compared with the
conventional Newton method, the MMA-MLSM has enhanced
stability, fast convergence speed, and reduced computational
load.

In the following, we analyze the convergence of the pro-
posed MMA-MLSM.

We use the Lyapunov function and LaSalle invariance
principle [29], [31] to analyze the convergence property of

the MMA-MLSM. For the convenience of presentation, we
first provide the following definitions.

Definition 1 (Lyapunov function): A function f(x) (x ∈
CL) is called a Lyapunov function with respect to a discrete
sequence xk when it satisfies the following conditions. 1) f(x)
is continuous, 2) f(xk+1) ≤ f(xk) for all index k, and 3) the
set Ωε = {x | f(x) < ε} is bounded for each finite ε.

Definition 2 (Invariance set [31]): If xk ∈ CL, then the set

Ω =
{
xk | f(xk+1)− f(xk) = 0

}
is called the invariance set associated with the sequence xk.

Based on the definitions of the Lyapunov function and
invariance set, the LaSalle invariance principle is given as
follows.

Lemma 1 (LaSalle invariance principle [31]): If f(xk) is
a Lyapunov function w.r.t. the discrete sequence xk ∈ CL, then
xk will converge to the invariance set Ω given in Definition 2.

Based on the above theory, we derive the following propo-
sition associated with the MMA-MLSM.

Proposition 1: The CF JMMA(wk) is a Lyapunov function
w.r.t. the sequence wk and the sequence wk will converge to
the invariance set

Ω̃ =
{
wk | JMMA(wk+1)− JMMA(wk) = 0

}
.

Proof: See Appendix A.

Proposition 1 indicates that the MMA-MLSM can converge
to the global minima or local minima. Fortunately, a large
number of experiments have shown that the MMA converges
to the global minima with a high probability. Ultimately,
the proposed MMA-MLSM possesses a stable convergence
property.

The convergence stability of the MMA-MLSM is analyzed
as above. In the following, the convergence speed of the
MLSM is analyzed in terms of the quadratic termination
property, which is defined as follows.

Definition 3 (Quadratic termination property [32]):
Assume that g(x) is a convex quadratic function, i.e.,

g (x) =
1

2
xTAx− bTx+ c (x ∈ Rn) (11)

and matrix A is positive definite. A method is said to have a
quadratic termination property if for every initial point x0, it
minimizes g(x) in at most n iterations.

According to this definition, we have the following propo-
sition.

Proposition 2: The proposed MLSM has a quadratic termi-
nation property similar to a Newton-type algorithm.

Proof: See Appendix B.

Because the single constant modulus used in the MMA does
not equal to the multiple-modulus values of the output signals,
the output error level in the steady state will be large even
though the equalizer converges completely [22], which will
affect the performance and convergence speed of the equal-
izer. The SDDA can improve the convergence speed and the
equalization performance. However, SDDA can not converge
stably and has a high computational load under the case of
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Fig. 2. Adaptive 4-nearest neighbor selection.

high-order signal. Hence, in the second stage, an adaptive 4-
nearest-neighbor selection scheme (A4NS) is used for hard
decision when the error level reaches the switching threshold.
Then, the MLSM-based ISDDA is applied in the 4-nearest
neighbors to reduce the computational complexity, improve
the equalization performance, and increase the convergence
speed.

B. A4NS and Switching Threshold Determination Method

1) A4NS: To illustrate the A4NS, 36-QAM signals are
taken as an example. The A4NS of the SDDA depends
on all constellations. As shown in Fig. 2, the circles with
coordinates a+bj (a = ±1,±3,±5; |b = ±1, ± 3,±5) are 36-
QAM signals and the black annulus with coordinate y(n) is the
output signal of the blind equalizer. The fixed-decision region
method [33] regards y(n) as one of the four constellations
located in the red dotted-line rectangle. A fixed-decision region
is not suitable for the equalizer output y(n). To obtain the
optimal decision region, y(n) is located in the black solid-
line rectangle based on the adaptively selected decision region
scheme [28], which is the nearest decision region according to
the location of y(n). We can conclude that the mean distance
from y(n) to the four constellations in the adaptively selected
decision region is smaller than that in the fixed decision
region. More importantly, the essential functions of decision
are to give an accurate judgment of the equalizer output and
then accelerate the convergence and improve the equalization
accuracy. According to Fig. 2, if the distance between the
real (imaginary) part of the equalizer output y(n) and the real
(imaginary) part of the transmitted signals a(n − τ) is less
than 1, the fixed-decision region can give a right decision.
In contrast, the A4NS relaxes the distance for giving a right
decision to 2. This indicates that the A4NS has the following
advantages: (a) If the A4NS is adopted, then BE can switch
over to decision early, which accelerates the convergence of
BE; (b) The A4NS improves the decision robustness by having
a larger error tolerance area.

2) Switching Threshold Determination Method: To im-
prove the equalization quality and accelerate the convergence,
BE is switched to the decision-directed mode when the e-
qualization error is small. The switching threshold is very
important for such two-stage schemes. However, an attain-
able switching threshold has not been given in the existing
literatures. In this paper, the switching threshold is given
theoretically on the basis of a hypothesis that the equalizer
output error obeys a normal distribution with a probability
density function N (0, σ2) rather than the residual ISI [26],
which is unattainable since the channel state information is
unknown in blind scenarios.

When the equalizer w ideally converges to its optimal value
w̃, the corresponding equalizer output ỹ(n) approximates
a(n−τ) and the CF attains the minimum value. To accelerate
the convergence and avoid the steady state maladjustment,
the proposed algorithm is switched to the decision-directed
algorithm before the MMA CF achieves its minimum. The
equalizer output y(n) distributes in a region with a(n− τ) at
the center. The larger the distance between y(n) and a(n−τ),
the smaller is the probability density function. To model this
phenomenon, assume that the real (imaginary) part of the
equalizer output error C = Re(y(n)) − Re(a(n − τ)), with
C and C ′ having the same distribution, is a normal random
variable with the probability density function N (0, σ2) and
independent of the transmitted signals. Then, the MMA CF is
given as

JMMA(w)
= E[(|Re(y(n))| −R)2] + E[(|Im(y(n))| −R)2]
= E[(|Re(a(n− τ)) + C| −R)2]
+E[(|Im(a(n− τ)) + C ′| −R)2].

(12)

Because C and C ′ have the same distribution, (12) can be
simplified as

JMMA(w)

= E
[
(|Re(a(n− τ)) + C| −R)

2
]

+E
[
(|Im(a(n− τ)) + C ′| −R)

2
]

= 2E
[
(|Re(a(n− τ)) + C| −R)

2
]

= 2E
[
|Re(a(n))|2 + 2CRe(a(n− τ)) + C2

]
−4RE [|Re(a(n)) + C|] + 2R2

= 2E
[
|Re(a(n))|2

]
+ 4E [C]E [Re(a(n− τ))]

+2E
[
C2
]
− 4RE [|Re(a(n)) + C|] + 2R2

. (13)

It is well known that E[Re(a(n−τ))] = 0. Hence, (13) can
be reduced to

JMMA(w)

= 2E
[
|Re(a(n))|2

]
+ 2E

[
C2
]

−4RE [|Re(a(n)) + C|] + 2R2

= 2E
[
|Re(a(n))|2

]
+ 2σ2

−4RE [|Re(a(n)) + C|] + 2R2

. (14)

Moreover, we know that Re(a(n)) is a
discrete random variable with probability
P{Re(a(n)) = a} = 1√

Q
(a = ±1,±3, · · · ) and C is a

normal random variable with the probability density function
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N (0, σ2). Re(a(n)) and C are statistically independent.
Then, the joint probability density function of Re(a(n)) and
C is given as

f(Re(a(n)) = a,C = C̄)
1√
Q

1√
2πσ

e−
C̄2

2σ2 . (15)

Substituting (15) into (14) yields the following formula

JMMA(w)

= 2E
[
|Re(a(n))|2

]
+ 2σ2 + 2R2

−4R 1√
Q

√
Q/2∑

i=−
√
Q/2+1

∫ +∞
−∞

∣∣(2i− 1) + C̄
∣∣× 1√

2πσ
e−

C̄2

2σ2 dC̄

.

(16)

Using the symmetry of the normal probability density function,
(16) can be simplified to

JMMA(w)

= 2E
[
|Re(a(n))|2

]
+ 2σ2 + 2R2

−4R× 2√
Q

√
Q/2∑
i=1

∫ +∞
−∞

∣∣(2i− 1) + C̄
∣∣× 1√

2πσ
e−

C̄2

2σ2 dC̄

= 2E
[
|Re(a(n))|2

]
+ 2σ2 − 16R√

Q

√
Q/2∑
i=1

σ√
2π

e−
(2i−1)2

2σ2

−16R√
Q

√
Q/2∑
i=1

∫ 0

−(2i−1)
(2i− 1)× 1√

2πσ
e−

C̄2

2σ2 dC̄ + 2R2

.

(17)
Let C̄ ′ = C̄

σ . Then (17) is rewritten as

JMMA(w)

= 2E
[
|Re(a(n))|2

]
+ 2σ2

−4R× 4√
Q

√
Q/2∑
i=1

σ√
2π

e−
(2i−1)2

2σ2 + 2R2

−16R√
Q

√
Q/2∑
i=1

∫ (2i−1)/σ

0
(2i− 1)× 1√

2π
e−

C̄
′2
2 dC̄ ′

= J̃1(σ)

. (18)

Note that the value of JMMA(w) is translated into a function
of variance σ under the assumption that the equalizer output
error obeys N (0, σ2). By common sense, the larger the error
between w and its optimal value w̃, the larger is the σ
value. Furthermore, the equalizer error corresponds to the
MMA CF. Hence, if the variance σ increases, the value of
J̃1(σ) increases. So we can conclude that the assumption that
C is a normal random variable with the probability density
function N (0, σ2) is reasonable. It is well known that the
first-order derivative J̃ ′

1(σ) > 0 implies that J̃1(σ) increases
with increasing σ. In fact, in Appendix C, we will prove that
J̃ ′
1(σ) > 0. Finally, we can conclude that the assumption that

C is a normal random variable with the probability density
function N (0, σ2) is reasonable.

Now, the BE process is switched to the decision-directed
mode when its weight vector becomes wth, which corresponds
to the variance σth, i.e., JMMA(wth) = J̃1(σth). Further, the
probability of the corresponding decision-making error should
be less than αth to ensure the following ISDDA-MLSM con-
vergence. In other words, the probability p{|C| > 2} = αth,
because a decision error is made when |C| > 2 is considered
according to the A4NS. Assume that c̄′ is a standard normal

random variable with the probability distribution function
F (C̄ ′), defined as F (C̄ ′) = p{c̄′ ≤ C̄ ′}. If αth/2 = F (α),
then p{|C| > 2} = αth when σth = −2

α . Finally, when the
cost function value is

JMMA(w) ≤ JMMA(wth) = J̃1(σth) = J̃1(
−2

α
),

the proposed method switches to the ISDDA-MLSM in order
to improve the equalization accuracy and increase the conver-
gence speed.

C. ISDDA Based on MLSM (ISDDA-MLSM)

For a 4-QAM system, the SDDA obtains BE by adjusting
the weight vector w to minimize the CF as follows [19]:

JSDDA(w) = E

[
− ln

4∑
q=1

ρq√
2πσq

exp[− 1

2σ2
q

|y(n)− aq|2]
]
,

(19)
where ρq is the priori probability with respect to aq ∈ {1 +
j, 1−j,−1+j,−1−j} and σ2

q is the variance associated with
aq . Generally, w is updated according to the gradient descent
method as follows:

wk+1 = wk + µe
∗

kx(k)

ek = 1
Zk

4∑
q=1

exp
(
− 1

2σ2
q
|y(k)− aq|2

)
× (aq − y(k))

Zk =
4∑

q=1
exp

(
− 1

2σ2
q
|y(k)− aq|2

)
(20)

, where µ is the step size and k the iteration index.
For high-order QAM signals, direct application of the

SDDA may lead to poor convergence. Hence, we apply the
SDDA to the output of BE based on the four constellations
contained in the adaptively selected decision region when the
MMA CF JMMA(w) ≤ J̃1(

−2
α ).

To reduce the computational load, we implement the soft
decision to the real and imaginary parts of the equalizer output
separately. Then, the improved CF can be formulated as

JISDDA(w)

= E[− ln
2∑

p=1

ρp√
2πσp

exp
(
− 1

2σ2
p
(Re (y(n))−Rp)

2
)

×
2∑

q=1

ρq√
2πσq

exp
(
− 1

2σ2
q
(Im (y(n))− Iq)

2
)
]

(21)

, where Rp (for p = 1, 2) and Iq (for q = 1, 2) denote the real
and imaginary parts of the constellation points in the decision
region, respectively. Similarly, with the SDDA, the parameters
ρp and ρq refer to the priori probabilities of Re (a(n)) = Rp

and Im (a(n)) = Iq , respectively. Since a(n) is always i.i.d,
the mathematical relation ρp = ρq holds for all p and q.
Moreover, the variance σ2

p (σ2
q ) decides the width of Gaussian

function corresponding to Rp (Iq) and may considerably affect
the equalization quality when it is extremely large or extremely
small [34]. In other cases, the variance nearly has no effect to
the equalization accuracy. Detailed discussion on the effect of
the variance on the performance of the soft decision-directed
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algorithm can be found in [34]. Similarly, it is reasonable to
set σ2

p = σ2
q = σ2 because a(n) is i.i.d. Hence, the constants

ρp√
2πσp

and ρq√
2πσq

are equal and can be neglected. Then, the
ISDDA CF can be described as follows:

JISDDA(w)

= E

[
− ln

2∑
p=1

exp
[
− 1

2σ2 [Re (y(n))−Rp]
2
]

×
2∑

q=1
exp

[
− 1

2σ2 [Im (y(n))− Iq]
2
]]

,

(22)

which is equivalent to (19) in the physical sense. This implies
that the good equalization performance of the SDDA is
preserved. However, they differ in mathematical calculation.
The CF given by (19) involves four complex multiplications,
whereas that by (22) requires four real multiplications, with
the computation of other aspects basically being the same. This
indicates that the ISDDA has slightly lower computational
complexity. Moreover, comparing (22) with the CF given by
(3) and (4) in [35], the ISDDA has the following advantages:
the proposed algorithm implements the soft decision to the
real and imaginary parts separately and then combines the
results, whereas the algorithm in [35] implements soft decision
to the real or imaginary part individually. The proposed
algorithm fully utilizes the comprehensive information of
QAM constellation, whereas the algorithm given in [35] uses
the information of the real and imaginary parts of QAM
constellation separately, possibly causing additional estimation
error.

Finally, by replacing statistical average with time average
and neglecting the inconsequential constant 1

N , the CF in (22)
can be simplified as follows:

JISDDA(w)

= −
N∑

n=1
ln

1=2∑
p=

exp
[
− 1

2σ2 [Re (y(n))−Rp]
2
]

×
2∑

q=1
exp

[
− 1

2σ2 [Im (y(n))− Iq]
2
] (23)

. Now, differentiating (23) with respect to w, we obtain the
following gradient expression:

∇JISDDA(w)

=
N∑

n=1

2∑
p=1

1
Zr(n)

1
2σ2 fr,p(n) [Re (y(n))−Rp]x(n)

−j
N∑

n=1

2∑
q=1

1
Zi(n)

1
2σ2 fi,q(n) [Im (y(n))− Iq]x(n)

= 1
2σ2

N∑
n=1

x(n)xH(n)w

− 1
2σ2

N∑
n=1

(
2∑

p=1

1
Zr(n)

fr,p(n)Rp − j
2∑

q=1

1
Zi(n)

fi,q(n)Iq

)
x(n)

,

(24)

where fr,p(n) = exp
[
− 1

2σ2 [Re (y(n))−Rp]
2
]
,

fi,q(n) = exp
[
− 1

2σ2 [Im (y(n))− rq]
2
]
, Zr(n) =

1∑
p=0

fr,p(n) and Zi(n) =
1∑

q=0
fi,q(n). Let

f(n) =
1∑

p=0

1
Zr(n)

fr,p(n)rp − j
1∑

q=0

1
Zi(n)

fi,q(n)rq and

f̄ = [f(1), f(2), · · · , f(N)]T . It follows from (3) that f̄ is
the function of y = [y(1), y(2), · · · , y(N)]T , i.e., f̄ = f̄(y).
If the inessential constant coefficient 1

2σ2 is neglected, then
(24) can be simplified as

∇JISDDA(w) = XXHw −Xf̄(y). (25)

Similarly, we use yk = y|w=wk
to replace y and consider it

to be fixed. The updated formula of the ISDDA according to
the MLSM is correspondingly designed as

wk+1 = (XXH)−1Xf̄(yk) = R−1Xf̄k, (26)

where f̄k = f̄ |y=yk
.

Remark 3: We can see that the iteration formula of the pro-
posed ISDDA-MLSM is similar to that of the MMA-MLSM.
Hence, the ISDDA-MLSM also has a lower computational
complexity because of the constant correlation matrix R. We
only need to compute f̄k and implement two multiplications
of matrix and vector, i.e.,

f = Xf̄k, wk+1 = R−1f .

Thereby, the computational load is significantly reduced.
In addition to the advantages mentioned above, the ISDDA-

MLSM has a stable convergence property, based on which the
following conclusion can be derived.

Proposition 3: The function JISDDA(wk) is also a Lya-
punov function and the equalizer weight vector wk converges
to the invariance set

⌢

Ω = {wk |JISDDA(wk+1)− JISDDA(wk) = 0} .

Proof: See Appendix D.
To sum up, the detailed rationale ofthe proposed TSBEA-

MLSM is summarized in Algorithm 1, where the accuracy
parameter ε is a sufficiently small positive constant and K is
the maximum iteration times. (Please see the top of the next
top.)

IV. NUMERICAL RESULTS AND DISCUSSION

Simulation is conducted to investigate the performance
of the proposed TSBEA-MLSM, which is composed of the
MMA-MLSM and ISDDA-MLSM as described in Section III,
and compare it with the performance of the CMA, DMGSA,
SCMEMA and CMA-NM in terms of equalization quality and
convergence speed. The former is accessed by the symbol error
rate (SER) and the mean squared error (MSE) between y(n)
and a(n− τ). The latter is measured by the residual ISI [26].
The MSE and ISI are defined, respectively, as

MSE = E[|Cy(n)− a(n− τ)|2] (27)

ISI =

L+L̄−2∑
n=0,n ̸=nmax

|h̃(n)|2

|h̃(nmax)|2
, (28)

where τ = argmaxτ E[|y(n)aH(n − τ)|], C =
N∑

n=1
a(n−τ)y∗(n)

N∑
n=1

y(n)y∗(n)

, h̃(n) is the combined impulse response of
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Algorithm 1: The Proposed TSBEA-MLSM

1: Initialization of MMA: We find the optimal solution by
using the proposed TSBEA-MLSM. First, the MMA IS initial-
ized. The w0 is initialized by unit center criteria, i.e. w0 =
[0, · · · , 1, · · · , 0]H, where the element 1 is in the center of the
vector. The iteration index k is set to be 0, initial error e is set
larger than then accuracy parameter J̃1(σth).
2: While e > J̃1(σth) and k < K do
3: Calculate y(n)n = 1, · · · , N by using w = wk. Then, we
update wk+1 by using iteration formula (10).
4: Update iteration error e = J (wk) .
5: Update iteration index k = k + 1 and let wk = wk+1.
6: End While
7: Return wk

8: Initialization of ISDDA: The blind equalizer is initialized by
w0 = wk. The iteration index k is set to be 0, initial error e is
set larger than then accuracy parameter ε.
9: While e > η and k < K do
10: Calculate y(n)n = 1, · · · , N by using w = wk. Finally, we
update wk+1 by using iteration formula (26).
11: Update iteration error e = ∥wk+1 −wk∥2.
12: Update iteration index k = k + 1 and let wk = wk+1.
13: End While
14: Return wk

h(n) and the equalizer w(n), h̃(n) = h(n) ⊗ w(n) =
[h̃(0), h̃(1), · · · , h̃(L̄+ L− 2)], and nmax = argmax

n
|h̃(n)|2.

Dispersive 16-QAM system is considered. The order of BE
is chosen as 16, initialized with a unitary value in the center
position and zeros elsewhere. The TSBEA-MLSM is switched
to the ISDDA when

JMMA(w) ≤ JMMA(wth) = J̃1(σth =
−2

α
)

and the switching time of the SCMEMA is chosen to be 30
iterations. The sample number N is set to be 1000 except for
the third experiment. The variance σ2 is suitably taken as 0.8.
The signal-to-noise ratio (SNR) is defined as

JMMA(w) ≤ JMMA(wth) = J̃1(σth =
−2

α
).

Finally, the channel impulse response (CIR) h(n) is set to
be h1(n) = [1.0, 0.5 exp(−j3/4π)] (which is the same as
the simulation environments considered in [25]) in the first
few experiments and then set to be h2(n) = [0.005 −
0.004j, 0.1+0.003j,−0.24−0.104j, 0.854+0.520j,−0.218+
0.273j, 0.19 − 0.14j,−0.06 + 0.020j] to measure the perfor-
mances of the methods.

When the CIR is given by h1(n), the switching thresh-
old is σth = 0.7765, 0.8597, 0.9216, 0.9739, 1.0204, and
the corresponding decision-making error is αth = 1%,
2%, 3%, 4%, 5%. The MSE of the TSBEA-MLSM in the
steady state is shown in Fig. 3 and Fig. 4 for SNR =
12dB, 20dB, 28dB, 36dB, 44dB. We can observe that: If
the threshold is too large, i.e. the TSBEA-MLSM switched
to the second stage (ISDDA) to early, the MSE and SER
are too large , which indicates the BE fails. Moreover, We
expect the method to turn to the second stage as early as
possible to accelerate the convergence. According to Fig. 3
and Fig. 4, it is fairly reasonable to consider σth = 0.7765 as
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Fig. 3. MSE of the TSBEA-MLSM for different threshold σth values when
SNR = 12dB, 20dB, 28dB, 36dB, 44dB and CIR is h1(n).
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Fig. 4. SER of the TSBEA-MLSM for different threshold σth values when
SNR = 12dB, 20dB, 28dB, 36dB, 44dB and CIR is h1(n).

the switching threshold and the corresponding function value
J̃1(0.7765) = 3.2319.

In the following, we first compare the performance of all
related algorithms under the case of channel h1(n).

A. Simulation results under the case of channel h1(n).
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Fig. 5. Constellation diagrams: the equalizer output of (a) the first stage of
the SCMEMA, (b) the second stage of the SCMEMA, (c) the first stage of the
TSBEA-MLSM with σth = 0.7765, and (d) the second stage of the TSBEA-
MLSM with σth = 0.7765, when SNR = 20dB and CIR is h1(n).

As shown in Fig. 5, both the SCMEMA and the proposed
method avoid the local minimum points of the constellation-
matched function of the SCMEMA and the ISDDA of the
TSBEA-MLSM, respectively, by its equalization of the first
stage. Further, blind equalizers converge well when the CIR
is simply set as h1(n).
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Fig. 6. Performance comparison of the TSBEA-MLSM, SCMEMA, D-
MGSA, and CMA in terms of MSE when CIR is h1(n).

As shown in Fig. 6, when the SNR is large and the CIR is
h1(n), the MSE of the TSBEA-MLSM is almost equal to those
of the SCMEMA and DMGSA, and thay are considerably
lower than that of the CMA. This superior performance
of the two-stage methods is attributed to the constellation-
matched error method in the second stage, which will avoid
the maladjustment of the CMA (MMA) when the equalizer is
nearly convergent.
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Fig. 7. Performance comparison of the TSBEA-MLSM, SCMEMA, D-
MGSA, and CMA in terms of SER when CIR is h1(n).

Fig. 7 displays the SER curves with respect to the SNR
of the four algorithms when the CIR is h1(n). The figure
shows that the TSBEA-MLSM, SCMEMA, and DMGSA have
much better equalization performance than the CMA overall,
because the constellation-matched error method eliminates the
problem of steady state maladjustment. Moreover, the TSBEA-
MLSM has a fairly smaller SER than the SCMEMA and
DMGSA, because (i) the TSBEA-MLSM adopts the batch pro-
cessing method, avoiding extreme errors of adaptive methods;
and (ii) the adaptively selected decision region improves the
reliability of the TSBEA-MLSM.

Fig. 8 displays the residual ISI of the TSBEA-MLSM,
SCMEMA, and DMGSA versus iterations when the CIR
is h1(n). The number of iterations required to approach
convergence is less than 20 for the TSBEA-MLSM, but
approximately 4000 for the SCMEMA, approximately 12000
for the DMGSA, and 10000 for the CMA. This phenomenon
indicates the proposed algorithm has a considerably faster
convergence speed thanks to its quadratic termination property.
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Fig. 8. Residual ISI of the TSBEA-MLSM, SCMEMA, and DMGSA with
iterations when SNR = 20dB and CIR is h1(n).

In addition, the ISI value of the TSBEA-MLSM in the steady
state is 0.0005058, the CMEMA is 0.003638, the DMGSA
is 0.003049, and the CMA is 0.01593. This implies that the
proposed algorithm has the best equalization accuracy owing
to the batch processing technology and the adaptively selected
decision region it adopts. Furthermore, the two-stage methods
SCMEMA and TSBEA-MLSM have a switching point of
k = 3000 (Which is same as the the reference [25]) and
k = 1, respectively, as shown in Fig. 8. It can be seen that
the SCMEMA already has a low ISI of approximately 0.04
when k = 3000. In this case, implementing a constellation-
matched error method, like in the SCMEMA, can greatly
accelerate the convergence as shown in Fig. 8. By contrast,
the ISI is approximately 0.17 when k = 1 for the TSBEA-
MLSM, which indicates that the TSBEA-MLSM switches to
the second stage early and ISDDA-MLSM has a robust error
tolerance. The acceleration of the convergence is not observed
probably because the gradient of the MMA is large and the
MMA-MLSM also has a fast convergence speed when k = 1
and the CIR is set as h1(n).

Unless stated, in the following experiments, the CIR is set
otherwise as h2(n).

B. Simulation results under the case of channel h2(n).
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Fig. 9. Constellation diagrams: the equalizer output of (a) the first stage of
the SCMEMA, (b) the second stage of the SCMEMA, (c) the first stage of
the TSBEA-MLSM with σth = 0.7765, and (d) the second stage of TSBEA-
MLSM with σth = 0.7765, when SNR = 20dB and CIR is h2(n).

Fig. 9(a) and (b) suggest the following observations. 1) The
transmission signal profile has a phase rotation in subgraph
Fig. 9(a), indicating that 3000 iterations of the CMA provide
a good initial value to the SCMEMA. 2) The SCMEMA fails
when the CIR is h2(n). This is mainly due to the following
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reasons. When the CIR is simply h1(n), the equalizer output
of the first stage of the SCMEMA does not revolve as a
whole, whilst the CIR h2(n) causes the phase rotation of the
equalizer output signals; this is a significant feature of the
CMA. However, the SCMEMA is constructed on the basis
of the constellation coordinate. The real part (imaginary part)
of these revolved constellation points are not located at the
minimum of the sine function. Hence, the initialization is
invalid, resulting in the failure of equalization. By contrast,
the proposed algorithm converges well and has a good e-
qualization performance, because BE with the MMA provides
the output signals without rotation and the coordinates of
these output constellation points are near the minimum of the
cost function of the improved soft decision. Moreover, the
proposed algorithm does not need an excellent initial value
because of the robustness of the decision owing to the large
error tolerance area of the A4NS. The constellation diagram
shown in subgraph Fig. 9(c) is quite complex, indicating
that the TSBEA-MLSM can be transferred to the second
stage early and fast convergence can be realized, avoiding the
maladjustment.
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Fig. 10. Performance comparison of the TSBEA-MLSM, SCMEMA,
DMGSA, CMA, CMA-NM, MMA and MMA-MLSM in terms of MSE when
CIR is h2(n).

12 14 16 18 20 22 24
SNR(dB)

10-4

10-3

10-2

10-1

100

S
E

R

SER of equalizer output

DMGSA
MMA
CMA-NM
CMA
MMA-MLSM
SCMEMA
TSBEA-MLSM

Fig. 11. Performance comparison of the TSBEA-MLSM, SCMEMA,
DMGSA, CMA, CMA-NM, MMA and MMA-MLSM in terms of SER when
CIR is h2(n).

As shown in Fig. 10 and Fig. 11, the TSBEA-MLSM has
the best equalization performance in terms of MSE and SER
when the CIR is h2(n). This is because the two-stage method
avoids the maladjustment of the MMA, the batch-processing
technology removes the inaccuracy of the adaptive methods,
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Fig. 12. ISI with iterations for the TSBEA-MLSM, DMGSA,SCMEMA,
CMA, CMA-NM, MMA and MMA-MLSM when SNR = 20dB and CIR
is h2(n).

and the adaptively selected decision region scheme improves
the reliability of the TSBEA-MLSM. Note that the SCMEMA
fails for the phase rotation of the equalizer output signals
caused by the CMA. More spatially, the the MSE and SER
OF CMA-NM is similar to that of MMA. The performance of
MMA-MLSM is superior to MMA due to adoption of batch
processing method. Moreover, the MSE and SER of TSBEA-
MLSM is lower than that of MMA-MLSM since the two-stage
method (ISDDA) avoids the maladjustment of the MMA.

As seen in Fig. 12, the SCMEMA diverges at the switching
point for the phase rotation of the equalizer output signals
caused by the CMA. DMGSA, CMA and MMA show a
similar convergence performance as the case when the CIR is
h1(n). The CMA-NM has much faster convergence speed than
the DMGSA and CMA due to adoption of Newton method.
The proposed TSBEA-MLSM has the best steady-state perfor-
mance and a considerably fast convergence speed (even faster
than the CMA-NM) due to its quadratic termination property.
Furthermore, the convergence speed of the TSBEA-MLSM
increases after switching to the second stage of the TSBEA-
MLSM when the CIR is h2(n). Therefore the convergence
speed of the TSBEA-MLSM is also faster than that of MMA-
MLSM. Comparison of the ISI in the cases when the CIR
is h1(n) and h2(n) indicates that the TSBEA-MLSM has a
robust convergence stability owing to the good error tolerance
of the ISDDA and the un-revolved output signals of the first
stage.

V. CONCLUSION

In this paper, we have proposed a two-stage BE algorithm
for cognitive communication systems. A novel MLSM has
been developed to quickly search the optimal blind equalizer.
The proposed MMA-MLSM and ISDDA-MLSM can converge
stably. Furthermore, we have proposed a practical method to
provide a switching threshold for the two-stage BE algorithm,
which greatly improves the effectiveness and reliability of
the algorithm. Compared with the other two-stage algorithms,
the TSBEA-MLSM has superior equalization quality, faster
convergence speed, and better convergence stability, and it
also decreases the total computational load with the use of
the constant correlation matrix.
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APPENDIX A
PROOF OF PROPOSITION 1

According to the definition of the Lyapunov function, we
can prove that the function JMMA(wk) is a Lyapunov function
through the following three parts.

Part 1: JMMA(wk) is composed of the linear function
(y(n) = wHx(n)), absolute value function (|Re(y(n))|),
and quadratic function ((|Re(y(n))| −R)2), which are all
basic functions. Consequently, the function JMMA(wk) is
continuous.

Part 2: Based on the iteration formula (10), we can obtain
the iteration direction of the proposed MMA-MLSM as

dk+1 =
(
XXH

)−1
Xzk −wk. (A.1)

The condition JMMA(wk+1) ≤ JMMA(wk) can be proved
by the fact that dk+1 is a descent direction. It is well known
that ∇JH

MMA(xk)(dk+1) < 0 implies that dk+1 is a descent
direction when ∇JMMA(xk) ̸= 0. Because R−1 is a positive
definite matrix, the following mathematical relation holds:

∇JH
1 (wk)dk+1

= ∇JH
1 (wk)

((
XXH

)−1
Xzk −wk

)
= ∇JH

1 (wk)
(
XXH

)−1 (
Xzk −XXHwk

)
= −N∇JH

1 (wk)R
−1∇JH

1 (wk) < 0

. (A.2)

Hence, we can conclude that JMMA(wk + λdk+1) ≤
JMMA(wk).

Part 3: For any finite constant ζ, the set
{wk |JMMA(wk) < ξ} is obviously bounded, because
JMMA(wk) is unbounded when wk is unbounded.

Through the analysis of the above three parts, we prove
that JMMA(wk) is a Lyapunov function. Therefore, according
to the LaSalle invariance principle (Lemma 1), the discrete
sequence wk will converge to the invariance set

Ω̃ = {wk |JMMA(wk+1)− JMMA(wk) = 0} .

This completes the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Differentiating g(x) given in (11) with respect to w yields
the gradient

∇g(x) = Ax− b. (B.1)

According to the MLSM, let ∇g(x) = 0 and we have the
MLSM iteration formula

xk+1 = Ak
−1bk = A−1b. (B.2)

We notice that the proposed MLSM degenerate into a general
least square method and it is obvious that xk+1 is independent
of xk. In other words, xk+1 can be convergent with only one
iteration, irrespective of the value of the initial point x0. This
completes the proof of Proposition 2.

APPENDIX C
PROOF OF CONDITION J̃ ′

1(σ) > 0

The derivative J̃ ′
1(σ) is given by

J̃ ′
1(σ)

= 4σ − 4R× 4√
Q

√
Q/2∑
i=1

1√
2π

e−
(2i−1)2

2σ2 + σ√
2π

(2i−1)2

σ3 e−
(2i−1)2

2σ2

+4R× 4√
Q

√
Q/2∑
i=1

(2i−1)√
2π

e−
(2i−1)2

2σ2 (2i−1)
σ2

= 4σ − 4R× 4√
Q

√
Q/2∑
i=1

1√
2π

e−
(2i−1)2

2σ2

.

(C.1)

To prove the inequality J̃ ′
1(σ) > 0, we prove that J̃ ′

1(σ)
4σ > 0,

i.e.,

1− 4× R√
Q

√
Q/2∑
i=1

1√
2πσ

e−
(2i−1)2

2σ2 > 0. (C.2)

Here, R < max {|Re(a(n))|} =
√
Q − 1, so R√

Q
< 1.

According to the amplification and minification method, if the
inequality √

Q/2∑
i=1

1√
2πσ

e−
(2i−1)2

2σ2 ≤ 0.25 (C.3)

holds, then inequality (C.2) holds and so J̃ ′
1(σ) > 0 holds. The

left-hand side expression of inequality (C.3) is the function of
variance σ. Let function f(σ) be

f(σ) =

∞∑
i=1

1√
2πσ

e−
(2i−1)2

2σ2 . (C.4)

Now, the original problem is transformed into proving f(σ) ≤
0.25. Let

√
2πσ
2 be s. Then the function f(σ) can be re-

expressed as

f(σ) = f(s) =
1

2s

∞∑
i=1

e−
π(i−1/2)2

s2 =
1

4s

∞∑
i=−∞

e−
π(i−1/2)2

s2 .

(C.5)
According to Poisson’s sum formula [31], we have

f(s) =
1

4s

∞∑
i=−∞

e−
π(i−1/2)2

s2 =
1

4s

∞∑
i=−∞

e−j(πi)e−πi2s2s.

(C.6)
Simplifying the above formula yields

f(s) =
1

4

∞∑
i=−∞

e−j(πi)e−πi2s2

=
1

4
+

1

4
× 2

∞∑
i=1

(−1)ie−πi2s2

= 0.25− 0.5
∞∑
i=1

(−1)i−1e−πi2s2

≤ 0.25− 0.5
(
e−πs2 − e−4πs2

)
< 0.25. (C.7)

Finally, we can conclude that the maximum value of func-
tion f(σ) (f(s)) is not larger than 0.25. According to the
above analysis, formula (C.3) holds and then J̃ ′

1(σ) > 0. This
complete the proof of J̃ ′

1(σ) > 0.
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APPENDIX D
PROOF OF PROPOSITION 3

The proof of Proposition 3 is similar to that of Proposition 1.
Here, we only give a simple proof of this proposition.

(i) Clearly, JISDDA(w) is continuous, because function
JISDDA(w)) is constructed by several basic functions.

(ii) Let
⌢

dk+1 =
(
XXH

)−1
Xf̄k −wk. Then we can obtain

JISDDA(wk +λ
⌢

dk+1) ≤ JISDDA(wk)(∇JISDDA(xk) ̸= 0)

(where parameter λ is a small positive step size) and
JISDDA(wk+1) ≤ JISDDA(wk) by the same method used
in the proof given in Appendix A.

(iii) If wk is unbounded, then JMMA(wk) is unbounded.
Hence, the set

{wk |JISDDA(wk) < ξ}

is bounded for all finite constant ξ.
Through the above analysis, it is known that JISDDA(wk)

is a Lyapunov function. Finally, we can conclude that the
discrete sequence wk converges to the invariance set

⌢

Ω = {wk |JISDDA(wk+1)− JISDDA(wk) = 0}

according to the LaSalle invariance principle (Lemma 1). This
completes the proof of Proposition 3.
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