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Abstract. The intensively studied Diameter problem is to find the di-
ameter of a given connected graph. We investigate, for the first time in a
structured manner, the complexity of Diameter for H-free graphs, that
is, graphs that do not contain a fixed graph H as an induced subgraph.
We first show that if H is not a linear forest with small components,
then Diameter cannot be solved in subquadratic time for H-free graphs
under SETH. For some small linear forests, we do show linear-time al-
gorithms for solving Diameter. For other linear forests H, we make
progress towards linear-time algorithms by considering specific diameter
values. If H is a linear forest, the maximum value of the diameter of any
graph in a connected H-free graph class is some constant dmax dependent
only on H. We give linear-time algorithms for deciding if a connected H-
free graph has diameter dmax, for several linear forests H. In contrast, for
one such linear forest H, Diameter cannot be solved in subquadratic
time for H-free graphs under SETH. Moreover, we even show that, for
several other linear forests H, one cannot decide in subquadratic time if
a connected H-free graph has diameter dmax under SETH.

1 Introduction

The Diameter problem asks to find the diameter of an undirected, unweighted
graph G = (V,E), that is, the longest of the shortest paths between all pairs
of nodes; formally, diam(G) = maxu,v∈V d(u, v). We shall denote |V | = n and
|E| = m. A trivial algorithm executes a Breadth First Search (BFS) from every
node in the graph, and has a running time of O(nm). The best known matrix
multiplication-based algorithms achieve a running time of Õ(nω) [16,43,45] to
find the diameter of a graph, where Õ hides logarithmic factors and ω is the
matrix multiplication constant, with current known value ω < 2.371866 [26]. A
search for improvement led to a hardness result: under the Strong Exponential
Time Hypothesis (SETH), one cannot decide between diameter 2 or 3 on (sparse)
split graphs in O(n2−ϵ) time, for any ϵ > 0 [42]. SETH is a hypothesis that
states that Satisfiability cannot be solved in 2(1−ϵ)n time, for any ϵ > 0,
where n is the number of variables [37,38]. On other simple graph classes like
⋆ J.J. Oostveen is supported by the NWO grant OCENW.KLEIN.114 (PACAN).
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constant degree graphs, truly subquadratic time algorithms for Diameter are
also ruled out under SETH [34]. Directed versions of the Diameter problem
admit similar barriers under SETH [4]. No clear bound is known for Diameter
on dense graphs, and no such lower bound can be derived when ω = 2, but we do
know that there is a subcubic equivalence between Diameter and computing
the reach centrality of a graph, that is, a truly subcubic algorithm for one implies
such an algorithm for the other and vice versa [1].

Given that the hardness results are based on long-standing conjectures, it
is natural to approach diameter computation and other similar problems on
restricted graph classes. Related literature also concerns computation of ec-
centricities, as computing the diameter of a graph is equivalent to computing
the largest eccentricity over all vertices. A conceptually simple algorithm called
LexBFS can solve Diameter in O(n+m) time for distance-hereditary chordal
graphs and interval graphs [25]. Distance-hereditary graphs have been studied
separately, and admit linear-time algorithms of all eccentricities [19,22,24]. In-
terval graphs admit computation of the eccentricity of the center of the graph in
linear time, next to linear-time diameter computation [40]. Subquadratic algo-
rithms for Diameter and computing eccentricities have been studied for more
graph classes, including asteroidal triple (AT)-free graphs [28], directed path
graphs [13], strongly chordal graphs [17], dually chordal graphs [6,18], Helly
graphs and graphs of bounded Helly number [21,30,31], αi-metric graphs [20],
retracts [27], δ-hyperbolic graphs [11,12,22,23], planar graphs [2,8,36], and out-
erplanar graphs [35]. Diameter was also studied from the parameterized per-
spective, see e.g. [4,7,15,29,32], and a large body of work exists on approximation
algorithms, see e.g. [4,5,10,13,14,20,42,44].

For graph classes with forbidden patterns, Ducoffe et al. [32] show subquadratic-
time algorithms of Diameter for H-minor-free graphs, where the precise expo-
nent depends on H, improved upon by Duraj et al. [33]. Johnson et al. [39]
showed for H-subgraph-free graphs that there is a dichotomy for Diameter be-
tween almost-linear time solvability and quadratic-time conditional lower bounds
depending on the family H. Also note that many of the studied graph classes
listed above can be characterized as H-free graphs for a family of graphs H, but
for each one, H has size 2 or larger. As far as we are aware, a structured study
into forbidden (monogenic) induced patterns is absent in the literature.

Our Contributions. We initiate a structured study into diameter computation
on H-free graphs, where H is a single graph. Recall that a graph is H-free if it
does not contain H as an induced subgraph. The question we consider is:

For which H-free graph classes G can the diameter of an n-vertex graph G ∈ G
be computed in time O(n2−ϵ)?

Our first result analyses existing lower bounds to find hardness for H-free graph
classes. Here, Pt denotes the path on t vertices, and sPt denotes the disjoint
union of s copies of a Pt. For graphs G,H let G+H denote their disjoint union.
Recall that a linear forest is a disjoint union of one or more paths.
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Theorem 1 (♠3). Let H be a graph that contains an induced 2P2 or is not
a linear forest. Under SETH, Diameter on H-free graphs cannot be solved in
O(n2−ϵ) time for any ϵ > 0.

Theorem 1 shows the most prominent gap to be for graph classes which ex-
clude a small linear forest. Ducoffe [28] proved a hardness result for Diameter
on AT-free graphs that holds under the hypothesis that the currently asymptot-
ically fastest (combinatorial) algorithms for finding simplicial vertices (vertices
with a complete neighbourhood) are optimal, which we refer to as the Simplicial
Vertex Hypothesis. Because the vertex set of the graph in Ducoffe’s hardness con-
struction can be partitioned into four cliques, the result of [28] can be formulated
as follows.

Theorem 2 ([28]). For any fixed k ≥ 5, under the Simplicial Vertex Hypoth-
esis, there does not exist a combinatorial algorithm for Diameter on kP1-free
graphs that runs in O(m3/2−ϵ) time for any ϵ > 0.

To complement the hardness results, we show linear-time algorithms for sev-
eral classes of H-free graphs for which H is a small linear forest.

Theorem 3 (♠). Let H be a graph. If H is an induced subgraph of P2 + 2P1,
P3 + P1, or P4, then Diameter on H-free graphs can be solved in O(n + m)
time.

We achieve Theorem 3 by careful structural analysis of the graph class and
then show that a constant number of Breadth First Searches suffice algorithmi-
cally. Note that a running time of O(n + m) clearly beats the naive algorithm
of O(nm) time and the matrix multiplication algorithms of Õ(nω) time, but
also rules out any quadratic lower bound in n, as the classes of graphs contain
abitrarily large families of sparse graphs, e.g. stars.

Combining Theorems 1, 2 and 3, the only open cases for the complexity of
Diameter on H-free graphs are H = 4P1, H = P2 + 3P1, H = P3 + 2P1,
H = P4 + 2P1, and H = P4 + P1. The smallest graph H that is an open case
is that of H = 4P1. As a ‘hardness’ result for 4P1-free graphs, one could try to
take the split graph construction of Roditty and Williams [42], and add edges
to make the graph consist of three cliques (as in [13]). Conceptually, this would
seem to work: the diameter distinction is still 2 or 3 and translates to a SAT
positive or negative answer. However, this approach fails due to the quantity
of edges one adds to the graph. The lower bound shows that no O(n2−ϵ) time
algorithm may exist for this new instance, which is now a relatively empty lower
bound: the graph has a quadratic number of edges, so this lower bound does
not even rule out an O(n + m) time algorithm. The density of graphs matters
in relation to lower bounds, and seems to provide a barrier to finding a lower
bound that rules out a linear-time algorithm.

However, if we adopt the perspective from the other side, a linear-time al-
gorithm for 4P1-free graphs would still be surprising. Indeed, such an algorithm
3 Proofs of results marked with ♠ are deferred to the full version, see [41].
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that can decide between diameter 2 or 3 on the three-clique instance described
earlier implies an algorithm for Orthogonal Vectors in time O(n2 + d2),
where d is the dimension of the vectors and n the size of the vector sets (♠).
Although lower bounds do not rule out this possibility, such a result would be
highly non-trivial, as the best known algorithms for Orthogonal Vectors do
not achieve this running time for all d [3,9]. Any linear-time algorithm would
even beat the best known matrix-multiplication algorithms of Õ(nω) time, even
if ω = 2. It thus seems we are at an impasse to find or exclude a linear-time
algorithm for computing the diameter of 4P1-free graphs.

However, as it turns out, we can decide in linear time whether the diameter
of a 4P1-free graph is exactly 5. Our approach avoids the above barriers by
focusing on specific diameter values instead of deciding on the diameter of a
graph completely.

In general, for a graph class G, we call dmax(G) the maximum diameter that
any graph in G can have; formally dmax(G) = supG∈G diam(G). We omit G when
it is clear from context. In particular, for 4P1-free graphs, dmax is equal to 5. We
define the dmax(G)-Diameter problem as deciding for a graph G ∈ G whether
it holds that diam(G) = dmax(G). The research question we investigate is:

For which H-free graph classes G can we solve dmax(G)-Diameter in linear
time?

For some classes G, it is easy to see dmax(G) is bounded. For instance, the class
of cliques has dmax = 1. Any graph class that contains paths of arbitrary length
has dmax = ∞. For deciding whether the diameter of a graph is equal to dmax,
only classes with bounded dmax value are interesting to consider. It turns out
that for classes of connected H-free graphs, dmax is bounded exactly when H is
a linear forest (♠).

Our contributions with respect to the dmax(G)-Diameter problem are twofold.
Firstly, we find several examples of H-free classes G where H is a linear forest
of more than one path where we solve dmax(G)-Diameter in linear time. Note
that dmax can differ vastly for classes where H is a linear forest, depending on
H. Here, H ⊆i H

′ denotes that H is an induced subgraph of H ′.

Theorem 4 (♠). Let H = 2P2 + P1 or H ⊆i P2 + 3P1, P3 + 2P1, or P4 + P1,
and let G be the class of H-free graphs. Then dmax(G)-Diameter can be solved
in O(n+m) time.

Note that in particular, Theorem 4 shows that we can decide whether diam(G) =
dmax(G) for all previously stated open cases for Diameter computation on H-
free graphs, except for the case of H = P4 + 2P1.

Secondly, we extend known hardness constructions to hold for the dmax(G)-
Diameter problem for certain H-free graph classes G. Note that one needs
different hardness proofs for different H,H ′, even if H ⊆i H

′, because dmax can
differ for both classes.

Theorem 5 (♠). Let H = 2P2 or H = Pt for some odd t ≥ 5, and let G be
the class of H-free graphs. Under SETH, it is not possible to solve dmax(G)-
Diameter in time O(n2−ϵ) for any ϵ > 0.
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Theorems 4 and 5 together cover almost all cases where dmax ≤ 4: H = 2P2

is hard by Theorem 5, H = P3+P2 is open, and all other cases with dmax ≤ 4 are
linear-time solvable by Theorem 4. Theorem 4 also gives linear-time algorithms
for some cases where dmax > 4; H = P3+2P1 and H = 2P2+P1 have dmax = 5,
and H = P2 + 3P1 has dmax = 6. It appears that, algorithmically, the presence
of a P1 in H helps out in structural analysis, which may explain the inability to
attain a result for H = P3+P2. We further discuss particular cases and possible
generalizations of our theorems in the conclusion.

Our algorithmic results are attained through careful analysis of the structure
of the graph with respect to the forbidden pattern. This limits the ways in which
a shortest path that realizes the diameter can appear in the graph. However, even
for small patterns H, such analysis quickly becomes highly technical.

In this extended abstract, we give several sketches of our algorithmic techni-
cal proofs. We sketch a linear-time algorithm for Diameter on (P2 + 2P1)-free
graphs, which also contributes to most of the linear-time algorithm for Diame-
ter on (P3 + P1)-free graphs (♠). These two results together prove Theorem 3.
We also sketch a part of the proof that we can solve dmax(G)-Diameter on
(P4 + P1)-free graphs in linear time. This result is the most technical result in
our work, and contributes to Theorem 4.

Preliminaries. Graphs are denoted G = (V,E) and are connected, undirected,
and unweighted. For any v ∈ V , denote N(v) as the neighbourhood of v, and
N [v] = N(v) ∪ {v}. For a set of vertices S ⊆ V , let G[S] denote the induced
subgraph on the vertices of S. A vertex v ∈ V is complete to a set S ⊆ V when
S ⊆ N(v), and anti-complete to a set S when S ∩ N(v) = ∅. A set is A ⊆ V
is complete to a set S ⊆ V when every vertex in A is complete to S, and A is
anti-complete to S when every vertex in A is anti-complete to S. For vertices
v1, . . . , vk ∈ V , ⟨v1, . . . , vk⟩ denotes an induced path from v1 to vk.

Two vertices u, v ∈ V are twins when N [u] = N [v], also called true twins.
Two vertices u, v ∈ V are false twins when N(u) = N(v). We shall always be
explicit when we talk about false twins; in general, twins will refer to true twins.
A twin class is a set of vertices all of which are pairwise twins.

Removing twins can be done in linear time and keeps most distance properties
in a graph (see e.g. Coudert et al. [15]).

Proposition 1. Given a graph G = (V,E), in O(n + m) time we can detect
true twins and remove all-but-one vertex from each twin class resulting in a
graph G′ = (V ′, E′) with V ′ ⊆ V , E′ ⊆ E. The following hold:

(i) the distance between two vertices u, v in G′ is equal to the distance between
u, v in G,

(ii) the diameter of G′ is equal to the diameter of G, unless G is a clique,
(iii) if G is H-free for some graph H then G′ is also H-free.

There are similar results with respect to false twins. The following was proved
by Ducoffe [29] (formulated in terms of modules):
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u

A B

C

Fig. 1. A sketch of a (P2 + 2P1)-free graph as seen from some vertex u.

Corollary 1. Given a graph G and a vertex set B ⊆ V (G), we can partition B
into classes of false twins with respect to their neighbourhoods towards V (G) \B
in time O(n+m).

2 Algorithmic Results

2.1 (P2 + 2P1)-free graphs

We first prove that the diameter of a (P2 + 2P1)-free graph can be computed
in linear time. The statement of the theorem is slightly stronger however, as we
use this algorithm as a subroutine in another proof (♠).

Theorem 6 (♠). Given a graph G, there is an algorithm that in O(n + m)
time either (a) correctly decides that G is not (P2 + 2P1)-free; or (b) outputs a
shortest path, which is diametral if G is (P2 + 2P1)-free.

Proof (Sketch). Let G = (V,E) be a graph. The diameter of any (P2+2P1)-free
graph is at most 4. If the diameter of G is 1, then the graph is a clique, which
we can check in O(n +m) time, and return any arbitrary pair of vertices, or a
single vertex if |V | = 1.

Remove twins from the graph in O(n+m) time. By Proposition 1, distances
and the diameter are not affected, and the graph is H-free if it was H-free for
some graph H. By abuse of notation, we still call this graph G = (V,E).

Let u be a vertex in G with lowest degree, which can be found in O(n+m)
time. Now execute a BFS from u. We distinguish the structure of the graph as
seen from u; see Figure 1. Let C = V \N [u] and let A ⊆ N(u) be the subset of
vertices of N(u) with no edges to C. Let B = N(u) \ A. Note that A,B,C can
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be identified by the BFS from u. If C = ∅, then the diameter of G is at most 2,
and we are done. Hence, C ̸= ∅ and B ̸= ∅. We note that A = ∅, which can be
seen by the following. For any a ∈ A it holds that deg(a) ≤ deg(u) by definition
of A. u was picked to be a vertex of lowest degree in G, so for any a ∈ A we have
deg(a) = deg(u). But as N(a) ⊆ {u} ∪ A ∪ B for all a ∈ A and N(u) = A ∪ B,
it follows that every a ∈ A is a twin of u. But then A = ∅ as we removed twins.

If there is a vertex at distance 5 or more from u, then return that the graph
is not (P2 + 2P1)-free. If there is a vertex at distance 4 from u, then return
this shortest path; it is diametral if G is (P2 +2P1)-free. Both of these cases are
identified by the BFS from u. Now observe that any shortest path of length 3 or 4
must have at least one endpoint in C, as the distances between vertices in A ∪
B ∪ {u} are at most 2 by u.

We prove properties of G under the assumption that it is (P2 + 2P1)-free.

Claim 1 (♠). If G is (P2 + 2P1)-free, then (a) G[C] is a complete r-partite
graph for some r ≥ 1; and (b) every b ∈ B has at most one non-neighbour in
every part of G[C].

Claim 2 (♠). In O(n + m) time, we can decide whether G[C] is a complete
r-partite graph for some r ≥ 1 and, if so, return its parts.

Claim 3 (♠). In O(n + m) time, either (a) we find a length-4 shortest path
with both endpoints in C; (b) we find a length-3 shortest path with both endpoints
in C and conclude no such length-4 shortest path exists in G; (c) we conclude
no length-3 or length-4 shortest path with both endpoints in C exists in G; or (d)
we conclude G is not (P2 + 2P1)-free.

Run the algorithm of Claim 3. If it returns option (d), then output that G
is not (P2 +2P1)-free. If it returns option (a), then output the length-4 shortest
path the algorithm gives; it is diametral if G is (P2 + 2P1)-free. In both other
cases, we argue no length-4 diametral path can exist if G is (P2 + 2P1)-free. If
G is (P2 +2P1)-free, distances from vertices in B to vertices in C are at most 3,
because G[C] is r-partite and every b ∈ B has at most one non-adjacent vertex
per part of G[C] by Claim 1. We already found a length-4 shortest path with u as
an endpoint, if it exists. But then any length-4 shortest path has both endpoints
in C, if it exists, as we already knew at least one endpoint was in C. In both
options (b) and (c) we can conclude that no length-4 shortest path with both
endpoints in C exists.

We continue as follows. If u has a vertex at distance 3, then we would already
know this by the BFS from u. Otherwise, every c ∈ C is at distance 2 from u.
If the algorithm of Claim 3 returned option (b), we can output a shortest path
of length 3 with both endpoints in C; it is diametral if G is (P2 + 2P1)-free.
If the algorithm of Claim 3 returned option (c), no length-3 shortest path with
both endpoints in C exists in G. Hence, the only remaining case for a length-3
shortest path is that there is a vertex in B with distance 3 to a vertex in C.

Claim 4 (♠). If G is (P2 + 2P1)-free and a length-3 shortest path exists from
some b ∈ B to some c ∈ C, then (a) G[C] has exactly one part with more than
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one vertex, and (b) all vertices in B with a vertex in C at distance 3 are adjacent
to only that multi-vertex part and have exactly one non-neighbour in that part.

By Claim 4, we can look for G[C] to have simple structure. In particular,
only one part may have multiple vertices. By Claim 2, we can detect if G[C] is
complete r-partite in O(n +m) time, and, given the parts, check whether only
one part has multiple vertices in O(n+m) time. If this is not the case, then there
is no length-3 shortest path from a vertex in B to a vertex in C by Claim 4, if G
is (P2 + 2P1)-free, and we may return a length-2 shortest path with as witness
some non-adjacent pair of vertices and a common neighbour.

Otherwise, the structure is as Claim 4(a) and (b) suggest. Find all b ∈ B only
adjacent to the multi-vertex part with one non-neighbour in that part in O(n+m)
time, by iterating over the adjacency lists of the vertices in B. Let this be the set
of vertices B′. Then look for each vertex in B′ whether all its neighbours in B
have the same non-adjacency in the multi-vertex part in O(n+m) time. If there
is a vertex b ∈ B′ that meets this requirement, and G is (P2 + 2P1)-free, then
this is a witness for diameter-3 shortest path: b is non-adjacent to one vertex
c ∈ C in a multi-vertex part of G[C], which is the only part it is adjacent to,
and N(b) ∩ N(c) = ∅. So the distance from b to c is at least (and at most) 3.
To verify, execute a BFS from any single one of these vertices. If a shortest path
is found of length 4 or longer, then return that G is not (P2 + 2P1)-free. If a
length-3 shortest path is found, then return it. Otherwise, there is no length-3
shortest path in G from B to C, if G is (P2 + 2P1)-free.

If in none of the above cases a confirmation for a shortest path of length 3 or
4 was found, and the graph is (P2+2P1)-free and not a clique, then the diameter
of G must be 2. Return some non-adjacent pair with some common neighbour
as a shortest path in O(n+m) time. ⊓⊔

Note that any 3P1-free graph is (P2 + 2P1)-free.

Corollary 2. Given a 3P1-free graph G, we can compute the diameter of G in
O(n+m) time.

2.2 (P4 + P1)-free graphs

We show that we can decide whether the diameter of a (P4 + P1)-free graph
is equal to dmax in O(n +m) time. The proof will identify all possibilities of a
diameter-4 path occurring in relation to a BFS from an arbitrary vertex. Luckily,
most cases reduce to some other case in the proof, and algorithmically speaking,
only a few cases require algorithmic computation.

Theorem 7 (♠). Given a (P4 + P1)-free graph G, we can decide whether the
diameter of G is equal to dmax = 4 in O(n+m) time.

Proof (Sketch). Let G = (V,E) be a (connected) (P4 + P1)-free graph. Indeed,
dmax = 4. We view the structure of G from a BFS from an arbitrary vertex u.
Let C = V \N [u] and denote B = N(u). If C = ∅ or B = ∅, then the diameter
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Fig. 2. An illustration of the types of a diameter-4 shortest path appearing in a (P4 +
P1)-free graph, with respect to the vertex u and its neighbourhood N(u) = B. Only
the highlighted types (1a), (2a), (3b), (3c) require algorithmic computation.

of G is at most 2, so assume this is not the case. Note that both sets can be
identified during the BFS from u with no overhead. Moreover, G[C] is P4-free.
We use the convention that bi ∈ B and ci ∈ C.

We first list all possibilities for a diameter-4 shortest path to exist with re-
spect to its structure; see Figure 2 for an illustration and ♠ for the full case
distinction. We will call each such possibility a ‘type’. We show that we can
decide whether the diameter of G is 4 in time O(n+m) by resolving each type.
Algorithmically speaking, only types (1a), (2a), (3b), and (3c) will require
computation to find diametral paths corresponding to them (highlighted in the
figure). We will show that all other types are either covered by these computa-
tions, or are non-existent in G. As illustrations, we show (1a), (2a), and (2b)
all with proof of correctness, and we give the algorithm for (3c.1), a part of the
proof for type (3c); all remaining types and full proofs are discussed in ♠.

(1a) ⟨u, b, c1, c2, c3⟩ This type is identified by the initial BFS from u if and only
if it occurs in G.

(2a) ⟨b2, u, b1, c1, c2⟩ For this type, let us further partition C into sets C ′ and
D, where D consists of the vertices with no neighbours in B (i.e. the vertices at
distance 3 from u), and C ′ = C \D. It must be that c2 ∈ D for a diametral path
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of type (2a) to exist, otherwise, ⟨c2, bi, u, b2⟩ is a shorter path for some bi ∈ B. So
rename the vertex c2 as d = c2 ∈ D and look for a path ⟨b2, u, b1, c1, d⟩. Further
partition C ′ into C1 and C2, where C1 are the vertices with edges towards D
and C2 = C ′ \ C1. This partitioning can be done during the BFS from u, or
alternatively using another linear pass over all vertices and edges. Note that
every vertex in D has at least one neighbour in C1; otherwise, a diametral path
of type (1a) exists in G, and we are done. Let us first describe the algorithmic
steps necessary for this type.

(2a.algorithm) Find a vertex d ∈ D with the smallest degree with respect
to C1, and execute a BFS from d. If a distance-4 vertex is found, return that
the diameter of G is 4. If we do not find a vertex at distance 4, no distance-4
diametral path of type (2a) exists in G.

We next prove correctness of (2a.algorithm). We prove correctness when
G[D] is not connected in (2a.1) and correctness when G[D] is connected in
(2a.2). To do this, we analyse the structure of G under the assumption that a
diametral path of type (2a) exists, to conclude the structure of G must then be
‘simple’ in some way, to the extent that the above algorithmic steps suffice.

(2a.1) Assume G[D] is not connected. We first prove that every vertex in C1 is
complete to D. Assume for sake of contradiction that there is a c ∈ C1 which
is not complete to D. Let d′ ∈ D be a non-neighbour of c. Let d ∈ D be some
neighbour of c, which exists because c ∈ C1. Now ⟨d, c, b, u⟩ is an induced P4 for
some b ∈ B which exists by definition of C1. But then d′ must be a neighbour
of d; otherwise, it would induce a P4 + P1. We see that every neighbour of c
is adjacent to every non-neighbour of c in D. We get a contradiction with the
assumption that G[D] is not connected.

So, every vertex in C1 must be complete to D. But then, from the viewpoint
of shortest paths, for any b ∈ B, the distances from all d ∈ D to b must be equal,
as the shortest path to b must go through some vertex of C1 in the first step,
and C1 is complete to D. Hence, if the BFS that (2a.algorithm) executes does
not find a length-4 diametral path, no diametral path of type (2a) exists in G.

(2a.2) Assume G[D] is connected. Then G[C1 ∪D] is a connected cograph, so
it has diameter at most 2. Let B1 ⊆ B be the vertices of B with neighbours in
C1. Vertices in B2 = B \ B1 have no neighbours in C1. Every vertex in B1 has
distance at most 3 to any d ∈ D, as the diameter of G[C1 ∪D] is at most 2. So,
for a shortest path of type (2a) ⟨b2, u, b1, c1, d⟩ we get b2 ∈ B2 and b1 ∈ B1.

Let us call a pair (d, b2) with d ∈ D, b2 ∈ B2 ‘good’ if d has distance 4 to
b2, and ‘bad’ when d has distance at most 3 to b2. Assuming a diametral path
of form ⟨b2, u, b1, c1, d⟩ exists in G, with b2 ∈ B2, b1 ∈ B1, c1 ∈ C1, d ∈ D, it is
clear that (d, b2) is good. Assume that we also have that (d′, b2) is bad for some
d ̸= d′ ∈ D. Then d′ has distance exactly 3 to b2, as b2 has no neighbour in
C1. Let c′1 be the neighbour of d′ on some distance-3 path from d′ to b2. Then
c1 ̸= c′1; otherwise, d has distance 3 to b2. Then the shortest path from d′ to
b2 is of the form ⟨d′, c′1, c′2, b2⟩ with c′2 ∈ C2 (case (2a.2.1)), or ⟨d′, c′1, b′1, b2⟩



The Complexity of Diameter on H-free graphs 11

b′1

c′1

d′ d

c1

b1

u

b2

c′1

d′ d

c1

b1

u

b2

c′2

(2a.2.1) (2a.2.2)

Fig. 3. Structure for type (2a) with respect to a d ∈ D and a d′ ∈ D for which (d, b2)
is good and (d′, b2) is bad for b2 ∈ B2. The path from d′ to b2 goes through either some
c′2 ∈ C2 (left, (2a.2.1)) or some b′1 ∈ B1 (right, (2a.2.2)).

with b′1 ∈ B1, b′1 ̸= b1 (case (2a.2.2)). See Figure 3 for an illustration of both
scenarios.

(2a.2.1) The shortest path from d′ to b2 is of the form ⟨d′, c′1, c′2, b2⟩ with c′2 ∈ C2.
Note that (c1, u), (c

′
1, u) /∈ E by definition of C, and (c1, b2), (c

′
1, b2) /∈ E by

definition of B2, and (b1, b2), (d, c
′
1), (c1, c

′
2), (d, c

′
2) /∈ E as (d, b2) is good. But

then (c′1, c1) ∈ E or (c′1, b1) ∈ E; otherwise, ⟨c1, b1, u, b2⟩ + c′1 is an induced
P4 + P1 in the graph.

– If (c′1, c1) ∈ E, then ⟨c′2, c′1, c1, d⟩ + u is an induced P4 + P1 in the graph; u
is non-adjacent to all of c′2, c′1, c1, d by definition of C and D.

– If (c′1, b1) ∈ E then ⟨b2, u, b1, c′1⟩ + d is an induced P4 + P1 in the graph;
(c′1, u) /∈ E by definition of C, and (d, b1), (d, b2), (d, u) /∈ E by definition
of D.

Hence, we get a contradiction, and this case cannot occur in G.

(2a.2.2) The shortest path from d′ to b2 is of the form ⟨d′, c′1, b′1, b2⟩ with b′1 ∈ B1,
b′1 ̸= b1. Note that (c1, u) /∈ E by definition of C, (d′, b1), (d′, b2), (d′, u) /∈ E by
definition of D, and (b1, b2), (c1, b2) /∈ E, as (d, b2) is good. But then (d′, c1) ∈ E:
otherwise, ⟨c1, b1, u, b2⟩+ d′ is an induced P4 + P1 in the graph.

Say that d has some other neighbour c′′1 ∈ C1, so (c′′1 , b
′′
1) ∈ E for some

b′′1 ∈ B1 (possibly b′′1 = b1), but (b′′1 , b2) /∈ E because (d, b2) is good. Then, c′′1
can fulfil the role of c1 in the above analysis, so it must be that (d′, c′′1) ∈ E.
From this analysis we can conclude that, for any b2 ∈ B2, if d ∈ D is such that
(d, b2) is good, and d′ ∈ D is such that (d′, b2) is bad, then it must be that
N(d) ∩ C1 ⊂ N(d′) ∩ C1. Hence, if some d ∈ D has minimum degree to C, it
may be good.

We now have the tool to prove correctness of (2a.algorithm) for this case.
If the BFS from the picked d ∈ D finds a vertex at distance 4, then clearly a
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length-4 diametral path exists in G. The only risk is that we conclude there is no
diametral path corresponding to this case even though it does exist. To this end,
let d ∈ D be the vertex picked by the algorithm, and assume (d, b) is bad for all
b ∈ B2. Assume to the contrary that there exist d′ ∈ D, b2 ∈ B2 which are at
distance 4 in a path of type (2a). Then (d′, b2) is good. So, by the analysis above,
it must be that N(d′)∩C1 ⊂ N(d)∩C1, which contradicts the assumption that
d was picked to have the minimal size neighbourhood with respect to C1. So all
pairs (d, b2) with d ∈ D, b2 ∈ B2 must be bad, and we are correct to conclude
that a diametral path of type (2a) does not exist.

(2b) ⟨b1, c1, b2, c2, c3⟩ As b1 and b2 are both adjacent to u, if type (2b) exists
in G, ⟨b1, u, b2, c2, c3⟩ is also a shortest path of distance 4 from b1 to c3, which
is a distance-4 path of type (2a). The algorithm for type (2a) finds a diametral
path of length 4 or concludes that no diametral path of type (2a) exists in G,
which also rules out that a diametral path of type (2b) exists in G.

(3c) ⟨c1, b1, u, b2, c2⟩ We only treat one subcase: (3c.1) Every b ∈ B is complete
or anti-complete to every component of G[C]. It can be checked in O(n + m)
time whether we are in this case. We give the algorithm to solve this case, and
the proof of correctness is deferred (♠).

(3c.1.algorithm) For every component of G[C], delete all-but-one vertex in
O(n+m) time, each component is a twin class with respect to B. Let the resulting
set of vertices be C ′. Identify twins within B with respect to their neighbourhood
in C ′, which can be done in linear time by Corollary 1. We identify every ‘class’ of
vertices with the same neighbourhood in C ′ with single vertices. Let B′ be the set
of vertices corresponding to classes. The neighbourhoods of the vertices in B′ are
the union of all neighbourhoods of vertices in the class, which can be computed in
O(n+m) time total (♠). Call the resulting graph G′ = (V ′, E′) with B′, C ′ ⊆ V ′.
In G′, check that G′[B′] consists of two non-empty disjoint cliques B1, B2, where
B1 and B2 are anti-complete, with possibly a third clique X complete to B′ \X.
This check takes O(n+m) time by inspecting the neighbourhoods of all vertices in
B′. If G′[B′] does not have this structure, then return that there is no diametral
path of type (3c). If it does, then return that a diametral path of type (3c)
exists if there are vertices c1, c2 ∈ C ′ with N(c1) = B1 and N(c2) = B2. This
can be checked in linear time by inspecting the edge lists of vertices c ∈ C ′.

The correctness of (3c.1.algorithm) follows from structural analysis on the
graph G′. However, G′ must be treated with care; it is not necessarily a (P4+P1)-
free graph. However, the fact that G is (P4+P1)-free leads to a strong structural
property: for every non-edge (b′1, b

′
2) /∈ E′ in G′[B′], it holds that b′1, b

′
2 together

dominate C ′. Such a non-edge must exist if a path of type (3c) exists in G.
The remaining cases and correctness are treated in the full version (♠). ⊓⊔

3 Conclusion and Discussion

We analysed the complexity of computing the diameter of H-free graphs. For
several H-free graph classes G where H is a linear forest, we found linear-time
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algorithms for solving dmax(G)-Diameter. We conjecture that this generalizes
to a broader set of H-free graphs. In particular, this conjecture emphasizes that
H should include some set of isolated vertices, as it seems that in our algorithms,
the presence of a P1 in H helps out in structural analysis.

Conjecture 1. Let G be the class of rPt+sP1-free graphs, where r, s, t ≥ 1. Then
dmax(G)-Diameter can be solved in O(n+m) time.

Note that all our results support Conjecture 1. A linear-time algorithm for
the only open case with dmax = 4, which is for H = P3 + P2, would suggest
Conjecture 1 is not the full truth, if it holds true at all. In the full discussion
and conclusion (♠), we give two more conjectures in an attempt to reveal the
underlying patterns in our results.

The main open problem posed by our work is whether our conjectures hold
true. The smallest open cases for solving dmax(G)-Diameter are algorithms
for the classes of H-free graphs with H = 5P1 (dmax = 7), H = 2P2 + 2P1

(dmax = 7), H = P3 +P2 (dmax = 4), H = P4 +2P1 (dmax = 6), or H = P5 +P1

(dmax = 5), and a hardness result for the class of P6-free graphs. The specific
case of H = P4 + 2P1 is interesting because it is the only graph H for which we
have no result.

Settling the following open question would form a complete dichotomy for
(2P2 + P1)-free graphs:
Given a (2P2 + P1)-free graph G, can we decide in O(n +m) time whether the
diameter of G is equal to 4?

We make progress for Diameter computation on H-free graphs, but do not
settle its complexity completely, so we ask:
When H = 4P1, H = P2 +3P1, H = P3 +2P1, H = P4 +2P1, or H = P4 +P1,
can we solve the Diameter problem on connected H-free graphs in O(n + m)
time?

Acknowledgments. We thank the reviewers for their helpful comments and sugges-
tions.
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