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Dissipative particle dynamics parametrisation
using infinite dilution activity coefficients: the
impact of bonding†

Rachel L. Hendrikse, *a Carlos Amadorb and Mark R. Wilson a

Dissipative particle dynamics (DPD) simulations have proven to be a valuable coarse-grained simulation

technique for studying complex systems such as surfactant and polymer solutions. However, the best

method to use in parametrising DPD systems is not universally agreed. One common approach is to

map infinite dilution activity coefficients to the DPD simulation ‘beads’ that represent molecular

fragments. However, we show that here that this approach can lead to serious errors when bonding

beads together to create molecules. We show errors arise from the verlaps between bonded beads,

which alters their solubility. In this article, we demonstrate how these bonding errors can be accounted

for when defining DPD force fields using simple theoretical methods to account for the overlapping

volumes, and we demonstrate the validity of our approach by calculating the partition coefficients for a

series of solutes into two immiscible solvents.

1 Introduction

The dissipative particle dynamics (DPD) simulation method was
initially introduced by Hoogerbrugge and Koelman,1 and it has
been continuously developed since then.2–5 DPD is a mesoscopic
simulation technique in which groups of atoms are represented
by single beads, which is intended to reduce the computational
demand of simulating single atoms. Mesoscale modelling pro-
vides the bridge between the atomistic methods and the macro-
scale, retaining molecular details which are lost at a continuum
scale, but making longer time and length scales more accessible
than when using full atomistic modelling.

When first introduced, DPD was primarily used for qualita-
tive study, with DPD parameters chosen to investigate general
behaviours of systems such as surfactants6,7 and polymer8–11

solutions. These molecules are typically simulated using a
simple bead-and-spring model, allowing one to bond various
‘beads’ together to study the behaviour of larger molecules.
This has proven to be a largely successful approach for studying
these types of systems, including the prediction of liquid crystal
phase formation6,8,10 and the nature of micellar solutions.7,10

A convenient method of relating atomistic simulations to
mesoscopic simulation was presented by Groot and Warren2

who provided a mapping between DPD parameters and Flory–
Huggins parameters. This mapping allows one to determine
Flory–Huggins parameters using solubility parameters from
molecular dynamics (or even experimental data) to determine
how DPD beads should interact to model realistic systems. This
approach has been widely used12–16 in the literature as a means
of simulating ‘real molecules’ using DPD, enabling quantitative
predictions for various systems. This has made it possible to
accurately calculate properties such as interfacial tension,12–14

critical micelle concentrations14 and other micelle properties14

for surfactant systems, as well as polymer properties such as
radius of gyration15,17 and the end-to-end distance.18

While the mapping procedure provided by Groot and
Warren2 has been widely used, there are limitations to its
applicability for different systems. For example, the original
expressions they provided for the mapping were determined
on the basis of simulations which relied on the phase separation
of beads, meaning this approach is difficult to use for determin-
ing the interaction between two soluble bead types. They also
performed simulations over a limited range of DPD interaction
parameters, choosing to focus on ranges where linear relation-
ships can be fitted to their calculated values. Therefore, strictly,
their expressions should only be used in the range in which they
were intended. Although, they are often used outside of this
range. Other methods that have since been used to determine
realistic DPD parameters include mapping to infinite dilution
activity coefficients,19–23 as an alternative to Flory–Huggins para-
meters. This has the benefit of being generally applicable to a
greater range of system types, including bead types that are
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soluble in one another. Another approach is by mapping inter-
actions to octanol–water partition coefficients,24–26 which has
been shown to be successful for studying the behaviour of
various surfactant systems.24–28 Alternatively, others have calcu-
lated DPD parameters by matching to experimental liquid
densities of mixtures.29,30

It is of particular interest in this work that, no matter which
parametrisation approach is used, most existing DPD studies
neglect the impact that bonding has on the resulting solubility
of molecules. However, this has been shown to be important,31

not least because the length of the bond can greatly influence
the degree of overlap between the bonded beads. Bonding
beads together has been shown to influence their solubility
because of this overlapping bead volume. This oversight can
lead to an incorrect determination of DPD parameters for
bonded molecules, which is crucial for modelling the correct
behaviour of systems. This is particularly true for systems
involving shorter bond lengths, which typically result from a
more finely coarse-grained system. Hence, dealing with this
issue is essential for using DPD in quantitative studies of soft
matter systems.

In this work, we show that DPD parameters can be accu-
rately assigned based on their known infinite dilution activity
coefficients, by using Widom insertion together with a simple
approach to take into account the overlap of bonded beads. We
validate our approach by simulating the partitioning of various
solute molecules into two immiscible solvents, allowing us to
determine partition coefficients as a means to check the pre-
dicted chemical potential of bonded beads and hence to check
their infinite dilution activity coefficients. We suggest that this
simple approach can make a major improvement to the para-
metrisation of DPD models.

2 Dissipative particle dynamics
2.1 Overview

In dissipative particle dynamics (DPD) atoms and molecules are
modelled by simulating ‘DPD’ beads, where a single bead can
represent a number of atoms. The total force acting on a single
unbonded DPD ‘bead’ is the sum of the conservative FC

ij, dis-
sipative FD

ij , and random force FR
ij. All of these forces act within a

defined cut-off range RC, beyond which the interaction force is
zero. We choose to set the cut-off RC = 1, in line with existing
literature. Additional bonding FB

ij and angle forces FA
ij contribute

to longer molecules represented by a series of bonded beads.
The conservative force takes the form

FC
ij ¼ aij 1�

rij
�� ��
RC

� �
r̂ij ; (1)

where aij is the the magnitude of the interaction, the vector
between beads i and j is calculated as rij = ri � rj and the unit
vector r̂ij = rij/|rij|. The conservative force assigns a chemical
identity to the beads via varying the value of the aij parameter,
which can be defined using various approaches which will be

discussed in Section 2.2. The forces FD
ij and FR

ij are given by the
following expressions.

FD
ij = �goD(rij)(r̂ij�vij)r̂ij, (2)

FR
ij = soR(rij)zijr̂ijDt�1/2, (3)

where oD and oR are weight functions that vanish when |rij| 4
RC. g is a friction coefficient and s is the noise amplitude, vij =
vi � vj is the velocity between beads i and j, Dt is the time step,
and zij(t) is a randomly fluctuating Gaussian variable with zero
mean and unit variance.

In this work, we perform all of our simulations using the
LAMMPS software, where the form of the weight function used is

oD ¼ 1�
rij
�� ��
RC

� �2

: (4)

To satisfy the fluctuation–dissipation theorem, the relationship
between the weight functions must obey3

oD = [oR]2 (5)

and the relationship between the amplitudes is

s2 = 2gkBT, (6)

where kB is the Boltzmann constant and T is the temperature.
In this work, we set kBT = 1 and set values for the constants s = 3
and g = 4.5. For all simulations, we choose a time step of
Dt = 0.01.

For bonded molecules, we also impose ‘bonding’ and ‘angle’
potentials taking the form of a harmonic spring,

UB
ij = KB(rij � l0)2, (7)

UA
ijk = KA(yijk � y0)2, (8)

where l0 is an equilibrium bond length, yijk is a bond angle
between beads i, j and k, and y0 is an equilibrium angle, which
we set as 1801. The constants KB and KA define the strength of
the harmonic spring, and in this work, we choose KB = 150kBT/
rC

2 and KA = 5kBT/rad2.
It is worth noting that, by default, bonded beads do not directly

interact with each other in LAMMPS (except via the bonded
interaction). This differs from other DPD software available.
One of the significant drawbacks of having bonded beads
interacting is that the resulting bond length can be significantly
larger than what is set using the equilibrium bond length l0

parameter. While bonded interactions can be switched on in
LAMMPS, for the bulk of this work we choose to leave bonded
beads as non-interacting for this reason. However, as discussed
below, the resulting bond length is also slightly different from
l0. We also note that it would be equally possible to leave
bonded beads as interacting with each other, but this requires
adjusting the setting of l0 accordingly to generate the correct
effective distance between bonded beads. Given that this cor-
rection becomes dependent on a variety of factors, including
the interaction aij parameter between the bonded beads them-
selves, this can be somewhat difficult in practice.
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2.2 Determining aij values (cross interactions)

In the existing literature, the most common approach used to
determine DPD interaction parameters aij is from their Flory–
Huggins w parameters, as first suggested by Groot and Warren.2 In
Flory–Huggins theory the total free energy of mixing is given as

DG ¼ kBT
f1

n1
lnf1 þ

f2

n2
lnf2 þ wf1f2

� �
(9)

where f1 and f2 are the volume fractions of the components 1
and 2, n1 and n2 are the number of segments per molecule. The w
parameter accounts for the interaction between 1 and 2, and
larger values indicate poor mixing. Groot and Warren also derived
an expression relating w to the excess repulsion parameter Da
(where aij = aii + Da), where

w = 0.286Da. (10)

for bead density r = 3RC
�3. However, although this relation was

derived for unbonded beads, many authors have applied it to
bonded molecules. Additionally, little attention is often paid to
the impact that the choice of equilibrium bond length has on
the solubility behaviour.

Flory–Huggins parameters can be obtained from experi-
mental measurement, but other developments have looked at
alternative ways to calculate w when it is not experimentally
available. This includes using Hildebrand solubility parameters d,

wij ¼
vb

kBT
di � dj
� �2 (11)

where vb is the average bead volume. The solubility parameter
can be determined via a variety of approaches, including experi-
mental methods,16,32 molecular dynamics simulations,13,32 or
via COSMO-RS calculations.19,22

While the original Flory–Huggins parameterisation approach
has proven to be extremely popular across literature, alternative
approaches are available. One example is that of Travis et al.33

where the conservative DPD interaction is based on regular
solution theory (RST), which has the benefit of removing the
restriction of equal repulsive interactions between like beads.
Another is to determine aij using infinite dilution activity coeffi-
cients (IDAC),19,22 will will be the method of choice in our work.

The chemical potential m�A of a substance A in substance B is
calculated as

m�A ¼ m�A þ kBT ln gAxAð Þ (12)

where m�A is the chemical potential of pure component A, gA is the
activity coefficient, xA is the mole fraction of A in B, and the units
of the chemical potential m are energy per particle. The chemical
potential can be calculated as a sum of two contributions

m = mex + mid (13)

where mid is the chemical potential of an ideal gas, calculated as
mid = kBT ln rL3 where L is the thermal de Broglie wavelength
and r is the number density. mex is the excess chemical
potential, calculated using the Widom insertion method.

In the Widom insertion method, at each step, a ‘ghost’
particle is inserted at a random position in the simulation box.

The energy difference DU between the system with and without
this ghost particle is calculated, and the change in potential
energy DU comes from the potential interactions of the ghost
particle with the actual particles in the box. The excess chemical
potential can then be derived from the probability of a particle
insertion being favourable, which depends on the average
Boltzmann-weighted energy cost of insertion. The excess
chemical potential mex is therefore calculated as

mex ¼ �kBT ln exp �DU
kBT

� �� �
(14)

where the angled brackets represent an average over many inser-
tions. The process of inserting particles at random positions
ensures the calculation captures a statistically relevant distribution
of energy changes. This expression weights more favourable con-
figurations more heavily, reflecting how particles naturally distri-
bute themselves within a system. Therefore, one can use this
method to determine the aij values which reproduce the correct
IDAC values, which could be obtained via either experiment19,34 or
COSMO22,31 approaches.

This approach has significant benefits over the method of
relating Flory–Huggins parameters to their Da value. Namely,
the Groot and Warren2 relation was derived by performing a
sweep in the range 8 r Da r 25. Crucially, this relation was
derived only for Da values leading to phase separation, and
therefore might not be reliable to determine interactions
between components that are soluble within one another.
The relation between Da and w also becomes non-linear at
large values of Da,35 which is not accounted for in eqn (10).

It was shown previously,36 that the Flory–Huggins w-
parameter which is calculated from simulated phase behaviour
agrees very well with the free energy difference between a
monomer surrounded by solvent particles, and a solvent parti-
cle surrounded by solvent particles (i.e. essentially an approx-
imate IDAC), for particular cases. Another interesting study35

used the fact that, theoretically, one can relate the w parameter
in terms of excess chemical potentials36

wij ¼
1

kBT

Dmiiex � Dmijex
Vi

þ Dmjjex � Dmjiex
Vj

� �
(15)

where mij
ex is the excess chemical potential of species i in solvent

j, and Vi is the molecular volume of i. Widom insertion can be
used to calculate mij

ex as a function of aij, thereby providing
another means to relate w to aij. Liyana-Arachchi et al.35 com-
pared the aij parameters which result from using eqn (10) vs.
eqn (15), finding that the latter is significantly more accurate
over a wider range of parameters/densities.

However, the approach of mapping to IDACs is reliant on the
ability to correctly calculate the excess chemical potential mM

ex of
a molecule, which is the main consideration of the current
work. Furthermore, it is worth noting that the method relies on
the average hexp(�DU/kBT)i, which can be computationally
sensitive. If DU varies widely (such as for molecules of bonded
beads), the exponent can lead to a broad distribution, which
can make accurate averaging difficult due to large variances.
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Therefore, a high number of insertions is required to converge
to a reliable mex.

2.3 Effects of bonding

It is often assumed in the literature that one can determine the
interactions of the beads individually (i.e. each bead represents
a fragment of the molecule) and that bonding them together is
a good representation of the molecule as a whole. From the
point of view of using the Widom insertion technique to map to
IDACs, this is equivalent to suggesting that the sum of the
excess chemical potentials mS

ex of beads which are bonded into a
chain is equivalent to the total excess chemical potential for the
whole molecule mM

ex, i.e.

mMex ¼
XN
i¼1

mSex;i (16)

where N is the number of bonded beads in the chain.
While there are authors who have tried to quantify the effect

that bonding has on the system properties and behaviours,37,38

to the best of our knowledge, one of the only studies in existing
literature which attempts to take into account the impact of
bonding on solubility is that of Saathoff.31 Saathoff31 argues that,
due to the overlapping nature of DPD beads, eqn (16) does not
hold and the resulting chemical potential of bonded molecules is
lower than expected. Therefore, corrections must be applied to mex

to produce the desired value of ln g. Saathoff31 achieved this by
performing a series of simulations in which mex was calculated for
bonded pairs of beads in a solvent, while the length of the bond
was systematically varied. The resultant data was fitted to deter-
mine expressions to apply corrections to mex. However, here we
argue that the corrections required can be accounted for by simply
calculating the expected volume of the beads, which are over-
lapping (as a function of bond length), rather than depending on
fitted expressions.

3 Calculating the chemical potential

In this section, we first consider how one might determine
the excess chemical potential via Widom insertion for single,
unbonded beads. Then we discuss our theoretical approach for
how one might calculate the chemical potential of a series of
bonded beads, taking into account their overlapping volumes
as a result of bonding.

3.1 Single beads

To find a general relationship between aij and the excess
chemical potential mex for single beads, we perform a parameter
sweep in the range 10 r aij r 100, with an interval of Daij = 5.
Following the standard approach,2 we set all self-interactions
to aii = 25. These simulations are conducted in the const-
NVT ensemble, in a cubic box with periodic boundaries and
edge length 20RC. The beads are initialised with a random
initial configuration using n = 24 000 simulation beads (box
density r = 3RC

�3).

From performing Widom insertions of single beads into a bath
of non-bonded beads we determine how mex depends on the choice
of cross-interaction parameter aij, which is shown in Fig. 1. We
find that at higher values of aij the relation between aij and mex can
be described linearly, while at lower values it cannot.

Therefore for aij o 70, we fit an expression of the form

mex = Aaij
3 + Baij

2 + Caij (17)

which imposes that mex = 0 when aij = 0. We calculate the
coefficients to be A = 2.8248 � 10�5, B = �6.391 � 10�3 and C =
6.286 � 10�1. When aij Z 70 we fit the linear expression mex =
Daij + E which has gradient D = 0.1244 and intercept value
E = 13.84.

It is worth noting that the fit shown in Fig. 1 is strictly
speaking only valid for when aii = 25, and will vary slightly for
different values of the solvent interaction. While intuitively one
might expect eqn (17) to hold for all aii (due to the bulk density
being set as r = 3RC

�3 in all cases), a change in mex results from
slight differences in the radial distribution function at different aii.
Examples of other solvent aii interactions can be found in the ESI.†
However, in the partitioning calculations presented in this article,
we only use aii = 25 for single beads. We will show in Section 4.3 that
sometimes it is necessary to use a different self-interaction value for
the solvent when the beads are bonded, however, we will also show
that eqn (17) still holds for the cases studied in this article.

3.2 Bonded beads

Suppose you have two overlapping spheres each with radius R
which are separated by d, the volume of the overlapping
portion is

V ¼ p
12
ð4Rþ dÞð2R� dÞ2: (18)

Now suppose you have a series of N bonded beads with cut-off
radius RC and bond length l0. If l0 Z RC, the volume of the

Fig. 1 Calculated relationship between the excess chemical potential mex

and interaction parameter aij for the Widom insertion of single beads, for a
solvent which interacts with aii.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
/2

02
5 

10
:0

5:
26

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp03791j


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys.

overlapping beads (for the whole molecule)

V2 ¼
pðN � 1Þ

12
4RC þ l0ð Þ 2RC � l0ð Þ2 (19)

while the non-overlapping volume can be calculated as

V1 ¼
N4pRC

3

3
� 2V2: (20)

The derivation of these expressions for volume is presented in
more detail in the ESI.† For beads with interaction value aij, the
interaction value inside the overlapping portions is effectively
2aij. Using eqn (17) one can determine mex(aij) and mex(2aij).
From this, we hypothesise that the value of excess chemical
potential for the molecule uM

ex can be determined as

uMex ¼
3

4pRC
3
V1mex aij

� �
þ V2mex 2aij

� �� �
(21)

This expression relates to the assumption that we expect the
excess chemical potential mex to be directly proportional to the
volume of the inserted bead or fragment. We justify this
assumption with additional theory provided in the ESI.†

If l0 o RC, then for molecules of length N Z 3, there is the
possibility of three overlapping spheres, as illustrated in Fig. 2.

The volume of the region where three beads overlap can be
calculated as

V3 ¼
2pðN � 2Þ

3
2RC þ l0ð Þ RC � l0ð Þ2 (22)

while the expression for the regions consisting of two over-
lapping beads, V2, becomes

V2 ¼
pðN � 1Þ

12
4RC þ l0ð Þ 2RC � l0ð Þ2�2V3 (23)

and the volume for the non-overlapping regions, V1, becomes

V1 ¼
N4pRC

3

3
� 2V2 � 3V3: (24)

Similarly to before, this allows us to calculate an excess
chemical potential for the molecule as

uMex ¼
3

4pRC
3
V1mex aij

� �
þ V2mex 2aij

� �
þ V3mex 3aij

� �� �
(25)

Once again further details of the derivation of eqn (22)–(24) can
be found in the ESI.†

One simplification we make in our approach is that we use
the bond length setting in eqn (7) to determine the distance
between beads, and hence calculate the overlap. In practice,

over the simulation period the bond length will fluctuate.
In dissipative particle dynamics, there is normally a relatively
broad distribution of bond lengths, depending on the strength
chosen for the bonding. This means that the volume of overlap
fluctuates also. Given that the average volume of overlap is not
exactly the same as that determined from the average bond
length (since volume scales with l0

3), our approach is a slight
approximation. However, we show in this article that simply
using l0 for the volume calculation is still an effective method
for correcting the chemical potential of the beads.

One further simplification that we have made is to derive
eqn (25) under the assumption that conformational effects can
be neglected for relatively small molecules. However, it is worth
noting that as the molecule grows in size, conformational
effects may become more important. This is likely to be true
for longer polymers where parts of the solute molecule have the
capacity to fold in on themselves and overlap.

4 Partition coefficients

In this section, we test our expressions for the excess chemical
potential by applying them in the prediction of partition
coefficients and comparing with simulated values. This
approach stems from the fact that we can relate the excess
chemical potential (predicted via Widom insertion) with the
resulting partition coefficient of a solute into two immiscible
liquids, a relation which will be presented in this section.

We simulate a box containing two immiscible phases and
insert a small amount of solute into the system. This allows us
to vary the interaction parameters between the solute and the
two solvent phases to extensively test eqn (21) and (25). For
solute partitioning into two solvents a and b, the partition
coefficient is defined as

K ¼ ca

cb
(26)

where ca and cb are the concentrations in the two phases.
Therefore, using eqn (26), we can determine K from our
simulation experiments.

At equilibrium, the chemical potentials of the solute in the
two solvents are equal. By making use of this fact, as well as
decomposing the chemical potential into its excess and ideal
parts (eqn (13)), this allows us to express the partition coeffi-
cient K at infinite dilution in terms of the difference between
the excess chemical potentials of the two phases39

K ¼ ca

cb
¼ exp

mbex � maex
kBT

� �
: (27)

In this section, we compare the partition coefficients
of single bead solutes (Section 4.1), with those for bonded
molecules (Section 4.2). Following this, we also investigate
the effects of bonding the solvent molecules on K (Section
4.3). In all cases, we perform simulations consisting of two-
phase separating solvents (type A and type B beads), defining
the partition coefficient as K = cA/cB. To ensure their phase
separation we set their interaction to be aAB = 100 which results

Fig. 2 Overlapping beads when l0 o RC, for cases where N = 2 (a) and
N = 3 (b).
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in a negligible solubility of type A beads in type B and vice versa.
We set all self-interactions to be aii = 25, unless specified
otherwise. All simulations are conducted in boxes of size
60 � 20 � 20 with a bead density of r = 3RC

�3. We refer to our
solute beads as type C. The phase separation produced by types A
and B (in the absence of solute beads) is illustrated in Fig. 3.

4.1 Non-bonded solute

In order to first test the applicability of eqn (27), we perform a set
of simulations in which DPD beads are unbonded, single beads.
We examine the effects of varying the strength of the interaction
with the solute beads (type C) and examine the partitioning for
varying choices of aAC and aBC. We find that the value of K
calculated is weakly dependent on the solute concentration, as
shown in Fig. 4 (which is to be expected as we have assumed
infinite dilution). Therefore, we find the value of K at infinite
dilution by extrapolating to a concentration of 0, in order to
directly compare with that predicted using eqn (27). The results of
this study are shown in Table 1, showing good agreement between
the theoretically predicted value and the simulated values. This
also provides confidence in the calculated relationship between aij

and the chemical potential which is shown in Fig. 1.

4.2 Bonded solute

We next investigate the effects of bonding the solute molecules
together, while keeping the solvent as single beads. We inves-
tigate for solute molecules with various lengths (N = 2, 3, 4). The
bond length l0 is also expected to play a role in solubility, as this
significantly influences the degree of overlap between bonded
beads. Therefore we test three bond lengths l0 = 0.4RC, l0 =
0.6RC and l0 = 1.0RC. Similarly to in Section 4.1, we simulate
various solute concentrations and extrapolate to zero solute
concentration to determine a value for ln K.

If we assume that the chemical potential for the molecules can
be calculated using eqn (16) (i.e. the overlap is not taken into
account), Fig. 5a shows the relationship between the simulated,
and predicted values for ln K. We observe that the deviation
between the predicted and simulated values is largest when the
bond length is shorter, and also increases as the value of K
increases. This is hypothesised to be due to the increasing volume
of overlap between the bonded beads at shorter bond lengths.

However, if we calculate the predicted value of ln K using our
volume-correction equations (eqn (21) and (25)) the relationship
between the simulated and predicted values greatly improves, as
shown in Fig. 5b. To quantify the degree of improvement, we
calculate mean squared error values for the two different bond
lengths before and after applying the correction, which are shown
in Table 2. We note the significant improvement for the shorter
bond lengths of l0 = 0.4RC and l0 = 0.6RC, while there is minimal
change when l0 = 1RC. Note that all values shown in Fig. 5a and b
can be found in the ESI.†

4.3 Bonding the solvent

In this section, we investigate the effect of bonding the solvent.
We perform simulations in which we determine ln K for a single
bead solute (type C), which partitions into two solvents where
one of those solvents consists of bonded beads (type A) and the
other solvent remains unbonded (type B). Similarly to before,
we investigate the effects of the number of bonded beads in the
molecule, as well as the bond length.

Fig. 6a shows the predicted ln K vs. the simulated values for
a variety of choices for aAB and aAC, where all self-interactions
are kept as aii = 25. We see a small difference between the
simulated and the predicted values. We hypothesise that, due
to the bonding of the solvent, there is a difference in K which
results from the change in density that bonding produces.
The act of bonding molecules together decreases the pressure

Fig. 3 Phase separation of beads of type A (red) and type B (blue) when
their DPD interaction values are set as: aAB = 100, aAA = 25 and aBB = 25.

Fig. 4 The partitioning (K) of unbonded solute beads (C type) in
unbonded solvent beads (A and B type). There is a weak dependence of
ln K on the concentration of the solute.

Table 1 Calculation of the natural logarithm of partition coefficient K
where K = cA/cB. For the simulated values, we also report the estimated
uncertainty in our values in brackets as the standard deviation of the
intercept

aAC aBC ln K (calculated using eqn (27)) ln K (simulated)

25 35 3.22 3.244 (0.016)
25 40 4.56 4.697 (0.007)
30 35 1.71 1.528 (0.008)
30 40 2.86 2.938 (0.026)
40 60 4.08 4.267 (0.058)
60 70 1.56 1.638 (0.052)
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of the system, therefore increasing the equilibrium density,
resulting in larger excess chemical potentials than those

determined in Section 3.1 (eqn (17)). This pressure decrease
results from the fact that bonding reduces the number of
interacting particles in the system.

We aim to compensate for this by altering the self-interaction
value for the bonded solvent. The relationship between the
number of bonded beads and the pressure is shown in Fig. 7.
We calculate this pressure by performing simulations in a cubic
domain of length L = 20RC with a bead density of 3RC

�3. For a
given bonded solvent, we choose to set the self-interaction aAA to
reproduce the same pressure as that of an unbonded solvent (for
which we find a pressure of P = 23.7). This is to ensure that in all
cases the pure solvent produces a bead density of E3RC

�3, when
simulated in coexistence with the unbonded solvent. We find

Fig. 5 Relationship between the predicted and simulated values of ln K. The predicted values are calculated assuming that the excess chemical potential
of bonded molecules can be calculated using (a) eqn (16) (i.e. uncorrected) and (b) eqn (21) (i.e. corrected). The symbol represents the number of bonded
beads in the molecule: 2 (+), 3 (J) and 4 (D), while the colour represents the bond length l0: 0.4RC (green), 0.6RC (red) and 1.0RC (black). The unbonded
single-bead solute is represented by the blue (*) points. Note that error bars are smaller than the symbol size, but values can be found in the ESI.†

Table 2 Mean square error (MSE) of ln K between the predicted and
simulated values when using the uncorrected form of the chemical
potential vs. the corrected form. Note that bond length is in units of RC

K prediction Bond length MSE

Uncorrected 0.4 2.35
Corrected 0.4 0.030
Uncorrected 0.6 1.19
Corrected 0.6 0.070
Uncorrected 1.0 0.072
Corrected 1.0 0.112

Fig. 6 Comparison between the predicted and simulated ln K values for varying aAB and aAC choices. Fig (a) shows the partitioning when all self-
interactions are set to aii = 25.0, while (b) shows the partitioning behaviour when the self-interaction of the bonded beads (aAA) is corrected based on the
pressure. Note that error bars are smaller than the symbol size, but values can be found in the ESI.†
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that this approach works well for cases where a bond length of l0 =
0.6RC and l0 = 1RC are used, however, is not a perfect approach for
correcting the density when l0 = 0.4RC. In this case, we suspect that
other factors need to be taken into account to perfectly correct the
density upon bonding. Therefore in this section, we focus on bond
lengths l0 = 0.6RC and l0 = 1RC. The corrected aAA values used for
the simulations in this section are presented in Table 3. Fig. 8
provides an example of how the solvent density changes due to
this updated self-interaction value.

We note here that eqn (17) was calculated by performing
Widom insertions into a solvent of unbonded beads with aii =
25. We expect the relation between mex and aij to alter slightly
depending on the solvent parameters i.e. if aii a 25, or if the
solvent is bonded (or not). However, we find a negligible differ-
ence between the fit presented in eqn (17), and the fit for when the
solvent is bonded and has the aij values we use in this article.
Further information supporting this is presented in the ESI.†

Fig. 6b shows the new predicted vs simulated relationship for
ln K. We see that the updated calculated values more closely match
the simulated results once the self-interaction for the bonded
solvent is updated. Similarly to previously, we calculate the mean
squared error (MSE) for the uncorrected and corrected cases, which
is shown in Table 4, where we observe that the MSE increases with
more bonds in the solvent and that the correction greatly decreases
the MSE between the simulated and predicted values of ln K. Note
that all values shown in Fig. 6 can be found in the ESI.†

It may seem counter-intuitive that the effects of bonding the
solute molecules appear more significant than the effects of
bonding the solvent molecules. However, this conclusion is
expected from a theoretical point of view. In the case of the
solvent, the effect of bonding beads does not significantly alter
the degree of overlap, as in a bulk solvent of single beads there
is expected to be a degree of overlap anyway. This contrasts with
what is discussed in Section 4.2, for solutes, where the correc-
tion applied in calculating mM

ex accounts for a difference between
beads which have no overlap at all, and those which overlap
because they are bonded.

This point can be illustrated by considering the effect that
bonding has on the radial distribution function of the fluid. We
simulate a selection of pure systems in cubic simulation boxes,
for which the radial distribution function g(r) is shown in Fig. 9.
The simulations are conducted in boxes with edge length L =
20RC and density r = 3RC

�3. Therefore, the only differences
between the three cases shown is in the choice of bonding, and
the repulsion parameter aii. As previously, we choose to set this
so that the pressure is the same in all simulations (the values
used in Fig. 9 can be found in Table 3).

For a system consisting of single beads, if our beads were
non-interacting, the average distance d between beads could be

Fig. 7 Bulk pressure in simulations with number density 3, where the bond
length l0 and the number of bonded beads N is varied. Also shown (black) is
the bulk pressure of unbonded beads at the same number density.

Table 3 Solvent self-interaction values aAA which reproduce the same
pressure as non-bonded beads (P = 23.7). Bond length is given in units of
RC

N Bond length aAA

2 0.6 27.9
3 0.6 28.9
4 0.6 29.4
2 1.0 26.6
3 1.0 27.2
4 1.0 27.5

Fig. 8 Example of the improvement of the bead density when the self-
interaction for bonded beads is altered. Example for when four A-type
molecules are bonded together with equilibrium bond length l0 = 0.6RC.
Type-B beads are left unbonded and aAB = 100. In the original case aAA =
aBB = 25, while in the corrected case aAA = 29.4 and aBB = 25.0.

Table 4 Comparison of the mean squared error (MSE) for the simulated
value of ln K (compared with the calculated value using eqn (25)) when the
self-interaction of the solvent is corrected to account for the density
change of the solvent upon bonding

N (solvent) Bond length MSE (uncorrected) MSE (corrected)

2 0.6 0.344 0.010
2 1.0 0.378 0.131
4 0.6 0.857 0.024
4 1.0 0.900 0.176
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calculated as

d ¼ 1

r

� �1
3

(28)

All of our simulations are conducted with a bead density of r =
3RC

�3, which would lead to an average distance d = 0.7RC.
However, as our beads are interacting (primarily via the repul-
sive conservative force) the average distance between unbonded
beads is larger, as shown in Fig. 9.

The process of bonding leads to the appearance of peaks at
approximately integer values of the equilibrium bond lengths.
However, bonding does not significantly alter the average
overlap volume in the systems. Upon bonding, there is effec-
tively a narrowing of the distribution of bead distances. The
system loses some of its closest beads (reflected by only a
significant decrease in g(r) for r o 0.5RC) but also some that
would otherwise have been slightly further apart (g(r) decrease
in the range 0.7RC o r o 0.9RC).

Finally, we also test systems with both bonded solute and
bonded solvent, to test combining the bonding effects dis-
cussed thus far. Exact details of this study can be found in
the ESI,† however, we find that we can combine the corrections
discussed thus far to make good predictions for the expected
chemical potential, and hence partitioning.

4.4 Solute–solute interactions

Until now, the examples studied considered solute molecules
consisting of a single type of bead. However, a solute molecule
could potentially be made up of various bead types. In this
section, we briefly discuss the bonding overlap effects which
would need to be considered if one wishes to define a full set of
interactions for more complex systems.

If we consider an example system where the solute molecule
is made up of three beads and a fourth solvent bead (Fig. 10),
there are 6 cross interaction aij values to determine. Three of

those interactions are related to how the solute interacts with
the solvent (aAD, aBD and aCD). In this case, the values are best
determined by aiming to reproduce the correct activity coeffi-
cients of each of the solute beads at infinite dilution in the
solvent (assuming that the system to be simulated consists of
significantly more solvent molecules than solute). There are,
however, three other cross-interaction values that are between
the solute molecules themselves (aAB, aAC and aBC). In this case,
one could choose to determine the cross-interaction in two
different ways depending on which bead is chosen for the
Widom insertion. For example, aAB could be determined by
matching to the IDAC of bead A in bead B, or vice versa.

Upon bonding of the solute beads, bead overlaps lead to an
effective change in the IDAC coefficient, as discussed pre-
viously. However, unlike in Section 4.2, the effective interaction
(as a result of bonding) has changed for both beads involved in
the interaction. Therefore, we now consider the effect that
bonding has on the solute–solute interactions.

Fig. 11 summarises the bonding effects addressed in Section
4.2 (interactions between a bonded solute and the solvent) and
Section 4.3 (interactions between a solute and a bonded sol-
vent). In this figure, we also illustrate the effects addressed in
this section between the bonded solute molecules.

If, for example, we consider the interaction between bead A
(left-hand molecule) and bead B (right-hand molecule) in
Fig. 11c, this could be determined via matching to the IDAC
of bead A in a bath of bead B. In this case, then the effect of
bonding on the first molecule can partially be taken into
account in the same way as described in Section 4.3, by altering
the interaction to account for its overlap with its bonded
neighbour. However, since bead B in the second molecule is
also overlapping with its neighbours there is an extra impact of
bonding.

However, the effects of bonding on the second molecule
cannot necessarily be accounted for in the same manner as the
first. As the interaction was determined via the insertion of a
single bead into a bath of beads, there was already a degree of
overlap of the B-type beads in the bath. Now that the molecule
has been bonded to its neighbours, the degree of overlap has
changed very little, the impact being the type of bead it is

Fig. 9 Radial distribution function g(r) for a variety of simple test cases. In
the cases of bonded simulations, we use an equilibrium bond length of l0 =
0.6RC for molecules of two different lengths N. Also illustrated vertically
are integer values of the equilibrium bond length.

Fig. 10 Simple example system of a solute consisting of three bead types
(A)–(C) in a solvent (D).
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overlapping with. This is similar to the effects of bonding the
solvent discussed in the previous section.

For example, if we refer again to our example case, we can
determine the effect the overlap of the second solute molecule
will have on the excess chemical potential mex. If we assume that
the average volume of overlap VOL between a pair of beads is
unchanged before and after bonding, then

Dmex �
1

2

VOL

VBead

mex aAB þ aAAð Þ þ mex aAC þ aABð Þ
mex 2aABð Þ

� �
(29)

where VBead is the volume of a single bead. Of course, this is a
simplification, and the choice of bond length will influence if
there is any change in the volume of overlap. However, we find

that Dmex is generally going to take a relatively small value. For
example, if we take some values illustrative of a realistic case,
in which the bond length is l0 = 0.6RC, aAA = 25, aAC = 25, and
aAB = 50, we find that the Widom insertion approach would find
a value of mex = 19.0 for the insertion of bead A in bead B.
Eqn (29) predicts that the bonding of bead B would change this

by Dmex � 0:9
VOL

VBead
; which is relatively small.

However, we also note that for the cross-interaction values
that are between the solute molecules, it may be best to
determine the aij value for each pair as an average of the two
IDAC values from one bead in another. For example, one will
determine a different value calculating aAB depending on if one
matches to the IDAC of bead A in bead B, or visa versa.
Therefore, a potential choice is to determine both and take

the average value i.e. aAB ¼
1

2
aA!B þ aB!Að Þ. This is likely to be

an effective approach if the two approaches yield similar
interaction values (that is aA-B and aB-A are fairly similar).

5 Altering intramolecular interactions

As briefly mentioned in Section 2.1, by default LAMMPS does
not allow beads which are directly bonded to interact. However,
this behaviour can be switched on using the ‘special bonds’
function, and here we investigate the impact that switching
these interactions on has on our results. This is motivated by
the fact that many popular DPD codes, such as DL_MESO,40

choose to allow this interaction.
We repeat a small subset of our calculations from Section

4.2 (a bonded solute in an unbonded solvent), but allowing the
bonded beads to also interact with each other via the usual DPD
repulsive force. The first noticeable difference between the two
cases is the average bond length. In our original simulations,
although the equilibrium bond length is set as l0 = 0.6RC, the
average resulting bond length in the simulation is 0.58RC. This
decrease, compared to the l0, is due to the pressure of the
system. However, if desired, we could force the bond length
to be closer to the value set in eqn (7) by increasing the strength
of the bonding potential parameter KB. In our repeated simula-
tions with bonded interactions turned on, we find that the
average bond length in the system increases to 0.61RC. This
increase is due to the added interparticle repulsion between
two bonded beads. Details of these calculations of apparent
bond length can be found in the ESI.†

A comparison of the partitioning ln K for the two cases is
shown in Fig. 12, where the simulation data is summarised in
the ESI.† Due to the slight change in bond length, one might
expect to see a difference in the resulting partitioning due to
the change in the degree of overlap. However, despite the slight
change in average bond length, there is no significant change
in partitioning within the error of the simulated value of ln K. If
we consider eqn (19) we can determine that the change in the
overlap between two beads would only vary by E4% upon the
bond length changing from 0.58RC to 0.61RC, which would not
result in a significant change in the chemical potential, likely

Fig. 11 Effect of bonding (a) the solute on its interaction with the solvent
(Section 4.2); (b) the solvent on its interaction with the solute (Section 4.3);
(c) the solute on its interaction with other solute molecules (Section 4.4).
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indicating why we see very little variation between the two
simulation cases in Fig. 12.

We also now consider the effect that including bonded interac-
tions has on a bonded solvent, repeating the pressure calculation
originally shown in Fig. 7. Due to the increase in the number of
interactions in the fluid, turning the bonded interactions on alters
the relationship between the pressure and the self-interaction value.
The new aii value required to produce the same pressure as a non-
bonded solvent is shown in Table 5 (full figure included in the ESI†).
Comparing Table 3 and, we see that altering the nature of bonded
bead interactions alters the pressure when the bond length is
shorter, but not when it is longer. This is because the longer bond
length of l0 = 1RC is the same as the cut-off, RC, and so beads have
negligible interaction with each other even when bonded interac-
tions are switched on. However, the difference in pressure for
shorter bond lengths can be accounted for when setting the self-
interactions (as discussed above). Therefore, we conclude that the
results presented in this paper are applicable to systems with
bonded beads with excluded bead interactions turned on or off.

6 Application to real systems

In this section, we briefly demonstrate the applicability of our
model to real systems by studying the partitioning of three

different molecules into a water/dodecane system. The coarse-
graining of the solutes, along with the representation for
dodecane, are shown in Fig. 13. The coarse-grained modelling
for these three systems is very different, highlighting the
versatility of the method for real molecules.

For each solute we calculate the interaction parameters aij

using our equations to correct mex due to their overlap. We then
determine the resulting partition coefficient K, and compare
with experimental data. In each case, we also calculate another
set of interaction parameters aij for if we were to ignore the
overlap of the beads, to show the improvement that our method
has over this approach.

6.1 Dodecane and water solvents

We use a single water bead to represent multiple water mole-
cules, and dodecane is modelled by four bonded beads of the
same type. In our simulations, we use a constant bead density
of r = 3RC

�3. Therefore we can find a value RC (and a means for
conversation into real units) by matching to the experimentally
known density of dodecane at room temperature. This
approach leads us to determine RC = 6.56 Å. From this, we
define the coarse-graining of water NW by also matching to the
density of water at room temperature, finding that 1 water bead
represents NW E 3.14 water molecules.

To determine an appropriate bond length for the dodecane
molecule, we use the fact the C–C–C angles are approximately
109.51, and that the experimental C–C bond is 1.543 Å.41 The
separation between three carbon atoms is therefore approxi-
mately 3.77 Å, meaning an equilibrium bond length of 0.6RC is
a good choice.

6.2 Solutes

As shown in Fig. 13, diethyl carbonate can be represented by
two beads of the same type, due to its symmetry. This means
that eqn (19), (20), and (21) can be directly applied to account
for the overlap. For diethyl carbonate, we use an equilibrium

Fig. 12 A comparison of the partitioning ln K which results when the
bonded interactions are turned on and turned off. The symbol represents
the number of beads in the bonded solvent: 2 (+) and 3 (J). The
equilibrium bond length in all cases is set as l0 = 0.6. Note that error bars
are smaller than the symbol size, but values can be found in the ESI.†

Table 5 Solvent self-interaction values aAA which reproduce the same
pressure as non-bonded beads (P = 23.7), when the fluid has bonded
beads are allowed to interact with each other

N Bond length aAA

2 0.6 27.5
3 0.6 28.3
4 0.6 28.6
2 1.0 26.6
3 1.0 27.2
4 1.0 27.5

Fig. 13 Coarse-graining used for various real molecules simulated in this
section. Note that the beads are for illustrative purposes only and do not
indicate the shape or size of the beads nor the degree of the overlap.
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bond length of 0.6RC, which converts to a realistic bond length
for this molecule.

For simulating heptanol, we need to use two different types
of beads. This means that we need to calculate the volume of
the overlapping portions separately, rather than using eqn (19)
and (20). Then we correct each bead’s mex individually, due to
the overlapping portions. However, practically this is simple
and not much more complicated than our previous equations
(which assume each bonded bead interacts with the solvent
with the same aij parameter). Once again, we use an equili-
brium bond length of 0.6RC, since this is representative of the
real bond length.

Finally, we model the benzene as a triangle of bonded beads,
where an angle constraint is imposed at every corner, and the
equilibrium angle is set to 601. Using that the average C–C bond
in a benzene molecule is 1.39 Å, we determine the separation
between bonded beads should be 2.41 Å, meaning an equili-
brium bond length of 0.4RC is a good choice.

The choice to model benzene using three beads in a triangle
formation has been used in other DPD models24 and makes
sense from a geometric point of view. However, this formation
of beads has a very large degree of overlap and so we expect that
in most previous author’s models, the chemical potential of
rings is not fully reflected. Using our method to calculate mex

requires us to know the degree of overlap each bead has with
one another. Our previous expressions for volume are based on
a linear construction of the molecule, therefore we need
another approach. The analytical expression for the volumes
of overlap in a ring is quite complex compared to the cases used
in the article so far. However, the volume of overlap can very
easily be calculated using a Monte Carlo simulation. Therefore
eqn (25) can still be applied to calculate the excess chemical
potential, once these volumes have been found. Details of this
calculation, including the volumes V1, V2 and V3 for different
bond lengths, can be found in the ESI.†

The target values for excess chemical potential m are
obtained from experimental data. The exact aij values used in
each simulation case can be found in the ESI,† along with
details of the experimental data used and additional informa-
tion about these simulations.

6.3 Partitioning results

Table 6 shows the results of our partitioning study for each
molecule. We show the values of ln K obtained when the overlap
of beads is not taken into account (uncorrected) when calculat-
ing the aij interaction parameters for the molecule, compared
to when we use our approach to account for the overlap
(corrected) when determining suitable aij values.

We observe a significant improvement in our corrected para-
meters compared to the uncorrected ones, and we see this for all
solute cases tested. This is particularly notable for our benzene
representation. For all solutes, the use of uncorrected para-
meters leads the solute molecules to behave with significantly
less hydrophobicity than they should. However, correcting the
parameters for the overlap generates a much more realistic
behaviour. Generating the correct behaviour, and in particular

the correct hydrophobicity, is crucial for many types of systems,
but in particular for self-assembling systems such as surfactants.

7. Conclusions and discussion

In this article, we have shown that there are effects resulting
from the bonding of beads, which are generally not considered
in the parameterisation of DPD models. However, we show that
these bonding effects can be compensated for by considering
the degree of overlap between bonded beads. The degree of
overlap depends on the chosen bond length, and shorter bond
lengths lead to the need to consider the effects of bonding more
carefully. Although, as highlighted in Section 5, the average
bond length is slightly different to its harmonic potential
setting (i.e. that set by eqn (7) using parameter l0), we show
that this deviation is small enough that we can use l0 to
estimate the volume of overlap of the beads, and hence correct
the chemical potential.

We have also considered more complex cases, where mole-
cules can be made up of a combination of fragment types.
While we have only considered linearly bonded molecules in
this work with a single bond length, the methodology presented
could easily be extended to consider more complex molecules,
including those containing rings or branching etc.

Finally, it is worth considering the general applicability of
the results presented in this work. In recent years, DPD has
become a very versatile tool for the simulation of soft matter
systems. Accordingly, we expect the method presented here to
find uses in the simulation of surfactants, where accurate
parametrization is required to obtain predictions of interfacial
tensions between fluids20,43 and for predicting critical micelle
concentrations;21,25 for model membranes where partitioning
of small molecules through the membrane is strongly depen-
dent on the accurate parametrization of the interactions with
lipid molecules;44 for DPD studies of peptides and proteins45

where folding depends critically on accurate monomer–mono-
mer aij values; in addition to a wide variety of other problems.
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Table 6 The simulated values for ln K in the cases where the volume of
overlap is not accounted for (uncorrected) and it is accounted for using
our method (corrected). Experimental ln K are obtained from ref. 42, where
K is defined as the ratio of the concentration in the dodecane to the water

Solute
Simulated ln K
(uncorrected)

Simulated ln K
(corrected)

Experimental
ln K

Diethyl
carbonate

0.817 1.168 1.3

Heptanol 0.484 1.965 1.9
Benzene 2.542 4.475 5.1
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