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Quantum optimization with linear Ising penalty functions for customer data science
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Constrained combinatorial optimization problems, which are ubiquitous in industry, can be solved by quantum
algorithms such as quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). In
these quantum algorithms, constraints are typically implemented with quadratic penalty functions. This penalty
method can introduce large energy scales and make interaction graphs much more dense. These effects can result
in worse performance of quantum optimization, particularly on near-term devices that have sparse hardware
graphs and other physical limitations. In this work, we consider linear Ising penalty functions, which are applied
with local fields in the Ising model, as an alternative method for implementing constraints that makes more
efficient use of physical resources. We study the behavior of the penalty method in the context of quantum
optimization for customer data science problems. Our theoretical analysis and numerical simulations of QA and
the QAOA indicate that this penalty method can lead to better performance in quantum optimization than the
quadratic method. However, the linear Ising penalty method is not suitable for all problems as it cannot always
exactly implement the desired constraint. In cases where the linear method is not successful in implementing all
constraints, we propose that schemes involving both quadratic and linear Ising penalties can be effective.
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I. INTRODUCTION

Quantum optimization algorithms, such as quantum an-
nealing (QA) [1–3] and the quantum approximate optimiza-
tion algorithm (QAOA) [4], are being explored as a potential
path to quantum advantage in the near future [5,6]. There
is increasing interest in applying these quantum algorithms
to industry problems [7–12], including commerce and re-
tail problems [13,14]. A common feature of optimization
problems found in industry is that they are often highly con-
strained [12]. Problems in commerce and retail settings can
involve tens to hundreds of constraints [15,16], which result
from both strategic and operational considerations. The large
number of constraints influences the approach a researcher
might take in tackling an optimization problem. Therefore, if
quantum optimization is to find real value in a commercial
setting, it must be able to handle and thrive in problems sig-
nificantly affected by or even dominated by constraints. This
motivates the research of quantum optimization on problems
that include multiple constraints.

In QA and the QAOA, the standard approach to encod-
ing constraints is to add quadratic penalty functions to a
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problem’s objective function [17,18]. Quadratic penalty func-
tions can make problems much more dense and introduce
large energy scales to energy landscapes. This can negatively
impact the performance of a quantum optimizer, especially on
near-term devices that have physical limitations [19]. Over-
coming these physical limitations requires new strategies that
address issues that are not typically a concern in optimization
problems. A particular issue that needs to be overcome in
quantum annealing is that problems often have to be mapped
to quasiplanar hardware graphs, using strategies such as minor
embedding [20] or parity encoding [21,22]. Some success has
been realized with new encoding strategies, such as domain-
wall encoding [23–25]. Domain-wall encoding works well to
reduce connectivity when applied to one-hot encodings, but
is not efficient for other encodings, while the linear penalty
strategy we consider here is.

We consider a penalty method involving only linear Ising
terms and study its suitability in quantum optimization for
customer data science problems. This penalty method has
previously been suggested in other contexts [8,26,27]. Unlike
the quadratic method, the linear Ising penalty method does
not change a problem’s connectivity. Furthermore, the en-
ergy scales introduced by the linear method are often smaller
than for the quadratic method. Because of these reductions
in resource usage, theoretical arguments can be made for
better performance of quantum optimization with the lin-
ear method than the quadratic method. However, while the
quadratic penalty method can always exactly implement a
desired constraint, there is no such guarantee for the linear
Ising penalty method. Thus, the linear Ising penalty method
is more applicable to certain problems than others. We find
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that the customer data science problems we consider are well
suited for the linear method.

In this work, we perform a numerical analysis that pursues
two objectives: first, to understand the behavior of linear Ising
penalties, and second, to assess their impact on the perfor-
mance of quantum optimizer. We study how changing the
value of the penalty strength parameter affects the constraint
that a linear Ising penalty implements. Strategies for find-
ing a penalty strength that implements the desired constraint
are discussed. For problems with multiple constraints, we
find that using a combination of quadratic and linear Ising
penalties can be beneficial in cases where the linear method
is not successful for all constraints. To compare the perfor-
mance of the penalty methods, we have run simulations of
a customer data science problem on QA and the QAOA us-
ing both penalty methods. These simulations were limited to
fully connected problems with up to 18 variables and did not
include the effects of physical limitations that near-term quan-
tum devices typically have. Therefore, many of the theoretical
benefits of the linear Ising penalty method do not apply to the
setting represented by these simulations. Nevertheless, we ob-
serve modest improvements in performance when switching
from the quadratic penalty method to the linear Ising penalty
method in simulations of both algorithms. These findings are
complementary to the experimental results in Ref. [28], where
more substantial improvements are observed when solving
larger customer data science problems on a real quantum
device.

This paper is organized as follows. In Sec. II, we outline the
relevant prior work, the promotion cannibalization problems
we consider, and the linear Ising penalty method. In Sec. III,
we describe our numerical methods. The results of this study
are presented in Sec. IV, where we study the behavior of linear
Ising penalties through a numerical analysis, and Sec. V,
where we compare the performance of quantum optimization
using quadratic and linear Ising penalties in simulation. Fi-
nally, we summarize our findings in Sec. VI.

II. BACKGROUND

In this section, we introduce some key concepts and pro-
vide a summary of prior works that underpin our study.
Section II A gives a description of QA and the QAOA, which
are the two quantum optimization algorithms we consider.
Section II B describes the computational problems that we
base our numerical analysis on. Section II C reviews the
quadratic penalty method for encoding constraints and intro-
duces the linear Ising penalty method.

A. Quantum optimization

QA and the QAOA are quantum algorithms that are
particularly suitable for solving combinatorial optimization
problems that can be expressed as the quadratic unconstrained
binary optimization (QUBO) problem

find arg min
x

f (x) =
n∑

i=1

aixi +
n−1∑
i=1

n∑
j=i+1

bi, jxix j . (1)

The real-valued linear term coefficients a and quadratic term
coefficients b characterize an instance of the problem. An
assignment of values to the input vector x ∈ {0, 1}n is called a
solution, and we are tasked with finding an optimal solution,
which is a solution that minimizes the objective function f (x).
We note that elsewhere in the literature, the QUBO problem is
typically expressed in terms of a single upper triangular matrix
Q ∈ Rn×n, where Qi, j = bi, j ∀ j �= i and Qi,i = ai.

Through the mapping xi �→ (1 − σ z
i )/2, the QUBO prob-

lem is equivalent to the problem of finding the ground state of
the Ising Hamiltonian

HP =
n∑

i=1

hiσ
z
i +

n−1∑
i=1

n∑
j=i+1

Ji, jσ
z
i σ z

j . (2)

Here, σ z
i = 1⊗i−1 ⊗ σz ⊗ 1⊗n−i is the Pauli operator σz act-

ing on qubit i and identities acting on all other qubits. The
couplings J and local fields h can be derived from the QUBO
coefficients a and b through the relations

Ji, j = bi, j

4
, (3)

and

hi = −ai

2
− 1

4

n∑
j=1, j �=i

bi, j . (4)

QA is a heuristic that resembles simulated annealing [29],
which is a classical heuristic. It differs to simulated anneal-
ing in its use of quantum fluctuations, which are employed
through the transverse-field driver Hamiltonian

HD = −
n∑

i=1

σ x
i , (5)

where σ x
i is defined in terms of the Pauli operator σx as σ x

i =
1⊗i−1 ⊗ σx ⊗ 1⊗n−i. QA operates by initializing a system in
the state

∑2n−1
j=0 | j〉/2

n
2 , which is the ground state of HD, and

evolving the system according to the Hamiltonian

H (t ) = A(t )HD + B(t )HP. (6)

A(t ) and B(t ) are control functions, which are time-dependent
real numbers that satisfy A(0) 	 B(0) at the beginning and
A(t f ) 
 B(t f ) at the end of an anneal of duration t f . After
this quantum evolution, the system is measured in the compu-
tational basis. Our choice of control functions for simulations
of QA are A(t ) = 1 − t/t f and B(t ) = t/t f , which correspond
to a linear schedule. The adiabatic theorem implies that the
probability of exciting the system and subsequently measuring
an excited state of HP can be made arbitrarily small by making
the anneal time t f sufficiently large [30]. In this work, t f

is not necessarily in the adiabatic regime, so there is some
non-negligible probability of sampling a suboptimal solution.

The QAOA is a quantum algorithm that resembles a dis-
cretized version of QA. In the QAOA, p layers of gates are
applied to an initial state |ψ0〉 = ∑2n−1

j=0 | j〉/2
n
2 , which is the

same initial state as in QA. In the kth layer of gates, the system
evolves according to the Ising Hamiltonian HP for a duration
specified by an angle γk and then by a mixer Hamiltonian HM

for a duration specified by an angle βk . The mixer Hamiltonian
HM is a sum of the Pauli operators σx acting on each qubit,
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which is the same as the QA driver Hamiltonian HD in Eq. (5).
After the application of all p layers of gates, the system is
prepared in the state

|γ,β〉 = e−iβpHM e−iγpHP · · · e−iβ1HM e−iγ1HP |ψ0〉, (7)

which is dependent on 2p angles γ and β. The final state |γ,β〉
is measured and produces some solution x with probability
|〈x|γ,β〉|2. This evolution is a discretized approximation of
QA for some choices of the angles γ and β that can be
inferred from the control functions A(t ) and B(t ). Therefore,
the adiabatic theorem also applies to the QAOA in the limit
of large p, which implies that γ and β can be chosen such
that measuring |γ,β〉 always produces an optimal solution.
In practice, p is typically too small to be able to apply the
adiabatic theorem. Instead, γ and β are chosen by a classical
optimizer. The optimizer runs the QAOA circuit some number
of times and calculates the average objective value 〈 f (x)〉
of the sampled solutions. It then repeats this process with
updated parameters γ and β in each iteration, using classical
techniques to minimize 〈 f (x)〉.

For a quantum algorithm that produces the state |ψ〉 before
measurement, the success probability

PS =
∑

x∗∈X ∗
|〈x∗|ψ〉|2 (8)

indicates the probability of measuring an optimal solution,
where X ∗ is the set of optimal solutions. Similarly, the feasible
probability

PF =
∑
x̃∈X̃

|〈x̃|ψ〉|2 (9)

is the probability of measuring a solution from the set X̃ of
solutions that satisfy all constraints.

B. Promotion cannibalization problem

In this work, we apply QA and the QAOA to two simplified
forms of a problem that arises in customer data science when
retailers promote products using price reductions. Promoting
a product generates additional revenue from sales of that prod-
uct; however, it can also have the undesired effect of reducing
the sales of other similar products. For example, a promotion
of one brand of breakfast cereals may generate new sales for
that brand at the expense of sales of other brands. This effect is
called cannibalization [31,32], and we refer to cannibalization
arising from product promotions as promotion cannibaliza-
tion. The overall bilateral cannibalization when concurrently
promoting two similar products can result in minimal new
sales and possibly even a net reduction in revenue. Therefore,
retailers often look to minimize the total revenue loss due to
clashing concurrent promotions. We can model this by only
considering promotion cannibalization that occurs between
pairs of products being promoted at the same time and using a
matrix C with matrix elements Ci, j that represent the average
amount of loss of revenue from sales of product i due to
a promotion of product j when both products are promoted
concurrently. In this study, we make the assumption that C is
non-negative; that is, Ci, j � 0 ∀ i, j.

The primary example problem that we base this work on
is to choose a selection of A products to promote out of np

possible choices that minimizes the total amount of promo-
tion cannibalization between pairs of promoted products. This
problem can be expressed as the constrained binary quadratic
programming problem [33,34]:

find arg min
x

f (x) =
np∑
j=1

np∑
i=1

Ci, jxix j, (10)

s.t.
np∑

i=1

xi = A, (11)

where the binary variable xi = 1 if product i is promoted
and xi = 0 if not. Equation (11) is an expression of the
constraint that A products are promoted in total. Note that
when expressed in the form of Eq. (1), the objective func-
tion only has quadratic terms with coefficients bi, j equal to
Ci, j + Cj,i. Hence, we can assume that C is symmetric in the
context of this problem without loss of generality. Conver-
sions from QUBO to Ising form are performed using Eqs. (3)
and (4). For example, a C matrix with a single pair of nonzero
elements Ci, j = Cj,i = 1 would produce a QUBO objective
function containing a single quadratic term with coefficient
bi, j = Ci, j + Cj,i = 2, which would correspond to Ji, j = 1/2
and hi = h j = −1/2 in Ising form.

Retailers change which products are promoted periodi-
cally, such as once every fiscal quarter. The above problem
can be viewed as finding the promotion plan for a single
quarter of the year. Another problem that we consider is to
find an optimal promotion plan for two consecutive quarters,
subject to the additional set of constraints that each product
is promoted in one of the quarters at most. The optimal pro-
motion plan should minimize the total amount of promotion
cannibalization between pairs of promotions in the same quar-
ter, and each quarter should have A promotions. This can be
expressed as

find arg min
x

f (x) =
2∑

q=1

np∑
j=1

np∑
i=1

λqCi, jxi,qx j,q, (12)

s.t.
np∑

i=1

xi,q = A ∀ q, (13)

and xi,1 + xi,2 � 1 ∀ i. (14)

Here, the binary variable xi,q represents a promotion of prod-
uct i in quarter q and λq is a seasonal scale factor that is
derived from the expected total revenue of each quarter. In
total, this problem has np + 2 constraints to satisfy, which
allows us to study the behavior of interacting constraints. For
clarity, we refer to Eqs. (10) and (11) as the single-quarter
promotion cannibalization problem and Eqs. (12)–(14) as the
two-quarter problem.

C. Penalty methods for encoding constraints

The promotion cannibalization problems, as expressed in
Eqs. (10) and (11) and Eqs. (12)–(14), are not QUBO prob-
lems because they include constraints. Equations (11) and (13)
are examples of linear equality constraints, which take the
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general form
n∑

i=1

μixi = c, (15)

for some coefficients μ ∈ Rn and constraint value c ∈ R. The
most common method to encode constraints in quantum op-
timization is to incorporate them into the objective function
through the addition of penalty functions P(x) that raise the
objective value of solutions that are infeasible (i.e., do not
satisfy every constraint) enough that the solution with the
lowest objective value is feasible.

Quantum optimizers and classical quadratic programming
solvers commonly use the quadratic penalty function

P(x) = α2

(
n∑

i=1

μixi − c

)2

(16)

to encode equality constraints of the form given in Eq. (15).
Provided that the penalty strength α2 is large enough, the
optimal solution of an objective function will satisfy Eq. (15)
after adding P(x) to it. Aside from the ability to scale the
function by changing the penalty strength α2, this penalty
function has two desirable properties that are satisfied for all
α2 > 0:

(1) P(x) = 0 if x is feasible.
(2) P(x) > 0 if x is infeasible.
The quadratic penalty method suffers from severe draw-

backs. Expanding out the brackets in Eq. (16) for a quadratic
penalty, we find that there are quadratic terms with nonzero
coefficients for all pairs of variables in the constraint. This
corresponds to all-to-all couplings of the associated qubits
in the Ising Hamiltonian HP. Many quantum devices that are
currently available do not support all-to-all couplings between
the physical qubits, meaning that most Ising Hamiltonians
of interest cannot be directly mapped to the hardware. To
resolve this issue, various methods can be used. In the gate-
based setting of QAOA, the quantum states of two qubits can
be swapped with a SWAP gate, allowing for any two logical
qubit states to be routed through the hardware so they can be
physically coupled [35–38]. In QA, a common approach is to
map each logical qubit to a chain of ferromagnetically coupled
physical qubits in a process called minor embedding [12,20]
such that the chains of qubits support the necessary couplings.
In both cases, a significant physical resource cost is incurred
when new couplings are introduced to HP, either in the form
of a larger circuit depth in the case of the QAOA or a larger
qubit count in the case of QA.

As well as the cost of requiring all-to-all couplings, another
drawback of the quadratic penalty method is that it will often
reduce the effective dynamic range of qubit interactions. The
quadratic penalty for the constraint in Eq. (11) is

P(x) = α2

( np∑
i=1

xi,q − A

)2

. (17)

Expanding out the brackets, we get

P(x) = α2

⎛
⎝ np∑

i=1

(1 − 2A)xi +
np−1∑
i=1

np∑
j=i+1

2xix j + A2

⎞
⎠. (18)

Mapping this to an Ising Hamiltonian with xi �→ (1 − σ z
i )/2

gives

P = α2

( np−1∑
i=1

np∑
j=i+1

σ z
i σ z

j

2
+

np∑
i=1

(np

2
− A

)
σ z

i

+ np(np + 1)

4
− npA + A2

)
. (19)

Now, we can read off the couplings and local fields as Ji, j =
α2/2 and hi = α2(np/2 − A). As we would expect, the mag-
nitudes of J and h increase with the magnitude of α2. As
well as this, the magnitude of h is proportional to the absolute
difference |np/2 − A|. In other words, this penalty introduces
strong local fields if the desired constraint value (number of
promotions A) is far from half of the number of variables in
the constraint (number of products np).

In QA, large-magnitude couplings or local fields are unde-
sirable because there are physical limitations on the range of
J or h values that can be implemented. The Ising Hamiltonian
H̃P implemented by a quantum annealer is normalized by a
factor N using

H̃P = 1

N HP, (20)

where N is typically chosen to be the minimum value such
that all physical constraints on J and h are satisfied. A penalty
that increases the maximum magnitude values in J or h will
often result in a larger N , which reduces the effective dynamic
range of qubit interactions for the unconstrained part of the
problem. Large energies associated with penalties would also
be detrimental in the QAOA because the application of HP

would begin rotating phases by angles larger than 2π unless
the rotation angles γ are reduced or HP is normalized. This
restricts the effective range of rotation angles for the interac-
tions in HP that are not associated with the penalties.

Various alternatives to the quadratic penalty method have
also been explored in the context of quantum optimization.
In QA, one approach is to start in a superposition of fea-
sible states and use an alternative driver Hamiltonian HD

that only drives transitions between feasible states [39,40].
This can also be applied to a generalization of the QAOA
by replacing HM with unitaries that implement the con-
straints [41]. While this method is appealing as it naturally
limits the quantum evolution to the subspace of feasible states,
it requires multiqubit interactions that are more difficult to
physically implement than the transverse-field Hamiltonian.
This method can be combined with a parity-based encoding
scheme [21,42], which presents an alternative to minor em-
bedding in QA for compatible hardware. Another approach is
to define small Ising problems called gadgets that have certain
properties that allow them to be combined to encode the origi-
nal constrained problem [43–45]. These gadgets use ancillary
qubits, which is the same type of resource cost as for the
quadratic penalty method when considering the extra qubits
introduced in minor embedding. When tailored to a device’s
hardware, the gadget-based approach can be more efficient
than the quadratic penalty method in terms of dynamic range
and the number of physical qubits required.

In classical computing, penalty functions that are linear
in x are also used [46]. To satisfy property 2, non-Ising
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operations are required. For example, the constraint in
Eq. (15) can be implemented with the linear penalty
α1|

∑n
i=1 μixi − c|. Computing using non-Ising operations

such as | · | is challenging in quantum optimization. de la
Grand’rive and Hullo [47] demonstrated that the QAOA
can be extended to implement non-Ising linear penalties for
inequality constraints by computing max(·), which is a non-
Ising operation. However, this approach comes at the cost of
requiring ancillary qubits and a more complex circuit.

In this paper, we consider the use of linear penalty func-
tions with non-Ising operations removed. This method would
be able to avoid many of the drawbacks of the quadratic
penalty method as it does not introduce any new couplings
to the problem and can be more efficient with the hardware’s
dynamic range [26,48]. The removal of non-Ising operations
requires giving up on property 2 of a conventional penalty
function, which means this penalty method does not produce
the desired ground state in HP for all cases. The upside is that
this penalty method can be implemented on current quantum
hardware with a smaller physical overhead than other methods
and may potentially improve the performance of algorithms.
This type of linear penalty method has been previously sug-
gested for QA in the contexts of portfolio optimization [8]
and quantum machine learning [27], but neither of these two
studies showed any results relating to this approach beyond
making the observation that it can be used in these problems.

Ohzeki [26] recently developed a method for implementing
constraints with linear terms by taking the partition function
of a QUBO objective function and applying a Hubbard-
Stratonovich transformation [49,50]. While the mathematical
motivation behind Ohzeki’s work is different to what we
present here, the resulting algorithm is effectively the same
as applying linear Ising penalties. It has been observed that
the method described by Ohzeki does not have the theoret-
ical guarantee of being able to exactly implement all hard
constraints [51]. This work examines objective functions that
cannot be exactly constrained by this method and considers
their implications, which the prior work does not do. We
discuss how the structure of a problem affects the likelihood of
this occurring and identify that objective functions with non-
negative quadratic term coefficients are particularly suitable
for the linear Ising penalty method. One proposal for making
use of infeasible solutions is to perform a postprocessing
step to produce feasible solutions from infeasible solutions
using the fewest number of bit flips [51]. In this work, we
propose another strategy of selectively applying linear Ising
penalties to specific constraints when it is not possible to apply
them to all of a problem’s constraints. Whereas Ohzeki and
subsequent researchers performed their analyses on D-Wave
quantum annealing devices, this work presents results of nu-
merical simulations in both gate-based and annealing settings.
Performing simulations allows us to study the behavior of
closed-system dynamics and to study how the dynamics are
influenced by the choice of penalty strength parameters.

The linear Ising penalty function for the equality constraint
in Eq. (11) is

P(x) = α1

( np∑
i=1

xi,q − A

)
, (21)

where the penalty strength α1 can be positive or negative. In
the Ising formulation, this corresponds to local fields equal
to −α1/2 up to an unimportant constant offset. In the rest
of this paper, when using the term linear penalty, we refer
to linear Ising penalties of the form in Eq. (21) rather than
linear penalties with non-Ising operations, which are used in
classical computing.

Since we assume that C is non-negative, the QUBO objec-
tive function of the single-quarter promotion cannibalization
problem only has quadratic terms with non-negative coeffi-
cients. To see how this affects the problem’s structure, we
group all possible solutions by their Hamming weight w,
which represents the number of variables equal to one in
a solution. The minimum objective value of the solutions
for each group is monotonically increasing with w. In other
words, for every solution with some Hamming weight w � 1,
there exists some solution with Hamming weight w − 1 that
has the same or a lower objective value. To see why this is true,
suppose there exists a solution xa with objective value f (xa)
and Hamming weight w, where f (xa) is strictly less than
the objective values of all solutions with Hamming weight
w − 1. We can flip one of the variables of xa from one to
zero to get another solution xb with a Hamming weight w − 1.
Since the QUBO objective function does not have any terms
with negative coefficients, flipping a variable from one to zero
can never increase the objective value. Hence, f (xb) � f (xa),
which contradicts the proposition that f (xa) is strictly less
than the objective value of all solutions with Hamming weight
w − 1. Therefore, solutions with a Hamming weight w can
never have an objective value that is strictly less than the
objective value of all solutions with Hamming weight w − 1.
The same is true for the two-quarter promotion cannibaliza-
tion problem when considering the Hamming weight of the
variables for one quarter while the other quarter’s variables
have fixed values.

The monotonic relationship between Hamming weight and
minimum objective value makes this problem particularly
amenable to the linear Ising penalty method. To demonstrate
this, we plot f (x) against the Hamming weight of x for a
promotion cannibalization problem instance with six products
in Fig. 1(c) and for some other six-variable QUBO instance
with both positive and negative quadratic term coefficients
in Fig. 1(a). If we suppose we want to implement the con-
straint

∑6
i=1 xi = 2 for both of these problems, the penalized

objective functions must have minimum values at a solution
Hamming weight of two. For the promotion cannibalization
problem, the minimum value of f (x) is monotonically in-
creasing with the Hamming weight of x, so only solutions
with a Hamming weight of less than two need to be penalized
to implement the desired constraint. A linear penalty [shown
in the inset of Fig. 1(c)] is able to do this, but it also has
the undesired effect of lowering the objective value of solu-
tions with Hamming weights greater than two. However, this
is often compensated by the large existing object values of
these higher Hamming weight solutions due to the monotonic
structure we described. Therefore, the linear penalty method is
more likely to be able to produce the correct optimal solution
than for a random QUBO problem without the same structure.
Indeed, we find that for this instance of the promotion canni-
balization problem, the linear penalty method is successful in
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FIG. 1. Objective values f (x) plotted against the Hamming weight w(x) of each possible solution x for (a) an example QUBO instance
with both positive and negative quadratic term coefficients and (c) an instance of the single-quarter promotion cannibalization problem. For
each Hamming weight, the minimum value of f (x) is plotted in a darker color, and these points are connected to guide the eye. We apply two
different penalty functions P(x) for the equality constraint

∑6
i=1 xi = 2 to these problem instances, which are shown in the insets of panels

(a) and (c). The penalty function is quadratic in panel (a) and linear in panel (c). Note that the gradient of the line in the inset of panel (c) is
equal to α1. (b) The constrained objective function after applying a quadratic penalty to the QUBO instance plotted in panel (a). (d) The
constrained objective function after applying a linear penalty to the promotion cannibalization problem instance plotted in panel (c).

producing a constrained objective function, which is shown
in Fig. 1(d). For the other QUBO problem, there does not
exist any value of α1 that produces an optimal solution with a
Hamming weight of two, so the quadratic penalty method is
used instead [Figs. 1(a) and 1(b)]. We note that the monotonic
structure of the promotion cannibalization problem is not suf-
ficient to guarantee that the linear penalty method is successful
every time. For that, the gradient of the line in Fig. 1(c) also
needs to be monotonically increasing, which is not the case
for all problem instances.

The constraints given by Eq. (14) are examples of linear
inequality constraints. We encode these with quadratic penalty
functions of the form

P(x) = α2xi,1xi,2 (22)

throughout our analysis of the two-quarter promotion canni-
balization problem.

III. NUMERICAL METHODS

The numerical analysis in this work was performed us-
ing the Python programming language [52]. We used the
libraries NumPy [53] and SciPy [54] for computationally
intensive calculations. All linear fits were obtained us-
ing the weighted least-squares method implementation in
scipy.optimize.curve_fit. PyQUBO [55] was used to
formulate QUBO and Ising problems. Plots were produced
with Matplotlib [56].

Problem instances were exactly solved using Gurobi Opti-
mizer [57] through the GurobiPy Python interface. We note
that Gurobi operates at an adjustable numerical precision,
which can lead to minor differences in results depending
on which software version and solver parameters are used.
Throughout this work, we used Gurobi version 10.0.2 with
a single thread and the default values of all other solver
parameters.

The C matrices used in our numerical analysis of the
single-quarter promotion cannibalization problem were gen-
erated by selecting symmetric off-diagonal matrix elements
Ci, j = Cj,i uniformly at random from the interval [0.1, 1.0).
All matrix elements on the main diagonal were set to zero.
With this method, we generated 10 000 C matrices corre-
sponding to different problem instances for each number of
products between 6 and 18. The C matrices of the instance
with ID 8_0 and the instance with ID 8_19 are also used
for our analysis of the two-quarter promotion cannibalization
problem.

All simulations in this work were run on the Hamilton
high-performance computing cluster at Durham University.
The SciPy function expm_multiply was used to simulate
QA by discretizing the time evolution in the same manner as
described in Ref. [58]. For the QAOA, the qasm_simulator
backend in the Qiskit SDK [59] was used to simulate quantum
circuits without noise. Each of the QAOA angles γ and β

were initialized randomly within the interval [0, 1) before
being optimized by the implementation of the COBYLA
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algorithm [60] in scipy.optimize.minimize using a max-
imum of 100 minimization iterations. While optimizing γ

and β, the quantum circuit was run 1000 times in order to
estimate the average objective value. After optimizing γ and
β, 1 000 000 runs of the quantum circuit were performed, from
which the probabilities PS and PF were inferred. To reduce the
effect of getting stuck in local minima when optimizing γ and
β, the entire algorithm was repeated 80 times before selecting
the attempt that produced the highest success probability.

IV. BEHAVIOUR OF PENALTY FUNCTIONS

In this section, we study the behavior of linear and
quadratic penalty functions as their penalty strength param-
eters are changed. We first look at the behavior of a single
constraint using the single-quarter promotion cannibalization
problems as an example. Then, we use the two-quarter promo-
tion cannibalization problem to consider the effects of having
multiple constraints.

A. Single constraint

While both the quadratic and linear penalty methods in-
troduce a single penalty strength parameter per constraint,
these two types of penalties respond differently to changes
in their penalty strengths. Here, we study these differences
in the context of the single-quarter promotion cannibalization
problem, which has a single constraint [Eq. (11)]. For the
quadratic method, if the penalty strength α2 is too small, it is
not successful in producing a feasible ground state in HP. On
the other hand, if α2 is much larger than necessary, HP will
have a feasible ground state, but the performance of a quan-
tum optimizer in finding the ground state will be hindered.
Figure 2 shows an example of this behavior for simulations
of closed-system QA. The feasible probability PF increases
with α2 and stays elevated at large values, whereas the success
probability PS rises, peaks, and then falls. For a given problem
instance, there is a value of α2 that will produce the maximum
probability Pmax

S of measuring an optimal solution. In practice,
there is typically a broad range of values for α2 that will
produce good performance, which can be seen in Fig. 2(a).

For the linear penalty method, the parameter α1 directly
relates to the value of the constraint that is implemented,
i.e., the value of A in Eq. (11). As shown in Fig. 3(a), the
Hamming weight w of the ground state of HP increases as α1

is decreased. All instances of the Ising problem exhibit this
monotonic relation between α1 and w because negative local
fields lower the energy of states in proportion to their Ham-
ming weights. For a desired value of A, the penalty strength α1

should be tuned such that w = A. There is a lower and upper
limit on the range of values of α1 that accomplish this, and this
range is different for each problem instance. In comparison,
there is only a lower limit for α2 that produces a feasible
ground state when using the quadratic penalty method. There-
fore, the range of values of α1 that produce a significant
probability of finding an optimal solution is often smaller than
the equivalent range of values of α2. Furthermore, for some
problem instances, there does not exist any value of α1 that
produces the desired ground state in HP with the linear penalty
method, which is not the case for the quadratic method.

FIG. 2. (a) Probability PS after an anneal time t f = 10 of mea-
suring the optimal state normalized by an estimate of the maximum
success probability Pmax

S for closed-system QA as a function of the
penalty parameter α2. Each point is an average over 100 instances
of the promotion cannibalization problem with np = 12 products,
with error bars representing the standard error in the mean. The
blue shaded region contains the 5th to 95th percentile values. Note
that Pmax

S is calculated for each instance separately and is estimated
by taking the maximum PS over the plotted values of α2. (b) Same
as panel (a) with the y axis instead showing the probability PF of
measuring a feasible state.

When choosing α1, while there may exist a value that
implements the desired constraint in the ground state of HP

for most instances of a given problem, there typically will not
be a single value that works for all of these instances, as can be
seen in Fig. 3 for the single-quarter promotion cannibalization
problem. However, the monotonic relationship between w and
α1 means that we can iteratively search for a good value of
the parameter by decreasing (increasing) α1 when sampled
solutions have too few (many) ones. This has previously been
suggested in Refs. [8,26]. For the single-quarter promotion
cannibalization problem, an effective strategy is to start with
a guess of α1 = −1, run the optimizer, and double α1 until
the returned solution has the correct Hamming weight w = A
or one that is too large. In the case where w is larger than
A, a binary search can be performed to find a value of α1

that produces the desired value of w. Assuming the optimizer
always returns the optimal solution, this method can find α1 in
a number of calls to the optimizer that scales logarithmically
with the value of α1 that correctly implements the constraint
and is closest to the initial guess of −1. The monotonic
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FIG. 3. (a) The Hamming weight w of the ground state of
HP plotted against the linear penalty strength α1 for five random
instances of the promotion cannibalization problem with eight prod-
ucts. Each instance corresponds to a different colored bar. (b) The
fraction of 10 000 single-quarter problem instances that have a
ground-state Hamming weight of w plotted against α1. Note that α1

is decreasing along the x axis.

relationship between α1 and w is the condition that makes this
true. There is a possibility of the binary search terminating
before it finds a correct value of α1 if the interval of correct
values of α1 is smaller than the precision of the search. The
search can be made exponentially more precise by increasing
the number of binary search iterations. See Ref. [28] for an ex-
ample algorithm that iteratively searches for good values of α1

for problems with one or more linear penalties. The iterative
nature of the application of linear penalties makes this method
technically a hybrid quantum-classical technique [61].

Not only does α1 need to be within a finite interval to
implement the desired constraint, but the specific choice of α1

within that interval impacts the performance of the quantum
algorithm. Figure 4 demonstrates this for one particular pro-
motion cannibalization problem instance. While all choices of
α1 in the shaded regions of the plot produce the correct ground
state in HP, some choices result in significantly better success
probabilities than others. Since in practice the optimal choice
of α1 is not known in advance, our analysis of the perfor-
mance of the linear penalty method in Sec. V uses values that
have been selected uniformly at random from the interval that
produces the correct ground state in HP. Figure 4 also shows
that it is possible for QA to have a significant probability of
measuring the optimal feasible solution even when the choice
of α1 does not make the ground state feasible (i.e., outside
the shaded regions). This probability will tend to zero as the
anneal time is increased towards the adiabatic limit.

FIG. 4. Behavior of the linear penalty method for a random
single-quarter problem instance with ten products and a constraint of
A = 3 promotions. In orange, we plot the success probability PS of
finding the optimal feasible solution x∗ after an anneal time t f = 200
for closed-system QA. Note that the penalty strength α1 is decreasing
along the x axis. In blue, we plot the energy difference between the
desired state |x∗〉 and the minimum-energy eigenstate of HP that is
not |x∗〉, where an energy difference that is negative (highlighted
by the yellow and green shaded regions) indicates that |x∗〉 is the
nondegenerate ground state of HP. The green shaded region indicates
where |x∗〉 is the ground state and the energy separation to the
first excited state is maximized. The α1 value that maximizes PS is
indicated by the green dashed line.

B. Multiple constraints

In applied optimization, it is common for problems to
have many constraints. Therefore, it is important to consider
how linear penalty functions interact with each other. We
use the two-quarter promotion cannibalization problem to
study this. The seasonal scale factors in Eq. (12) are set to
λ = (1.5, 1.0)T in the problem instances we consider. For the
ground state of HP, we denote the Hamming weights of the
variables associated with the first and second fiscal quarters as
w1 and w2, respectively, which correspond to the number of
promotions in each quarter. The constraints in Eq. (13) require
that w1 = w2 = A.

We first consider the case where linear penalty functions
are used for both constraints in Eq. (13), with the penalty
strengths for the constraints on the first and second quarters
denoted as α

(1)
1 and α

(2)
1 , respectively. Figure 5 shows how w1

and w2 change with α
(1)
1 and α

(2)
1 for two problem instances. In

Fig. 5(a), there are regions where w1 = w2 = A is satisfied for
each possible value of A that also satisfies Eq. (14). However,
finding these regions is not as simple as using the same strat-
egy that can be used for the single-quarter problem to search
for α

(1)
1 and α

(2)
1 independently. This is because changes in

α
(1)
1 impact both w1 and w2, and similarly for α

(2)
1 . Therefore,

α
(1)
1 and α

(2)
1 cannot be found independently of each other.

The monotonic relationship between wi and α
(i)
1 can still be

used to develop a search strategy that finds α
(1)
1 and α

(2)
1 at the

same time. An example of a search strategy for problems with
multiple linear penalties is given in Ref. [28].

In situations where applying multiple linear penalties is not
able to implement the desired constraints, it is often possible
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FIG. 5. For the two-quarter promotion cannibalization problem
with np = 8 products, linear penalties are applied to the first and
second quarters with penalty strengths α

(1)
1 and α

(2)
1 , respectively.

This produces a ground state of HP that has a first-quarter Hamming
weight w1 and second-quarter Hamming weight w2. Heat maps show
the sum w1 + w2 as a function of the penalty strengths for the C
matrices of (a) the instance with ID 8_0 and (b) the instance with ID
8_19. Two different color bars are used depending on whether w1 and
w2 are equal or not. More saturated colors are used where w1 = w2

and less saturated colors are used where w1 �= w2. Note that α
(1)
1 and

α
(2)
1 are decreasing along the axes of the plots.

to resolve this issue by switching some of the linear penalty
functions to quadratic penalties. In many cases, this maintains
some of the advantages of using the linear penalty method.
An example where this approach can be used is the instance
shown in Fig. 5(b), for which we did not find any combination
of α

(1)
1 and α

(2)
1 values that satisfies both constraints in Eq. (13)

with A = 3. Since our search was conducted at a finite preci-
sion, this implies that the region in which these constraints
are satisfied either does not exist or is very small. In Fig. 6,
we consider the same problem instance and instead apply a
linear penalty to the first quarter and a quadratic penalty to
the second quarter. We find that with this scheme, there exists
an interval of values of α

(1)
1 for which all of the problem’s

constraints are satisfied. In Ref. [28], there is a more in-depth
analysis of combining linear and quadratic penalties using a
four-quarter variation of the promotion cannibalization prob-
lem. An alternative approach for cases where linear penalties
are not successful in implementing all constraints is proposed
in Ref. [51], where postprocessing of infeasible solutions is
used to obtain feasible solutions.

V. PERFORMANCE IN SIMULATION

We have simulated QA and the QAOA in solving the
single-quarter promotion cannibalization problem. Both sets
of simulations are of closed-system dynamics and they
assume all-to-all connectivity of the physical qubits. The
constraint that we consider in these simulations is to select
A = 3 products to promote. We used the quadratic penalty
strength α2 = 2 for all instances. We chose this value as it
produced both a good success probability and feasible proba-
bility for most instances at the range of problem sizes we have

FIG. 6. Ground-state Hamming weight w1 of the first quarter of
a two-quarter promotion cannibalization problem instance plotted
against the linear penalty strength α

(1)
1 that is applied to the first

quarter. A quadratic penalty is applied to the second quarter that con-
strains its ground-state Hamming weight to w2 = 3. The C matrix is
of the instance with ID 8_19, which we did not find any combination
of linear penalty strengths for which applying linear penalties to both
quarters was successful in creating a ground state in HP that satisfies
w1 = w2 = 3. Note that the penalty strength α

(1)
1 is decreasing along

the x axis.

considered. This is supported by Fig. 2 and similar figures in
the Appendix. The linear penalty strengths α1 were selected
uniformly at random from the interval of values that imple-
ment the A = 3 constraint in the ground state of HP for each
instance. In some cases, no such interval could be found up to
a precision of 10−5, either because the interval does not exist
or because it is smaller than the precision of the search. For
these instances, a simulation using the linear penalty method
was not performed. We have not performed an analysis of
the time required to find good values of α1 in this section.
Therefore, it is important to note that this would result in an
overhead when using the linear penalty method in practice.

In real-world scenarios, C matrices are sparse. This would
result in HP having fewer nonzero couplings when using
linear penalties than when using quadratic penalties, which
could contribute to differences in performance, as discussed
in Sec. II. For example, a real-world problem might be
concerned with 1000 products that each have nonzero can-
nibalization interactions with five other products on average.
In this example, switching from using the quadratic penalty
method to the linear penalty method would result in a ≈99.5%
reduction in the number of nonzero couplings in the objective
function. This is because the linear penalty method maintains
the sparsity of the C matrix in the objective function, whereas
the quadratic penalty method introduces nonzero couplings
between all pairs of variables in the single-quarter problem.
Due to the small problem sizes that we are limited to in sim-
ulation, all C instances used in this work are fully connected.
Therefore, our numerical results do not reflect the effect that
the sparsity of C matrices would have on the performance of
the linear penalty method at large problem sizes.
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FIG. 7. Ratio between the average normalization factor of the
Ising Hamiltonian when using the quadratic penalty method, NQ,
and when using the linear penalty method, NL , plotted against the
number of products np for instances of the single-quarter promotion
cannibalization problem.

FIG. 8. (a) The success probability PS of coherent quantum
annealing using the quadratic (orange) and linear (blue) penalty
methods after an anneal time of t = 10 against the number of prod-
ucts np in a single-quarter promotion cannibalization problem. The
distribution of PS for the different problem instances is plotted along-
side a bar representing the median value of the distribution. Note that
the y-axis scale and histogram bin widths are logarithmic. (b) Similar
plot for the probability PF of measuring a feasible state on axes with
linear scales.

A. Quantum annealing simulation

In our simulations of QA, the Ising Hamiltonians were
normalized by a factor N , as in Eq. (20), such that the max-
imum coupling strength is one and the maximum local field
strength is three. This reflects the fact that the energy scales
that are realizable on physical devices are finite. When using
the linear penalty method, the normalization factor NL of a
given problem instance is different to the normalization factor
NQ when using the quadratic penalty method. As mentioned
in Sec. II, the linear penalty method often produces a smaller
normalization factor, which benefits the dynamic range of
qubit interactions. In Fig. 7, we see that for all of the problem
sizes we have considered, NQ is significantly larger than NL

on average. The larger effective dynamic range when using the
linear penalty method can lead to a more efficient exploration
of the search space in QA.

For the range of number of products we have considered
in the QA simulations, the linear penalty method outperforms
the quadratic penalty method on average in finding the opti-
mal solution, as shown in Fig. 8(a). Both methods are more
successful than random guessing. As the number of products
is increased, the variation in performance across different

FIG. 9. (a) The inferred success probability PS of the QAOA with
p = 8 layers using the quadratic (orange) and linear (blue) penalty
methods against the number of products np in a single-quarter promo-
tion cannibalization problem. The distribution of PS for the different
problem instances is plotted alongside a bar representing the median
value of the distribution. Note that the y axis scale and histogram
bin widths are logarithmic. (b) Similar plot for the probability PF of
measuring a feasible state on axes with linear scales.
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instances shrinks when using the quadratic method, whereas
for the linear method it remains large.

In Fig. 8(b), we find that when the number of products
is greater than eight, the quadratic penalty method is on
average more likely to sample feasible states. The width of
the distribution of feasible probabilities is much larger when
using the linear method than the quadratic method. This in-
dicates that with our parameter choices, the ability for the
linear penalty method to be effective in implementing the
constraint is highly dependent on the problem instance, and it
explains why the success probability distributions have sim-
ilarly large widths for the linear method. The fact that the
linear penalty method produces a lower feasible probability
than the quadratic method on some instances and a higher
feasible probability on others suggests that hybrid approaches
that attempt using both penalty methods would be effective in
practice.

These simulations are of the ideal regime where the effects
of limited qubit connectivity and noise do not play a role.
Thus, while the advantage of using fewer couplings with
the linear penalty method is more clear when the hardware
does not support all-to-all connectivity, these simulation re-
sults indicate that the linear penalty method may also benefit
algorithms on fault-tolerant quantum devices with full qubit
connectivity. This is complementary to promising experimen-
tal results obtained on D-Wave annealers [26,28,48,51], where
the effects of hardware limitations are prominent.

B. Quantum approximate optimization algorithm simulation

We performed another set of simulations that are of the
QAOA with p = 8 layers of gates. The same problem in-
stances were used as in the QA simulations. Due to time and
computational resource limitations, we simulated problems
with up to np = 14 products. Figure 9 shows the inferred
success probabilities and feasible probabilities for the QAOA
plotted against the number of products in the problem. We
find that the QAOA performs better than random guessing on
all of the problem instances, whether the linear or quadratic
penalty method is used. For all values of np we considered, the
linear penalty method produces more favorable success and
feasible probabilities on average compared with the quadratic
penalty method. Since HP does not need to be normalized in
the QAOA, these results are encouraging as they suggest that
the linear penalty method continues to have advantages even
when there are no strict limitations on the energy scales of
interactions.

Comparing the results from the two algorithms, we find
that the difference in average success probabilities between
the two penalty methods is smaller for the QAOA simulations
than the QA simulations. We note that the QAOA and QA
results are dependent on the choices of p and t f , respectively,
so a fair comparison of the two algorithms would require
these two parameters to be chosen in such a way that the
effective anneal times are the same. Since the purpose of
this study is not to compare these two algorithms, we have

FIG. 10. We have measured the probability PS after an anneal time t f = 10 of measuring the optimal state normalized by an estimate of the
maximum success probability Pmax

S for closed-system QA at different values of the penalty parameter α2. We plot the average of PS/Pmax
S for

100 instances of the promotion cannibalization problem with (a) 6, (b) 12, and (c) 18 products. Error bars represent the standard error in the
mean. The blue shaded regions contain the 5th to 95th percentile values of PS/Pmax

S . Note that Pmax
S is calculated for each instance separately

and is estimated by taking the maximum of PS over the plotted values of α2. We similarly plot the probability PF of measuring a feasible state
averaged over the same 100 instances with (d) 6, (e) 12, and (f) 18 products.
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not done this. An interesting direction for future work would
be to determine how the performance difference between the
linear and quadratic penalty methods depends on the number
of QAOA layers p or anneal time t f .

Something else that is not explored in our analysis of these
simulations is the time required to execute the QAOA algo-
rithm and how it differs between the two penalty methods. In
real-world problems, where C matrices are typically sparse,
encoding constraints with the linear penalty method would
require fewer nonzero couplings in HP. Therefore, the quan-
tum circuit to implement the unitary e−iγk HP requires fewer
two-qubit gates, making it more efficient to run the QAOA
circuit with the linear method. Another way in which the
runtime could differ between the penalty methods would be
if it were easier to classically optimize the angles β and γ

using one penalty method than the other, if such a difference
exists.

VI. CONCLUSIONS

In this work, we have investigated the linear penalty
method for encoding constraints and made two theoretical
arguments for why the method can lead to better performance
in quantum optimization than the quadratic penalty method,
which is currently the standard approach. The first argument
is based on the fact that the linear penalty method does not
introduce any additional quadratic terms to the objective func-
tion, and the second is based on considerations of the energy
scales associated with the two types of penalty functions.
The linear penalty method is not always successful in exactly
implementing a desired constraint. However, we have identi-
fied a type of customer data science problem for which it is
often successful because all quadratic terms in the problem’s
objective function have non-negative coefficients. There may
be other structures that make problems more amenable to the
linear penalty method. While this is beyond the scope of our
current work, it provides an interesting direction for future
research.

We have studied the behavior of the linear and quadratic
penalty methods with respect to changes in their penalty
strengths α1 and α2. The linear penalty method is more sen-
sitive to its penalty strength, making it necessary to search
for different values of α1 for each problem instance. While
this is an extra step that often is not necessary when using
the quadratic penalty method, the monotonic relationship be-
tween α1 and Hamming weight can make this search easy
to perform in practice. In problems where multiple linear
penalties are applied, the different linear penalty strengths can
influence each other, making the search for α1 more difficult.
For cases where one or more constraints cannot be success-
fully implemented with linear penalties, we have shown that
it is sometimes possible to use a combination of quadratic and
linear penalties to implement the desired constraints.

Our simulations of QA and the QAOA indicate that there
may be a performance enhancement when using the linear
penalty method over the quadratic method. We suspect that
the linear penalty method would more convincingly outper-
form at larger problem sizes, where the dynamic range effects
are more prominent and the problems may be more sparse.
This is supported by the findings in Ref. [28], where larger

instances of customer data science problems are tackled on
real quantum hardware.

This work only considered the application of linear penal-
ties to equality constraints, but they can also be used for
inequality constraints [48]. In this case, the linear penalty
would create an approximation of the original problem as
it would penalize different feasible solutions by different
amounts. However, the larger range of acceptable Hamming
weights may make it easier to find values of the linear penalty
strengths that produce feasible solutions than for equality
constraints. Further research is required to investigate this.

The data and code that support the findings of this study
are openly available at Ref. [62].
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FIG. 11. (a) Success probability PS of QA plotted against the
quadratic penalty strength α2 for the single-quarter cannibalization
problem with np = 12 products. This is plotted for 100 instances of
the problem that are represented by different colors, with dashed
lines connecting each instance’s points to guide the eye. (b) PS

is averaged over the different problem instances and plotted with
error bars representing the standard error in the mean. The blue
shaded region shows the area that contains the 5th to 95th percentile
values of PS .

043241-12



QUANTUM OPTIMIZATION WITH LINEAR ISING … PHYSICAL REVIEW RESEARCH 6, 043241 (2024)

APPENDIX: QUADRATIC PENALTY STRENGTH CHOICE
FOR NUMERICAL SIMULATIONS

For our simulations of QA and the QAOA, we used the
quadratic penalty strength α2 = 2. To choose this value, we
measured the success probability PS and feasible probability
PF of QA over a range of values of α2. The resulting plots
are shown in Fig. 10 for three different numbers of products
np. Note that Figs. 10(b) and 10(e) show the same data as
Fig. 2. As np is increased, we find that PS peaks at smaller
values of α2 on average, whereas the shape of the curve for
PF does not change as significantly. There is a gradual drop
in PS as α2 is increased beyond the value that maximizes

PS . Across the range of values of np we have considered in
our simulations, setting α2 = 2 results in a good compromise
between maximizing PS and maximizing PF for most problem
instances.

Figures 2 and 10 plot average normalized success prob-
abilities of QA. The normalization was performed in order
to avoid the averages being skewed in favor of instances for
which the maximum success probability is larger. In Fig. 11,
we plot unnormalized success probabilities for problem in-
stances with np = 12 products. Comparing this with Fig. 2,
we see that the average success probability peaks at roughly
the same value of α2 regardless of whether a normalization is
performed.
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