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A B S T R A C T 

We predict the surface density and clustering bias of H α emitting galaxies for the Euclid and Nancy Grace Roman Space 
Telescope redshift surv e ys using a new calibration of the GALFORM galaxy formation model. We generate 3000 GALFORM models 
to train an ensemble of deep learning algorithms to create an emulator. We then use this emulator in a Markov Chain Monte 
Carlo (MCMC) parameter search of an eleven-dimensional parameter space, to find a best-fitting model to a calibration data 
set that includes local luminosity function data, and, for the first time, higher redshift data, namely the number counts of H α

emitters. We disco v er tensions when e xploring fits for the observational data when applying a heuristic weighting scheme in 

the MCMC framework. We find impro v ed fits to the H α number counts while maintaining appropriate predictions for the local 
universe luminosity function. For a flux limited Euclid -like survey to a depth of 2 × 10 

−16 erg 

−1 s −1 cm 

−2 for sources in the 
redshift range 0 . 9 < z < 1 . 8, we estimate 2962–4331 H α emission-line sources de g 

−2 . F or a Nancy Grace Roman survey, with 

a flux limit of 1 × 10 

−16 erg 

−1 s −1 cm 

−2 and a redshift range 1 . 0 < z < 2 . 0, we predict 6786–10 322 H α emission-line sources 
deg 

−2 . 
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 I N T RO D U C T I O N  

orecasting the performance of cosmological surv e ys plays a central
ole in planning the surv e y strate gy and e v aluating ho w trade-of fs in
epth and solid angle will affect the science goals. The wide field
edshift surv e ys planned with Euclid (Laureijs et al. 2011 ; Euclid
ollaboration 2024 ) and the Nancy Grace Roman Space Telescope

Spergel et al. 2015 ; Wang et al. 2022 ) will mainly sample H α

mitters to map the cosmic large-scale structure. The figure-of-merit
f cosmological probes that use galaxy clustering is dependent upon
he number density and clustering strength of the galaxies being
argeted (Albrecht et al. 2006 ). This is still rele v ant for Euclid post-
aunch, as the performance of the various detectors is assessed in
itu and changes may be required to the surv e y strate gy (Euclid
ollaboration 2022 ). Roman is due for launch in 2027 May. 
There are two routes to making this characterization of the redshift

urv e y galaxies: e xploiting e xisting studies of the target galaxy
opulation to fit empirical models or using physically moti v ated
odels to predict the properties of the sample. Pozzetti et al. ( 2016 )

ttempted to describe the H α luminosity function (LF) estimates
vailable at the time using empirical models. Three empirical models
ere fit to the H α LFs measured using the Hubble Space Telescope

 HST ) Wide Field Camera 3 (WFC3) Infrared Spectroscopic Parallels
WISP; Colbert et al. 2013 ), Hi-Z Emission Line Surv e y (HiZELS;
each et al. 2008 ; Sobral et al. 2009 , 2012 , 2013 ); and the HST Near

nfrared Camera and Multi-Object Spectrometer (NICMOS; Shim
t al. 2009 ). 
 E-mail: c.m.baugh@durham.ac.uk (CMB); makun.s.madar@durham.ac.uk 
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The resulting simple functional forms for the H α LF can be
ntegrated to obtain the number counts. The uncertainties were
onsiderable, with the predicted surface density of H α emitters
arely being constrained to within a factor of two. 
Recently, with the addition of further space data, the situation

as impro v ed somewhat, and there hav e been rene wed ef forts to
stimate the number of H α emitters that Euclid and Roman are
ikely to observe (e.g. Colbert et al. 2013 ; Mehta et al. 2015 ;
alentino et al. 2017 ; Merson et al. 2018 ; Zhai et al. 2019 , 2021 ;
ang et al. 2022 ). Bagley et al. ( 2020 ) constructed a new data

ample of line emitters from sev eral HST surv e ys and forecast
he properties of H α (and [O III ]) emission-line galaxies for future
urv e ys. The results from Bagley et al. ( 2020 ) show a clear preference
or the so-called pessimistic model 3 from Pozzetti et al. ( 2016 ),
hich predicted the lowest surface density of emission-line galaxies

ELGs). 
With a physical model, it is possible to predict the clustering of the

alaxies as well as their abundance (see for example Orsi et al. 2010 ;
erson et al. 2019 ; Knebe et al. 2022 ; Reyes-Peraza et al. 2024 ).
erson et al. ( 2018 ) used the Galacticus semi-analytical model

f galaxy formation (Benson 2012 ) to forecast the number density of
 α emitters using a variety of dust attenuation models. Merson et al.

 2018 ) predict 3900–4800 emitters deg −2 for the Euclid selection.
o we ver, in this case, Galacticus was calibrated to reproduce a
ariety of observational constraints with particular emphasis on the
ocal Universe, without any explicit reference to ELGs. This situation
as rectified in Zhai et al. ( 2019 ), in which Galacticus was

ecalibrated using a new N -body simulation simulation, the UNIT run
Chuang et al. 2019 ) and different calibration data, which included
he H α luminosity function from HiZELS (Geach et al. 2008 ; Sobral
t al. 2009 , 2013 ). 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Efficient calibration and exploration of galaxy formation models 
av e been inv estigated in sev eral papers, typically in two forms:
 direct exploration of the model parameter space, running the full
imulation for each set of parameters, and emulation or interpolation, 
n which the full calculation is mimicked by a cheaper process.
espite semi-analytical models (SAMs) being vastly cheaper to run 

han hydrodynamic simulations, direct exploration of their parameter 
pace is still computationally e xpensiv e due to the large number of
odel e v aluations required for an extensi ve search. 
Direct e xploration e xamples include Kampakoglou, Trotta & Silk 

 2008 ), who used Markov Chain Monte Carlo (MCMC) to calibrate
 SAM to multiple data sets. MCMC was used again in Henriques
t al. ( 2009 ) to calibrate their SAM, where they found that the
hoice of calibration data set changed the values of the best-fitting
arameters, pointing to deficiencies in their model. Lu et al. ( 2011 ,
012 ) constrained the parameter space for their SAM using Bayesian 
nference to achieve acceptable fits to the K-band LF; this was 
xpanded to include the H I mass function in Lu et al. ( 2014 ) (see
lso Martindale et al. 2017 ). Ruiz et al. ( 2015 ) employed a stochastic
echnique called particle swarm optimization (Kennedy & Eberhart 
995 ) to calibrate the SAG SAM (Springel et al. 2001 ; Cora 2006 ;
agos, Cora & Padilla 2008 ; Padilla et al. 2014 ; Gargiulo et al. 2015 )

o the K-band LF. 
The second class of calibration involves building a statistical 

mulator of the SAM which can be e v aluated much faster than
unning the full model, with the drawback of this being approximate 
y nature. Bower et al. ( 2010 ) and Vernon, Goldstein & Bower
 2010 ) constructed a Bayesian approximation technique (described 
n Goldstein & Wooff 2007 ) to the GALFORM model that can
e rapidly e v aluated at any point in parameter space to provide
easonable fits to the K- and b J -band LFs. This w ork w as extended
n Benson & Bower ( 2010 ) to explore how adaptable this reduced
arameter space was to fit further observational data sets, and in 
odrigues, Vernon & Bower ( 2017 ) to calibrate GALFORM to the

ocal galaxy stellar mass function. Elliott, Baugh & Lacey ( 2021 )
sed a deep learning algorithm to emulate GALFORM across a range 
f output statistics. Elliott et al. were able to run many simple
CMC chains to explore the parameter space and investigate how 

alibration to different data sets constrained the model parameters. 
he emulation method can cope with a high-dimension parameter 
pace. 

Building on Elliott et al. ( 2021 ), we extend the calibration of
ALFORM to forecast the number counts of H α emitters and their 
lustering bias. We emulate GALFORM in the PLanck Millennium 

 -body simulation (Baugh et al. 2019 ; hereafter PMILL ). We use
eep learning to build an emulator: this allows us to build flexible
unction approximators that can reveal non-linear relations within 
ata without needing a pre-defined model. There have been many 
uccessful uses of deep learning in astronomy (e.g. Ravanbakhsh 
t al. 2016 ; Schmit & Pritchard 2018 ; Cranmer et al. 2019 ; He
t al. 2019 ; Ntampaka et al. 2019 ; Perraudin et al. 2019 ; Zhang
t al. 2019 ; de Oliveira et al. 2020 ). We demonstrate the accuracy
hat can be achieved with deep learning when emulating GALFORM 

or the H α number counts. We can use a moderate number of
raining runs to achieve good accuracy when compared to other 
alibration methods outlined abo v e. As a deep learning emulator can
e e v aluated much more rapidly than running GALFORM , we can run
any MCMC chains to explore the parameter space and identify 

he range of parameters that fit the calibration data sets. We achieve
his by minimizing the absolute error between the emulator output 
nd the observational data sets, employing a heuristic weighting 
cheme to the various observational data sets. This automation of 
he model calibration allows us to e xhaustiv ely search the parameter
pace. 

The layout of this paper is as follows: We present the theoretical
ackground in Section 2 and present the data sets rele v ant to this
ork. In Section 3 , we present our results. In Section 3.1 , we

e vie w the generation of the training and testing data, in Section 3.2 ,
e illustrate the predictive performance of the emulator, and in 
ection 3.3 , we show the results of the model exploration and
alibration and the results for the H α number counts and galaxy
ias predictions. Finally, in Section 4 , we re vie w the merits of
ur methods and outline potential future avenues. We assume a 
 cold dark matter cosmology with �M 

= 0 . 307, �� 

= 0 . 693, and
 0 = 67 . 77 km s −1 Mpc −1 . 

 G A L A X Y  F O R M AT I O N  M O D E L  A N D  

A L I B R A  T I O N  DA  TA  

e give an overview of GALFORM (Section 2.1 ), then in Section 2.2
e give a brief review of deep learning and describe the emulator
esign, and in Section 2.3 we discuss how we find best-fitting
arameters using MCMC. In Section 2.4 , we outline the generation
f training and testing data for the emulator and describe the
bservations used in the calibration. 

.1 GALFORM 

ALFORM is a physically moti v ated semi-analytical galaxy formation 
odel (Cole et al. 2000 ; Bower et al. 2006 ; Lacey et al. 2016 ).

ALFORM populates the DM haloes at the earliest branches of the
alo merger tree with hot baryonic gas and models the main physical
rocesses behind the formation and evolution of galaxies using a 
et of coupled differential equations, including (i) the collapse and 
erging of DM haloes, (ii) the shock-heating and radiative cooling of

as inside DM haloes, leading to the formation of galactic discs, (iii)
uiescent star formation in galactic discs, (iv) feedback from SNe, 
ctive galactic nuclei (AGN), and photoionization of the intergalactic 
edium, (v) chemical enrichment of stars and gas, and (vi) dynamical 

riction driven by mergers of galaxies within DM haloes, forming 
pheroids and triggering starbursts. Note starbursts can also be driven 
y dynamically unstable discs. Full descriptions of these physical 
rocesses are given in Lacey et al. ( 2016 ) (see also the re vie ws by
augh 2006 and Benson 2010 ). 
GALFORM distinguishes between central and satellite galaxies 

ithin their host dark matter halo, with some of the physical
rocesses being affected by this designation. Central galaxies are 
laced at the centre of the most massive subhalo and are the focus
f all the gas that is undergoing cooling. Halo merger events choose
he central galaxy of the main (most massive) progenitor halo as the
entral galaxy of the descendant halo with other galaxies becoming 
atellites. In the default gas cooling model (see Font et al. 2008
or an alternative model), satellite galaxies are stripped of their hot
as as soon as they become satellites, hence quenching any further
ooling and stopping any long-term star formation. A hybrid scheme 
s used to predict when galaxy mergers occur (Simha & Cole 2017 ).
nitially, the satellite galaxy’s dark matter subhalo can be identified 
nd tracked through the main halo. Once sufficient mass-loss has 
ccurred such that the subhalo can no longer be resolved, an analytic
stimate is made of the time required for the satellite to merger, as
et out in Simha & Cole ( 2017 ). 

Here, we give an overview of the processes in GALFORM that are
xplored. The model parameters varied are listed in Table 1 . 
MNRAS 535, 3324–3341 (2024) 
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M

Table 1. The GALFORM parameter space investigated assuming a uniform 

range for each parameter. See Section 2.1 for an explanation of how each 
process is modelled and the equations which involve each parameter. The 
first column gives the parameter name (and units if rele v ant), the second 
column gives the range o v er which the parameter is allowed to vary, and the 
third column lists the process to which the parameter relates. 

Parameter Range Process 

νSF (Gyr −1 ) 0.1–4.0 Quiescent star formation 
V SN, disc (kms −1 ) 10–800 SN feedback 
V SN, burst (kms −1 ) 10–800 SN feedback 
γSN 1.0–4.0 SN feedback 
αret 0.2–3.0 SN feedback 
F stab 0.5–1.2 Disc instability 
f ellip 0.2–0.5 Galaxy mergers 
f burst 0.01–0.3 Galaxy mergers 
τ* burst,min (Gyr) 0.01–0.2 Starbursts 
f SMBH 0.001–0.05 SMBH growth 
αcool 0.0–4.0 AGN feedback 
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.1.1 Quiescent star formation in discs 

he quiescent mode of star formation takes place in the disc following
he accretion of cooled gas from the hot halo. The star formation
ate (SFR) in the disc is calculated using the empirical law inferred
rom observations by Blitz & Rosolowsky ( 2006 ) (as implemented
n GALFORM by Lagos et al. 2011 ; see also Fu et al. 2010 ; Popping,
omerville & Trager 2014 for the incorporation of similar schemes

nto other SAMS) which is based on observations of nearby star-
orming disc galaxies. The SFR is assumed to be proportional to the
ass of the molecular component of the gas in the disc M mol,disc 

 disc = νSF M mol,disc , (1) 

here νSF is the value of the SFR coefficient, which controls the
ate of conversion of the molecular gas into stars in quiescent galaxy
iscs. This is an adjustable parameter set within the range inferred
rom observations by Bigiel et al. ( 2011 ). The mass of molecular gas
epends on the gas pressure in the mid-plane of the disc. 

.1.2 Supernova feedback 

upernovae (SNe; mainly Type II) eject gas from galaxies and their
ost dark matter haloes. The model, therefore, assumes the rate
f gas ejection due to supernova feedback is proportional to the
nstantaneous SFR ψ , with a mass loading factor that is dependent
n the galaxy circular velocity, V c , as a power law: 

˙
 eject = 

(
V c 

V SN 

)−γSN 

ψ, (2) 

here γSN and V SN are adjustable parameters. We can further
plit the V SN term into V SN, disc and V SN, burst to distinguish the
eedback contributions in quiescent star formation in discs from star
ormation in bursts. Most studies have assumed that these velocity
ormalization parameters are equal (e.g. Gonzalez-Perez et al. 2014
nd Lacey et al. 2016 ). Ho we ver, recent versions of the model have
elaxed this restriction (e.g. Benson & Bower 2010 ; Elliott et al.
021 ). 
Gas ejected from the galaxy due to SN feedback is assumed to

ather in a reservoir beyond the virial radius of the host dark matter
alo. The gas gradually returns to the hot gas reservoir within the
irial radius at a rate of 

˙
 return = αret 

M res 

τdyn, halo 
, (3) 
NRAS 535, 3324–3341 (2024) 
here τdyn, halo is the halo dynamical time, M res is the mass of the
eservoir beyond the virial radius, and αret is a free parameter. Note
hat the hot gas reservoir in the halo is assumed to have an r −2 density
rofile with a core. 

.1.3 Galaxy merg er s 

t is assumed when galaxies merge there may be a burst of star
ormation and destruction of the galactic discs. To define the type of
erger, we set two thresholds, f ellip and f burst . These thresholds are

ompared to the baryonic masses of the central galaxy, M b,cen , and the
erging satellite galaxy, M b,sat through the ratio M b,sat / M b,cen . When
 b,sat / M b,cen ≥ f ellip , the merger is classified as a major merger.
fter a major merger, the disc component of the primary galaxy

s destroyed and forms a spheroid. We assume the cold gas in the
isc is used up in a burst of star formation which also adds stars to the
pheroid. The case for which M b,sat / M b,cen <f ellip is a minor merger.
or the cold gas in the disc to be consumed in a starburst after a
inor merger, we require M b,sat / M b,cen ≥ f burst . The stars accreted

rom the satellite galaxy are added to the spheroid of the central
or all mass ratios. Both f ellip and f burst are free parameters. We use
he prescription of Simha & Cole ( 2017 ) to compute the time for a
alaxy merger to take place. 

.1.4 Disc instabilities 

isc instabilities can trigger star formation. When a galaxy is
ominated by rotational motion the disc is unstable to bar forma-
ion through sufficient self-gravitation. We assume that discs are
ynamically unstable to bar formation if the following condition is
et (Efstathiou, Lake & Negroponte 1982 ) 

 disc ≡ V c ( r disc ) 

(1 . 68 GM disc /r disc ) 1 / 2 
< F stab , (4) 

here M disc is the total disc mass and r disc is the disc half-mass radius.
 disc describes the contribution of disc self-gravity to its circular
elocity, with larger values equating to lower self-gravity and greater
isc stability. Predictions of F disc vary depending on the method;
fstathiou et al. ( 1982 ) found F disc ≈ 1.1 for a suite of exponential
tellar disc models, while Christodoulou, Shlosman & Tohline ( 1994 )
ound F disc ≈ 0.9 for gaseous discs. For a completely self-gravitating
tellar disc, F disc = 0.61. F stab is a model parameter. 

If the disc instability condition F disc <F stab is met we assume the
isc forms a bar which evolves into a spheroid (Combes et al. 1990 ;
ebattista et al. 2006 ). We assume that an unstable disc is disrupted
y bar instabilities on a subresolution time-scale thus all the mass is
nstantly transferred to the spheroid and any gas present is used in a
urst of star formation. 

.1.5 Starbursts 

e assume the rate at which bursts of star formation form stars in a
pheroid is 

 burst = νSF,burst M cold,burst = 

M cold,burst 

τ* burst 
, (5) 

here the time-scale τ* burst is 

* burst = max [ f dyn τdyn,bulge , τ* burst,min ] . (6) 

he bulge dynamical time is defined in terms of the half-mass radius
nd circular velocity of the bulge, τdyn,bulge = r bulge /V c ( r bulge ). We
reat τ* burst,min as a parameter, but fix f dyn = 20 (Lacey et al. 2016 ). 
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.1.6 Stellar initial mass function and stellar population synthesis 

e assume that quiescent star formation in galactic discs produced 
tars with a solar neighbourhood stellar initial mass function (IMF). 
ursts of star formation (triggered by mergers or dynamically 
nstable discs) produce stars with a top-heavy IMF, with a power-law 

lope of x = 1 (see Lacey et al. 2016 ). We use the stellar population
ynthesis models of Maraston ( 2005 ). 

.1.7 SMBH growth and AGN feedback 

upermassive black holes (SMBH) can inject energy into the halo 
as disrupting gas cooling. Multiple instances can lead to black hole 
rowth; hot halo accretion, BH–BH mergers, and starbursts (Bower 
t al. 2006 ; Fanidakis et al. 2011 ; Griffin et al. 2019 ). In a starburst,
ass accreted on to the SMBH is a constant fraction of the mass of

tars formed, f SMBH , where f SMBH is a parameter. AGN heating of
he hot gas halo is assumed to occur if two conditions are met: (1)
he gas halo is in quasi-hydrostatic equilibrium, i.e. 

cool /τff > 1 /αcool , (7) 

here τcool is the gas cooling time, τff is the free-fall time, and αcool is
 parameter and (2) the AGN power required to balance the radiative
ooling luminosity is less than f Edd times the SMBH Eddington 
uminosity. 

.1.8 Emission lines 

he star formation histories predicted by GALFORM are convolved 
ith a simple stellar population model, which gives the light emitted 

s a function of age by a population of stars produced with a given
tellar initial mass function and metallicity, building up a composite 
pectral energy distribution for each galaxy (see the re vie w by Conroy
013 ). This information is used to compute the number of ionizing
hotons, which, along with the metallicity of the cold gas in the
nterstellar medium is combined with an H II region model to compute 
he luminosity of the emission lines (see Cole et al. 2000 ; Baugh
t al. 2022 for more e xtensiv e descriptions of the emission line
odels). For some predictions we combine the H α and N[ III ] line

uminosities, as these lines are close together in wavelength and will 
ot be fully resolved by the surveys we consider. 
Dust is assumed to be mixed with the stars in two forms: in clouds

nd a diffuse component (Granato et al. 2000 ). Dust properties are
ssumed and combined with the predicted scalelengths of the disc 
nd bulge allowing the optical depth and attenuation of the starlight
o be calculated as a function of wavelength. The emission lines
re assumed to have the same attenuation due to dust as the stellar
ontinuum at the same wavelength. 

.2 Deep learning emulator 

e now describe the construction of an efficient emulator of 
ALFORM using tensorflow (Abadi et al. 2016 ). This is a 
upervised learning problem (also known as associative learning) 
n which the emulator is trained by providing it with inputs and
atching outputs. We define the input vector x to represent a set of

ALFORM model parameters and predict an output vector y , which 
onsists of the binned statistical properties of the resulting synthetic 
alaxy population, for example, the galaxy luminosity function. The 
mulator aims to map the input vector x to the output vector y via
n unknown function ˆ f ( . ) which replaces running the full GALFORM

odel at a fraction of the computational cost. The emulator allows 
s to thoroughly search a multidimensional model parameter space. 
he problem is one of regression where the outputs are binned floats

ather than the probabilities that might be found in classification 
roblems. 
We use an artificial neural network to emulate GALFORM . The first

ayer of the multilayer network is the input layer with a size equal
o the number of entries or components in x. In our case, this is the
umber of GALFORM input parameters used to make the predictions, 
ith one neuron per feature. Note that these input parameters are

he subset that is being varied; the full parameter space of the model
s larger than the 11 parameters that we vary here, but the other
arameters are held fixed (for the full list of parameters see Table 1 in
acey et al. 2016 ). The final layer is the output layer with one neuron
er prediction value. Here, the number of output neurons is the total
umber of bins across all of the chosen statistics. The middle layers of
he network are known as hidden layers. The neurons in these layers
xtract features for mapping an input to an output and the network
s trained by e v aluating the hidden layer neurons using labelled
xamples, i.e. with the output from runs of GALFORM . Networks
ith multiple hidden layers are known as deep learning networks. 
he connections between each neuron have an associated weight, w, 
nd each neuron has a bias, θ . A network learns by adjusting these
eights and biases from exposure to the training examples according 

o some learning rule. Each neuron is a simple mathematical function
aking a vector of inputs and calculating an output. The i-th neuron
n the j -th layer contains a vector of adjustable weights w ij and an
djustable bias θij . The vector w ij contains all the weights linking a
euron i to each neuron in the previous layer, j − 1. The data flow
rom the input to output neurons is strictly passed forward and every
euron in each layer is connected to every neuron in the following
ayer in what is known as a fully connected network. Note there are
o connections within a layer. The total input of neuron i in layer j 
s a function of the outputs from each neuron in layer j − 1, y j−1 ,
he neuron vector weights w ij , and the bias of the neuron θij . An
cti v ation function F ( . ) takes the total input of the neuron to produce
n output, 

 ij = F ( w ij · y j−1 + θij ) . (8) 

The acti v ation function is often a non-decreasing function of the
otal input of the neuron, introducing non-linearity to the network 
nd allowing for complex representations and functions to develop, 
hich is not possible with a simple linear input–output model. 
he acti v ation function transforms the output v alue of the neuron

o within certain limits, modified based on the application of the
odel. If unrestricted by the acti v ation function, the outputs of

eurons can explode in magnitude in deeper networks. Generally, 
ome sort of non-linear threshold function is used, such as a sigmoid
r hyperbolic tangent function. The outputs of the neurons, y ij , are
assed to the following layers of neurons, and so on, until the final
ayer is reached. The output from the final layer is the network
rediction y from input x. An acti v ation function is still applied to
he final layer but this is usually a linear function in the case of 
egression. 

To adjust the weights assigned to hidden neurons, we use the back-
ropagation learning rule (Rumelhart, Hinton & Williams 1986 ). 
uring training the predictions from the output layer are compared to

he true values and the error between these two are back-propagated 
rom the output layer to the hidden layers and their weights are
djusted accordingly to minimize an error function. Following Elliott 
t al. ( 2021 ), we minimize the mean absolute error function (MAE)
etween the emulator predictions of the GALFORM outputs and the 
MNRAS 535, 3324–3341 (2024) 
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M

Figure 1. Testing the choice of acti v ation function in the network. The MAE 

loss on the validation data set is plotted against the training epoch. A different 
colour is used for each choice of acti v ation unit, as indicated by the key. Each 
network has the same architecture of two hidden layers, with 512 nodes and a 
linear output acti v ation function. We display a zoomed-out inset to show the 
poor loss attained with a linear acti v ation function. The sudden drop in loss 
value exhibited in all cases, when the curves also appear to become smoother, 
is due to the fine-tuning stage of training (see text for further details). 
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Figure 2. Measuring the MAE loss on the validation data set during training, 
when altering the hidden layer widths of our network for two acti v ation 
functions, ReLU (dashed) and LReLU (solid). Each network has two hidden 
layers and a linear output acti v ation function. There are no significant benefits 
to increasing the width of our network beyond 512 neurons per layer. 

Figure 3. MAE validation loss when modifying the number of hidden layers 
in the network, with different colours indicating different numbers of layers, 
as shown by the key. We keep the width of the network fixed at 512 and 
show results for two acti v ation functions, LReLU (solid) and ReLU (dashed). 
The LReLU function has greater potential for impro v ement than the ReLU 

networks. An increase in depth impro v es the performance of our network up to 
a depth of five or six layers. Beyond this, there is only a modest impro v ement 
in the MAE at the expense of an increase in the computational cost. 
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rue outputs 

AE = 

1 

n 

n ∑ 

k= 1 

| ̂ y k − y k | , (9) 

here ̂  y k is the emulator prediction for the k-th sample out of n and y k 
re the values computed by GALFORM for the same parameter values.
he MAE is also known as the loss function and re veals ho w badly

or how well) the network is performing. 
The neural network is trained iteratively over many epochs. One

poch is equi v alent to the network cycling through every sample in
he training set once; the number of training epochs is a user choice.
n optimizer algorithm is used to change the weights and biases of

he neural network by seeking minima on the error surface, often via
 form of gradient descent. The optimizer also specifies the size of
teps taken during the gradient descent towards the local minima,
nown as the learning rate. At the end of each epoch, the adjusted
odel is tested on a validation sample, which is a subset of the

ata that has not been used during the training to ensure the model
s generalizable to completely unseen data. The number of training
pochs is fixed by plotting the MAE against the epoch; this curve
attens off after some number of training epochs so that the precise
hoice of the number of epochs used is not important once this flat
art of the MAE curve has been reached (see e.g. Fig. 1 ). 
The final network is tested on a hold-out set of samples to carry out

 performance analysis on completely unseen data (Section 2.4.1 ). 

.2.1 Inputs and outputs 

e aim to develop an emulator to map an input vector x, which is
he subset of GALFORM parameters that are allowed to vary, on to an
utput vector y , corresponding to the statistical galaxy properties we
ish to predict. Our choice of the input parameters that are allowed to
ary is made through physical intuition and guidance from previous
nalyses (see Section 2.4 ). These parameters and their ranges are
hown in T able 1 . W e tune the emulator to predict three statistical
roperties calculated from the output of GALFORM to calibrate a
odel to make accurate predictions for Euclid and Roman : these are

he redshift distribution of H α emitters between 0 . 69 ≤ z ≤ 2, and
he local luminosity functions in the r and K bands (see Section 2.4.2
NRAS 535, 3324–3341 (2024) 
or more information about these data sets). Each data set is weighted
qually in the metric when the emulator is being constructed. 

.2.2 Network ar chitectur e 

he neural network architecture was determined by testing individual
yperparameter configurations. Taking inspiration from Elliott et al.
 2021 ), we start with an architecture with two hidden layers, each
ontaining 512 neurons with the sigmoid acti v ation function on
idden layers, and linear acti v ations on the output layer. Here, we
est modifying the choice of acti v ation function on hidden layers,
he width of the network (the number of neurons per layer), and the
epth of the network (the number of hidden layers). For the output
ayer, the linear acti v ation function is consistently used, which is
uitable given that the emulator is essentially a regression model.
ll networks are trained with the same data set. We track the MAE

gainst the validation data set at each epoch during training and show
he results in Figs 1 , 2 , and 3 . We note there is a caveat with these
ests due to the stochastic nature of training a neural network; an
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Figure 4. Comparing the training (blue) and validation (green) loss curves 
for each of the five models that make up the final emulator model architecture 
(as described in Section 2.2.2 ). We do not observe any overfitting (i.e. the 
validation loss is greater than the training loss and the two curv es hav e similar 
shapes). Ho we ver, the gap between the validation loss and the training loss 
curves could be reduced and suggests some underfitting. 

‘  

t
t

w
a  

t  

e  

t  

e  

s  

s  

i  

t  

r  

(  

t
d  

m  

i  

b
W  

d
 

W  

l  

u  

i  

o  

t  

t  

t  

t  

t  

l  

m  

c  

n  

t  

s
c  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/535/4/3324/7900760 by U
niversity of D

urham
 user on 20 D

ecem
ber 2024
dentical network architecture trained on identical training data can 
isplay a small variability in its final validation score, so we take this
nto account when deciding on the final network. 

Starting from the architecture used in Elliott et al. ( 2021 ), we
odify the acti v ation functions, testing a linear function, Logistic
igmoid, Tanh, rectified linear unit (ReLU; Nair & Hinton 2010 ; 
un, W ang & T ang 2015 ), leaky ReLU (LReLU; Maas et al. 2013 ;
u et al. 2015 ), and exponential linear unit (Clevert, Unterthiner &
ochreiter 2015 ), with the results displayed in Fig. 1 (for a full

e vie w of the many acti v ation functions available see Dubey, Singh &
haudhuri 2022 ). We found that modifying the acti v ation function

o a type of rectifier unit was the best option. 
Next, we test both the ReLU and LReLU acti v ation functions while
odifying the width of our network but keeping the number of hidden 

ayers at two. We consider 200, 512, and 1000 neurons per hidden
ayer. We want to see if there is a positive trend in terms of a reduction
n the MAE when increasing the number of neurons per layer. In
ig. 2 , we plot the results from both the LReLU (solid line) and

he ReLU (dotted) network acti v ation functions. There are training 
peed benefits to using a thinner network: the percentage increase 
n training speed for the network to reach epoch 350, between the
hinnest network (width 200) and the widest network (width 1000) 
s ∼ 190 per cent for either acti v ation function. We see that for both
ases the 200-width network does not perform as well as the wider
etworks. Ho we ver, there is no clear gain in performance to support
ncreasing the width beyond 512 neurons. Therefore, we will use 
idden layer widths of 512 to optimize the performance and training 
peed. 

Finally, we test the depth of the network, that is, the number of
idden layers our network contains. Once again we train two identical 
etworks, one with an LReLU acti v ation function, and the other with
he ReLU acti v ation function, sho wn in Fig. 3 as solid and dashed
ines, respectively. An interesting observation is the impro v ement 
een with the LReLU network when more layers are included. In
ig. 1 , we saw the ReLU acti v ation function performs best when two
idden layers were used, but as the number of hidden layers increases
he performance increases with the LReLU network putting it ahead 
f all of the ReLU. Furthermore, we do see performance gains when
ncreasing the number of hidden layers up to a certain number when
hey start to converge on a minimum MAE loss. We find, that for
oth acti v ation functions, once there are five hidden layers, there
re no further significant gains in network performance when more 
ayers are used. Computational speed again is a factor here, with the
raining time needed for a network with eight hidden layers being 
17 per cent longer than for one with a single hidden layer. Our
nal network architecture, based on the results presented here, is 
ix hidden layers, each with 512 neurons, and LReLU acti v ation
unctions. 

Having made this choice, we explain in more detail the difference 
etween an ReLU and a Leaky ReLU. A Leaky ReLU builds from the
riginal ReLU by modifying the handling of ne gativ e input values.
he ReLU returns an output of zero for a ne gativ e input, 

 ( s ij ) = max (0 , s ij ) , (10) 

hereas a Leaky ReLU assigns a non-zero slope on the ne gativ e end, 

 ( s ij ) = max ( αs ij , s ij ) . (11) 

n equation ( 11 ), α is a hyperparameter generally set to 0.01, and
 ij is the total input to neuron i in the j th layer. The Leaky ReLU
olves the ‘dying’ ReLU problem Lu ( 2020 ), where a standard ReLU
an become inactive and output zero for any input value. In this
ase, it can never recover and can lead to network regions becoming
inactive’. We find using a Leaky ReLU instead of ReLU improves
he MAE performance during training on the validation set, reducing 
he average MAE loss by ∼ 29 per cent. 

We use the adaptive momentum estimation (Adam) optimizer 
hich is a popular momentum-based gradient descent optimization 

lgorithm (Kingma & Ba 2014 ; Reddi, Kale & Kumar 2019 ) and set
he learning rate to 0.005. We add the AMSGRAD variation (Tran
t al. 2019 ) which aims to impro v e the performance of Adam around
he minima on the error surface using a stochastic method, which
 v aluates the weights after every minibatch iteration (minibatches are
mall subsets of the whole training set). At the end of each epoch, we
ave the model weights if the performance on the validation set has
mpro v ed (as measured by equation 9 ) and continue training until
here is no impro v ement for 30 epochs. Then the learning rate is
educed to 10 −5 for a fine-tuning stage with the RMSprop optimizer
Tieleman & Hinton 2012 ), allowing us to take small steps towards
he minimum of the error surface. RMSprop uses stochastic gradient 
escent and assumes the error surface is a quadratic bowl. This
ethod boosts the performance of the emulator as we can descend

nto fine local minima, and we measure impro v ements to our network
y tracking the MAE of the validation samples throughout training. 
e see evidence of this in Figs 1 , 2 , and 3 where the MAE rapidly

rops when the network transitions into fine-tuning training mode. 
The training of our final model architecture is displayed in Fig. 4 .
e show the training loss (blue line) together with the validation

oss (green line) for each of the five individual networks that make
p our ensemble model. The loss can be calculated at each epoch
n the training process using the validation data to look for signs
f o v erfitting. We do not see an y o v erfitting of the model on to
he training set from the comparison of the two loss curves (i.e.
he loss curve for the validation set exceeds the loss curve for the
raining set and the curves have similar shapes). In other words,
he model has not learnt the training data set so well as to include
he statistical noise or random fluctuations that are present, and the
oss stops decreasing after some number of training epochs. If the
odel was o v erfitting to the training data set, the training loss would

ontinue to decrease as more training epochs passed. An o v erfitted
etw ork w ould be more specialized to the training data and less able
o generalize to new data. In this case, the loss curve for the training
et would continue to decline with decreasing epoch, whereas the loss 
urve for the validation data may start to increase. The increase in
MNRAS 535, 3324–3341 (2024) 
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eneralization error can be measured by the performance of the model
n the validation data set. In Fig. 4 , we see the validation loss curve
oes not degrade (i.e. begin to increase with epoch), symbolizing
 lack of o v erfitting. There is, ho we ver, e vidence of underfitting to
he validation data set coming from the size of the gap between
he training loss curve and the validation loss curve. This indicates
hat the model is capable of further learning and possible further
mpro v ements on using a larger representation from the training data
et. A good fit is identified by a training and validation loss that
ecreases to a point of stability with a minimal gap between the two
nal loss values. 

.2.3 Ensembling 

efore training, the weights of a network are initialized according to
ome distribution, often random. We use an initializer described in
lorot & Bengio ( 2010 ). Due to the stochastic nature of the training
rocess training a single network is insufficient since the error surface
s likely to contain many local minima and one network is unlikely
o traverse enough of the weight space to find the best possible
apping. Overfitting is also a potential problem due to the large

umber of parameters especially as more layers are added. One
olution to these issues is ensembling multiple network predictions
Opitz & Maclin 1999 ; Sagi & Rokach 2018 ; Ganaie et al. 2022 ). This
nvolv es training sev eral identical networks with different weight
nitializations and shuffling the validation and training sets for each
odel in the ensemble so the models are distributed from input to

utput. This should allow for a more robust final prediction. We
v erage o v er the predictions of each model to ne gate an y o v er- or
nderfitting to different features of the data. 
Using this method, we train five separate networks, each with

he same model architecture. The final emulator prediction is the
verage of the predictions from the ensemble of models. There is
cope in the future to impro v e on this method via a method called
tacking (Wolpert 1992 ) where the ensemble networks themselves
re the inputs to a single network with generalizes the outputs for
mpro v ed results. Ho we ver, this works best where the ensemble
etworks are varied and provide different information, such as
ifferent architectures or combining different types of machine
earning algorithms. 

.3 Parameter fitting 

e use the emulator for inference on target data sets; that is, fitting the
odel to given data sets. We employ an MCMC sampler to compare

he generated models against the observed data sets with the goal
f sampling from a set of parameters that produces the models that
est fit the observables. The Metropolis–Hastings algorithm (Robert
t al. 2004 ) is a common and simple method of e x ecuting an MCMC,
enerating serially correlated draws from a sequence of probability
istributions, ev entually conv erging to a giv en target distribution.
he means of convergence comes from the minimization of the
bsolute error between the emulator output and the observational
onstraints. We note that as we are minimizing the absolute error
etween multiple data sets i.e. the discrepancy between the model
redictions and the data, we do not take into account their associated
measurement) 1 errors. We wish to weight certain data sets o v er
NRAS 535, 3324–3341 (2024) 

 Here, we mean the errors made when estimating the statistic. For example, 
or the luminosity function, this could be the Poisson error derived from the 
umber of galaxies in a luminosity bin or a more advanced estimate which 

l  

i
A
h

thers to allow us to investigate the effect of requiring better fits
o some data sets and how this affects the reproduction of other
ata sets, as well as seeing how the optimal parameter choices
hange as a result. We therefore introduce a modified version of the
AE (introduced in equation 9 ) which includes a vector of heuristic
eights, W, to vary the contribution of the residuals from constraint

 to the total error, 

AE 

obs ( y , ̂  y ) = 

1 

n obs 

n obs ∑ 

i= 1 

W i 

n obs 
i 

| y i − ˆ y i | 
σ i 

, (12) 

here ˆ y i is the predicted value of the i-th observable constraint, and
 i is the corresponding observ able v alue across n obs 

i data points. Due
o ˆ y i and y i being vector quantities, the modulus represents the L1
orm. σ i is a vector of errors corresponding to y i . We sum over
he n obs observable constraints. The different observational data sets
ontain different numbers of data points, therefore we divide the
eighted absolute error of the i-th data set by the number of data
oints, n obs 

i , for equal contribution to the mean error result. In later
ections, we refer to equation ( 12 ) as the MAE. 

The Metropolis–Hastings procedure for updating a Markov Chain
ompares the likelihoods from the current parameter location or state
o a proposed (new) state. Assuming uniform priors throughout, each
hain is initialized on a random point in the parameter space which
s assigned as the current state, x. Then, we sample a proposed
tate, x ′ , from independent Laplacian proposal distributions about
 , L ( x ′ | μ, b ) = ( 1 / 2 b ) exp ( −| x ′ − μ| / b ) where μ = x and the scale
arameter vector b is set as 1/20th of the parameter ranges given
n Table 1 . The proposed state must satisfy the condition that
he proposal lies within the defined parameter bounds given in
 able 1 . W e decide whether the proposed state is accepted or not
y measuring the likelihood impro v ement of emulator predictions to
he observational data from the current to the proposed state using a
aplacian likelihood with scale parameter b obs = 0.005. Taking the

atio of likelihoods at states x ′ and x gives the acceptance ratio , α, 

= 

L ( f ∗( x ′ ) | y , b obs ) 

L ( f ∗( x) | y , b obs ) 
, (13) 

here y is the vector of observables and f ∗( ·) is the emulator. We
ould use a ratio of errors as an acceptance ratio in our MCMC,
o we ver, doing so may not align with the principles of Bayesian
nference and so could have implications for the accuracy and
fficiency of our algorithm. The likelihood is often used in Bayesian
nference due to its probabilistic interpretation, as it provides a

easure of how well the model explains the observed data given a
et of parameters. The acceptance ratio is compared to an acceptance
riterion, u , which is a random uniform number u ∈ [0, 1]; a proposed
tate is accepted if α ≥u , in which case x = x ′ and the next sample
s drawn from a Laplacian centred on the new state, or a proposed
tate is rejected if α < u for which case we sample again from
he original Laplacian centred on x. Using this method, if the error
etween the emulator predictions and the observables reduces when
oving from state x to x ′ the sample is al w ays accepted, else we

ccept the proposed state x ′ with a probability α. We expect the
ensity of accepted samples to trace the regions in the parameter
pace which give the best fits to the data. At the start of the chain,
here will be a burn-in phase as the accepted samples tend towards
ocal maxima in the parameter space so we discard the first half
ncludes sample variance, inferred by using independent mock catalogues. 
s different people make different assumptions regarding these errors, it is 
ard to compare them across very different data sets. 
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f accepted samples. Testing multiple chain lengths, we find chains 
onverge to local MAE minima (given by equation 12 ) within the
rst 5000 samples and so we choose the chain length as 7500 (after
iscarding the burn-in phase). 

.4 Data sets 

ur decision as to which GALFORM input parameters to vary comes 
rom a combination of physical moti v ation and choices informed 
y previous analyses (mainly Elliott et al. 2021 ). We differ from
heir parameter choices by focusing more on the contribution from 

uiescent galaxies and less on galaxies experiencing a starburst. 
or a typical H α galaxy surv e y, we find burst galaxies only affect

he extremely bright end of the luminosity function and have little 
mpact on the o v erall number counts (see for example the predictions
rom Lacey et al. 2011 for the ultraviolet LF, which is also sensitive
o recent star formation). Close to the Euclid and Roman flux 
imits, quiescent galaxies are dominant. Burst galaxies do, ho we ver, 
ominate the high-flux tail of the H α emitter counts, but this is not
mportant for the o v erall clustering measurement. 

.4.1 Training and testing data 

e use a supervised machine-learning method to emulate running a 
omputationally e xpensiv e model, GALFORM . Training the emulator 
equires running the full model. Generally, the more samples used 
uring training, the better the predictions should be. 
Whereas Elliott et al. ( 2021 ) ran GALFORM at a single output red-

hift to make predictions for their calibration data, the computational 
ost per model is much higher in our case as we need to compute the
edshift distribution of H α emitters. This is due to the structure of the
ALFORM code; running for N output redshifts ef fecti vely increases 

he run time by a factor of N . One option to produce predictions
or the redshift distribution of H α emitters would be to generate 
 lightcone catalogue (e.g. Merson et al. 2013 ). For the PMILL
imulation, for the range of redshifts of interest for Euclid and Roman ,
his would require running 135 output redshifts. Instead, we can run 
ALFORM for a much smaller, select number of output redshifts, 

aken from the target range. For each output, we construct the LF of
 α emitters. We then use this information to compute the redshift
istribution of H α emitters, interpolating between the luminosity 
unctions computed at the output redshifts. Another computational 
aving that can be made is to run GALFORM for a fraction of the
vailable dark matter halo merger histories. We experimented with 
sing different numbers of output redshifts and different fractions 
f the merger histories to compute the redshift distribution of H α

mitters, comparing the answers to a full lightcone calculation. The 
alculation converges with five PMILL redshift snapshots between 
edshifts 0 . 69 ≤ z ≤ 2 . 00 using ∼ 0 . 5 per cent of the available halo
erger histories. We also produce output at z = 0 to compare to the

ocal calibration data. 
Model parameters were generated via Latin hypercube sampling 

or efficient and smooth co v erage (as described in Loh 1996 ; Bower
t al. 2010 ). The parameter ranges are given in Table 1 . The
atin hypercube sampler generated 3000 sets of the 11 parameters, 

esulting in 3000 GALFORM outputs, each with an associated H α

edshift distribution and z = 0 K- and r-band LFs. The GALFORM

nputs and outputs formed the input–output vector pairs, ( x i , y i )
or the deep learning emulator, where x i is the ith set of model
arameters and y i is the corresponding output vector of the redshift
istribution and LFs. We separate the samples randomly into three 
ets: training, validation, and holdout sets. The training and validation 
ets are used during the training of the emulator, and the hold-out set
s kept separate to e v aluate performance on unseen data. The ratio
f training samples to hold-out test samples was 29:1 and for each
etwork trained, 20 per cent of the training samples were randomly
hosen as the validation data. 

.4.2 Calibration and comparison data sets 

raditionally, GALFORM has been calibrated mostly using local data, 
s these have been the measurements with the smallest errors (see
acey et al. 2016 ). We continue this trend by using the r and K−band
Fs measured from the galaxy and mass assembly (GAMA) surv e y

Driver et al. 2012 ); here, these data replace the older b J and K-band
Fs used to calibrate GALFORM . This choice has the advantage that

he same team has done the data reduction and made the assumptions
bout the k- and evolutionary corrections. We also use the H α redshift
istribution measured by Bagley et al. ( 2020 ). Using calibration
ata sets at different redshifts greatly reduces the volume of the
iable parameter space. 
The full list of calibration and comparison data sets is as follows:

(i) For the H α redshift distribution, we calibrate the emulator 
o the redshift distribution from Bagley et al. ( 2020 ). They used
easurements from two slitless spectroscopic WFC3-infrared data 

ets, 3D-HST + A Grism H-Alpha SpecTroscopic (AGHAST) 
urv e y and the WISP surv e y (Atek et al. 2010 ) to construct a Euclid -
ike sample. They detect the combined H α + [N II ]-emission from
alaxies in the redshift range 0 . 9 ≤ z ≤ 1 . 6 with total line flux
righter than ≥ 2 × 10 −16 erg s −1 cm 

−2 . 
(ii) For the z = 0 K-band and r−band LFs, we take data from

river et al. ( 2012 ) who used the GAMA data set to construct the
ow-redshift ( z < 0 . 1) galaxy luminosity functions in multiple bands.

We also compare our best-fitting models to the previous local LF
alibration data (the K−band LF measured by Cole et al. 2001 and
he b J measured by Norberg et al. 2002 ). This is to see if models
sing the new local calibration data sets still give good fits to the old
alibration data; this is an indirect way of seeing (through a model)
f these observational LFs are consistent with one another. 

 RESULTS  

.1 GALFORM runs for training and testing 

e start with the Lacey et al. ( 2016 ) model and replace the parameters
ighlighted in Table 1 , using the 3000 combinations generated by
he Latin hypercube sampler. For each model, we run GALFORM 

t six redshift snapshots z = 0 , 0 . 69 , 0 . 90 , 1 . 14 , 1 . 60 , 2. These were
elected to co v er the redshift range probed by the Bagley et al. ( 2020 )
 α redshift distribution and the local LFs. 

.2 Emulator performance 

he development of the architecture for the emulator is described 
n Section 2.2 . During the architecture training phase, we only ran
ur networks up to 350 training epochs. For the final network, we
hose not to limit the number of epochs but instead included an
arly stopping clause which stopped and saved the network at its
o west training MAE v alidation loss score. On average the networks
ave their lowest loss score between 500 and 700 epochs. We also
ollow Elliott et al. ( 2021 ) by ensembling networks of the same
MNRAS 535, 3324–3341 (2024) 
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Figure 5. Emulator performance across the three calibration statistics computed with the holdout parameter sets. The top row shows the emulator output 
( y-axis) against the true GALFORM output ( x-axis). Black error bars indicate the 10th–90th percentile range of the residuals. The bottom row shows a draw of 
emulator outputs (dashed lines) and true GALFORM outputs (solid lines) for selected parameter sets. In these panels, different colours denote different parameter 
sets. 
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rchitecture, av eraging o v er the outputs to produce a final result.
e tested ensembles of five and ten networks and found little to

o impro v ement in emulator performance against the hold-out set.
ote that going from one network to an ensemble of five gives

oughly a ten per cent reduction in the MAE. Furthermore, the more
etworks to be averaged over, the greater the computational time
hich becomes important as we run an MCMC across a substantial
umber of w alk ers each with around 15 000 steps. Therefore, the
mulator consists of five equal architecture networks (described in
ection 2.2 ). We want to e v aluate the ability of the emulator to output
ccurate GALFORM predictions at new points in the parameter space.
he set of 3000 GALFORM outputs was split up with 96.67 per cent
f the outputs used for training our emulator as described in Section
.2 (equating to 2900 parameter combinations) and the remaining
.33 per cent (100 parameter combinations) being used as unseen
utputs for testing purposes (hold-out set). This split maximizes the
umber of training samples and provides an appropriate range of
nseen test samples to e v aluate the network. When training each
etwork, we randomly split the 2900 parameter output combinations
nto a training set and a validation set with 20 per cent going towards
alidation (580 parameter combinations). For each network trained
n the emulator ensemble, the training and validation sets were
huffled. 

In the upper panels of Fig. 5 , we show the emulator predictions
gainst the hold-out set outputs from the corresponding full GALFORM

uns. A perfect emulator would follow the y = x line (dotted)
ith no scatter. In general, we see the emulator following a tight

elation to the diagonal across the three statistics, indicating that the
mulator is accurately predicting GALFORM output for the holdout
et parameters, without any significant biases and a reasonably
NRAS 535, 3324–3341 (2024) 
mall scatter. Out of the three statistics, the redshift distribution
redictions appear to have a greater uncertainty than the K and r-
and luminosity functions. Ho we ver, this is largely an artefact of the
edshift distribution predictions spanning a smaller dynamic range
han the other statistics, so this scatter plot is ‘zoomed-in’ compared
o the others (co v ering just o v er 4.5 decades in scale as opposed to
ix decades in the other panels). In the lower panels of Fig. 5 , we
how the performance of the emulator across the three statistics on a
ample of the holdout set parameters, plotting the emulator outputs
s dashed lines and the true GALFORM outputs as solid lines. The
arameter samples drawn from the holdout set were chosen to reflect
he range of emulator performances, including parameters that the
mulator most struggled with for each statistic. Each colour across
he three panels is the same combination of parameters from the
oldout set. The luminosity function plots display the ability of the
mulator to predict beyond the resolution of GALFORM when the
rue model was generated with a finite sample of merger histories
rom the simulation, which can result in some luminosity bins
eing empty at the bright end. The lower panel of Fig. 5 reveals
ome sources of inaccuracies in the predictions, particularly the
 α redshift distribution, which is more prone to exhibiting noisy
ehaviour for some choices of parameters, for example, the low-
edshift distribution (orange line) is poorly predicted. The error bars
or the redshift distribution predictions are fairly even across the
edshift bins and this is reflected in the lower panel plots where the
ajority of predictions follow the shape of the true GALFORM output

ut with varying degrees of offset. The main source of errors for the
uminosity function predictions is seen at lo w v alues of φ. We do see
hat at the bright end of the luminosity function plots the predictions
an become noisy but the o v erall shape is well captured. 



Deep learning in galaxy formation 3333 

Figure 6. Emulator predictions (dashed lines) using the Lacey et al. ( 2016 ) GALFORM parameters compared with the true GALFORM outputs (solid lines). We 
predict the H α redshift distribution (left), and the z = 0 K- (middle) and r-band (right) luminosity functions. 
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The majority of emulator predictions for the redshift distribution 
re reasonably close to the GALFORM predictions, but we do come 
cross cases with substantial discrepancies between the true and 
redicted outputs (as exhibited by the orange line in the bottom row
f Fig. 5 ). We see far fewer cases like this within the holdout set of
oor predictions of the true GALFORM outputs when it comes to both
uminosity functions, with the largest discrepancy seen in the blue 
arameter set. These poor predictions are usually indications that the 
raining data did not contain sufficient examples of this behaviour as
hese examples appear to be extreme cases of the output and so are
ess common. The emulator constructs a function f ∗( ·) by fitting it to
he training examples, where f ∗( ·) can interpolate between the points
n the parameter space. Ho we ver, the interpolation is less reliable in
he sparser regions of the space, such as at the extremities of our
arameter bounds. 
We can see that at the bright ends of the K- and r-band LFs

n Fig. 5 , the emulator tends to slightly o v erpredict the GALFORM

utput. This is a consequence of using a small fraction of the
vailable merger histories (0.6 per cent of the total), which leads 
o noisy predictions at low-galaxy number densities, and, as seen 
n Fig. 5 , cutoffs at different luminosities for different choices of
arameters. The emulator outputs a fixed number of bins, therefore 
uring training, we omit any luminosity bins which contain zero 
alaxies when computing the loss. This leads to the emulator having 
ewer brighter luminosity bins to fit which are biased towards having 
igher values of φ in these brighter bins. This causes more cases 
f o v erprediction at these luminosities. This problem is minor since
he Driver et al. ( 2012 ) luminosity function data does not sample

to very low-number densities. These issues could be resolved by 
 v aluating GALFORM using a larger fraction of the available merger
istories, although this would be more e xpensiv e computationally 
ith little gain. 
We also e v aluate the performance of the emulator against the

acey et al. ( 2016 ) GALFORM model in Fig. 6 . We see an o v erall
ood fit to the true model, with the emulator redshift distribution
 v erpredicting the true GALFORM model by a small amount. This
atches our findings of the emulator performance on the holdout set

bo v e. F or the redshift distribution, the emulator can still accurately
dentify the shape of the true model. The emulator does well at
atching the true GALFORM model for the local LFs, with the only

eviation seen around the break at magnitudes ∼−22 for the K band
nd ∼−21 for the r band. The emulator is unable to recreate the
ipped features around these magnitudes which indicates a deficiency 
f these types of parameters within our training set. The possible
hanges we could make to the training set of the emulator that we
ighlighted before would impro v e our predictions against the Lacey
t al. ( 2016 ) parameter set. 

.2.1 Performance and training set size 

o find how the emulator performance depends on the number of
ull GALFORM calculations, we train the emulator with 900, 1900, 
nd 2900 samples of parameters (in each case split with 20 per cent
f the samples going to wards v alidation). The emulators consist of
n ensemble of five identical networks each trained on the same
shuffled) training and validation sets. Performance is evaluated on 
he same 100 holdout parameter samples. The emulator shows a 
lear reduction in the MAE with an increasing number of training
amples. Using an ensemble of networks results in a near-constant 
mpro v ement in performance of almost 12 per cent compared to using
 single network: ho we ver, this effect saturates after five networks. 

.3 Parameter fitting on the calibration data – model 
ptimization 

e apply the methods described in Section 2.3 to calibrate the
odel to the data sets introduced in Section 2.4.2 . We begin by

nvestigating the tensions between the three statistics by adjusting 
he weights applied to the residuals between our emulator prediction 
nd each data set (given by equation 12 ) and then performing
n MCMC parameter search to see how the best-fitting parameter 
hoices respond. In Fig. 7 , we show the emulator predictions for the
est-fitting parameters found from five MCMC chains using different 
eighting schemes. To make accurate predictions for Euclid and 
oman , we need to fit the H α redshift distribution data from Bagley
t al. ( 2020 ). Ho we v er, to reduce the o v erall model parameter space, it
s important to constrain the model to reproduce the local luminosity
unctions. Hence, we need to find a balance of fits between the two.

hen the weighting to the H α redshift distribution data is low, for
xample, a weighting of one or two (blue and orange lines in Fig. 7 ,
espectively), we see a poor accuracy reproduction of the H α redshift
istribution data and strong performance regarding the luminosity 
unctions, particularly around the break. As the redshift distribution 
eighting increases, we notice increasing deviation at the bright- 

nd faint ends of the luminosity functions, but an impro v ed fit to
he redshift distribution data, with the predicted distributions being 
ithin the error bounds of the observations. Applying a weight of

our to the redshift distribution (green line) still allows us to reco v er
he LF break at L 

∗ and stays just as close to the high-redshift data
oints in the redshift distribution as a weight of six (purple line).
MNRAS 535, 3324–3341 (2024) 
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Figure 7. Best MCMC fits for five different weighting schemes (as indicated 
by the key in the top panel), on increasing the weight applied to the H α redshift 
distribution (first number in the line label) to display the tensions between 
the constraints (the other two numbers show the weights applied to the local 
LFs). We show a redshift distribution weight value W of one (blue), two 
(orange), three (red), four (green), and six (purple), plotted with the Bagley 
et al. ( 2020 ) H α redshift distribution (top) and Driver et al. ( 2012 ) z = 0 K- 
(middle) and r-band luminosity functions (bottom). 
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he spread across the LFs for the different weightings is surprisingly
o w gi ven that the spread in the redshift distribution fits is large in
omparison. This could indicate that there are multiple regions in the
arameter space that can fit these models, according to the emulator.
his likely arises from the error of the emulator outputs, particularly

or the redshift distribution predictions. It is worth noting that these
arameter fits come from a small number of MCMC chains: we
xpect to see improvements in the best-fitting parameters when we
 v aluate 100 MCMC chains. 

We set W i = 4 for the redshift distribution constraint, and apply
nit weight to both K- and r-band LF constraints. With the weighting
cheme for the three statistics fixed, we recalibrate GALFORM across
he three constraints to estimate the best-fitting parameters. We run
NRAS 535, 3324–3341 (2024) 
00 MCMC chains with our emulator, each with 7500 steps after the
urn-in phase (which itself is 7500 steps). The residual of each sample
s computed using the emulator and the weighted MAE function. The
inimum MAE obtained for each chain lies in the range ∼ 0 . 25 −
 . 28. As we have seen in Section 3.2 , our emulator outputs have an
ssociated error, so we cannot confidently discern which parameter
ets give the best fit to the observational data with the emulator alone.
ence, we e v aluate the parameters that gave the lo west MAE v alue

rom each of the 100 MCMC chains with GALFORM . 
In Fig. 8 , we illustrate the regions in the parameter space sampled

y the MCMC chains. The shaded regions show the accepted samples
rom our chains, each 7500 steps long after discarding the burn-in.
he shading indicates the density of the accepted samples, with the
arker regions corresponding to the more fa v oured regions of the
arameter space. Also shown in Fig. 8 are 1D histograms of the
ensity of accepted samples. For some parameters, a reasonably
arge range of parameter values results in acceptable fits to the
onstraints. Ho we ver, when plotted in one or two dimensions the
pace appears widely sampled, on moving to a higher dimension the
cceptable regions are reduced significantly. This is the effect of the
igh dimensionality of the parameter space, as described in Bower
t al. ( 2010 ). We see that to fit the three statistics using the weighting
cheme described, the fits prefer high values of γSN ∼ 4 possibly
eyond the sampling parameter boundary. We have the option to
xtend our parameter space, but doing so will probe parameters
eyond the space used to train the emulator. This could result in
ore uncertain predictions. Furthermore, we do not want to extend

ur parameter ranges to unphysical choices for the processes being
odelled. We also observe a bimodal distribution for the V SN, burst 

arameter which tends towards the lower and upper boundaries of our
arameter range at ∼ 10 and ∼ 800 km s −1 , respectively. In contrast,
he parameters f ellip , f burst , and τ*burst,min are weakly constrained
howing almost uniform sampling, whereas the parameters that
ontribute to the SN and AGN feedback are more tightly bound. 

Out of the lowest MAE parameters from the 100 MCMC chains,
e plot the output from the 50 best sets of parameters e v aluated using
ALFORM in Fig. 9 . These runs co v er a range of weighted MAE, from
 . 25 − 0 . 31, with the remaining runs extending to a weighted MAE
f 0.64. The 50 best-fitting runs characterize the constraint data sets
ell and confirm the ef fecti veness of our MCMC optimization and

mulator while also indicating the level of uncertainty present in our
ethod. We show the run with the lowest MAE in Fig. 10 , along
ith the emulator prediction for the same set of parameters (red
ashed line), along with the output of the model presented in Lacey
t al. ( 2016 ) as the solid grey line. We see that there is a spread of
ossible parameters. Therefore, the best-fitting parameters presented
re just one realization of many possible choices due to the effects
f calibrating to multiple data sets with tensions between them and
he degeneracies between the parameters. 

The spread across the 50 best MCMC chains as e v aluated by
ALFORM is tight across the K- and r-band LFs; there is somewhat
ore variance in the redshift distribution outputs particularly at

igher redshifts. The redshift distribution predicted using our o v erall
est-fitting set of parameters is within the error bars of most of the
agley et al. ( 2020 ) data points. Due to the tension between the H α

edshift distribution and the local LFs, the general trend of fits to
he LFs is to o v erpredict the bright end. This is particularly evident
or the z = 0 r-band LF, although the selected parameters do well at
eplicating the break. There is greater uncertainty in the fits to the
 = 0 K-band LF. The lowest weighted MAE parameter set predicts
 f ar weak er break compared to the data from Driver et al. ( 2012 ).
n Table 2 , we show the set of parameters with the lowest weighted
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Figure 8. Accepted samples from 100 MCMC chains for fits to the H α redshift distribution, K- and r-band LFs. The first 50 per cent of samples were discarded 
to allow for burn-in. The histograms show the marginalised distribution of the parameters. The ranges on each axis are the same as those quoted in Table 1 . The 
shading corresponds to the density of chain steps, with darker colours corresponding to more densely sampled regions. The darkest regions correspond to the 
25th percentile and the lighter regions to the 50th and 75th percentiles. 

Figure 9. The GALFORM e v aluations of the best-fitting parameters found with 100 MCMC chains, each 7500 samples in length, using the constraint weightings 
described in the text. Here, we plot a sample of the best 50 runs, as measured by weighted MAE (equation 12 ). The red line indicates the parameter set with the 
lowest weighted MAE. The remaining 49 runs are plotted in blue. The data described in Section 2.4.2 is shown in cyan. 
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AE to the observational data (corresponding to the red line in Figs 9
nd 10 ), and compare with the parameters presented in Lacey et al.
 2016 ) (hereafter named Lacey16 ). We also show the parameter set,
hich, out of the 50 best-fitting models, is the closest in parameter

pace to the Lacey16 model. Looking at this model and the parameter
alues from the 50 best MCMC chains in general, we find that certain
arameters, such as V SN,disc and γSN are constrained to a tight range of
alues, whereas parameters such as V SN,burst , f burst , and τ∗burst,min can
e drawn from a large proportion of the explored range. Although
e do see some parameters that have a large proportion of their
MNRAS 535, 3324–3341 (2024) 
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Figure 10. Predictions for the calibration data from the lowest MAE parameter set as e v aluated by GALFORM (solid red) compared with the equi v alent parameters 
e v aluated by our emulator (red dashed) with the calibration data described in Section 2.4.2 . The grey line shows the predictions of the Lacey et al. ( 2016 ) model. 

Table 2. Results from the 50 best-fitting MCMC chain parameters (as 
measured by the weighted MAE in equation 12 ) found using the emulator. 
The first column gives the parameter name. In the second column, we present 
the parameters for the best-fit seen in Fig. 10 . The Lacey16 model parameters 
are given in the third column. The final column gives the parameters of the 
model drawn from the 50 best-fitting models whose parameters are closest to 
those in Lacey et al. 

Parameter This work Lacey16 Lace y16 -like e xample 

νSF 3.97 0.74 2.81 
V SN, disc (kms −1 ) 201.30 320 248.21 
V SN, burst (kms −1 ) 785.64 320 765.76 
γSN 3.98 3.40 3.98 
αret 0.27 1.00 1.08 
F stab 0.85 0.90 0.85 
f ellip 0.22 0.30 0.04 
f burst 0.083 0.05 0.05 
τ* burst,min (Gyr) 0.032 0.10 0.11 
f SMBH 0.039 0.005 0.05 
αcool 0.79 0.80 0.99 
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arameter spaces sampled, the distribution is not al w ays uniform. The
SF parameter appears to co v er a very large range. Ho we ver, when
ooking at the corner plot of Fig. 8 we see that the majority of the
ampling occurs at the high values of νSF but there is a small subregion
ampled at ∼ 1 . 0. The parameter f SMBH sampling distribution is
kewed left which extends the accepted parameter range. 

We compare the weighted MAE of our best-fitting model with
he Lacey16 model, using the procedure described in Section 3.3 ,
hat is using the same weighting scheme we have been using up to
his point. Using this metric, as expected, the new model is a better
 v erall fit to the calibration data, with a weighted MAE of 0.25,
ompared with 0.50 for Lacey16 . The MAE for Lacey16 is outside
he range of the minimum MAE reached by our 50 best MCMC
hains but within the range of lowest MAE values from the 100
CMC chains. The impro v ed MAE of the new best-fitting model

and indeed the majority of our MCMC-found models) is mainly due
o the large impro v ement in the fits to the H α redshift distribution,
hile the fits of the new models to the K- and r-band LFs are similar

o those of the Lacey16 model. The new model fit is closer to the
aint end of the observed LFs, whereas the Lacey16 model is closer
o the Driver et al. ( 2012 ) data points at the bright end, particularly
n the r band. The main source of error for the Lacey16 model
s the poor fit to the H α redshift distribution, whereas our model

ore accurately describes the drop off in number counts beyond
NRAS 535, 3324–3341 (2024) 
 ∼ 1 . 4. This can be quantified by considering the contribution to
he MAE from each statistic: the best-fitting model has an MAE of
.09 for the H α redshift distribution whereas the Lacey16 model
s worse with an MAE of 0.26. Although by eye the fits to the K-
and luminosity functions are similar between the new model and
acey16 , the MAE values indicate that the new model fits better to

he Driver et al. ( 2012 ) data than the Lacey16 model does: the new
odel has an MAE of 0.17, whereas the Lacey16 model achieves

.20. This is likely to be due to closer fits at the faint end contributing
o a higher proportion of the MAE score. The fit to the bright end
s very similar but the Lacey16 model has a much sharper break in
ts luminosity function. We can break down the K-band LF MAE
alculation further by focusing on the bright half of the observed data
oints. As mentioned abo v e, the Lace y16 model is a closer fit to the
ata points at the bright end as measured by eye. This is confirmed
s the MAE of the bright part for the Lacey16 model is 0.11 and for
ur new model is 0.14. Finally, our model performs slightly better
han the Lacey16 model when predicting the r-band LF, scoring an

AE of 0.23 versus 0.25 for the Lacey16 model. This is likely to be
or similar reasons as the K band, where our model is closer to the
river et al. ( 2012 ) data at the faint end. It is clear that the Lacey16
odel is slightly better at predicting the luminosity function from

he exponential break to the bright end as our model o v erpredicts
he bright end. If we focus only on the bright half of the luminosity
unction, the Lacey16 model is a closer fit to the observed data than
ur model, with an MAE of 0.10 versus 0.16. 
Due to the tensions between the calibration data, better fits to the
 α redshift distribution data come at the expense of more severe
 v erpredictions of the bright end of the LFs as previously discussed,
nd as shown by the lines when increasing the weighting in Fig. 7 .
imilarly, if we try to impro v e the fits to the LFs, this leads to an
 v erestimation of the number of H α emitters at higher redshifts. 

.3.1 Number count predictions for the Euclid redshift survey 

alaxies detected through their emission in the unresolved
 α( + N[ II ]) lines are the main target for the Euclid and Roman

edshift surv e ys. Satisfied with the best-fitting parameters from the
CMC search using the emulator as e v aluated using GALFORM , we

an use these models to predict the number of galaxies that will be
een by the upcoming surv e ys. The cumulativ e number counts are
hown in Fig. 11 , along with the recent WISP + 3D-HST data from
agley et al. ( 2020 ) for galaxies in the redshift range 0 . 9 ≤ z ≤ 1 . 6.
he corrected number counts from Bagley et al. ( 2020 ) for the
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Figure 11. Number counts predictions from our 50 best MCMC parameters 
for galaxies with 0 . 9 < z < 1 . 8 (blue lines), with the best set of parameters 
as e v aluated by GALFORM in red. We plot this against the Bagley et al. 
( 2020 ) 0 . 9 < z < 1 . 6 number counts (black points). The Euclid flux limit 
2 × 10 −16 erg −1 s −1 cm 

−2 is marked by the vertical dashed grey line. 
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Figure 12. Roman number counts predictions from our 50 best MCMC 

parameters for galaxies between 1 . 0 < z < 2 . 0 (blue lines), with the best 
set of parameters as e v aluated by GALFORM in red. The Roman flux limit 
1 × 10 −16 erg −1 s −1 cm 

−2 is shown by the vertical dashed grey line. 
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ISP + 3D-HST data at the Euclid flux limit is 3266 + 157 . 7 
−174 . 8 

 α + N[ II ] emitters deg −2 . Our models predict the galaxy density
n the slightly broader redshift range 0 . 9 < z < 1 . 8, which matches
hat of the Euclid redshift surv e y. From the 50 best models, the
pread in emission-line number counts estimates for galaxies with a 
ux greater than the Euclid limit ( f ≥ 2 × 10 −16 erg −1 s −1 cm 

−2 ) is
962–4331 deg −2 , with our best-fitting model to the calibration data 
utputting a number count of 3462.5 deg −2 , corresponding to ∼ 46 . 7
illion sources o v er 13 500 de g 2 . Our best-fitting model comfortably

ies within the range of the Bagley et al. ( 2020 ) H α + N[ II ]
umber counts. The distribution of predicted number counts can 
lso be quantified using the 10–90 percentile range of the 50 best
odels, which gives the narrower spread of 3158–3952 deg −2 . We 

ompare our number count predictions with those of Pozzetti et al. 
 2016 ) who empirically fit luminosity functions to earlier surv e ys,
iZELS, WISP, and HST + NICMOS. Co v ering the redshift range
 . 9 < z < 1 . 8 to a flux limit of 2 × 10 −16 erg −1 s −1 cm 

−2 , Pozzetti
t al. predicted 2000–4800 H α emitters deg −2 . It is worth noting that
he Pozzetti et al. ( 2016 ) predictions are in terms of observed H α

ux, i.e. they are corrected for [N II ] contamination. In contrast, our
esults blend H α + N[ II ] to match the results of Bagley et al. ( 2020 ).
t the spectral resolution of Euclid , these two lines will be partially
lended. 
Fig. 7 of Bagley et al. ( 2020 ) shows the observed cumulative

umber counts along with fits from various models including the 
hree empirical models from Pozzetti et al. ( 2016 ). For the purposes
f this comparison, Bagley et al. ( 2020 ) converted the H α counts
rom the Pozzetti et al. ( 2016 ) models to H α + [N II ] counts using
 fixed [N II ]/H α line ratio: H α = 0.71 (H α + [N II ]). Out of their
hree models, the only one that fits the 0 . 9 ≤ z ≤ 1 . 6 observations
ell is Model 3 which shows a similar fit to our best-fitting model

n Fig. 11 . Fig. 7 from Bagley et al. ( 2020 ) also shows the redshift
istribution predictions from Pozzetti et al. ( 2016 ), where once again
odel 3 is the best-fit to the observed redshift distribution. Ho we ver,

he fits are only good for the first five data points before the drop off
n counts observed for z ∼ 1 . 4. As seen in Fig. 10 , our best-fitting
odel is a better fit to the observed redshift distribution data points

s we represent more closely the trends beyond z ∼ 1 . 4. 
We also calculate the number counts for a Euclid -like surv e y with
 magnitude limit of H = 24 using our best model, keeping the line
ux limit and redshift range fixed. The number of galaxies counted in

his case is 3444.5 deg −2 ; including the H -band cut reduces this by
.5 per cent, which is somewhat smaller than the 3 per cent reduction
eported by Zhai et al. ( 2021 ). 

.3.2 Number count predictions for Roman 

he High Latitude Spectroscopic Surv e y onboard NASA’s Nancy 
race Roman Space Telescope will co v er 2000 de g 2 and will use
 α( + N [ II ]) galaxy redshifts to map large-scale structure at 1 < z <

 (Spergel et al. 2015 ) to a flux limit of 1 × 10 −16 erg −1 s −1 cm 

−2 . We
se the same 50 best-fitting parameters described in Section 3.3 to
 v aluate GALFORM to predict the number of galaxies that will be seen
y a Roman -like surv e y. The cumulativ e number counts are shown
n Fig. 12 . From the 50 best models, the spread in number counts
stimates for H α sources seen by Roman is 6786–10 322 deg −1 ,
ith the same best model as described in Section 3.3 outputting a
umber count of 8212.5 deg −1 . This corresponds to ∼16.4 million
ources o v er the 2000 de g 2 surv e y. Our best-fitting model agrees
ith the number counts predicted by Zhai et al. ( 2019 ) who used
ALACTICUS . The 10–90 percentile range of the counts is 7536–
470 deg −1 . 

.3.3 Predictions for the evolution of galaxy bias 

s our model is physically moti v ated and connects galaxies to dark
atter haloes, we can also use GALFORM to predict the ef fecti ve

lustering bias as a function of redshift. The bias is a direct input into
he calculation of the signal-to-noise of the clustering measurements. 

e calculate the asymptotic ef fecti ve bias in real space using
he COLOSSUS package (Diemer 2018 ), choosing the numerically 
alibrated bias—halo mass model from Tinker et al. ( 2010 ). 

In Fig. 13 , we plot the results for the ef fecti ve linear bias ( b eff )
n real-space as a function of redshift for a Euclid -like surv e y (left
anel) and for a Roman -like surv e y (right panel). We compute the
f fecti ve bias for haloes containing an H α emitter that is brighter
han the flux limit of the corresponding surv e y and in the expected
edshift range. We find similar results for the linear real-space 
MNRAS 535, 3324–3341 (2024) 
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M

Figure 13. The ef fecti ve clustering bias for a Euclid limited surv e y (left) and Roman (right). In both cases, the blue curves show the 50 best models as a function 
of redshift, e v aluated using GALFORM and using the Colossus routines for computing bias as a function of host halo mass. We have highlighted our best-fitting 
model to the calibration data set as red (left) or oragne(right) lines. We also plot the fits to the bias predictions from Merson et al. ( 2019 ) when adopting a 
WISP-calibrated lightcone (grey dashed line) and a HiZELS-calibrated lightcone (grey dotted line) and their uncertainty (shading). 
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ias for the Euclid and Roman selections. At lower redshifts, the
redicted bias has a linear dependence on redshift. This steepens
t the highest redshifts shown. The dashed and dotted grey lines
how the Merson et al. ( 2019 ) models of the linear bias evolution
ith a WISP- and HiZELS-calibrated models, respectively. Their

esults show a linear dependence of the ef fecti ve bias on redshift.
erson et al. calibrate their dust extinction specifically to reproduce

he observed H α luminosity functions. Finally, differences in the
hoice of cosmologies and bias-halo mass relations will cause slight
iscrepancies between our predictions and those of Merson et al. 

.3.4 Comparison to older calibration data sets 

ur best-fitting model is calibrated to the local K- and r-band
Fs from Driver et al. ( 2012 ). Therefore, we have expanded the
omparison data sets to include an older K-band LF from Cole et al.
 2001 ) which was used in the calibration of many previous GALFORM

ariants. In Fig. 14 , we plot our best-fitting GALFORM model z = 0 K-
and LF, found using our emulator-based MCMC calibrated to the
river et al. ( 2012 ) LF, and compare this with the Cole et al. ( 2001 )
-band LF data. We also plot the Driver et al. ( 2012 ) K-band LF

or comparison. We see that the Cole et al. ( 2001 ) and Driver et al.
 2012 ) data agree reasonably well, particularly for bright galaxies.
he consistency between the new local calibration data and the old
alibration data indicates that the two observational LFs agree with
ne another. Therefore, our GALFORM prediction agrees as well with
he Cole et al. ( 2001 ) data as it does for the Driver et al. ( 2012 )
ata, up to faint galaxies where the Cole et al. ( 2001 ) data is noisier.
he Cole et al. ( 2001 ) LF estimate o v erlaps mainly with the brighter
river et al. ( 2012 ) data (as expected given the greater depth of the
AMA surv e y compared with the 2-degree Field Galaxy Redshift
rv e y (2dFGRS) and 2-micron All Sk y Surv e y (2MASS) data used
y Cole et al.), and as we have seen in our previous analyses, the
NRAS 535, 3324–3341 (2024) 
eighting scheme compromises our new model at the bright end.
herefore, the new model achieves poorer fits at the bright end when
ompared to the Lacey16 model for the Cole et al. ( 2001 ) calibration
ata also. Our model across all data points scored an MAE of 0.27
ompared to the Cole et al. ( 2001 ) data; this is worse than the Lacey16
odel which achieves an MAE of 0.23. Our model scores worse for

imilar reasons as previous analysis on the Driver et al. ( 2012 ) data;
 v erprediction at the very bright end, and a much shallower turn-
 v er. Nev ertheless, our model is still a good approximation to the
ole et al. ( 2001 ) data. 
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 DISCUSSION  A N D  C O N C L U S I O N S  

e have presented a method for efficiently exploring and calibrating 
he GALFORM semi-analytical galaxy formation model across a 
ide range of outputs, building on Elliott et al. ( 2021 ). Whereas
lliott et al. focused on using different local data sets in their
odel calibration, we have also used data at intermediate redshifts, 

pecifically to find models that reproduce current data on the redshift
istribution of H α emitters. We calibrated the model o v er an elev en-
imensional subset of the full model parameter space. We used a deep
earning method to mimic running the full GALFORM model. Training 
he emulator required of the order of 1000 full model runs. With the
mulator, we explored the parameter space using MCMC w alk ers. 

We calibrated the model to three sets of observational data: the 
 = 0 galaxy LFs in the r and K bands from Driver et al. ( 2012 ) and
he redshift distribution of H α emitters at intermediate redshifts from 

agley et al. ( 2020 ). Ho we ver, we did not consider the observational
rror bars during the model exploration. Instead, we used an absolute 
rror metric (MAE) to quantify the distance between the emulator 
utput and the full model calculations. Hence, it is difficult to provide
eaningful uncertainties on the best-fitting parameters. We give an 

llustration of the uncertainty on the model predictions by plotting the 
esults from the best-fitting model for each MCMC w alk er, as judged
y the model that returned the smallest MAE. We have discovered 
ensions between the calibration data sets and the model predictions 
s we could not find equally good fits when all data sets are weighted
qually in the MCMC search. The weight given to the H α redshift
istribution constraint was increased, moving to a different region of 
arameter space which modified the fits to the K- and r-band LFs,
eading to o v erprediction at the bright end. 

Similarly, we have not considered the uncertainties associated 
ith the emulator. There are two types of uncertainty to account for
hen emulating model outputs: the uncertainty due to the emulator 
arameters (that is the weights of the neural network), and the 
ncertainty inherent in the data generation process (for example, the 
ampling noise on the GALFORM outputs, such as the bright end of the
F where there are few galaxies). The network hyperparameter space 
as explored using a trial-and-error process to justify the choice of
etwork architecture. We further reduce uncertainties relating to the 
eights of the emulator by ensembling individual network estimates. 
The majority of variance in the output of our model is due to a few

ey parameters, which leads to tensions when trying to calibrate to 
ultiple observational data sets. The tensions between the observed 

ata sets were explored, using our MCMC algorithm to fit the 
mulator output to the constraints, eventually finding the weighting 
cheme for a global fit to the observations. With this, we find a set of
arameters which provides an improved fit to the redshift distribution 
ata as compared with an earlier version of a GALFORM model 
resented in Lacey16 . We go further by producing number count 
redictions for a Euclid -like surv e y using our best model, improving
n previous empirical models by Pozzetti et al. ( 2016 ) by using
ore recent and complete data sets from Bagley et al. ( 2020 ). For
 flux limit of 2 × 10 −16 erg −1 s −1 cm 

−2 between the redshift range 
 . 9 < z < 1 . 8, our 50 best models predict 2962–4331 H α emission-
ine sources deg −2 , with 3158–3952 sources deg −2 between the 10th 
nd 90th percentile. Our best-fitting model estimates 3462.5 sources 
eg −2 , which is comparable to the Bagley et al. ( 2020 ) observation.
he predictions we produce for the number of galaxies estimated to 
e seen from the Euclid wide field are more constrained than previous
odels and are better in line with the recent observed number counts.
dding a requirement that the sources are also brighter than H = 24

emo v es only 0.5 per cent of the emitters. 
As we are using a physical model that connects galaxies to their
ost dark matter haloes, we can predict the clustering of H α emitters.
ur bias predictions are similar to those of Merson et al. ( 2019 ), but
ith some differences in detail: Merson et al. found that their bias
rediction has a linear dependence on redshift, whereas we find that
he bias evolves somewhat more rapidly at higher redshift. Similar 
esults like to ours, but without the e xtensiv e parameter search and
mulation of the semi-analytic model have been presented by Zhai 
t al. ( 2019 , 2021 ) and Wang et al. ( 2022 ). 

We have shown that the method used by Elliott et al. ( 2021 ) to
utomate the calibration of GALFORM can be applied to calibration 
ata that include intermediate redshift observations. Elliot et al. (in 
reparation) address a similar data calibration challenge using an 
ven more efficient method, Bayesian optimization. 
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Figure A1. Top left: The prediction of the ne w GALFORM v ariant (red line) for the z = 0 H I mass function compared with the Zwaan et al. ( 2005 ) (open circles) 
and Martin et al. ( 2010 ) (filled circles) data sets. The c yan curv es show the predictions of other best-fitting models from each MCMC chain. We also plot the 
GALFORM model by Lacey16 (dark blue dashed line). Top right: predictions for the SMBH mass versus bulge K-band magnitude. The red curve shows the 
best-fitting new model and cyan lines show the other MCMC chain best-fitting models. The Lacey et al. model is shown by the blue dashed line with errorbars 
that show the 10–90 percentile range of the model predictions. The black points show observational estimates from H ̈aring & Rix ( 2004 ). Bottom left: SMBH 

mass function. The best-fitting model is red, the cyan curves show the best-fitting models from other MCMC chains and the blue dashed line shows Lacey et al. 
The black points with errorbars show an observational estimate from Graham et al. ( 2007 ); in this case the bars indicate the interquartile range. Bottom right: 
global star formation rate density (SFRD) versus redshift. The best-fitting model is shown by solid lines and Lacey et al. by dashed lines. Blue shows total 
SFRD, green quiescent SFRD, and red bursts. The black points show a compilation of observational estimates from Hopkins & Beacom ( 2006 ). 
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nderpredicts the high-mass end and is lower than the Lacey et al.

rediction. We also show the best-fitting model from each MCMC 

hain to gain an impression of the range of ‘acceptable’ predictions 
cyan lines). These predictions extend beyond the Lacey et al. model 
t the highest H I masses. 

The top left and bottom right panels of Fig. A1 show predictions
or SMBH. The best-fitting model predicts some what lo wer SMBH
or a given bulge K-band luminosity but still o v erlaps with the
bservations. The range of best-fitting models is quite large and 
eems to bifurcate into two regions. The Lacey et al. model is in good
greement with the observations. The bottom left panel presents the 
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MBH mass function. Again the new model gives a lower SMBH
ass function than Lacey et al., but the range of best-fitting models is

road, splits into two groups and encloses the Lacey et al. prediction.
Finally, the bottom right panel of Fig. A1 shows the global star

ormation rate density (SFRD) as a function of redshift. The best-
tting model and Lacey et al. models have very similar quiescent
FRDs. The new model has a much smaller SFRD in starbursts than

he Lacey et al. model; this is due to the much stronger SNe feedback
n bursts in the new model. 
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