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We study a new algorithmic process of graph growth which starts from a single initial 
vertex and operates in discrete time-steps, called slots. In every slot, the graph grows via 
two operations (i) vertex generation and (ii) edge activation. The process completes at the 
last slot where a (possibly empty) subset of the edges of the graph are removed. Removed 
edges are called excess edges. The main problem investigated in this paper is: Given a target 
graph G , design an algorithm that outputs a process that grows G , called a growth schedule. 
Additionally, we aim to minimize the total number of slots k and of excess edges � used 
by the process. We provide both positive and negative results, with our main focus being 
either schedules with sub-linear number of slots or with no excess edges.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Motivation

Growth processes are found in a variety of networked systems. In nature, crystals grow from an initial nucleation or 
from a “seed” crystal and a process known as embryogenesis develops sophisticated multicellular organisms, by having the 
genetic code control tissue growth [13,32]. In human-made systems, sensor networks are being deployed incrementally to 
monitor a given geographic area [22,14], social-network groups expand by connecting with new individuals [16], DNA self-
assembly automatically grows molecular shapes and patterns starting from a seed assembly [36,17,38], and high churn or 
mobility can cause substantial changes in the size and structure of computer networks [7,4]. Graph growth processes are 
central in some theories of relativistic physics. For example, in dynamical schemes of causal set theory, causets develop 
from an initial emptiness via a tree-like birth process, represented by dynamic Hasse diagrams [10,34].

✩ A preliminary version of the results in this paper has appeared in [26].
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Though diverse in nature, all these are examples of systems sharing the notion of an underlying graph growth process. 
In some, like crystal formation, tissue growth, and sensor deployment, the implicit graph representation is geometric and 
bounded-degree. In others, like social networks and causal set theory, the underlying graph might be free from strong 
geometric constraints but still be subject to other structural properties, as is the special structure of causal relationships 
between events in causal set theory.

Further classification comes in terms of the source and control of the network dynamics. Sometimes, the dynamics is 
solely due to the environment in which a system is operating, as is the case in DNA self-assembly, where a pattern grows 
via random encounters with free molecules in a solution. In other applications, the network dynamics are, instead, governed 
by the system. Such dynamics might be determined and controlled by a centralized program or schedule, as is typically 
done in sensor deployment, or be the result of local independent decisions of the individual entities of the system, often 
running the same global program, as do the cells of an organism by possessing and translating the same genetic code.

Inspired by such systems, we study a graph-theoretic abstraction of network-growth processes. We do not impose any 
strong a priori constraints, like geometry, on the graph structure. We restrict our attention to centralized control and in-
clude weak conditions on the graph dynamics, such as “locality”, according to which a newly introduced vertex u′ in the 
neighborhood of a vertex u, can only be connected to vertices within distance d − 1 from u. We consider two measures 
of efficiency, to be formally defined later, the time to grow a given target graph and the number of auxiliary connections, 
called excess edges, employed to assist the growth process. For example, in cellular growth, one can measure the number of 
times cells have divided, which is usually polylogarithmic in the size of the target tissue or organism. In social networks, it 
is quite typical that new connections can only be revealed to an individual u′ through its connection to another individual 
u who is already a member of a group. Later, u′ can drop its connection to u but still maintain some of its connections 
to u’s group. The dropped connection uu′ can be viewed as an excess edge, whose creation and removal has an associated 
cost, but was nevertheless necessary for the formation of the eventual neighborhood of u′ .

The present study is also motivated by recent work in the theory of dynamic networks [31,28,12]. Research on dynamic 
graphs studies the algorithmic and structural properties of graphs Gt = (Vt , Et), in which Vt are sets of time-vertices and Et

are sets of time-edges of the form (u, t) and (e, t), respectively, t indicating the discrete time at which an instance of vertex 
u or edge e is available. A substantial part of work in this area has focused on the special case of dynamic graphs in which 
Vt is static, i.e., time-invariant [23,8,27,18,39,1]. In overlay networks [2,3,20,19,21] and distributed network reconfiguration 
[30], Vt is a static set of processors that control in a decentralized way the edge dynamics. Even though we do not study 
distributed processes, our model also has active, i.e., algorithmically controlled, dynamics and a locality constraint on the 
creation of new connections. Nevertheless, our main motivation is theoretical interest. As will become evident, the algorith-
mic and structural properties of the considered graph growth process give rise to some intriguing theoretical questions and 
computationally hard combinatorial optimization problems. Apart from the aforementioned connections to dynamic network 
models, we reveal interesting similarities to cop-win graphs [25,5,33,15]. There are other well-studied models and processes 
of graph growth, somewhat related to our model, such as the preferential attachment model by Barabasi and Albert [6], 
as well as other random graph generators [9,24]. While initiating this study from a non-geometric centralized viewpoint, 
we anticipate that it can inspire work on geometric models and models in which the growth process is controlled in a 
distributed way. Note that centralized upper bounds can be translated into (possibly inefficient) distributed solutions, while 
lower bounds readily apply to the distributed case. There are other recent studies considering the centralized complex-
ity of problems with natural distributed analogues, as is the work of Scheideler and Setzer on the centralized complexity 
of transformations for overlay networks [37] and of some of the authors of this paper on geometric transformations for 
programmable matter [29].

1.2. Our approach

We study the following centralized graph growth process. The process, starting from a single initial vertex u0 and ap-
plying vertex-generation and edge-modification operations, grows a given target graph G . It operates in discrete time-steps, 
called slots. In every slot, it generates at most one new vertex u′ for each existing vertex u and connects it to u. This is 
an operation abstractly representing entities that can replicate themselves or that can attract new entities in their local 
neighborhood or group. Then, for each new vertex u′ , it connects u′ to any (possibly empty) subset of the vertices within 
a “local” radius around u, described by a distance parameter d as measured from u′ . Finally, it removes a (possibly empty) 
subset of edges whose removal does not disconnect the graph, before moving on to the next slot. These edge-modification 
operations are capturing, at a high level, the local dynamics present in most of the applications discussed previously.

Despite locality of new connections, a more global effect is still possible. One is for the degree of a vertex u to be 
unbounded (e.g., grow with the number of vertices). In this case, upon being generated, u′ can connect to an unbounded 
number of vertices within the “local” radius of u. Another would be to allow the creation of connections between vertices 
generated in the past, which would enable local neighborhoods to gradually grow unbounded through transitivity. In this 
work, we allow the former but not the latter. That is, for any edge (u, u′) generated in slot t , it must hold that u was 
generated in some slot tpast < t while u′ was generated in slot t . Other types of edge dynamics are left for future work.

The rest of this paper exclusively focuses on d = 2. Without additional considerations, any target graph can be grown by 
the following straightforward process. In every slot t , the process generates a new vertex ut , which it connects to u0 and to 
all neighbors of u0. The graph grown by this process by the end of slot t , is the clique Kt+1, thus, the process grows Kn in 
2
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n − 1 slots. As a consequence, any target graph G on n vertices can be grown by extending the above process to first grow 
Kn and delete all edges in E(Kn) \ E(G) at the last slot. However, this process maximizes both complexity measures that we 
wanted to minimize; it uses n − 1 slots and deletes up to �(n2) edges for sparse graphs, such as a path graph or a planar 
graph.

There is an improvement of the clique process, which connects every new vertex ut to u0 and to exactly those neighbors 
v of u0 for which vut is an edge of the target graph G . At the end, the process deletes those edges incident to u0 that do 
not correspond to edges in G , in order to obtain G . If u0 is a maximum degree vertex of G , and � denotes its degree, then 
it is not hard to see that this process uses n − 1 − � excess edges, while the number of slots remains n − 1 as in the clique 
process. However, we shall show that there are (poly)logarithmic-time processes using close to linear excess edges for some 
of those graphs. In general, processes considered efficient in this work will be those using (poly)logarithmic slots and linear 
(or close to linear) excess edges.

The goal of this paper is to investigate the algorithmic and structural properties of such processes of graph growth, 
with the main focus being on studying the following combinatorial optimization problem, which we call the Graph Growth 
Problem. In this problem, a centralized algorithm is provided with a target graph G , usually from a graph family F , and 
non-negative integers k and � as its input. The goal is for the algorithm to compute a growth schedule for G of at most k
slots and using at most � excess edges, if one exists. All algorithms we consider are polynomial-time.3

For an illustration of the discussion so far, consider the graph family Fstar = {G | G is a star graph on n = 2δ vertices}
and assume that edges are activated within local distance d = 2. We describe a simple algorithm returning a time-optimal 
and linear excess-edges growth process, for any target graph G ∈ Fstar given as input. To keep this exposition simple, we 
do not give k and � as input-parameters to the algorithm. The process computed by the algorithm, shall always start from 
G0 = ({u0}, ∅). In every slot t = 1, 2, . . . , δ and every vertex u ∈ V (Gt) the process generates a new vertex u′ , which it 
connects to u. If t > 1 and u �= u0, it then activates the edge u0u′ , which is at distance 2, and removes the edge uu′ . It is 
easy to see that by the end of slot t , the graph grown by this process is a star on 2t vertices centered at u0, see Fig. 1. Thus, 
the process grows the target star graph G in δ = log n slots. By observing that 2t/2 − 1 edges are removed in every slot 
t , it follows that a total of 

∑
1≤t≤logn 2t−1 − 1 <

∑
1≤t≤logn 2t = O (n) excess edges are used by the process. Note that this 

algorithm can be easily designed to compute and return the above growth schedule for any G ∈ Fstar in time polynomial in 
the size |〈G〉| of any reasonable representation of G .

Note that there is a natural trade-off between the number of slots and the number of excess edges that are required to 
grow a target graph. That is, if we aim to minimize the number of slots (respectively of excess edges) then the number of 
excess edges (respectively slots) increases. To gain some insight into this trade-off, consider the example of a path graph G
on n vertices u0, u1, ..., un−1, where n is even for simplicity. If we are not allowed to activate any excess edges, then the 
only way to grow G is to always extend the current path from its endpoints, which implies that a schedule that grows G
must have at least n

2 slots. Conversely, if the growth schedule has to finish after log n slots, then G can only be grown by 
activating �(n) excess edges.

In this paper, we mainly focus on this trade-off between the number of slots and the number of excess edges that are 
needed to grow a specific target graph G . In general, given a growth schedule σ , any excess edge can be removed just after 
the last time it is used as a “relay” for the activation of another edge. In light of this, an algorithm computing a growth 
schedule can spend linear additional time to optimize the slots at which excess edges are being removed. A complexity 
measure capturing this is the maximum excess edges lifetime, defined as the maximum number of slots for which an excess 
edge remains active. Our algorithms will generally be aiming to minimize this measure. When the focus is more on the 
trade-off between the slots and the number of excess edges, we might be assuming that all excess edges are being removed 
in the last slot of the schedule, as the exact timing of deletion makes no difference with respect to these two measures.

1.3. Contribution

Section 2 begins by presenting the model and problem statement for edge activation-distance d = 2. In Section 2.2, we 
provide some basic propositions that are crucial to understanding the limitations on the number of slots and the number of 
excess edges required for a growth schedule of a graph G . We then use these propositions to provide some lower bounds 
on the number of slots.

In Section 3, we study the zero-excess growth schedule problem, where the goal is to decide whether a graph G has a 
growth schedule of k slots and with no excess edges. We define an ordering of the vertices of a graph G , called candidate 
elimination ordering and show that a graph has a growth schedule of k = n − 1 slots and � = 0 excess edges if and only 
if it has a candidate elimination ordering. Our main positive result is a polynomial-time algorithm that computes whether 
a graph has a growth schedule of k = log n slots and � = 0 excess edges. If it does, the algorithm also outputs such a 
growth schedule. On the negative side, we give two strong hardness results. We first show that the decision version of the 

3 Note that this reference to time is about the running time of an algorithm computing a growth schedule. However, the length of the growth schedule 
is another representation of time: the time required by the respective process to grow a graph. To distinguish between the two notions of time, in our 
results we use the term number of slots to refer to the length of the growth schedule and time to refer to the running time of an algorithm generating the 
schedule.
3
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Fig. 1. The operations of the star graph process in slot t = 4. (a) A star with 23 vertices grown by the end of slot 3. (b) For every ui , a vertex u′
i is generated 

by the process and is connected to ui . (c) New vertices u′
i are connected to u0. (d) Edges between peripheral-vertices are being removed to obtain the star 

with 24 vertices grown by the end of slot 4. We rename the vertices for clarity.

zero-excess growth schedule problem is NP-complete. Then, we prove that, for every ε > 0, there is no polynomial-time 
algorithm which computes a n

1
3 −ε-approximate zero-excess growth schedule, unless P = NP.

In Section 4, we study growth schedules of (poly)logarithmic slots. We provide two polynomial-time algorithms. One 
outputs, for any tree graph, a growth schedule of O (log2 n) slots and only O (n) excess edges, and the other outputs, for any 
planar graph, a growth schedule of O (log n) slots and O (n log n) excess edges. Finally, we give lower bounds on the number 
of excess edges required to grow a graph, when the number of slots is fixed to log n.

In Section 5, we investigate cases for edge-activation distance d = 1 and d ≥ 3.
In Section 6, we conclude and discuss some interesting open problems.

2. Preliminaries

2.1. Model and problem statement

A growing graph is modeled as an undirected dynamic graph Gt = (Vt , Et), where t = 1, 2, . . . , k is a discrete time-step, 
called slot. The dynamics of Gt are determined by a centralized growth process (or growth schedule) σ , defined as follows. The 
process always starts from the initial graph instance G0 = ({u0}, ∅), containing a single initial vertex u0, called the initiator. 
In every slot t , the process updates the current graph instance Gt−1 to generate the next, Gt , according to the following 
vertex and edge update rules. The process first sets Gt = Gt−1. Then, for every u ∈ Vt−1, it adds at most one new vertex 
u′ to Vt (vertex generation operation) and adds the edge uu′ to Et along with any subset of the edges {vu′ | v ∈ Vt−1 is at 
distance at most d − 1 from u in Gt−1} (edge-activation operation), where d ≥ 1 is an integer edge-activation distance fixed 
in advance. We call u′ the vertex generated by the process for vertex u in slot t . We say that u is the parent of u′ and 
that u′ is the child of u at slot t and write u t→ u′ . The process completes slot t after deleting any (possibly empty) subset 
of edges from Et that does not disconnect the graph (edge deletion operation). We denote by V +

t , E+
t , and E−

t the set of 
vertices generated, edges activated, and edges deleted in slot t , respectively. Then, Gt = (Vt, Et) is given by Vt = Vt−1 ∪ V +

t
and Et = (Et−1 ∪ E+

t ) \ E−
t . We call Gt the graph grown by process σ after t slots and call the final instance, Gk , the target 

graph grown by σ . We also say that σ is a growth schedule for Gk , using k slots and � excess edges, where �=
∑k

t=1 |E−
t |, i.e., 

� is equal to the total number of deleted edges. The main problem studied in this paper is the following.
4
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Graph Growth Problem: Given a target graph G and non-negative integers k and �, compute a growth schedule for G of at 
most k slots and at most � excess edges, if one exists.

The target graph G , which is part of the input, will often be drawn from a given graph family F . Throughout, the number 
of vertices of the target graph G is denoted by n. In this paper, computation is always to be performed by a centralized
polynomial-time algorithm.

Let w be a vertex generated in a slot t , for 1 ≤ t ≤ k. The birth path of vertex w is the unique sequence B w =
(u0, u1, . . . , ut−1, ut = w) of vertices, where ui

i+1→ ui+1, for every i = 0, 1, . . . , t − 1. That is, B w is the causal order of vertex 
generations that led to the generation of vertex w . Furthermore, the progeny of a vertex u is the set Pu of descendants of 
u, i.e., Pu contains those vertices v for which u ∈ B v holds. We also define the sets N(u) and N[u] to be the neighborhood 
of u and closed neighborhood of u, respectively.

We now give a formal definition of a graph growth schedule. The definition is given for d = 2 which is the main focus of 
this paper. For completeness, the cases d �= 2 are studied in Section 5. We will be using this description for the pseudocode 
of our algorithms.

Definition 1 (Growth schedule for d = 2). Let σ = (S1, S2, . . . , Sk, E) be a sequence of sets, where E is a set of edges, and 
each St = {(u1, v1, E1), (u2, v2, E2), . . . , (uq, vq, Eq)} is a set of tuples such that, for every j, where 1 ≤ j ≤ q, u j and v j are 
vertices, where u j gives birth to v j , and E j is a set of edges incident to v j such that u j v j ∈ E j . Suppose that, for every slot 
i, where 2 ≤ t ≤ k, the following conditions are all satisfied:

• the sets {v1, v2, . . . , vq} and {u1, u2, . . . , uq} are disjoint,
• each vertex v j ∈ {v1, v2, . . . , vq} does not appear in any set among S1, . . . , St−1 (i.e., v j is “born” at slot t),
• for each vertex u j ∈ {u1, u2, . . . , uq}, there exists exactly one set among S1, . . . , St−1 which contains a tuple (u′, u j, E ′)

(i.e., u j was “born” at a slot before slot t).

Let t be a slot, 2 ≤ t ≤ k, and let u be a vertex that has been generated at some slot t′ ≤ t , that is, u appears in at 
least one tuple of a set among S1, . . . , St . We denote by Et the union of all edge sets that appear in the tuples of the sets 
S1, . . . , St ; Et is the set of all edges activated until slot t . We denote by Nt (u) the set of neighbors of u in Et . If, in addition, 
E ⊆ Ek and, for every 2 ≤ t ≤ k and every (u j, v j, E j) ∈ St , we have that Nt[v j] ⊆ Nt[u j], then σ is a growth schedule for the 
graph G = (V , Ek \ E), where V is the set of all vertices which appear in at least one tuple in σ , Ek is the set of activated 
edges of the graph, and E is the set of deleted edges of the graph. We say that G has a growth schedule σ of k slots and 
� = |E | excess edges.4

2.2. Basic properties and sub-processes

We now give some basic properties for growing a graph G which restrict the possible growth schedules and also provide 
some lower bounds on the number of slots. We also provide some basic algorithms which will be used as sub-processes in 
the rest of the paper.

Proposition 1. The vertices generated in a slot form an independent set in the target graph G.

Proof. Let Gt−1 be the graph at the beginning of slot t . Consider any pair of neighboring vertices u1, u2, i.e., d(u1, u2) = 1, 
where d(u, v) denotes the distance between u and v . Assume that vertices u1, u2 generate vertices v1, v2, respectively, in 
slot t . The distance between vertices v1, v2 in slot t just after they are generated is d(u1, u2) = 3 and therefore, the process 
cannot activate an edge between them. The same holds true for any other pair of non-neighboring vertices, because the 
distance between their children is d(u1, u2) > 3. �
Proposition 2. Consider a growth schedule σ for a graph G. Let t1, t2 , where t1 ≤ t2 , be the slots in which two vertices u, w are 
generated, respectively. Let d(u, w)t2 be the distance between u and w at the end of slot t2. Then, at the end of any slot t ≥ t2 , 
d(u, w)t ≥ d(u, w)t2 .

Proof. Given that d = 2, for any vertex that is generated at slot t , edges can only be activated with its parent and with the 
neighbors of its parent. This implies that the edge activation operations at slot t , cannot reduce the distance between two 
vertices u, v that have been generated in slots t1, t2, where t1, t2 < t , respectively. �

4 Note that our definition does not specify when the edges are removed from the graph. Since we do not consider the optimization criterion of minimizing 
excess edges that are present throughout the transformation, removing the excess edges at the end of the growth schedule is equivalent to removing them 
gradually throughout the schedule.
5
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Fig. 2. Third slot of the path algorithm.

Proposition 3. Let t1, t2 , where t1 ≤ t2 , be the slots in which two vertices u, w are generated by a growth schedule σ for a graph G, 
respectively, and edge uw is not activated at t2 . Then, any pair of vertices v, z cannot be neighbors in G if u belongs to the birth path 
of v and w belongs to the birth path of z.

Proof. Given that the edge between vertices u and w is not activated, and by Proposition 2, the children of u will always 
have distance at least 2 from w (i.e., edges of these children can only be activated with the vertices that belong to the 
neighborhood of their parent vertex, and no edge activations can reduce their distance). The same holds for the children of 
w . All vertices that belong to the progeny Pu of u (i.e., each vertex z such that u ∈ Bz) must be at distance at least 2 from 
w , therefore they cannot be neighbors with any vertex in P w . �

We will now provide some lower bounds on the number of slots of any growth schedule σ for graph G . First, we also 
define the chromatic number and the clique number of a graph. The chromatic number of a graph G , denoted by χ(G), is the 
minimum number of colors needed to color the vertices of G in such a way that no two adjacent vertices receive the same 
color. The clique number of a graph G , denoted by ω(G), is the number of vertices in the largest clique of G .

Lemma 1. Any growth schedule σ for a graph G requires at least χ(G) slots.

Proof. Assume that there exists a growth schedule σ that can grow graph G in k < χ(G) slots. By Proposition 1, the vertices 
generated in each slot ti for i = 1, 2, ..., k must form an independent set in G . Therefore, we could color graph G using k
colors which contradicts the original statement that χ(G) > k. �
Lemma 2. Any growth schedule σ for a graph G requires at least ω(G) slots.

Proof. By Proposition 1, we know that every slot must contain an independent set of the graph and thus, it cannot contain 
more than one vertex from each clique. Assume that the largest clique of graph G has q vertices. By the pigeonhole principle, 
it follows that σ must have at least q slots. �

We present simple algorithms for growing path graphs and star graphs. We use these as sub-processes in both our 
positive and negative results. The growth schedules returned by these algorithms use a number of slots which is logarithmic 
and a number of excess edges which is linear in the number of vertices of the target graph. Logarithmic being a trivial lower 
bound on the number of slots required to grow graphs of n vertices, both schedules are optimal with respect to their number 
of slots. It will later follow (by Corollary 2, Section 4.3) that they are also optimal with respect to the number of excess 
edges used for this time-bound.

Path algorithm: Let u0 be the “left” endpoint of the path graph being grown. For any target path graph G on n vertices, 
the algorithm computes a growth schedule for G as follows. For every slot 1 ≤ t ≤ �log n� and every vertex ui ∈ Vt−1, it 
generates a new vertex u′

i and activates edge u′
i ui . Then, for all 0 ≤ i ≤ |Vt−1| − 2, it activates edge u′

iui+1 and deletes edge 
uiui+1. Finally, it renames the vertices to u0, u1, . . . , u2|Vt−1|−1, u2|Vt−1| from left to right, before moving on to the next slot. 
Fig. 2 shows an example slot produced by the path algorithm.

Lemma 3. For any path graph G on n vertices, the path algorithm computes in polynomial time a growth schedule for G of �log n�
slots and of n − 1 excess edges.
6
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Fig. 3. Let graph Gt to be the graph grown after slot t . Vertices u1 and u2 are candidate vertices. The arrows represent all possible vertex generations in 
slot t . Vertex w1 is a candidate parent of u1, while w3 and w4 are candidate parents of u2.

Proof. In every slot, apart from the last one, for every vertex ui the schedule returned by the algorithm generates a new 
vertex u′

i , thus doubling the length of the path. It follows that the schedule grows a path of length n in �log n� slots.
For the excess edges, consider that at the end of each slot t , every edge activated in slot t − 1 is deleted. Every edge 

activated in the process apart from those in the last slot is an excess edge. For every vertex generation there are at most 
2 edge activations that occur in the same slot and there are n − 1 total vertex generations, which means that the edge 
activations are 2(n − 1). Therefore, the excess edges are exactly 2(n − 1) − (n − 1) = n − 1 since the final path graph has 
n − 1 edges. �
Star algorithm: The description of the algorithm can be found in Section 1.2.

Lemma 4. For any star graph G on n vertices, the star algorithm computes in polynomial time a growth schedule for G of �log n�
slots and n − 1 − �log n� of excess edges.

Proof. By construction, by the end of slot t the schedule returned by the algorithm has grown a star graph of 2t vertices. It 
follows that the schedule grows a star of n vertices in �logn� slots.

For the excess edges, in every slot and every vertex generated by a leaf, the edge between them will later be deleted. As 
n − 1 − �log n� vertices are generated by a leaf, there is a total of n − 1 − �log n� excess edges. �
3. Growth schedules of zero excess edges

In this section, we study which target graphs can be grown using 0 excess edges for edge-activation distance d = 2. 
We begin by providing an algorithm that decides whether there exists a growth schedule for a graph G . We then give an 
algorithm that computes a schedule of k = log n slots for a target graph G , if one exists. Our main technical result shows 
that computing the shortest schedule for a graph G is NP-complete and any approximation of the shortest schedule cannot 
be within a factor of n

1
3 −ε of the optimal solution, for any ε > 0, unless P = N P . First, we check whether a graph G has 

a growth schedule of 0 excess edges. Observe that a graph G has a growth schedule if and only if it has a schedule of 
k = n − 1 slots.

Definition 2. Let G = (V , E) be a connected graph. A vertex v ∈ V can be the last generated vertex in a growth schedule 
σ for G of no excess edges if there exists a vertex w ∈ V \ {v} such that N[v] ⊆ N[w]. In this case, v is called a candidate
vertex and w is called the candidate parent of v . The set of candidate vertices in G is denoted by SG (see Fig. 3).

Definition 3. A candidate elimination ordering of a connected graph G is an ordering v1, v2, . . . , vn of V (G) such that vi is 
a candidate vertex in the subgraph induced by {vi, v2, . . . , vn}, for 1 ≤ i ≤ n.

Lemma 5. A connected graph G has a growth schedule of n − 1 slots and no excess edges if and only if G has a candidate elimination 
ordering.

Proof. By definition of the model, whenever a vertex u is generated for a vertex w in a slot t , only edges between u and 
vertices in N[w] can be activated, which means that N[u] ⊆ N[w]. Since there are not excess edges, this property remains 
true in Gt+1. Therefore, any vertex u generated in slot t , is a candidate vertex in graph Gt+1. For the reverse direction, 
if a graph G has a candidate elimination ordering, we can compute a growth schedule σ of n − 1 slots for that graph as 
follows: add the last vertex u in the ordering to the last slot empty slot of σ , along with the incident edges of u in G . Then 
remove vertex u along with its incident edges from G , and remove it from the ordering as well. Repeat the above process 
until graph G has a single vertex which is the initiator. The growth schedule has no excess edges since in every iteration 
we remove a vertex u, where N[u] ⊆ N[w] for some vertex w in G . �
7
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Algorithm 1 Candidate elimination ordering algorithm.
Input: A graph G = (V , E) on n vertices.
Output: A growth schedule for G , if one exists.
1: for t = n − 1 downto 1 do
2: St = ∅
3: if there exists a candidate vertex u then
4: St ← {(u, v, {v w : w ∈ N(v)})}
5: V ← V \ {v}
6: if St = ∅ then
7: return “no”
8: return σ = (S1, S2, . . . , Sn−1, ∅)

The following algorithm decides whether a graph has a candidate elimination ordering, and therefore, whether it can be 
grown with a schedule of n − 1 slots and of no excess edges. The algorithm computes the slots of the schedule in reverse 
order.

Candidate elimination ordering algorithm: Informally, given a connected graph G = (V , E), in each iteration t , 
the algorithm finds and deletes a candidate vertex and its incident edges. The deleted vertex is added in the last empty slot 
of the schedule σ . The algorithm repeats the above process until there is a single vertex left at which point the algorithm 
outputs a growth schedule. If the algorithm cannot find any candidate vertex for removal, it outputs “no”, meaning that the 
graph cannot be grown. See Algorithm 1 for the formal description.

Lemma 6. Let v ∈ SG . G has a candidate elimination ordering if and only if G − v has a candidate elimination ordering.

Proof. Formally, we say that c is a candidate elimination ordering of G , if c is a permutation of the vertices of G . We define 
c′ = (c, v) to be the operation of appending v at the end of permutation c. Conversely, we define c − v to be the operation 
of removing v from permutation c.

Let c be a candidate elimination ordering of G − v . Then, by definition of the set SG , (c, v) is a candidate elimination 
ordering of G .

For the opposite direction, let c be a candidate elimination ordering of G . If v is the last vertex in c, then c − v is 
trivially a candidate elimination ordering of G − v . Suppose that the last vertex of c is a vertex u �= v . As v ∈ SG , there 
exists a candidate parent w of v . If v does not give birth to any vertex in c then v is moved to the end of c, i.e., right 
after vertex u. Let c′ be the resulting candidate elimination ordering of G; then c′ − v is a candidate elimination ordering 
of G − v , as the parent-child relations of G − v are the same in both c′ − v and c.

Let v give birth to at least one vertex, and Z be the set of vertices which are born by v or by some descendant of v . 
If w appears before v in c, then for any vertex in Z we assign its parent to be w (instead of v). This is always possible 
as N[v] ⊆ N[w]. Let now w appear after v in c, and Z0 = {z ∈ Z : v <c z <c w} be the vertices of Z which lie between v
and w in c. Then we move all vertices of Z0 immediately after w (without changing their relative order). Again, for any 
vertex in Z we assign its parent to be w (instead of v). In either case (i.e., when w is before or after v in c), we obtain 
a candidate elimination ordering c′′ of G , in which v does not give birth to any other vertex. Thus, we can obtain from c′′
a new candidate elimination ordering c′′′ of G where v is moved to the end of the ordering. Then c′′′ − v is a candidate 
elimination ordering of G − v , as the parent-child relations of G − v are the same in both c′′′ − v and c′′ . �
Theorem 1. The candidate elimination ordering algorithm decides in polynomial time whether a connected graph G has 
a growth schedule of n − 1 slots and no excess edges, and outputs such a schedule if one exists.

Proof. It is easy to see by the description of the algorithm, that as long as there exists a candidate vertex in graph G in 
every iteration, the algorithm will output a growth schedule for G . What is left to show, is that we can greedily pick any 
candidate vertex and still output a growth schedule if one exists. This property is guaranteed by Lemma 6. Finally, for a 
connected graph G , we can find the candidate vertices in polynomial time, and thus, the algorithm terminates in polynomial 
time. �

The notion of candidate elimination orderings turns out to coincide with the notion of cop-win orderings, discovered in 
the past in graph theory for a class of graphs, called cop-win graphs [25,5,33]. A cop-win graph is an undirected graph on 
which the pursuer (cop) can always win a pursuit–evasion game against a robber, with the players taking alternating turns 
in which they can choose to move along an edge of a graph or stay put, until the cop lands on the robber’s vertex [11].

In fact, it is not hard to show that a graph has a candidate elimination ordering if and only if it is a cop-win graph. Due to this, 
our candidate elimination ordering algorithm might be similar to some folklore algorithms in the literature of 
cop-win graphs.
8
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Lemma 7. There is a modified version of the candidate elimination ordering algorithm that decides in polynomial time whether a 
connected graph G has a growth schedule of n − 1 slots and � excess edges, where � is a constant, and outputs such a schedule if one 
exists.

Proof. The candidate elimination ordering algorithm can be slightly modified to check whether a graph G = (V , E) has a 
growth schedule of n − 1 slots and � excess edges. The modification is quite simple. For � = 1, we create multiple graphs 
G ′

x for x = 1, 2, . . . , n(n−1)
2 − |E| where each graph G ′

x is a copy of G with the addition of one edge e /∈ E , and we do this for 
all possible edge additions. In particular, we create G ′

x = (V ′
x, E ′

x), where V ′
x = V and E ′

x = E ∪ {uv} such that uv �∈ E and 
(E ′

j �= E ′
i), for all i �= j. Since the complement of G has at most n(n−1)

2 edges, we will create up to n(n−1)
2 graphs G ′

x . We 
then run the candidate elimination ordering algorithm on all G ′

x . If the algorithm returns “no” for all of them, then there 
exists no growth schedule for G of n − 1 slots and 1 excess edge. Otherwise, the algorithm outputs a schedule of n − 1 slots 
and 1 excess edge for G . This process can be modified to work for any �. As the number of graphs tested is at most n�(n−1)

2 , 
for constant � the algorithm terminates in polynomial time. �

The following algorithm decides whether a graph G = (V , E) on n vertices has a growth schedule σ of log n slots and no 
excess edges, when n = 2δ , for some δ ≥ 0.

Fast growth algorithm: In every iteration t , the algorithm computes the set SGt of candidate vertices in Gt . It then tries 
to find a subset Lt ⊆ SGt of candidate vertices that satisfy both of the following properties:

1. Lt is an independent set of n/2 vertices in graph Gt .
2. Lt contains candidate vertices of graph Gt

3. There is a perfect matching between the candidate vertices in Lt and the other vertices of graph Gt .

Any set Lt that satisfies the above constraints is called valid. The algorithm tries to find such a set by creating a 2-SAT 
formula φ whose solution is Lt . If the algorithm finds such a set Lt , it adds the vertices in Lt to the last slot of the schedule. 
It then removes the vertices in Lt from graph Gt along with their incident edges and repeats the above process. If at any 
point, the graph has a single vertex, the algorithm terminates and outputs the schedule. If at any point, the algorithm cannot 
find a valid set, it outputs “no”.

Assuming that we have a perfect matching M , for each edge ui vi ∈ M , the algorithm creates a variable xi . The truthful 
assignment of xi means that we pick vi for Lt and the negative assignment means that we pick ui for V 2. We add clauses 
to the 2-SAT formula φ as follows:

• If vi is a candidate vertex and ui is not, then has to be in vi ∈ Lt , and so we add clause (xi) to φ. If ui is a candidate 
vertex and vi is not, then ui ∈ V 2, in which case we add clause (xi) to φ. If both ui and vi are candidate vertices, either 
one could be in Lt so we add clause (xi ∨ xi).

• We want Lt to be an independent set, so for each edge ui u j ∈ E , we add clause (xi ∨ x j) to φ. This means that in 
order to satisfy that clause, ui and u j cannot be both picked for Lt . Similarly, for every edge vi v j ∈ E , we add clause 
(xi) ∨ (x j) to φ and for every edge ui v j ∈ E , we add clause (xi) ∨ (x j) to φ.

Lemma 8. Let Gt = (V , E) be a connected graph of n vertices. If Gt has a growth schedule of logn slots and of no excess edges then 
there exists a perfect matching M in Gt and a valid candidate vertex Lt , such that for every u ∈ Lt , there exists uv ∈ M, such that 
v /∈ Lt .

Proof. In order for a growth schedule σ to generate a graph G of n vertices in log n slots, in each slot t , every vertex in 
graph Gt must generate a vertex. Therefore, in the last slot of σ , there are n/2 vertices that generate n/2 vertices. Since 
the growth schedule has no excess edges, in the last slot, there are n/2 vertices for which n/2 other vertices are generated. 
Therefore, such a perfect matching M always exists where set Lt contains the children. �
Lemma 9. The 2-SAT formula φ , generated by the fast growth algorithm, has a solution if and only if there is a valid set of 
candidate vertices Lt in graph Gt = (V , E).

Proof. Let us assume that graph Gt = (V , E) has a valid set of candidate vertices Lt . By Lemma 8, we also know that there 
is a perfect matching M between the vertices in Lt and the vertices in V \ Lt . By construction of the 2-SAT formula, each 
edge ui vi ∈ M is represented by a variable xi . The clauses added to the 2-SAT formula guarantee the following about any 
solution to it:

• if there is a set Lt , there are n/2 variables xi created, and n/2 clauses of the form (xi), (xi), and (xi ∨ xi) in formula φ, 
that can all be satisfied.

• Additionally, since Lt is an independent set, the clauses of the form (xi ∨ x j) can also be satisfied.
9
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Algorithm 2 Fast growth algorithm.
Input: A graph G = (V , E) on n = 2δ vertices.
Output: A growth schedule of k = log n slots and of no excess edges for G .

1: for k = logn downto 1 do
2: Sk = ∅; φ = ∅
3: Find a perfect matching M = {ui vi : 1 ≤ i ≤ n/2} of G .
4: if No perfect matching exists then
5: return “no”
6: for every edge ui vi ∈ M do
7: Create variable xi

8: for every edge ui vi ∈ M do
9: if ui is a candidate vertex and vi is not then

10: φ ← φ ∧ (xi)

11: else if ui is a not candidate and vi is a candidate then
12: φ ← φ ∧ (xi)

13: else if ui is not a candidate and vi is not a candidate then
14: return “no”
15: for every edge ui u j ∈ E \ M do
16: φ ← φ ∧ (xi ∨ x j)

17: for every edge vi v j ∈ E \ M do
18: φ ← φ ∧ (xi ∨ x j)

19: for every edge ui v j ∈ E \ M do
20: φ ← φ ∧ (xi ∨ x j)

21: if φ is satisfiable then
22: Let τ be a satisfying truth assignment for φ
23: for i = 1, 2, . . . , n/2 do
24: if xi = true in τ then
25: Sk ← Sk ∪ (ui , vi, {vi w : w ∈ N(vi)})
26: V ← V \ {vi}
27: E ← E \ {vi w : w ∈ N(vi)}
28: else {xi = f alse in τ }
29: Sk ← Sk ∪ (vi , ui , {ui w : w ∈ N(ui)})
30: V ← V \ {ui}
31: E ← E \ {ui w : w ∈ N(ui)}
32: else {φ is not satisfiable}
33: return “no”
34: return σ = (S1, S2, . . . , Sk, ∅)

The inverse direction follows as well by construction of formula φ. �
Lemma 10. Consider a connected graph Gt = (V , E). If Gt has a growth schedule of logn slots and with no excess edges, then any 
perfect matching implies a valid candidate set |Lt| = n/2, where Lt has exactly one vertex for each edge of the perfect matching.

Proof. By Lemma 9, any perfect matching M contains edges uv , such that there exists a valid candidate set Lt that contains 
one vertex exactly for each edge uv ∈ M . Thus, if graph Gt has a growth schedule, the solution to the 2-SAT formula 
corresponds to a valid candidate set Lt . �
Theorem 2. For a connected graph G on 2δ vertices, the fast growth algorithm computes in polynomial time a growth schedule 
σ for G of log n slots and of no excess edges, if one exists.

Proof. By Lemmas 9 and 10, we know that our fast growth algorithm finds a set L for the last slot of a schedule σ ′′
but this might be a different set from the last slot contained in σ . Therefore, for our proof to be complete, we need to 
show that if G has a growth schedule σ of log n slots and � = 0 excess edges, for any L it holds that (G − L) has a growth 
schedule σ ′ of log n − 1 slots and � = 0 excess edges.

Assume that σ has in the last slot Sk a set of vertices V 1 generating another set of vertices V 2, such that |V 1| = |V 2| =
n/2, V 1 ∩ V 2 = ∅ and V 2 is an independent set. Suppose that our algorithm finds V ′

2 such that V ′
2 �= V 2.

Assume that V ′
2 ∩ V 2 = V s and |V s| = n/2 − 1. This means that V ′

2 = V s ∪ u′ and V 2 = V s ∪ u and u′ has no edge with 
any vertex in V s . Since u′ �∈ V 2 and u′ has no edge with any vertex in V s , then u′ ∈ V 1. However, u′ cannot be the candidate 
parent of anyone in V 2 apart from u. Similarly, u is the only candidate parent of u′ . Therefore N[u] ⊆ N[u′] ⊆ N[u] =⇒
N[u] = N[u′]. This means that we can swap the two vertices in any growth schedule and still maintain a correct growth 
schedule for G . Therefore, for L = V ′

2, the graph (G − L) has a growth schedule σ ′ of log n − 1 slots and � = 0 excess edges.
Assume now that V ′

2 ∩ V 2 = V s , where |V s| = x ≥ 0. Then, V ′
2 = V s ∪ u′

1 ∪ u′
2, ∪ . . . ∪ u′

y and V 2 = V s ∪ u1 ∪ u2, ∪ . . . ∪ u y , 
where y = n/2 − x. As argued above, vertices u′

1, u′
2, . . . , u

′
y can be candidate parents only to vertices u1, u2, . . . , u y , and 

vice versa. Thus, there is a pairing u j, u′
j such that N[u j] ⊆ N[u′

j] ⊆ N[u j] =⇒ N[u′
j] = N[u j], for every j = 1, 2, . . . , y. 

Thus, these vertices can be swapped in the growth schedule and still maintain a correct growth schedule for G . Therefore 
for any arbitrary L = V ′ , the graph (G − L) has a growth schedule σ ′ of log n − 1 slots and � = 0 excess edges. �
2
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We will now show that the problem of computing the minimum number of slots required for a graph G to be grown is 
NP-complete, and that it cannot be approximated within a n

1
3 −ε factor for any ε > 0, unless P = NP.

Definition 4. Given any graph G and a natural number κ , find a growth schedule of κ slots and � = 0 excess edges. We call 
this problem zero-excess growth.

Theorem 3. The decision version of the zero-excess growth problem is NP-complete.

Proof. First, observe that the decision version of the problem belongs to the class NP. Indeed, the required polynomial 
certificate is a given growth schedule σ , together with an isomorphism between the graph grown by σ and the target 
graph G .

To show NP-hardness, we provide a reduction from the coloring problem. Given an arbitrary graph G = (V , E) on n
vertices, we grow graph G ′ = (V ′, E ′) as follows: Let G1 = (V 1, E1) be an isomorphic copy of G , and let G2 be a clique 
of n vertices. G ′ consists of the union of G1 = (V 1, E1) and G2 = (V 2, E2), where we also add all possible edges between 
them. Note that every vertex of G2 is a universal vertex in G ′ (i.e., a vertex which is connected with every other vertex in 
the graph). Let χ(G) be the chromatic number of graph G , and let κ(G ′) be the minimum number of slots required for a 
growth schedule for G ′ . We will show that κ(G ′) = χ(G) + n.

Let σ be an optimal growth schedule for G ′ , which uses κ(G ′) slots. As every vertex v ∈ V 2 is a universal vertex in G ′ , 
v cannot coexist with any other vertex of G ′ in the same slot of σ . Furthermore, the vertices of V 1 require at least χ(G)

different slots in σ , since χ(G) is the smallest possible partition of V 1 into independent sets. Thus κ(G ′) ≥ χ(G) + n.
We now provide the following growth schedule σ ∗ for G ′ , which consists of exactly χ(G) + n slots. Each of the first n

slots of σ ∗ contains exactly one vertex of V 2; note that each of these vertices (apart from the first one) can be generated 
and connected with an earlier vertex of V 2. In each of the following χ(G) slots, we add one of the χ(G) = χ(G1) color 
classes of an optimal coloring of G1. Consider an arbitrary color class of G1 and suppose that it contains p vertices; these 
p vertices can be born by exactly p of the universal vertices of V 2 (which have previously appeared in σ ∗). This completes 
the growth schedule σ ∗ . Since σ ∗ has χ(G) + n slots, it follows that κ(G ′) ≤ χ(G) + n. �
Theorem 4. Let ε > 0. If there exists a polynomial-time algorithm, which, for every connected graph G, computes a n

1
3 −ε-approximate 

growth schedule (i.e., a growth schedule of at most n
1
3 −εκ(G) slots), then P = NP.

Proof. The reduction is from the minimum coloring problem. Given an arbitrary graph G = (V , E) of n vertices, we grow 
in polynomial time a graph G ′ = (V ′, E ′) of N = 4n3 vertices, as follows: We create 2n2 isomorphic copies of G , which 
are denoted by G A

1 , G A
2 , . . . , G A

n2 and G B
1 , G B

2 , . . . , G B
n2 , and we also add n2 clique graphs, each 2n vertices, denoted by 

C1, C2, . . . , Cn2 . We define V ′ = V (G A
1 ) ∪ . . . ∪ V (G A

n2 ) ∪ V (G B
1 ) ∪ . . . ∪ V (G B

n2 ) ∪ V (C1) ∪ . . . ∪ V (Cn2 ). Initially we add to 
the set E ′ the edges of all graphs G A

1 , . . . , G A
n2 , G B

1 , . . . , G B
n2 , and C1, . . . , Cn2 . For every i = 1, 2, . . . , n2 − 1 we add to E ′

all edges between V (G A
i ) ∪ V (G B

i ) and V (G A
i+1) ∪ V (G B

i+1). For every i = 1, . . . , n2, we add to E ′ all edges between V (Ci)

and V (G A
i ) ∪ V (G B

i ). Furthermore, for every i = 2, . . . , n2, we add to E ′ all edges between V (Ci) and V (G A
i−1) ∪ V (G B

i−1). 
For every i = 1, . . . , n2 − 1, we add to E ′ all edges between V (Ci) and V (Ci+1). For every i = 1, 2, . . . , n2 and for every 
u ∈ V (G B

i ), we add to E ′ the edge uu′ , where u′ ∈ V (G A
i ) is the image of u in the isomorphism mapping between G A

i and 
G B

i . To complete the construction, we pick an arbitrary vertex ai from each Ci . We add edges among the vertices a1, . . . , an2

such that the resulting induced graph G ′[a1, . . . , an2 ] is a graph on n2 vertices which can be grown by a path schedule in 
�log n2� slots and of no excess edges (see Lemma 3)5. This completes the construction of G ′ . Clearly, G ′ can be grown in 
time polynomial in n.

Now we will prove that there exists a growth schedule σ ′ of G ′ of number of slots at most n2χ(G) + 4n − 2 + �2 log n�. 
The schedule will be described inversely, that is, we will describe the vertices generated in each slot starting from the last 
slot of σ ′ and finishing with the first slot. First note that every u ∈ V (G A

n2 ) ∪ V (G B
n2 ) is a candidate vertex in G ′ . Indeed, for 

every w ∈ V (Cn2 ), we have that N[u] ⊆ V (G A
n2 ) ∪ V (G B

n2 ) ∪ V (G A
n2−1

) ∪ V (G A
n2−1

) ∪ V (Cn2) ⊆ N[w]. To provide the desired 
growth schedule σ ′ , we assume that a minimum coloring of the input graph G (with χ(G) colors) is known. In the last 
χ(G) slots, σ ′ generates all vertices in V (G A

n2 ) ∪ V (G B
n2 ), as follows. At each of these slots, one of the χ(G) color classes 

of the minimum coloring cO P T of G A
n2 is generated on sufficiently many vertices among the first n vertices of the clique 

Cn2 . Simultaneously, a different color class of the minimum coloring cO P T of G B
n2 is generated on sufficiently many vertices 

among the last n vertices of the clique Cn2 .

5 From Lemma 3 it follows that the path on n2 vertices can be grown in �log n2� slots using O (n2) excess edges. If we put all these O (n2) excess edges 
back to the path of n2 vertices, we obtain a new graph on n2 vertices with O (n2) edges. This graph is the induced subgraph G ′[a1, . . . , an2 ] of G ′ on the 
vertices a1, . . . , an2 .
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Similarly, for every i = 1, . . . , n2 −1, once the vertices of V (G A
i+1) ∪ . . .∪ V (G A

n2 ) ∪ V (G B
i+1) ∪ . . .∪ V (G B

n2 ) have been added 
to the last (n2 − i)χ(G) slots of σ ′ , the vertices of V (G A

i ) ∪ V (G B
i ) are generated in σ ′ in χ(G) more slots. This is possible 

because every vertex u ∈ V (G A
i ) ∪ V (G B

i ) is a candidate vertex after the vertices of V (G A
i+1) ∪ . . . ∪ V (G A

n2 ) ∪ V (G B
i+1) ∪ . . . ∪

V (G B
n2 ) have been added to slots. Indeed, for every w ∈ V (Ci), we have that N[u] ⊆ V (G A

i ) ∪ V (G B
i ) ∪ V (G A

i−1) ∪ V (G A
i−1) ∪

V (Ci) ⊆ N[w]. That is, in total, all vertices of V (G A
1 ) ∪ . . . ∪ V (G A

n2 ) ∪ V (G B
1 ) ∪ . . . ∪ V (G B

n2 ) are generated in the last n2χ(G)

slots.
The remaining vertices of V (C1) ∪ . . . ∪ V (Cn2) are generated in σ ′ in 4n − 2 + �log n2� additional slots. First, for every 

odd index i and for 2n − 1 consecutive slots, for vertex ai of V (Ci) exactly one other vertex of V (Ci) is generated. This 
is possible because for every vertex u ∈ V (Ci) \ ai , N[u] ⊆ V (Ci) ∪ V (Ci−1) ∪ V (Ci+1) ⊆ N[ai]. Then, for every even index i
and for 2n − 1 further consecutive slots, for vertex ai of V (Ci) exactly one other vertex of V (Ci) is generated. That is, after 
4n − 2 slots only the induced subgraph of G ′ on the vertices a1, . . . , an2 remains. The final �log n2� slots of σ ′ are the ones 
obtained by Lemma 3. To sum up, G ′ is grown by the growth schedule σ ′ in k = n2χ(G) + 4n − 2 + �log n2� slots, and thus

κ(G ′) ≤ n2χ(G) + 4n − 2 + �2 log n�. (1)

Suppose that there exists a polynomial-time algorithm A which computes an N
1
3 −ε-approximate growth schedule σ ′′ for 

graph G ′ (which has N vertices), i.e., a growth schedule of k ≤ N
1
3 −εκ(G ′) slots. Note that, for every slot of σ ′′ , all different 

vertices of V (G A
i ) (respectively V (G B

i )) which are generated in this slot are independent. For every i = 1, . . . , n2, denote 
by χ A

i (respectively χ B
i ) the number of different slots of σ ′′ in which at least one vertex of V (G A

i ) (respectively V (G B
i )) 

appears. Let χ∗ = min{χ A
i , χ B

i : 1 ≤ i ≤ n2}. Then, there exists a coloring of G with at most χ∗ colors (i.e., a partition of G
into at most χ∗ independent sets).

Now we show that k ≥ 1
2 n2χ∗ . Let i ∈ {2, . . . , n2 − 1} and let u ∈ V (G A

i ) ∪ V (G B
i ). Assume that u is generated at slot 

t in σ ′′ . Then, either all vertices of V (G A
i−1) ∪ V (G B

i−1) or all vertices of V (G A
i+1) ∪ V (G B

i+1) are generated at a later slot 
t′ ≥ t + 1 in σ ′′ . Indeed, it can be easily checked that, if otherwise both a vertex x ∈ V (G A

i−1) ∪ V (G B
i−1) and a vertex 

y ∈ V (G A
i+1) ∪ V (G B

i+1) are generated at a slot t′′ ≤ t in σ ′′ , then u cannot be a candidate vertex at slot t , which is a 
contradiction to our assumption. That is, in order for a vertex u ∈ V (G A

i ) ∪ V (G B
i ) to be generated at some slot t of σ ′′ , 

we must have that i is either the currently smallest or largest index for which some vertices of V (G A
i ) ∪ V (G B

i ) have been 
generated until slot t . On the other hand, by definition of χ∗ , the growth schedule σ ′′ needs at least χ∗ different slots to 
generate all vertices of the set V (G A

i ) ∪ V (G B
i ), for 1 ≤ i ≤ n2. Therefore, since at every slot, σ ′′ can potentially generate 

vertices of at most two indices i (the smallest and the largest respectively), it needs to use at least 1
2 n2χ∗ slots to grow the 

whole graph G ′ . Therefore,

k ≥ 1

2
n2χ∗. (2)

Recall that N = 4n3. It follows by Equations (1) and (2) that

1

2
n2χ∗ ≤ k ≤ N

1
3 −εκ(G ′)

≤ N
1
3 −ε(n2χ(G) + 4n − 2 + �2 log n�)

≤ 4n1−3ε(n2χ(G) + 6n)

and, thus, χ∗ ≤ 8n1−3εχ(G) + 48n−3ε . Note that, for sufficiently large n, we have that 8n1−3εχ(G) + 48n−3ε ≤ n1−εχ(G). 
That is, given the N

1
3 −ε-approximate growth schedule produced by the polynomial-time algorithm A, we can compute in 

polynomial time a coloring of G with χ∗ colors such that χ∗ ≤ n1−εχ(G). This is a contradiction since for every ε > 0, 
there is no polynomial-time n1−ε-approximation for minimum coloring, unless P = NP [40]. �
4. Growth schedules of (poly)logarithmic slots

In this section, we study graphs that have growth schedules of (poly)logarithmic slots. As proved in Section 3, an integral 
factor in computing a growth schedule for any graph G , is computing a k-coloring for G . In particular, a growth schedule 
for graph G using k slots implies that graph G can be colored with k colors. Since we consider polynomial-time algorithms, 
we have to restrict ourselves to graphs where the k-coloring problem can be solved in polynomial time and, additionally, 
we want small values of k since we want to produce fast growth schedules. Therefore, we investigate tree, planar and k-
degenerate graph families since there are polynomial-time algorithms that solve the k-coloring problem for graphs drawn 
from these families. We continue with lower bounds on the number of excess edges if we fix the number of slots to log n, 
for path, star and specific bipartite graph families.
12
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Fig. 4. An example of a path-cut phase.

Fig. 5. An example of a leaf-cut phase.

4.1. Trees

We give an algorithm that computes growth schedules for tree graphs. Let G be the target tree graph. The algorithm 
applies a decomposition strategy on G , where vertices and edges are removed in phases, until a single vertex is left. We can 
then grow the target graph G by reversing its decomposition phases, using the path and star schedules as subroutines 
(from Section 2.2).

Tree algorithm: Starting from a tree graph G , the algorithm alternats between two phases, a path-cut and a leaf-cut phase. 
Let G2i , G2i+1, for i ≥ 0, be the graphs obtained after the execution of the first i pairs of phases and an additional path-cut 
phase, respectively.

Path-cut phase: For each path subgraph P = (u1, u2, . . . , uν), for 2 < ν ≤ n, of the current graph G2i , where u2, u3, ..., uν−1
have degree 2 and u1, uν have degree �= 2 in G2i , edge u1uν between the endpoints of P is activated and vertices 
u2, u3, ...uν−1 are removed along with their incident edges. An example of this is shown in Fig. 4. If a single vertex is 
left, the algorithm terminates; otherwise, it proceeds to the leaf-cut phase.
Leaf-cut phase: Every leaf vertex of the current graph G2i+1 is removed along with its incident edge. An example of this is 
shown in Fig. 5. If a single vertex is left, the algorithm terminates; otherwise, it proceeds to the path-cut phase.

The algorithm reverses the phases (by decreasing i) to output a growth schedule for the tree G as follows. For each path-
cut phase, all path subgraphs that were decomposed in phase are regrown by using the path schedule as a sub-process. 
These can be executed in parallel in O (log n) slots. The same holds true for leaf-cut phases, where each can be reversed to 
regrow the removed leaves by using star schedules in parallel in O (log n) slots. In the last slot, the schedule deletes every 
excess edge.

Lemma 11. Given any tree graph G, the algorithm deconstructs G into a single vertex using at most 2 logn phases.

Proof. Consider the graph G2i after the execution of the i-th path-cut phase. The path-cut phase removes every vertex that 
has exactly 2 neighbors in the current graph, and in the next leaf cut phase, the graph consists of leaf vertices u ∈ Su with 
|N(u)| = 1 and internal vertices v ∈ S v with |N(v)| > 2. Therefore, |Su| > |S v | and since |Su | + |S v | = |V i|, we can conclude 
that |Su | > |V i |/2 and any leaf-cut phase cuts the number of vertices of the current graph in half since it removes every 
vertex u ∈ Su . This means that after at most log n path-cut phases and log n leaf cut phases the graph will have a single 
vertex. �
13
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Lemma 12. Every phase can be reversed using a growth schedule of O (logn) slots.

Proof. Let us consider the path-cut phase. At the beginning of this phase, every starting subgraph G ′ is a path subgraph with 
vertices u1, u2, ..., ux , where u1, ux are the endpoints of the path. At the end of the phase, every subgraph has two connected 
vertices u1, ux . The reversed process works as follows: for each path u1, u2, . . . ux that we want to generate, we use vertex u1
as the initiator and we execute the path algorithm from Section 2.2 in order to generate vertices u2, u3, ..., ux−1. We make 
the following modification to path: every time a vertex is generated, an edge between it and vertex ux is activated. After 
this process completes, edges not belonging to the original path subgraph G ′ are deleted. This growth schedule requires 
log x ≤ logn slots. We can combine the growth schedules of each path into a single schedule of log x slots since every 
schedule has distinct initiators and they can run in parallel.

Now let us consider the leaf-cut phase. In this phase, every vertex removed is a leaf vertex u with one neighbor v . Note 
that v might have multiple neighboring leaves. The reverse process works as follows: For each vertex v , we use a separate 
star growth schedule from Section 2.2 with v as the initiator, in order to generate every vertex u that was a neighbor to 
v . Each of this growth schedule requires at most log x ≤ log n slots, where x is the number of leaves in the current graph. 
We can combine the growth schedules of each star into a single schedule of log n slots since every schedule has distinct 
initiators and they can run in parallel. �
Theorem 5. For any tree graph G on n vertices, the tree algorithm computes in polynomial time a growth schedule σ for G of 
O (log2 n) slots and O (n) excess edges.

Proof. The growth schedules of the produced by each phase can be straightly combined into a single one by appending 
the end of each growth schedule with the beginning of the next one, since every sub-schedule σi uses only a single vertex 
as an initiator u, which is always available (i.e., u was generated by some previous σ j ). Since we have O (log n) schedules 
and every schedule has O (log n) slots, the combined growth schedule has O (log2 n) slots. Note that every schedule used to 
reverse a phase uses O (n) excess edges, where n is the number of vertices generated in that schedule. Since the schedule 
generates n − 1 vertices, the excess edges activated throughout the schedule are O (n). �
4.2. Planar graphs

In this section, we provide an algorithm that computes a growth schedule for any target planar graph G = (V , E). The 
algorithm first computes a 4-coloring of G and partitions the vertices into color sets V i , 1 ≤ i ≤ 4. The color sets are used to 
compute the growth schedule for G . The schedule contains four sub-schedules, each sub-schedule i generating all vertices 
in color set V i . In every sub-schedule i, we use a modified version of the star schedule to generate set V i .
Pre-processing: By using the algorithm of [35], the pre-processing step computes a 4-coloring of the target planar graph 
G . This creates color sets V i ⊆ V , where 1 ≤ i ≤ 4, every color set V i containing all vertices of color i. Without loss of 
generality, we can assume that |V 1| ≥ |V 2| ≥ |V 3| ≥ |V 4| ≥ |V 4|. Note that every color set V i is an independent set of G .

Planar algorithm: The algorithm picks an arbitrary vertex from V 1 and makes it the initiator u0 of all sub-schedules. Let 
V i = {u1, u2, . . . , u|V i |}. For every sub-schedule i, 1 ≤ i ≤ 4, it uses the star schedule with u0 as the initiator, to grow the 
vertices in V i in an arbitrary sequence, with some additional edge activations. In particular, upon generating vertex ux ∈ V i , 
for all 1 ≤ x ≤ |V i|:

1. Edge vux is activated if v ∈ ⋃
j<i V j and u y v ∈ E , for some u y ∈ V i ∩ Pux , both hold (recall that Pux contains the 

descendants of ux).
2. Edge wux is activated if w ∈ ⋃

j<i V j and wux ∈ E both hold.

Once all vertices of V i have been generated, the schedule moves on to generate V i+1. Once all vertices have been 
generated, the schedule deletes every edge uv /∈ E . Note that every edge activated in the growth schedule is an excess edge 
with the exception of edges satisfying (2). For an edge wux from (2) to satisfy the edge-activation distance constraint it 
must hold that every vertex in the birth path of ux has an edge with w . This holds true for the edges added in (2), due to 
the edges added in (1).

The edges of the star schedule are used to quickly generate the vertices, while the edges of (1) are used to enable the 
activation of the edges of (2). By proving that the star schedule activates O (n) edges and (1) activates O (n log n) edges, 
and by observing that the schedule contains star sub-schedules that have 4 × O (log n) slots in total, the next lemma 
follows.

Lemma 13. Given a target planar graph G = (V , E), the planar algorithm returns a growth schedule for G.

Proof. Based on the description of the schedule, it is easy to see that we generate exactly |V | vertices, since we break V
into our four sets V i and we generate each set in a different phase i. This is always possible for any arbitrary graph G , since 
every set V i is an independent set.
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We will now prove that we also generate activate the edges of G . Note that this holds trivially since (2) activates exactly 
those edges. What remains is to argue that the edges of (2) do not violate the edge-activation distance d = 2 constraint. This 
constraint is satisfied by the edges activated by (1) since for every edge wux ∈ E(G), the schedule makes sure to activate 
every edge uu y , where vertices u y are the vertices in the birth path of ux . �
Lemma 14. The planar algorithm has O (logn) slots and O (n logn) excess edges.

Proof. Let ni be the size of the independent set V i . Then, the sub-schedule that grows V i requires the same number of slots 
as path, which is �log ni� slots. Combining the four sub-schedules requires 

∑4
i=1 log ni = log

∏4
i=1 ni < 4 log n = O (log n)

slots.
Let us consider the excess edges activated in every sub-schedule. The number of excess edges activated are the excess 

edges of the star schedule and the excess edges for the progeny of each vertex. The excess edges of the star schedule are 
O (n). We also know that the progeny of each vertex u includes at most |Pu | = O (log n) vertices since the number of slots 
of the growth schedule is O (log n). Since we have a planar graph we know that there are at most 3n edges in graph G . For 
every edge uv in the target graph, we would need to add at most O (log n) additional excess edges. Therefore, no matter 
the structure of the 3n edges, the schedule would activate 3nO (log n) = O (n log n) excess edges. �

The next theorem follows from Lemmas 13 and 14.

Theorem 6. For any planar graph G on n vertices, the planar algorithm computes in polynomial time a growth schedule for G of 
O (log n) slots and O (n logn) excess edges.

Definition 5. A k-degenerate graph G is an undirected graph in which every subgraph has a vertex of degree at most k.

Corollary 1. The planar algorithm can be extended to compute, for any graph G on n vertices and in polynomial time, a growth 
schedule of O ((k1 + 1) log n) slots, O (k2n log n) and excess edges, where (i) k1 = k2 is the degeneracy of graph G, or (ii) k1 = � is the 
maximum degree of graph G and k2 = |E|/n.

Proof. For case (i), if graph G is k1-degenerate, then an ordering with coloring number k1 + 1 can be obtained by repeatedly 
finding a vertex v with at most x neighbors, removing v from the graph, ordering the remaining vertices, and adding v
to the end of the ordering. By Lemma 14, the algorithm using a k1 + 1 coloring would produce a growth schedule of 
O ((k1 + 1) log n) slots. Since graph G is k2-degenerate, G has at most k2 × n edges and by the proof of Lemma 14, the 
algorithm would require O (k2n log n) excess edges. For case (ii), we compute a � + 1 coloring using a greedy algorithm 
and then use the planar graph algorithm with the computed coloring as an input. By the proof of Lemma 14, the algorithm 
would produce a growth schedule of O ((� + 1) log n) slots. �
4.3. Lower bounds on the excess edges

In this section, we provide some lower bounds on the number of excess edges required to grow a graph if we fix the 
number of slots to log n. For simplicity, we assume that n = 2δ for some integer δ, but this assumption can be dropped.

We define a particular graph Gmin with n vertices, through a growth schedule σmin for it. The schedule σmin contains 
log n slots. In every slot t , the schedule generates one vertex u′ for every vertex u in (Gmin)t−1 and activates uu′ . This 
completes the description of σmin . Let G be any graph on n vertices, grown by a logn-slot schedule σ . Observe that any 
edge activated by σmin is also activated by σ . Thus, any edges of Gmin “not used” by G are excess edges that must be deleted 
by σ , for G to be grown by it. The latter is captured by the following minimum edge-difference over all permutations of 
V (G) mapped on V (Gmin).

Consider the set B of all possible bijections between the vertex sets of V (G) and V (Gmin), b : V (G) �−→ V (Gmin). We 
define the edge-difference E Db of every such bijection b ∈ B as E Db = |{uv ∈ E(Gmin) | b(u)b(v) /∈ E(G)}|. The minimum 
edge-difference over all bijections b ∈ B is min

b
E Db . We argue that a growth schedule of log n slots for graph G uses at 

least min
p

E D p excess edges since the schedule has to activate every edge of Gmin and then delete at least the minimum 

edge-difference to get G . This property leads to the following theorem, which can then be used to obtain lower bounds for 
specific graph families.

Theorem 7. Any growth schedule σ of log n slots for a graph G of n vertices, uses at least min
b

E Db excess edges.

Proof. Since every schedule σ of log n slots activates every edge uv of Gmini , σ must delete every edge uv /∈ E(G). To find 
the minimum number of such edges, if we consider the set B of all possible bijections between the vertex sets of V (G) and 
V (Gmin), b : V (G) �−→ V (Gmin) and we compute the minimum edge-difference over all bijections b ∈ B as min

b
E Db , then 

schedule σ has to activate every edge of Gmin and delete at least min E Db edges. �

b
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Corollary 2. Any growth schedule of logn slots for a path or star graph of n vertices, uses �(n) excess edges.

Proof. Note that for a star graph G = (V , E), the maximum degree of a vertex in Gmin is log n and the star graph has 
a center vertex with degree n − 1. This implies that there are n − 1 − log n edges of Gmin which are not in E . Therefore 
min

b
E Db = (n − 1 − logn). A similar argument works for the schedule of a path graph. �

We now define a particular graph G f ull = (V , E) by providing a growth schedule for it. The schedule contains log n
slots. In every slot t , the schedule generates one vertex u′ for every vertex u in Gt−1 and activates uu′ . Upon generating 
vertex u′ , it activates an edge u′v with every vertex v that is at distance d = 2 from u′ . Assume that we name the vertices 
u1, u2, . . . , un , where vertex u1 was the initiator and vertex u j was generated in slot �log(u j)� and connected with vertex 
u j−�log(u j)� .

Lemma 15. If n is the number of vertices of G f ull = (V , E) then the number of edges of G f ull is n logn ≤ |E| ≤ 2n log n.

Proof. Let f (x) be the sum of degrees when x vertices have been generated. Clearly f (2) = 2. Now consider slot t and let’s 
assume it has x vertices at its end. At end of next slot we have 2x vertices. Let the degrees of the vertices at end of slot t
be d1, d2, ..., dk . Consider now that:

• Child i′ of vertex i (generated in slot t + 1) has 1 edge with its parent and di edges (since an edge between it and all 
vertices at distance 1 from i will be activated in slot t . So d′

i = di + 1.
• Vertex i has 1 edge (with its child) and di edges (one from each new child of its neighbors in slot t), that is di(new) =

2di + 1.

Therefore f (2x) = 3 f (x) + 2x. Notice that 2 f (x) + 2x ≤ f (2x) ≤ 4 f (x) + 4x. Let g(x) be such that g(2) = 2 and g(2x) =
2g(x) +2x. We claim g(x) = x log x. Indeed g(2) = 2 log 2 = 2 and by induction g(2x) = 2g(x) +2x = 2x log x +2x = 2x log(2x). 
It follows that n log n ≤ f (n) ≤ 2n log n. �

We will now describe the following bipartite graph Gbipart = (V , E) using G f ull = (V ′, E ′) to describe the edges of Gbipart . 
Both parts of the graph have n/2 vertices and the left part, called A, contains vertices a1, a2, . . . , an/2, and the right part, 
called B , contains vertices b1, b2, . . . , bn/2, and E ′ = {aib j | (ui, u j ∈ E) ∨ (i = j)}. This means that if graph G full has m edges, 
Gbipart has �(m) edges as well.

Theorem 8. Consider graph Gbipart = (V ′, E ′) of n vertices. Any growth schedule σ for graph Gbipart of log n slots uses �(n logn)

excess edges.

Proof. Assume that schedule σ of log n slots, grows graph Gbipart . Since σ has log n slots, for every vertex u ∈ V ′
j−1 a vertex 

must be generated in every slot j in order for the target graph to have n vertices. This implies that in the last slot, n/2
vertices have to be generated and we remind that these vertices must be an independent set in Gbipart . For i = 1, 2, . . . , n/2
and ai, bi ∈ E ′ , vertices ai, bi cannot be generated together in the last slot. This implies that in the last slot, for every 
i = 1, 2, . . . , n/2, we must have exactly one vertex from each pair of ai, bi . Note though that vertices a1, b1 have an edge 
with every vertex in B, A respectively. If vertex a1 or b1 are generated in the last slot, only vertices from A or B , respectively, 
can be generated in that same slot. Thus, we can conclude that the last slot must either contain every vertex in A or every 
vertex in B .

Without loss of generality, assume that in the last slot, we generate every vertex in B . This means that for every vertex 
ai ∈ A one vertex b j ∈ B must be generated. Consider an arbitrary vertex ai for which an arbitrary vertex b j is generated. 
In order for this to happen in the last slot, for every alai ∈ (E ′ \ aib j), alai must be active and every edge alai is an excess 
edge since set A is an independent set in graph Gbipart . This means that for each vertex b j generation, any growth schedule 
must activate at least |N(b j)| − 1 excess edges. By construction, graph Gbipart has O (n log n) edges and thus, the sum of 
the degrees of vertices in B is O (n log n). Therefore, any growth schedule must activate �(n log n) − n = �(n log n) excess 
edges. �
5. Edge-activation distances d �= 2

For completeness, in this section we study edge-activation distances d �= 2 and show that in these cases there are simple 
and efficient algorithms for finding growth schedules. We begin with some basic properties for the case where d = 1.

Observation 1. For d = 1, every graph G that has a growth schedule is a tree graph.

Proposition 4. For d = 1, the shortest growth schedule σ of a path graph (respectively a star graph) on n vertices has �n/2� (respec-
tively n − 1) slots.
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Algorithm 3 Trimming algorithm, for d = 1.
Input: A target tree graph G = (V , E) on n vertices.
Output: An optimal growth schedule for G .

1: t ← 1
2: while V �= ∅ do
3: Kt = ∅
4: for each leaf vertex v ∈ V and its unique neighbor u ∈ V do
5: if u is not marked as a “parent in Kt ” then
6: Mark u as a “parent in Kt ”
7: Kt ← Kt ∪ {(u, v, {uv})}
8: V ← V \ {v}
9: t ← t + 1

10: return σ = (Kt , Kt−1, . . . , K1, ∅)

Proof. Let G be the path graph on n vertices. By definition of the model for d = 1, edges can only be activated during vertex 
generation, between the generated vertex and its parent. Thus, increasing the number of vertices of the path can only be 
achieved by generating one new vertex at each of the endpoints of the path. The number of vertices of a path can only 
be increased by at most 2 in each slot, where for each endpoint of the path a new vertex that becomes the new endpoint 
of the path is generated. Therefore, in order to create any path graph of n vertices would require at least �n/2� slots. The 
growth schedule where one vertex is generated at each of the endpoints of the path in each slot creates the path graph of 
n vertices in �n/2� slots.

Now let G be the star graph of n − 1 leaves. Increasing the number of vertices of the star graph can only be achieved 
by generating new leaves directly connected to the center vertex, and this can occur at most once per slot. Therefore, the 
growth schedule of G requires exactly n − 1 slots. �
Proposition 5. Let d = 1 and G = (V , E) be a tree graph with diameter D. Then any growth schedule σ for G requires at least �D/2�
slots.

Proof. Consider a path p of length D . By Proposition 4, p requires a growth schedule of at least �D/2� slots. �
Proposition 6. Let d = 1 and G = (V , E) be a tree graph with maximum degree �. Then any growth schedule σ for G requires at least 
� slots.

Proof. Consider a vertex u ∈ G with degree � and let G ′ = (V ′, E ′) be a subgraph of G , such that V ′ = N[u] and E ′ =
E(N[u]). Notice that G ′ is a star graph of � + 1 vertices. By Proposition 4, any growth schedule for G ′ has at least �
slots. �
Proposition 7. Let d = 1. Consider a tree graph G and a growth schedule σ for it. Denote by Gt the graph grown by the end of slot t of 
σ . Then any vertex generated in slot t must be a leaf in Gt .

Proof. Every vertex u generated in slot t has degree equal to 1 at the end of slot t by definition of the model for d = 1. 
Therefore, vertex u must be a leaf. �

We now provide an algorithm, called trimming (see Algorithm 3), that optimally solves the graph growth problem for 
d = 1. The algorithm follows a bottom-up approach for building the intended growth schedule σ = (S1, S2, . . . , Sk, E) =
(Kk, Kk−1, . . . , K1, ∅). In every iteration t of the algorithm, the parent-child pairs of Kt are formed between leaves and 
their parents on the tree. The leaves that were included in a parent-child pair are removed and the algorithm repeats. The 
process continues until graph G has a single vertex left, which is set as the initiator. In the next theorem, we show that the 
algorithm outputs an optimum growth schedule with respect to the number of slots.

Theorem 9. For d = 1 and for any tree graph G, the trimming algorithm computes in polynomial time a slot-optimal growth 
schedule for G.

Proof. Let σ = (S1, . . . , Sk, ∅) be the growth schedule obtained by the trimming algorithm on input G . Suppose that 
σ is not optimum, and let σ ′ �= σ be an optimum growth schedule for G . That is, σ = (S ′

1, . . . , S ′
k′ , ∅), where k′ < k. 

Denote by (L1, L2, . . . , Lk) and (L′
1, L

′
2, . . . , L

′
k′) the sets of vertices generated in each slot of the growth schedules σ and σ ′ , 

respectively. Note that 
∑k

i=1 |Li | = ∑k′
i=1 |L′

i | = n − 1. Among all optimum growth schedules for G , we can assume without 
loss of generality that σ ′ is chosen such that the vector (|L′

k′ |, |L′
k′−1|, . . . , |L′

1|) is lexicographically largest.
Let � be the number of slots such that the growth schedules σ and σ ′ generate the same number of leaves in their last 

� slots, i.e., |Lk−i | = |L′
k′−1|, for every i ∈ {0, 1, . . . , � − 1}, but |Lk−�| �= |L′

k′−�
|. Suppose that � ≤ k − 1. Note by construction of 

the trimming algorithm that, since |Lk| = |L′ ′ |, both growth schedules σ and σ ′ generate exactly one leaf for each vertex 
k
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which is a parent of a leaf in G . That is, in their last slot, both σ and σ ′ have the same parents of new vertices; they 
might only differ in which leaves are generated for these parents. Consider now the graph Gk−1 (respectively G ′

k′−1) that is 
obtained by removing from G the leafs of Lk (respectively of L′

k′ ). Then note that Gk−1 and G ′
k′−1 are isomorphic. Similarly 

it follows that, if we proceed removing from the current graph the vertices generated in the last � slots of the schedules σ
and σ ′ , we end up with two isomorphic graphs Gk−�+1 and G ′

k′−�+1. Recall now that, by our assumption, |Lk−�| �= |L′
k′−�

|. 
Therefore, since the trimming algorithm always considers all possible vertices in the current graph which are parents of a 
leaf (to give birth to a leaf in the current graph), it follows that |Lk−�| > |L′

k′−�
|. That is, at this slot the schedule σ ′ misses 

at least one potential parent u of a leaf v in the current graph G ′
k′−�+1. This means that the tuple (u, v, {uv}) appears 

at some other slot S ′
j of σ ′ , where j < k′ − �. Now, we can move this tuple from slot S ′

j to slot S ′
k′−�

, thus obtaining a 
lexicographically largest optimum growth schedule than σ ′ , which is a contradiction.

Therefore � ≥ k, and thus � = k, since 
∑k

i=1 |Li | = ∑k′
i=1 |L′

i | = n − 1. This means that σ and σ ′ have the same number of 
slots. That is, σ is an optimum growth schedule. �

We move on to the case of d ≥ 4, and we show that for any graph G , there is a simple algorithm that computes a growth 
schedule of an optimum number of slots and only linear number of excess edges in relation to the number of vertices of 
the graph.

Lemma 16. For d ≥ 4, any given graph G = (V , E) on n vertices can be grown with a growth schedule σ of �logn� slots and O (n)

excess edges.

Proof. Let G = (V , E) be the target graph, and Gt = (Vt , Et) be the grown graph at the end of slot t . When the growth 
schedule generates a vertex w , w is matched with an unmatched vertex of the target graph G . For any pair of vertices 
v, w ∈ G�logn� that have been matched with a pair of vertices v j, w j ∈ G , respectively, if (v j, w j) ∈ E , then (v, w) ∈ E�logn� , 
and if (v j, w j) /∈ E , then (v, w) /∈ E�logn� .

To achieve growth of G in �log n� slots, for each vertex of Gt the process must generate a new vertex at slot t + 1, except 
possibly for the last slot of the growth schedule. To prove the lemma, we show that the growth schedule maintains a star 
as a spanning subgraph of Gt , for any t ≤ �log n�, with the initiator u as the center of the star. Trivially, the children of u
belong to the star, provided that the edge between them is not deleted until slot �log n�. The children of all leaves of the 
star are at distance 2 from u, therefore the edge between them and u are activated at the time of their birth.

The above schedule shows that the distance of any two vertices is always less or equal to four. Therefore, for each vertex 
w that is generated in slot t and is matched to a vertex w j ∈ G , the process activates the edges with each vertex u that has 
been generated and matched to vertex u j ∈ G j and (w j, u j) ∈ E . Finally, the number of the excess edges that we activate 
are at most 2n − 1 (i.e., the edges of the star and the edges between parent and child vertices). Any other edge is activated 
only if it exists in G . �

It is not hard to see that the proof of Lemma 16 can be slightly adapted such that, instead of maintaining a star, we 
maintain a clique. The only difference is that, in this case, the number of excess edges increases to at most O (n2) (instead 
of at most O (n)). On the other hand, this method of always maintaining a clique has the benefit that it works for d = 3, as 
the next lemma states.

Lemma 17. For d ≥ 3, any given graph G = (V , E) on n vertices can be grown with a growth schedule σ of �log n� slots and O (n2)

excess edges.

6. Conclusion and open problems

In this work, we considered a new model for highly dynamic networks, called growing graphs. The model, with no 
limitation to the edge-activation distance d, allows any target graph G to be grown, starting from an initial singleton graph, 
but large values of d are an impractical assumption with simple solutions and therefore we focused on cases where d = 2. 
We defined performance measures to quantify the speed (slots) and efficiency (excess edges) of the growth process, and 
we noticed that there is a natural trade off between the two. We proposed algorithms for general graph classes that try 
to balance speed and efficiency. If someone wants super efficient growth schedules (zero excess edges), it is impossible to 
even find a n

1
3 −ε-approximation of the number of slots of such a schedule, unless P = NP. For the special case of schedules 

of log n slots and of no excess edges, we provide a polynomial-time algorithm that can find such a schedule.
We believe that the present study, apart from opening new avenues of algorithmic research in graph-generation pro-

cesses, can inspire work on more applied models of dynamic networks and network deployment, including ones in which 
the growth process is decentralized and exclusively controlled by the individual network processors and models whose the 
dynamics is constrained by geometry.

There is a number of interesting technical questions left open by the findings of this paper. It would be interesting to 
see whether there exists an algorithm that can decide the minimum number of edges required by any growth schedule for 
18
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a graph G or whether the problem is NP-hard. Note that this problem is equivalent to the cop-win completion problem; 
that is, � is in this case equal to the smallest number of edges that need to be added to G to make it a cop-win graph. We 
mostly focused on the two extremes of the (k, �)-spectrum, namely one in which k is close to log n and the other is which �
close to zero. The in-between landscape remains to be explored. We also gave some efficient algorithms, mostly for specific 
graph families, but there seems to be room for more positive results.

Finally, we could extend the model and study how much this changes our results. One approach is to consider whether 
we can grow directed graphs or graphs with weighted edges. For example, we could consider a model where each vertex 
can activate edges that sum up to at most a fixed weight per slot. Another interesting approach is to study a combination 
of the growth dynamics of the present work and the edge-modification dynamics of [30], thus, allowing the activation of 
edges between vertices generated in past slots.
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