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Abstract: This paper analyzes the rounD dataset to advance motion forecasting algorithms for au-
tonomous vehicles navigating complex roundabout environments. We develop a trajectory prediction
framework inspired by Gated Recurrent Unit (GRU) networks and graph-based modules to effectively
model vehicle interactions. Our primary objective is to evaluate the generalizability of the proposed
model across diverse training and testing datasets. Through extensive experiments, we investigate
how varying data distributions—such as different road configurations and recording times—impact
the model’s prediction accuracy and robustness. This study provides key insights into the challenges
of domain generalization in autonomous vehicle trajectory prediction.
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1. Introduction

The autonomous vehicle (AV) industry is poised to transform mobility as we know it
today, and market projections are expected to be felt worldwide. Motion forecasting is one
of the key technologies enabling this transformation, as it gives AVs the ability to predict
where other entities like vehicles, pedestrians and road users will be in the future [1,2]. As
it provides this information to the decision-making algorithms, which in turn help actions
like lane changes and collision avoidance, AVs are safe and operational with respect to
them [3,4].

However, the field struggles a lot. The domain gap between the specialized clips used
to train a model and what it perceives as real-world sensory input during driving is one
of many major issues. With the motion forecasting landscape for autonomous vehicles
being quickly revolutionized, it is becoming increasingly critical to deal with these domain
discrepancies. Here, we introduce transfer learning and domain adaptation, which are
two prominent methods aimed at addressing domain discrepancies in machine learning.
Transfer learning involves taking data from one domain and leveraging them to enhance
the performance of a model in another domain. Similarly, domain adaptation is a technique
designed to mitigate source-sample training bias and test-time overfitting by transferring
knowledge across domains, particularly when bridging data distributions from known
sources to unfamiliar targets [5]. However, both of these methods pose challenges in the
context of autonomous vehicle (AV) trajectory prediction. They require additional data
from new scenarios to update the model, which can be difficult to obtain. In the case of
AV trajectory prediction, the real-world driving environment is constantly changing and
is highly dynamic, making it challenging to collect comprehensive datasets that cover all
possible scenarios. Therefore, domain generalization emerges as a promising solution.
Unlike transfer learning and domain adaptation, domain generalization does not rely on
new data from unseen scenarios. Instead, it involves training models across multiple source
domains to achieve performance that can generalize well when deployed in an unseen
environment. This approach is particularly crucial for AVs operating in complex and varied
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environments, as it enables them to adapt to new situations without requiring extensive
additional data. Despite its potential, domain generalization also presents significant
challenges, particularly in consistently generalizing across two completely different worlds.
Validating the effectiveness of these approaches in real-world driving environments, which
are characterized by a high degree of scenario variance, remains extremely difficult. This
underscores the need for continued research and development in this area, as autonomous
vehicles must not only navigate but also become some of the safest entities on the road. [6]

Current leading forecasting methodologies sometimes fail to be effectively imple-
mented in real-world situations because they rely too heavily on datasets that oversimplify
reality [7,8]. Problems like incorrect detection/tracking or poor quality sensor information
lead to sizable discrepancies in ground-truth data, which can also hamper the effectiveness
of motion forecasting models [9,10]. Furthermore, many models do not use relevant road
map and environmental context information from perception modules to make precise
predictions in non-stationary or highly complex environments [11]. Perception input does
not provide perfect quality and fidelity depending on object distance from the ego vehicle,
which is another challenge that existing forecasting benchmarks tend to ignore [7]. As a
result, end-to-end data analysis should become increasingly important, helping us identify
where errors occur within the process and what improvements are needed to develop
fully functional autoregressive models for real-world driving [7,8]. Moreover, a global
evaluation scenario is required to unify the experimental design and facilitate compar-
isons between traditional methods and end-to-end forecasting [12]. Finally, it is important
to understand the impact of different data distributions on models. Factors such as ur-
ban versus rural environments, or variations in daytime versus nighttime conditions and
weather, can significantly affect model effectiveness [13]. For example, models trained with
predominantly urban data may be very inaccurate in the countryside, and clear weather
models fail to classify foggy or rainy photos correctly [14]. Therefore, to ensure models are
not conducting capturing unfairly, this bias and can generalize well enough for broader
life-critical cases. Researchers desperately need more robust motion forecasting models
that incorporate the effects of data distribution as part of model design [7], especially in
the case of autonomous vehicles (AVs), which are hoped to function under a variety of
environment and environmental conditions. Therefore, to advance the field, it is not merely
beneficial but absolutely necessary to scrutinize how different data distributions influence
model performance [15].

This paper will use a backbone model including GRU and q graph-based method to
deal with the trajectory prediction task. In particular, a distribution analysis of several
features is performed by dividing the rounD dataset into several groups that uniformly
cover all mentioned traffic scenarios. Contrary to previous works, a thorough cross-
recording comparison is contributed within the rounD dataset. With this more nuanced
approach, the specific challenges or opportunities related to each traffic condition can
be targeted, thereby improving the model’s capacity for accurate predictions of future
trajectories. This analysis of driving data and its influence on prediction models provides
deep insights for the field of motion prediction in autonomous driving.

2. Related Work
2.1. Trajectory Prediction

Trajectory prediction is fundamental for self-driving vehicles to navigate complex,
dynamic scenes safely and efficiently. Deep learning architectures like Generative Ad-
versarial Networks (GANs) and Variational Autoencoders (VAEs) are commonly used
for motion forecasting. For example, Social GANs produce socially aware trajectories
by modeling fine-grained interactions among road agents, effectively matching human
drivers’ actions [16]. VAEs capture intrinsic motion uncertainty by predicting probabil-
ity distributions over possible future trajectories, enhancing self-driving capabilities in
complex contexts [17]. State-of-the-art approaches like Target-driveN Trajectory Prediction
(TNT) and DenseTNT emphasize temporal features to maintain consistent predictions
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over time [18,19]. LaneRCNN fuses lane information with road semantics to constrain
predictions within reasonable spaces [20]. MultiPath and MultiPath++ predict multiple
future trajectory options to handle uncertainties [21,22]. Recently, graph-based networks
have become key techniques for trajectory prediction due to their ability to capture complex
interactions. GRIP (Graph-based Interaction-aware Trajectory Prediction) introduced graph
structures to model agent interactions [23], leading to rapid developments in the field.
Successors like GRIP++ [24] and GISNet [25] further improved graph-based models by
considering both spatial and temporal aspects. Additionally, to enhance the integration of
multi-modal data for trajectory prediction, [26] recently enabled the accurate alignment
of image data with point cloud data, providing a richer context for understanding the
surrounding environment. By leveraging the coarse-to-fine correspondences extracted
by CoFiI2P, it is convenient to fuse visual information with spatial data, leading to more
informed and accurate trajectory predictions. In our study, the structure of GRIP++ is
used as the creative inspiration in this study due to its effectiveness in modeling complex
spatiotemporal interactions using graph representations. By modifying the GRU modules
and incorporating graph-based feature representations instead of direct coordinate inputs,
a model that is sufficiently robust and representative is aimed to be used.

2.2. Driving Behaviors

Understanding how vehicles operate, especially in the context of autonomous driving,
requires a deep dive into driving behavior. Various methods have been used to explore
this complex field. For instance, scenario-adaptive techniques help us see how driving
behavior changes in different contexts, offering valuable insights into how drivers react to
various environments [27]. Researchers also look at the social aspects of driving, examining
how vehicles interact with each other and with pedestrians. This helps in understand-
ing the unwritten rules that drivers follow on the road [16]. Following these papers, a
sophisticated analysis is conducted in multiple ways (e.g., time and agent interactions)
to explore the factors related to driving behaviors. By using these diverse methods, we
can better understand the intricacies of driving behavior, which is crucial for developing
reliable and safe autonomous driving systems. Key factors influencing the analysis of
driving behavior include the context in which driving occurs, the inherent unpredictability
of human driving habits, and the dynamic interactions between vehicles, pedestrians, and
the broader environment. These factors play a pivotal role in shaping the driving behavior
observed in real-world scenarios [28].

2.3. rounD Dataset

The rounD dataset comprises video data obtained from a drone flying over round-
abouts, which offers several advantages over onboard camera footage. Drones provide
a broad, bird-eye view, capturing the entire roundabout and surrounding traffic with
minimal occlusion, allowing for a comprehensive analysis of traffic flow and vehicle inter-
actions across multiple lanes. This aerial perspective reduces the limitations of onboard
cameras, which are often obstructed by the vehicle itself. Drones also offer flexibility in
repositioning and adjusting altitude to capture different angles, providing a clearer, more
stable view of traffic patterns and behaviors. This makes drone footage particularly valu-
able for analyzing trajectory prediction tasks that involve interactions among multiple
agents in complex environments, while onboard cameras are better suited for real-time
autonomous vehicle navigation and decision making. Using the roundD dataset, the Scout
study proposed a social-consistency-aware graph attention network for vehicle and Vul-
nerable Road User (VRU) motion forecasting [29]. Additionally, several other studies have
leveraged roundD to develop deep learning-based architectures for trajectory prediction
and correction, highlighting its significance in achieving reliable forecasting for safe vehicle
navigation. Furthermore, the multi-agent GRIT method for goal recognition—an approach
not widely adopted in this field but enabling fast and interpretable predictions—has been
applied using roundD data to enhance autonomous driving scenarios [30]. In this work, we
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focus on assessing the generalizability of our proposed trajectory prediction model across
diverse training and testing data using the rounD dataset.

2.4. Domain Generalization

In model training tasks, data distribution is important—especially in domain general-
ization. This idea is crucial for making sure that our models are still able to be flexible and
generalizable across new environments they have never seen. Ref. [31] provided a valuable
perspective on domain generalization, highlighting that it is one of the main challenges in
ensuring that models perform effectively across different situations. It is a major pain point
in applications like autonomous driving or industrial automation. To improve on this, the
study presented in [32] introduces a fundamentally new approach to trajectory prediction
for autonomous vehicles. Their solution is a Graph Neural Network (GNN)-based variant
that incorporates domain generalization, the unsolvable problem of universal alignment
and adaptation to unseen driving scenarios. This work will adopt GNN-based techniques
to deal with the feature representation part in the rounD dataset and launch a sophisticated
domain generalization analysis between each driving scenario. This work is expected to
lay the foundation for future research on the rounD dataset and emphasize the importance
of domain generalization for the development of reliable autonomous systems [33].

3. Problem Formulation

We first formulate the trajectory prediction problem, which involves predicting the
future locations of every object in a scene using their past trajectories. To be more specific,
our model takes the trajectory histories of all observed objects over Th time steps as its
inputs, denoted as I:

I = [p1, p2, ..., pTh ] (1)

where
pTh = [x1

Th
, y1

Th
, x2

Th
, y2

Th
, ..., xN

Th
, yN

Th
] (2)

This equation is a coordinates combination of all the observed agents at time Th,
and N is the total number of agents. Both world coordinates and relative measurements
are utilized, such as agent-targeted coordinates. Our objective is to predict the complete
trajectories of observed agents over the next Tf steps, which will be represented as the
output O of our model:

O = [pt+1, pt+2, ..., pt+Tf ] (3)

Let I denote a nonempty input space and O the label space. A domain is defined
as S = {(Ii, Oi)}n

i=1 ∼ PIO, where I ∈ I ⊂ Rd, O ∈ O ⊂ Rdl denotes the label, and PIO
represents the joint distribution of the input sample and output label. I and O denote the
corresponding random variables. In domain generalization, M training (source) domains
are given as Dtrain = {Di i = 1, · · · , M}, where Di = {(Ii

j , Oi
j)}

ni
j=1 denotes the ith

domain and Ij = (I j
t )

T
t=1 =

[
ξ

A,j
t

]T

t=1
denotes a multivariate time series with Ii

t ∈ RH×1. ξ

is used to represent historical trajectories for a given vehicle A in the ith domain (map). In
this work, the objective is to evaluate the developed predictor f to see if it can maintain
its effectiveness across each unseen target domain i′. (i.e., i′ /∈ Di, where Pi′

IO ̸= Pi
IO,

∀i ∈ {1, · · · , M}).

4. Overview of the rounD Dataset

For the roundD dataset, all the recordings are captured under optimal weather condi-
tions, ensuring clear skies, ample lighting, and minimal wind, which enhanced the overall
quality of the footage. This guaranteed greater image clarity and stability, simplifying
subsequent processing tasks. All footage was recorded using a DJI Phantom 4 Pro drone,
which boasts a camera capable of 4K resolution (4096 × 2160 pixels). The videos are shot at
the highest bitrate, capturing 25 frames per second. It successfully extracted information
on 13,746 road users, i.e., cars (11,530), followed by trucks and vans. Other vehicles like
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trailers and buses were less common. Vulnerable Road Users (VRUs), such as pedestrians,
bicyclists, and motorcyclists, are rarer, likely because the roundabouts were situated away
from urban centers or shopping districts. The data for each road user includes details
like position, heading, speed, and acceleration in both x and y axes of the static UTM
coordinate system, as well as in the longitudinal and lateral directions of each participant’s
movement [34].

In Figure 1, four different roundabout types are discovered from a total of 23 recordings.
Among these, roundabout type 0 has a single lane for all entries and exits, and a circular
island in the center. Although roundabout type 1 shares the same shape with Recording_00,
the former is more complex with spiraled traffic lanes to guide vehicles into the correct
lane before entering the roundabout. Moreover, the orientations of the entries and exits are
different. The remaining two roundabout types (2 and 9) are topologically similar, differing
only in their rotations and scales.

Roundabout Type 0 Roundabout Type 1

Roundabout Type 2 Roundabout Type 9

Figure 1. All four roundabout types in the rounD dataset. Here, roundabout type 0 is denoted as the
background image from recording file 0 and so are roundabout types 1, 2 and 9.

Here, Table 1 contains metadata for each recording file, where recording conditions
and parameters are provided, for example, latitude and longitude of the recording location,
UTM coordinate origin, and conversion factor from pixels to meters. Additionally, Table 2
provides detailed information for each tracked object, including position coordinates,
heading angle, width, length, velocities and accelerations in different directions, start and
end frames, total frames, and object class, etc.
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Table 1. This table contains metadata for each recording. The metadata provide a general overview,
e.g., of the time of recording, the road section considered, and the total number of objects tracked.

Name Description Unit

recordingId Unique identifier for the recording. [-]

locationId Unique identifier for the recording location. [-]

frameRate Video frame rate used during recording. [hz]

speedLimit Speed limit of the lanes in the recording. [m/s]

weekday Day of the week when the recording occurred. [-]

startTime Starting hour of the recording. [hh]

duration Total time of the recording. [s]

numTracks Number of tracked objects. [-]

numVehicles Number of tracked vehicles (cars, trucks, vans, trailers). [-]

numVRUs Number of tracked vulnerable road users (pedestrians, bi-
cycles, motorcycles). [-]

latLocation Approximate latitude of the recording. [deg]

lonLocation Approximate longitude of the recording. [deg]

xUtmOrigin UTM X coordinate origin for the recording location. [m]

yUtmOrigin UTM Y coordinate origin for the recording location. [m]

orthoPxToMeter Conversion factor from ortho pixels to UTM meters. [m/px]

Table 2. This table contains all the information of each agent, such as current position, velocity and
acceleration.

Name Description Unit

recordingId Unique recording identifier. [-]

trackId Unique track identifier for each recording. [-]

frame Frame number for the data. [-]

trackLifetime Age of the track at the current frame. [-]

xCenter X coordinate of the object’s centroid. [m]

yCenter Y coordinate of the object’s centroid. [m]

heading Object’s heading angle. [deg]

width Object’s width. [m]

length Object’s length. [m]

xVelocity Velocity along the x-axis. [m/s]

yVelocity Velocity along the y-axis. [m/s]

xAcceleration Acceleration along the x-axis. [m/s²]

yAcceleration Acceleration along the y-axis. [m/s²]

lonVelocity Longitudinal velocity. [m/s]

latVelocity Lateral velocity. [m/s]

lonAcceleration Longitudinal acceleration. [m/s²]

latAcceleration Lateral acceleration. [m/s²]

initialFrame Start frame of the track. [-]
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Table 2. Cont.

Name Description Unit

finalFrame End frame of the track. [-]

numFrames Total lifetime of the track in frames. [-]

class Object class (e.g., Car, Pedestrian, Bicycle). [-]

5. Dataset Analysis
5.1. Analysis on Roundabout Type

To analyze the dataset, an understanding of the high-level data used is first required.
For the four selected recordings, the following description demonstrates their correspond-
ing map types (see Figure 1) and the corresponding amount of data in each recording.

In Table 3, there is only one file (Recording_00 and Recording_01) in roundabout types
0 and 1. Roundabout type 3 encompasses recordings numbered 2 through 8, accumulat-
ing to a total data amount of 1, 732, 504. Lastly, roundabout type 9 includes recordings
numbered 9 to 23, summing up to a total data amount of 3, 303, 282.

Table 3. Data volume for different roundabout types.

Roundabout
Type Index Number of Records (Million)

0 0 0.3

1 1 0.1

2 2–8 0.2, 0.3, 0.2, 0.2, 0.3, 0.3, 0.2

9 9–23 0.3, 0.3, 0.2, 0.2, 0.2, 0.3, 0.9, 0.1, 0.3, 0.3, 0.2, 0.3, 0.3, 0.2, 0.2

5.2. Analysis on Agent Class Distribution

It is important to recognize the distribution of different agent classes within a given
set of input data and why having this knowledge can facilitate the task at hand. What
this allows for is a way to figure out who road users are and how they balance or impair
traffic. It also contains some examples, like cars, trucks, and pedestrians. This distribution
allows us to be aware of possible biases in the data and attempt to correct for them, so
our models are not overly biased towards any one class. This is particularly challenging
in motion forecasting fields for autonomous driving as predicting various behaviors of
different agents is crucial to ensure reliability and safety. Improving the robustness and
generalizability of our model across diverse real-world scenarios requires that all agent
classes are represented in a balanced way.

In Figure 2, the distribution of various classes of agents is presented. The vertical axis
represents the agent count, while the horizontal axis enumerates the different agent classes:
car, truck, van, trailer, motorcycle, bicycle, bus, and pedestrian. Specifically, “car” is labeled
as the ’Majority’ class (red), and truck, van, trailer as the ’Medium’ class (blue), which are
smaller than 10% but higher than 1% of the majority. The ’Minority’ class stands for the
remaining four classes, i.e., motorcycle, bicycle, bus and pedestrian, which are less than
1% of the majority. Due to the limited number of observed samples and the significant
differences in trajectories between motor vehicles, non-motor vehicles, and pedestrians,
the decision has been made to exclude these classes from the analysis. As a result, without
loss of generality, the focus will be on the interactions and influences between automobiles,
rather than VRUs, to ensure the accuracy of predicted trajectories.
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Figure 2. Class distribution of agents, categorized into ’Majority’ (car), ’Medium’ (truck, van, trailer),
and ’Minority’ (motorcycle, bicycle, bus, pedestrian).

5.3. Analysis on Recording Time Distribution

The time of recording can significantly influence driving behavior due to factors
such as traffic density and driver urgency. By analyzing the distribution of recordings
across different times of the day, the aim is to understand how temporal variations are
represented in the dataset. This knowledge helps us to evaluate whether our model can
adapt to different driving conditions encountered at various times. Ensuring that our
models perform well under diverse temporal conditions enhances their applicability in
real-world scenarios and improves their overall robustness.

In Figure 3, the distribution of recordings based on the time of day is illustrated. The
pie chart divides the data into three primary categories: morning, noon, and afternoon. This
means that most recordings in the rounD dataset start in the morning, with approximately
30% at noon and only 10% in the afternoon. This type of distribution offers some hints
about the effects that recording times can have on driving behaviors. This figure also shows
different trajectory patterns in morning rush hours, possibly because drivers would drive
more aggressively or think about their works, in comparison to midday or afternoon, as
it can be seen from Figure 4. The afternoon, and especially weekends, might be a time
when drivers are less aggressive due to family outings. [35]. Knowing these day-dependent
differences is essential when creating robust prediction models that can adjust to the driving
behavior at different times of a single drive [36].

5.4. The Effect of Recording Time on Vehicle State

This section continues exploring how the timestamp alters vehicle states. The idea is
to find patterns when they happen at different times of the day, and then to predict how
these will affect motion forecasting. Understanding these effects is essential for modeling
time-varying driving behavior.

In Figure 4, it can be observed that the variation in acceleration and speed in the
morning is much greater than in the noon and afternoon, suggesting that driving in the
morning tends to do quick starts and stops. Perhaps due to the need for mobility, drivers
tend to accelerate more and make frequent adjustments to their speed to meet commuting
needs. On the other hand, velocities in the noon and afternoon suggest that the road
conditions are good to accommodate different driving styles, with most driving tending to
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be at a constant speed. Moreover, the degree of acceleration variation at noon is smaller
than in the afternoon, which means that the driving behavior at noon could be more relaxed,
with less variability in acceleration, perhaps due to a lower pressure of having to reach a
destination quickly. Meanwhile, the afternoon plot appears to have a wider distribution
at higher velocities, possibly indicating faster driving speeds. However, the range for
acceleration is much less wider than that in the morning, meaning that drivers choose to
travel at a relatively constant speed rather than aggressively.

morning

58.3%

noon

29.2%
afternoon

12.5%

Time Of Recording
morning
noon
afternoon

Figure 3. Time distribution of recordings, divided into morning, noon, and afternoon categories,
highlighting variations in driving behaviors.

5.5. The Effect of Driving Behaviors on Vehicle States

Understanding the impact of driving behaviors on vehicle states is crucial for devel-
oping accurate motion forecasting models. By analyzing how different driving behaviors,
such as acceleration, deceleration, and constant speed, influence vehicle states like velocity
and acceleration, valuable insights into the dynamics of driving patterns can be gained.
This analysis helps us to identify the variations in driving behaviors across different times
of the day and under various traffic conditions. By incorporating these behavioral pat-
terns into our model, the accuracy of vehicle movement predictions can be improved.
This step is essential for enhancing the robustness and reliability of our model, ensuring
they can effectively handle diverse driving scenarios and provide precise predictions in
real-world applications.
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Figure 4. Comparison of morning and afternoon driving behaviors: wider velocity and acceleration
ranges are observed in the morning, indicating more aggressive, stop-and-go driving. Noon and
afternoon driving shows higher velocities but more consistent, relaxed acceleration patterns.

According to Figure 5, in the top plot (Velocity), the velocity ranges of road agents are
much larger than VRUs. For example, the variations in speed and acceleration of a trailer,
bicycle, and pedestrian are much smaller compared to a car. Additionally, the acceleration
ranges of road agents are also larger than VRUs. Therefore, it can be concluded that velocity
has a similar impact as acceleration on the input of the rounD dataset.

5.6. Analysis of Feature Correlations

Analyzing the correlations between different features in our dataset provides valuable
insights into the relationships among various attributes. This step helps in identifying
redundant or highly correlated features, which can be used for feature selection or dimen-
sionality reduction. By understanding these correlations, the efficiency and performance of
the model can be improved, ensuring they are trained on the most informative features,
thereby enhancing prediction accuracy and simplifying model complexity.

In Figure 6, the correlation matrix shows the correlation between each indicator
and checks if there are high correlations between them. Warmer colors (like white and
light blue) represent smaller negative values, while cooler colors (like dark blues and
blue) represent larger positive values. A deep insight into the relationship between those
attributes can be gained from this. Several key connections between the input of the model
were identified. Both xCenter and yCenter are connected to xVelocity and yVelocity with
correlation coefficients of 0.2, 0.47, and −0.62, −0.17, respectively. Additionally, xVelocity
and yVelocity are correlated with the corresponding acceleration values, with coefficients
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of 0.26 and 0.073. Therefore, there is a conclusion that the pair of center points has deep
connections with velocity.

car

truck

van pedestrian bus 
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 Longitudinal Acceleration
 Lateral Acceleration

trailermotorcycle bicycle

car

truck

van pedestrian motorcycle bicycle bus trailer

Figure 5. Velocity and acceleration comparison of road agents and VRUs: road agents (e.g., car, truck,
van, motorcycle, bus) exhibit a much wider range than VRUs. Both velocity and acceleration show
similar trends, indicating their comparable impact in motion forecasting.

5.7. Analysis Across Different Scenarios/Maps

To comprehensively evaluate our models, it is essential to test them across different
scenarios and maps. This analysis aims to compare the performance of our models in
varied environments, identifying any specific challenges or opportunities presented by
different traffic conditions. By doing so, the generalizability and robustness of our models
can be assessed, ensuring they can effectively handle diverse real-world scenarios. This
enhances the practicality and reliability of our model in real-world applications.

In this part, two different scenarios (roundabout type 1 and 2) are selected and com-
pared with each other in various aspects, including class distribution, sample trajectory,
and average speed, which is important for analyzing the challenges in motion forecasting.

In Figure 7, the dominant agent in all scenarios is the car (accounting for more than
75%), and roundabout type 9 tends to have fewer classes of road agents than the other
recordings do. To be more specific, some kinds of vehicles and VRUs are missing in
roundabout type 9, for example, motorcycles. Therefore, without loss of generality, the
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nuance in both cases in terms of motion forecasting can be ignored, as the focus is on the
movement of agents rather than the class.

behavior =


acceleration if f (Ki) > θ

constant if − θ ≤ f (Ki) ≤ θ

deceleration if f (Ki) < −θ

(4)

Figure 6. Correlation matrix heatmap: darker colors and lighter colors indicate larger positive and
smaller negative correlations between indicators. Notable relationships include connections between
xCenter, yCenter, xVelocity, and yVelocity, as well as between velocity and acceleration (noted in red
rectangles). These findings suggest potential redundancy and highlight areas for feature extraction or
dimensional reduction.

Equation (4) is used to determine the class of behavior, where Ki stands for the current
state of agent K on frame i, f represents the evaluate function of driving behavior, which,
for this case, is exactly the acceleration value on both x and y directions. Here, θ = 0.05
is set as a hyperparameter because the accelerations of approximately 80% of agents are
lower than 0.05, as shown in Figure 8.
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77.0%
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84.4%

6.9%
5.9%

Roundabout Type 9

car trailer pedestrian van truck bus bicycle motorcycle

Figure 7. Pie chart analysis: cars dominate across all scenarios (over 75%) according to all recordings.
Missing classes (some classes cannot be observed in a certain roundabout type) and VRUs, like
trailers, bicycles, and pedestrians, are present in low percentages.

In Figure 8, it can be found that in the roundabout scenario, few road agents will
remain at a constant velocity during the trip, while the distributions of acceleration and
deceleration are shown to be different. The frequency of deceleration is much larger than
that of acceleration on all conditions, and one significant difference between the four
roundabout types is the trend of deceleration and acceleration, especially in roundabout
type 2. While those in roundabout type 1 focus mainly on the ranges [0.2, 0.4] and [0.6, 0.8],
the other three recordings seem to be evenly distributed. However, in roundabout type 9,
more agents tend to move at a constant speed during their trips, and agents in roundabout
type 0 are more likely to accelerate rather than decelerate. The main reason for these
differences is considered to be different road conditions, such as the number of crossroads,
the number of intersections into the main road, and the number of agents at that time,
which is also an important factor that has a great impact on motion forecasting.
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Figure 8. Acceleration and deceleration frequencies vary across recordings in the roundabout scenario,
with deceleration generally being more common. Different trends are observed (marked in red), such
as roundabout type 2’s unique pattern, roundabout type 1’s emphasis on specific acceleration ranges,
and roundabout type 9’s tendency for constant speed.

6. Model Architecture
6.1. Network Overview

Figure 9 shows the backbone model we used for trajectory prediction. The trajectories
of all road agents are illustrated, with the target being highlighted within the traffic graphs.
The circle indicates that all agents inside, including the target, are represented as a fixed
graph. This graph input is then transformed into several neighboring eigenvectors (each
shade of blue representing an eigenvector index) and target eigenvectors of the original
traffic graph. Subsequently, the target eigenvector (2-dimension) is extracted to create a
new feature map across all Th frames. Using an encoder and decoder, both based on GRU
architectures, the final trajectory can be predicted. Here, D denotes the batch size.

6.2. Graph Representation

Each timestamp is represented with n observed road agents using a graph, with the
local coordinates of the road agents representing the set of vertices V = {v1, v2, ..., vn} and a
set of undirected, weighted edges E = {e1, e2, ..., en}. All the road agents in this timestamp
are considered to be connected with the target agent through bi-directional edges. (For
target agent a and for each other agent node i, ea,i and ei,a are obtained.) For agents that have
either already left the scene or have not yet appeared, their state is considered unobserved.
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Consequently, for a given vehicle, its corresponding node feature vi will either be (xi, yi) or
the unobserved state (0, 0).

The GCN structure is chosen because it excels at capturing spatial relationships and
interactions between entities in a graph, making it ideal for modeling the complex interac-
tions between multiple road agents in autonomous driving scenarios. After all the data are
transformed into graphs, the GCN [37] is used to carry out the feature extraction operation.
The layer-wise propagation rule for the GCN is given by the following equation:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(5)

where H(l) represents the activation matrix at the l-th layer, H(l+1) is the activation matrix
at the (l + 1)-th layer, Ã is the adjacency matrix of the graph with added self-connections,
D̃ is the degree matrix of Ã, W(l) is the weight matrix for the l-th layer, and σ denotes the
activation function, such as the ReLU function. This rule is applied iteratively to propagate
signals through the network.

Figure 9. Overall architecture of the backbone trajectory prediction model used in our paper. Three
main modules are included: data input, graph convolution model, and trajectory prediction model.
Details of each model can be found in Figures 10 and 11.

Figure 10. Details of the graph convolution model. The model is based on a Graph Convolution
Network (GCN) structure. The input layer represents the initial node features (source node, neigh-
boring node), which are passed through multiple hidden layers, each applying a graph convolution
operation followed by a sigmoid activation function. The hidden layers capture the relationships
between nodes by iteratively aggregating neighboring node information. The output layer provides
the final representation of the node features after transformation through the network.
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Figure 11. Details of the trajectory prediction model. A Gated Recurrent Unit (GRU) is utilized
to capture the hidden information within the sequential input trajectories. The GRU architecture
consists of reset and update gates, which control the flow of information. The reset gate Rt determines
how much of the previous hidden state Ht−1 to forget, while the update gate Zt balances between the
previous hidden state and the candidate hidden state Ht, calculated using a tanh activation function.
By combining the previous state and new information, the GRU captures dependencies without the
need for separate cell states, as in LSTMs. In our paper, two Gated Recurrent Units are used.

7. Experiment
7.1. Training Details

One Nvidia GeForce RTX 3080 Ti GPU with 16GB memory is used in the work. The
whole dataset is split into four different subsets according to the four map types, for each
subset, and is trained for 50 epochs to generate the best result. We trained four independent
models using these four recordings and tested each them on all four scenarios to evaluate
the in-distribution and out-of-distribution performance of these models. Additionally, the
models’ performances were compared at different times, i.e., morning, noon and afternoon.
To deal with the data imbalance problem and maintain the same data distribution as the
original dataset, stratified sampling was decided to launch on those four roundabout types,
(each accounting for 25%) to obtain two new datasets and compare the performances of the
trained models on the two new datasets. Additionally, we define our problem based on a
1s observation and 1s prediction, i.e., 25 frames for each.

In terms of the hyperparameters, we use a learning rate of 1 × 10−3, batch size of 256,
and choose Adam as the optimizer with weight decay at 1 × 10−5. Apart from that, the input
vectors consist of ten features, i.e., xCenter, yCenter, xVelocity, yVelocity, xAcceleration,
yAcceleration, lonVelocity, latVelocity, lonAcceleration, and latAcceleration. To extract
meaningful features from these high-dimensional data, a reduction in their dimensionality
is required. In this study, Principal Component Analysis (PCA) [38] is employed to use
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two attributes instead of the whole ten inputs to represent the majority of road agent
features in terms of motion forecasting because the inter-relationships between them were
found, according to Figure 6.

During the GCN feature extraction process, combining and calculating the graph
features for each agent into the MLP layer can be computationally intensive. To simplify
this process, a modification is made: after applying the GCN, the information from all
other agents is ignored, and we focus only on the target agent’s features. Specifically, only
the ith

target dimension of the hidden layer values is selected and concatenated, where ith
target

corresponds to the index of the target agent.

7.2. Input Format

The selected inputs are from four independent recordings with the tensor format
B ∗ T ∗ 2, with B = 256 representing for the batch size and T = 25 standing for 1 s
observed data, and two-dimensional coordinates (x, y). The output’s size is the same as the
input. When preparing for the dataset, agents are first chosen according to their types, i.e.,
excluding the VRUs (bicycle and pedestrian). As discussed before in Section 5.1, the VRUs
account for very small percentage of the whole data. To select an agent i over the range
[t0, tn], a sliding window approach is applied: the first 25 frames are chosen as the training
set, and the following 25 frames are chosen as the testing set, where t0 and tn represent the
first frame and the last frame of agent i, respectively.

7.3. Coordinate Transform

Most methods use world spatial coordinates as the input of their models, but there exist
some disadvantages to this straightforward method [39]. For example, world coordinates
are absolute and can be complex to work with, especially in dynamic environments where
many objects are moving simultaneously. Moreover, small errors in world coordinates can
lead to significant inaccuracies in trajectory predictions, especially over long distances or
durations. In this paper, the local coordinate system is used to transform our dataset. Firstly,
each agent’s coordinates are calculated with respect to the target agent a at timestamp k in
the training sequence for both training and predicting, including the target agent itself.

P′
i,tj

=

{
(0, 0) if i = a and tj = k
(xi,tj − xa,k, yi,tj − ya,k) otherwise

(6)

where i is in the range of [1, n] representing different agents, n is the total number of agents.
tj is a certain time step in the existing duration of agent i, and xi,tj and yi,tj represent the
two-dimensional coordinates of agent i at tj moment. In this way, the coordinates of all
agents are normalized in relation to the target agent at the beginning of training.

Subsequently, it has been ascertained that varying scenarios and road conditions exert
a considerable influence on the alterations in trajectory prediction, encompassing both
longitudinal and lateral dimensions. Consequently, there arises a necessity to establish a
novel target-based coordinate system that registers the forward momentum of the target
vehicle as the principal axis of variance. By adopting this approach, one can efficaciously
transform the global coordinate framework into a localized one.

x′i,tj
= xi,tj · cos(θ)− yi,tj · sin(θ)

y′i,tj
= xi,tj · sin(θ) + yi,tj · cos(θ),

(7)

where θ is the angle between the agent’s driving direction and the x-axis (i.e., horizontal
line) of the global coordinate (shown in Figure 12).
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Figure 12. Illustration of the transformation from a global coordinate system to a localized
coordinate system.

The final step is to complete normalization. After the following transformation,
trajectory data are obtained, whose scale is relatively small (the difference of all data in
one training sequence is close to the level of 1 × 10−2), which is not beneficial for training
the network. So, the normalization of the whole data is required in the range [0, 1] using a
MIN-MAX scaler.

x′i,tj
=

xi,tj − µx

σx

y′i,tj
=

yi,tj − µy

σy

(8)

where µx and σx are the mean and variance of transformed x coordinates in the whole
dataset, respectively, as well as y coordinates.

7.4. Metrics and Loss Function

For this trajectory prediction problem, the following standard metrics are used in
our work.

1. ADE (Average Displacement Error): The average Euclidean distance between the
predicted trajectory and the real trajectory.

ADE =

√
∑r

k=1 ∑n
i (Ddist

i )(k)

n

where n indicates the number of vehicles, r indicates the prediction step, and Ddist
i

indicates the Euclidean distance between the actual and predicted coordinates of
vehicle i.

2. FDE (Final Displacement Error): Euclidean distance between trajectory prediction
endpoint and true value.

FDE =
√
(xpred − xtruth)2 + (ypred − ytruth)2

where (xpred, ypred) is the end point of the predicted trajectory, and (xtruth, ytruth) is
the end point of the actual trajectory.

In this problem, the basic MSE (Mean Squared Error) is used as the main loss function.

L =
∑n

i=1(xpred
i − xtruth

i )2 + (ypred
i − ytruth

i )2

n
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where n is the total number of data size, and (xpred
i , ypred

i ) and (xtruth
i , ytruth

i ) are defined
as above.

8. Results and Discussion

The following four Tables 4–7 present the results of our four separate models trained
on a specific domain (roundabout types 0, 1, 2 and 9) and tested on both in-distribution
and out-of-distribution domains across four test sets. The tables compare the performance
of three models—GCN, LSTM, and our one—using ADE and FDE metrics. The goal of this
comparison is to evaluate the generalization capabilities of each model when trained on one
domain and tested on others, thereby assessing their robustness in different roundabout
environments.

Table 4. Result comparison of models trained on one particular domain (i.e., recording type 0) and
tested on both in-distribution and out-distribution domains.

ADE\FDE Roundabout Type 0

Train 0

Test 0 1 2 9

GCN 2.33\5.42 2.87\4.28 3.21\5.44 3.02\5.32

LSTM 0.95\1.12 1.05\1.33 1.12\1.27 1.15\1.58

Ours 0.81\1.06 0.88\1.14 0.99\1.05 1.09\1.34

Table 5. Result comparison of models trained on one particular domain (i.e.,Recording Type 1) and
tested on both in-distribution and out-distribution domains.

ADE\FDE Roundabout Type 1

Train 1

Test 0 1 2 9

GCN 3.02\3.82 2.45\4.19 3.67\5.67 4.28\5.12

LSTM 1.12\1.38 0.91\1.29 1.44\1.76 1.52\2.02

Ours 1.08\1.24 0.87\1.34 1.29\1.96 1.46\1.78

Table 6. Result comparison of models trained on one particular domain (i.e., recording type 2) and
tested on both in-distribution and out-distribution domains.

ADE\FDE Roundabout Type 2

Train 2

Test 0 1 2 9

GCN 4.35\5.18 3.53\4.44 2.89\3.69 3.17\4.21

LSTM 1.35\1.73 1.45\1.39 0.34\0.77 0.95\0.97

Ours 1.34\1.69 1.23\1.43 0.28\0.49 0.79\0.82
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Table 7. Result comparison of models trained on one particular domain (i.e., recording type 9) and
tested on both in-distribution and out-distribution domains.

ADE\FDE Roundabout Type 9

Train 9

Test 0 1 2 9

GCN 3.57\4.01 2.99\4.05 2.91\4.06 2.53\1.99

LSTM 1.34\1.68 1.22\1.45 0.95\1.39 0.63\0.41

Ours 1.12\1.42 0.93\1.43 0.57\0.62 0.16\0.31

8.1. Advantages of Our Model

According to Tables 4–7, our model demonstrates a remarkable improvement over the
baseline GCN and LSTM models under the evaluation of ADE and FDE.

• Accuracy: Our model consistently yields a lower ADE and FDE across all recording
types compared to both GCN and LSTM. While GCN exhibits significantly higher
error rates, reflecting its limited effectiveness in capturing the detailed dependencies
necessary for accurate trajectory prediction, LSTM performs better but still falls short,
especially in complex scenarios. By achieving roughly 50% lower errors than GCN
and 20% lower than LSTM, our model is proved to be better than these two baseline
models in trajectory accuracy.

• Robustness and Stability: The performance of GCN is particularly worse mainly
because of its rigid architecture and limitations in sequential learning, which are
less adaptable to complexities, especially with a large number of agents in trajectory
data. Although LSTM performs better due to its sequential approach, it still obtains
a higher ADE and FDE in more complex and variable scenarios (such as recording
2 and 9) because it does not have the ability to consider the effect from neighboring
agents. In contrast, our model maintains stable and lower error rates across all
recordings, indicating greater robustness and the ability to handle diverse and complex
patterns effectively.

• Application Suitability: In future applications, where prediction reliability is crucial,
our model offers a clear advantage. It outperforms both GCN and LSTM, and combines
both advantages in delivering lower error rates consistently, making it highly suitable
for scenarios requiring dependable, real-time predictions.

8.2. Domain Generalization Analysis

In this part, the domain generalization problem is analyzed primarily in terms of the
model. By observing these tables, several general trends and patterns emerge regarding
the performance of the model trained and tested on different scenes. Firstly, it is noticed
that the lowest ADE and FDE values are generally observed when the training and testing
scenes coincide. This indicates that the models perform best when applied to the same type
of environment they were trained on, highlighting the importance of scene-specific training
data. For instance, the model trained and tested on roundabout type 0 shows relatively low
ADE and FDE values (0.81 and 1.06, respectively), suggesting high accuracy in predictions
for that specific environment. Similarly, the model trained and tested on roundabout type 9
is made up of simple traffic patterns with a high presence of cars, giving rise to low error
values (0.16 ADE and 0.31 FDE).

The models trained on complex scenes like roundabout type 1 have higher error
values when tested with other roundabout types. The main reason for this is that the
sophisticated traffic dynamics and multiple agent types in roundabout type 1 make it
difficult to generalize over other environments. A model trained on roundabout type 2
would have an ADE of 0.28 and FDE of 0.49 when tested in itself. In roundabout type 9, it
can be observed that these two metrics are much smaller than that in roundabout type 0 and
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1, which indicates some shared characteristics that facilitate better performance. Meanwhile,
the prediction for roundabout type 2 based on the model trained on roundabout type 1,
which exhibits much more high frequencies of acceleration and deceleration than other
roundabout types, is surprisingly not good, indicated by the highest error values when
tested in all models.

Overall, the results in these four tables show that the four models generally exhibit
lower prediction errors when applied to roundabout types with similar traffic dynamics
and agent distributions as their training data. This underscores the importance of ac-
counting for specific scene characteristics during model training to enhance predictive
accuracy and generalizability. Additionally, predictable environments with homogeneous
agent types, such as roundabout type 9, tend to yield more accurate predictions across
the four independent models, further emphasizing the benefit of training on stable and
representative data.

8.3. Visualization Analysis

In Figure 13, for roundabout type 0, the predictions by the four independent models
are clustered closely around the actual trajectory, as indicated by the yellow dots. The model
trained on roundabout type 0 might be displaying the highest accuracy, given its familiarity
with the scene’s dynamics. The model trained on roundabout type 9 appears to predict the
trajectory accurately, which might indicate that the traffic behavior in roundabout types 0
and 9 shares similarities that the model can generalize. The divergence between predictions
and the ground truth is minimal, suggesting that the models can capture the necessary
patterns in such simple scenarios.

Figure 13. Visualized Prediction Results: (target, neighboring agents). . . . and . . . are the trajectory
history and labels of all road agents. ▽ are the predicted trajectories of the targets in model 0.
× represents model 1, and + and ⋆ represent model 2 and model 9, respectively.

For roundabout type 1, the trajectories predicted in this scene show greater divergence,
which could be due to the complexity of the roundabout type itself, such as more lanes or
higher traffic density. The model trained on roundabout type 1 likely demonstrates better
performance compared to the others, as it would be specialized to the specific complexities
of the roundabout type. Models trained on other roundabout types (0, 2, and 9) might
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struggle to adapt their predictions to the unique traffic patterns of roundabout type 1, hence
the greater variance in predicted trajectories.

For roundabout type 2, it presents a roundabout with a central island. The complexity
of roundabout interactions is reflected in the more scattered predictions. The models trained
on this roundabout type and similar type 9 are expected to have learned the nuances of
their traffic flow, potentially resulting in closer predictions to the ground truth. Other
models (0 and 1) seem to have divergent predictions, indicating a lower ability to capture
the specific traffic behaviors of this scene, which may be quite different from those in their
training data.

For roundabout type 9, the predictions in this scene are relatively close to each other,
suggesting that all the models find this roundabout type easier to predict or that there
is some commonality in the traffic dynamics that all models are able to grasp. Given
that the model trained on roundabout type 9 shows predictions closely following the
ground truth, it suggests high accuracy and an understanding of this scene’s particular
characteristics. Other models, even though trained on different scenes, seem to provide
reasonable predictions for this recording, which may indicate that the traffic patterns in
roundabout type 9 are less unique or that the behaviors here are well represented in the
training datasets of the other models.

9. Conclusions

In this paper, we conducted an analysis of the rounD dataset to enhance our un-
derstanding of trajectory prediction for autonomous vehicles in complex roundabout
environments. By implementing a trajectory prediction framework that combines GRU
networks with graph-based modules to capture vehicle interactions, the generalizability
of a model was assessed across diverse training and testing datasets. Our extensive ex-
periments demonstrated that varying data distributions—including differences in road
configurations and recording times—significantly influence a model’s prediction accuracy
and robustness. It can be found that models trained on a broader range of data exhibited
stronger generalization to unseen scenarios, emphasizing the necessity for diverse and
representative training datasets for effective domain generalization in autonomous driving.

9.1. Limitations

While our study provides valuable insights, there are several limitations to consider.
Although two additional backbone models were included to enhance our evaluation, the
reliance on the rounD dataset alone may still limit the generalizability of our findings.
The dataset may not fully capture all real-world driving conditions, particularly those
influenced by extreme weather events, varying traffic densities, or less common road
configurations. Furthermore, the current study does not address potential issues of data
sparsity in certain scenarios, which could affect model performance and robustness.

9.2. Future Work

To address these limitations, future research should focus on expanding the dataset to
encompass a wider variety of driving conditions, including scenarios with diverse environ-
mental factors such as inclement weather and night-time driving. Furthermore, the aim is to
contribute to the development of domain generalization techniques by exploring advanced
methods that enhance the model’s ability to generalize across different environments and
conditions. This includes investigating the integration of multi-modal data, such as sensor
fusion from LiDAR and camera inputs, to bolster the robustness of trajectory prediction
models. Additionally, exploring advanced techniques for continual learning and domain
adaptation may provide pathways to improve model performance in rapidly changing
environments. Through these efforts, the field of trajectory prediction in autonomous
vehicles is aimed to be advanced, fostering models that are not only accurate but also
resilient across dynamic and unpredictable scenarios.
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