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A B S T R A C T

Heuristics for Vector Bin Packing (VBP) play an important role in modern distributed computing systems
and other applications aimed at optimizing the usage of multidimensional resources. In this paper we
perform a systematic classification of heuristics for VBP, with the focus on construction heuristics. We bring
together existing VBP algorithms and their tuning parameters, and propose new algorithms and new tuning
parameters. For a less studied class of multi-bin algorithms, we explore their properties analytically, considering
monotonic and anomalous behavior and approximation guarantees. For empirical evaluation, all algorithms
are implemented as the Vectorpack library and assessed through extensive experiments. Our findings may serve
as the basis for the development of more complex, hybrid algorithms, hyperheuristics and machine learning
algorithms. The Vectorpack library can also be adjusted for addressing enhanced VBP problems with additional
features, which arise in applications, especially those typical for modern distributed computing systems.
1. Introduction

In the bin packing problem (BP), there are 𝑛 items  = {1, 2,… , 𝑛}
with given sizes 𝑠𝑖 for items 𝑖 ∈ , and a set of identical bins, each
bin with capacity 𝑐. The items need to be allocated to the minimum
number of bins without exceeding the bin capacity 𝑐. We denote by 
the set of activated bins at some stage of an algorithm and in the final
solution.

In the vector bin packing problem (VBP), sometimes called multi-
capacity bin packing problem, each of the 𝑛 items is characterized by a
𝑑-tuple of sizes 𝑠𝑖ℎ, 𝑖 ∈ , 1 ≤ ℎ ≤ 𝑑. The bins are identical, with a
given size 𝑐ℎ for each dimension ℎ, 1 ≤ ℎ ≤ 𝑑.

Allocating a subset of items ′ ⊆  to one bin is feasible if
∑

𝑖∈′
𝑠𝑖ℎ ≤ 𝑐ℎ for each ℎ = 1,… , 𝑑.

If a bin 𝐵𝑘 is packed with a subset of items 𝑘 ⊆ , then its residual
capacity is characterized by 𝑑 values

𝑟𝑘ℎ = 𝑐ℎ −
∑

𝑖∈𝑘

𝑠𝑖ℎ, 1 ≤ ℎ ≤ 𝑑.

In what follows, we use the notations 𝐬𝑖 =
(

𝑠𝑖1, 𝑠𝑖2,… , 𝑠𝑖𝑑
)

and 𝐫𝑘 =
(

𝑟𝑘1, 𝑟𝑘2,… , 𝑟𝑘𝑑
)

in bold font to denote the 𝑑 -component vectors of item
sizes and bin residual capacities. During the course of an algorithm, we
denote by ∗ ⊆  the subset of unallocated items.

∗ Correspondence to: School of Computer Science, University of Leeds, LS2 9JT, UK.
E-mail address: N.Shakhlevich@leeds.ac.uk (N.V. Shakhlevich).

Allocating item 𝑖 in addition to those already in the bin is feasible if

𝑠𝑖ℎ ≤ 𝑟𝑘ℎ for each ℎ = 1,… , 𝑑. (1)

Without loss of generality, we assume that the bin sizes are normalized,
so that

𝑐ℎ = 1, 1 ≤ ℎ ≤ 𝑑. (2)

If an instance is given with 𝑐ℎ ≠ 1, then normalization is performed by
setting 𝑐ℎ = 1 and replacing original values 𝑠𝑖ℎ by 𝑠𝑖ℎ∕𝑐ℎ for all items
𝑖 ∈  and all dimensions ℎ, 1 ≤ ℎ ≤ 𝑑.

With normalized bin capacities, the simplest and most popular
lower bound for the VBP problem decomposes the 𝑑-dimensional prob-
lem into 𝑑 one-dimensional subproblems. For each subproblem cor-
responding to dimension ℎ, the minimum number of bins is at least
⌈
∑

𝑖∈ 𝑠𝑖ℎ
⌉

. Therefore, the minimum number of bins for the main 𝑑-
dimensional problem is at least

𝐿𝐵 = max
1≤ℎ≤𝑑

{⌈

∑

𝑖∈
𝑠𝑖ℎ

⌉}

. (3)

For examples of advanced methods known for lower bound calculation,
see Spieksma (1994), Caprara and Toth (2001), Alves et al. (2014,
2016), Brandão and Pedroso (2016) and Gurski and Rehs (2020). Note
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that comparing the accuracy of lower bounds is beyond the scope of
our paper.

In the decision version of VBP, denoted by VBP(𝑚), the number
of bins 𝑚 is given and fixed, and the objective is to find a feasible
allocation of 𝑛 items into at most 𝑚 bins, if one exists. Note that the
decision version of VBP coincides with the decision versions of the
following problems: vector scheduling (Chekuri and Khanna, 2004), 𝑑-
constraint multiple knapsack problem (Ahuja and Cunha, 2005), multiple
ultidimensional knapsack problem (Cacchiani et al., 2022), multidimen-

sional bin packing to maximize the number of items packed (Coffman et al.,
2013).

1.1. Literature review

In this paper we consider construction heuristics for VBP in the
setting with arbitrary dimension 𝑑: their general principles, implemen-
tation details, properties, and performance, evaluated via experiments
on several types of datasets. It complements the mainstream research,
which is mostly dominated by the approximability study and by the
design of enumerative algorithms and metaheuristics.

Summarizing approximability results we note that there are prov-
able limitations on the design of fast algorithms with guaranteed ac-
curacy smaller than 𝑑; see the surveys by Christensen et al. (2017),
Csirik and Dósa (2018), Coffman et al. (2013) and Epstein and van Stee
(2018). Considering exact methods, we refer to Delorme et al. (2016)
and Baldacci et al. (2023) for the comparative analysis of state-of-the-
art algorithms for the one-dimensional case and to Pessoa et al. (2021)
for both one- and multi-dimensional cases. Although major progress has
been recently achieved in the design of powerful solvers, computation
time is still quite high for difficult one-dimensional instances with
𝑛 ≤ 1000 and for multi-dimensional instances with 𝑑 ≤ 20 and 𝑛 ≤
200; the computation time in experiments is usually limited to 1 hour,
which is often unacceptable for real-world applications. Most of the
time, successful approaches, which compete very well in experiments
and outperform other approaches in terms of computation time and
accuracy, are restricted to handling 2-dimensional problems only; see,
e.g., Wei et al. (2020).

Considering metaheuristics, their comparison is performed mostly
for the one-dimensional case; see the survey by Munien et al. (2020).
The comparison of several approaches for the multi-dimensional case
can be found in the recent paper by Nagel et al. (2023) . Metaheuristics
are capable of finding solutions of good quality, outperforming in
some cases best-known heuristics, but this is achieved at the cost of
substantial computation time, up to 1 hour for some methods.

To conclude our overview we cite Epstein and van Stee (2018) who
observed that “after many years of study, we still do not understand
the multidimensional case as well as the one-dimensional case”. While
this observation is stated in relation to approximation algorithms, it
is generally true in relation to fast heuristics for VBP, the subject of
our study. Note that in the most recent handbook by Gonzalez (2018),
which includes six surveys on packing problems, only two surveys
discuss practical packing algorithms (although geometric bin packing
is not very relevant for our study), while the remaining four surveys
focus on approximability results.

The number of publications which evaluate fast heuristics for VBP
is relatively small and quite often focuses on the two-dimensional case.
The report by Panigrahy et al. (2011) has been the main reference
for researchers for more than 10 years. The need for an up-to-date
methodological paper on VBP heuristics has become particularly acute
due to the growing research in the context of distributed computing,
where fast VBP algorithms are adapted for solving enhanced problems

with additional features typical for Grids and Clouds.

2 
1.2. Contributions and paper outline

The main goal of our work is to systemize the collection of known
VBP heuristics, to enrich it with new approaches, and to compile a com-
prehensive list of algorithms’ parameters. For old and new methods,
we study combinations of parameters not explored in prior research.
The parameters are special size measures for items and bins, as well as
scores for item-bin allocations, together with weights prioritizing the
dimensions.

A high-level summary of the VBP heuristics and their complexity
estimates is presented in Fig. 1. The first approach, item-centric, stems
from the classical algorithms originally proposed in the context of one-
dimensional BP. Item-centric algorithms consider items one-by-one and
find the “best” bin for a current item.

Bin-centric algorithms consider the bins one-by-one and find the
“best” items to be allocated to a current bin. In either case, a new bin
is activated only if no further allocation can be done with the current
pool of activated bins — an important feature aimed at minimizing the
number of bins in use.

The two traditional classes of algorithms, item-centric and bin-
centric, activate a new bin only if an item cannot be allocated using
activated bins. An alternative approach is multi-bin activation (MB). It
solves a series of decision problems VBP(𝑚), defined for different target
numbers of bins 𝑚. The output is the smallest possible 𝑚 for which a
feasible solution is found. For solving an individual problem VBP(𝑚),
we propose special adaptations of item-centric algorithms and a new
family of pairing algorithms. The latter consider all feasible item-bin
pairs when making allocation decisions.

The whole algorithmic toolkit for VBP is evaluated via computa-
tional experiments, providing guidelines for practitioners, with recom-
mendations of the most appropriate algorithm choice depending on the
features of datasets.

Classification and empirical analysis of the VBP algorithms may
serve as the starting point for the development of advanced algorithms:
hybrid algorithms, hyperheuristics and machine learning algorithms
for VBP. It can also be used for addressing enhanced problems with
additional features, which arise in applications, especially those typical
for modern distributed computing systems. Examples of such problems
can be found in the papers by Garefalakis et al. (2018), Cai et al.
(2022) or Mommessin et al. (2023), which extend the VBP problem
with additional ‘affinity’ features, limited co-location of certain items
to one bin, or in the papers by Gabay and Zaourar (2016) and Jangiti
et al. (2019a), with non-identical bins.

The paper is organized as follows. We start with a summary of exist-
ing and new algorithms for the item-centric and bin-centric approaches,
presented in Sections 2 and 3. In Section 4, we introduce expressions
for weights used in heuristics for prioritizing the dimensions. The new
multi-bin approach is elaborated in Section 5. Overall, Sections 2–5 de-
scribe dozens of algorithms and their variations, capable of producing
different solutions for the same instance of the multidimensional VBP.

The new family of multi-bin activation algorithms is analyzed the-
oretically in Sections 6–7, where we study the issues related to their
monotonicity and anomalous behavior and discuss their accuracy guar-
antees.

The whole range of the solution approaches is analyzed empirically
using the existing and new classes of benchmarks; see Section 8.
Conclusions are presented in Section 9.

2. Item-centric approach

Algorithms for the BP problem have been under study since the
early 1970s. Being a 1-dimensional version of VBP, in the BP problem
the items are prioritized according to their sizes and partially loaded
bins are prioritized according to their residual capacities.

A natural and widely explored approach is to replace an instance
of the 𝑑-dimensional VBP by an instance of the 1-dimensional BP and
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Fig. 1. Heuristic types for VBP.
Table 1
Ordering rules for item-centric algorithms.
The list of activated bins  in The list of items  in

An arbitrary fixed order Decreasing order of 𝑣(𝑖)

An arbitrary fixed order First Fit (FF ) First Fit Decreasing (FFD)
increasing order of 𝑣(𝐵𝑘) Best Fit (BF ) Best Fit Decreasing (BFD)
Decreasing order of 𝑣(𝐵𝑘) Worst Fit (WF ) Worst Fit Decreasing (WFD)
to apply the algorithms known in the BP literature. This is done by
aggregating the 𝑑-tuples for items’ sizes and for bins’ residual capacities
into single scalar measures: a combined size 𝑣(𝑖) of item 𝑖 ∈ , and a
combined residual capacity 𝑣(𝐵𝑘) for an activated bin 𝐵𝑘 ∈ . There are
multiple ways for computing 𝑣(𝑖) and 𝑣(𝐵𝑘), as we discuss at the end of
this section.

Any item-centric algorithm operates on an ordered list of items 
and an ordered list of activated bins , where  initially consists of
a single bin. The items are considered one by one in accordance with
their ordering in . A current item is allocated to the first feasible bin
on the ordered list , where feasibility is checked via (1), or a new bin
is activated and added at the end of list , if no feasible allocation can
be found. Since every allocation changes the residual capacity of the
bin used, the ordering of list  requires updating after each packing of
an item.

Typical priority rules for ordering  and  were originally formu-
lated for one dimensional BP and later on adopted for the multidimen-
sional case of VBP, with scalars 𝑣(𝑖) and 𝑣(𝐵𝑘) used as the size measures
for items and bins. The summary of the item-centric algorithms is
presented in Table 1. Note that each algorithm from the table gives
rise to multiple versions, depending on the way the size measures 𝑣(𝑖)
and 𝑣(𝐵𝑘) are computed.

In what follows we introduce the expressions for computing the size
measures. Early examples of such measures can be found in the papers
by Kou and Markowsky (1977) and Maruyama et al. (1977) and in
the literature on the multidimensional knapsack problem (e.g., Kellerer
et al. (2004)). The most recent summary is provided by Panigrahy
et al. (2011). The extended list of measures, which includes the latest
findings from publications in Distributed Computing, is presented in
Table 2.

The first three size measures are the 𝓁∞, 𝓁1 and 𝓁2 norms of the
corresponding 𝑑-tuples. The fourth size measure only differs from the
third for the computation of the combined bin residual capacity, which
is based on the bin load vector, with components (1 − 𝑟 ), instead of
𝑘ℎ

3 
the bin residual capacity vector, with components 𝑟𝑘ℎ. If an algorithm
calls for creating an ordered list of items and ordered list of bins, then
the size measures 𝑣(𝑖) and 𝑣(𝐵𝑘) of the same type are usually used. The
partner measures are listed in one line of Table 2. For simplicity, the
square root is dropped from the expressions for the 𝓁2-size, as it has no
effect on the ordering of items and bins.

We distinguish between the forward and reverse size measures of
bins. A forward size measure is non-decreasing: if 𝐫𝑘 ≤ 𝐫𝑗 for the vectors
of residual capacities of two bins 𝐵𝑘 and 𝐵𝑗 , then 𝑣(𝐵𝑘) ≤ 𝑣(𝐵𝑗 ). The
first three bin size measures in Table 2 satisfy this property. A reverse
size measure is non-increasing. An example of such a measure is in the
last row of Table 2.

Note that the BF algorithm with the 𝓁2-size of bin residual capacity
does not necessarily produce the same solution as the WF algorithm
with the 𝓁2-size of bin load. For example, consider an instance where
the first four items are of sizes (0.2, 0.9), (0.1, 0.8), (0.5, 0.6) and
(0.6, 0.4). For that instance any item-centric algorithm activates four
bins, with one item per bin. If we use BF with the 𝓁2-size of residual
capacity, then 𝑣(𝐵1) = 0.65, 𝑣(𝐵2) = 0.85, 𝑣(𝐵3) = 0.41, 𝑣(𝐵4) = 0.52, and
for allocating the next, fifth item, the bins are considered in the order
𝐵3, 𝐵4, 𝐵1, 𝐵2. On the other hand, if we use WF with the 𝓁2-size of bin
load, then 𝑣(𝐵1) = 0.85, 𝑣(𝐵2) = 0.65, 𝑣(𝐵3) = 0.61, 𝑣(𝐵4) = 0.52, and
for allocating the next item the bins are considered in the order 𝐵1, 𝐵2,
𝐵3, 𝐵4.

All norms can be considered as unweighted, assuming 𝑤ℎ = 1 for
all 1 ≤ ℎ ≤ 𝑑, or with special non-negative weights defined for each
dimension ℎ. We give the formulae for 𝑤ℎ in Section 4.

We keep in Table 2 the most promising measures, as found in
experiments. The 𝓁∞ and 𝓁1-sizes are most popular and can be found
in multiple sources; see, e.g., Caprara and Toth (2001) and Spieksma
(1994). The 𝓁2-sizes were studied by Maruyama et al. (1977) (the first
version in Table 2) and Shi et al. (2013) (the version for bin load).

For completeness, we describe below the alternative formulae which
appear to be less successful in experiments:
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Table 2
Combined size measures of items and bins for item-centric algorithms.
Measure type Combined size Combined residual

of item 𝑖 ∈ ∗ capacity of bin 𝐵𝑘 ∈ 

𝓁∞-size 𝑣(𝑖) = max
1≤ℎ≤𝑑

{𝑤ℎ𝑠𝑖ℎ} 𝑣
(

𝐵𝑘
)

= max
1≤ℎ≤𝑑

{𝑤ℎ𝑟𝑘ℎ}

𝓁1-size 𝑣(𝑖) =
𝑑
∑

ℎ=1
𝑤ℎ𝑠𝑖ℎ 𝑣

(

𝐵𝑘
)

=
𝑑
∑

ℎ=1
𝑤ℎ𝑟𝑘ℎ Forward

measures

𝓁2-size 𝑣(𝑖) =
𝑑
∑

ℎ=1
𝑤ℎ(𝑠𝑖ℎ)2 𝑣

(

𝐵𝑘
)

=
𝑑
∑

ℎ=1
𝑤ℎ(𝑟𝑘ℎ)2

𝓁2-size of bin load 𝑣(𝑖) =
𝑑
∑

ℎ=1
𝑤ℎ(𝑠𝑖ℎ)2 𝑣

(

𝐵𝑘
)

=
𝑑
∑

ℎ=1
𝑤ℎ(1 − 𝑟𝑘ℎ)2 Reverse

measure
• The Volume of items 𝑣(𝑖) = 𝛱𝑑
ℎ=1𝑤ℎ𝑠𝑖ℎ and the unused volume of

bins 𝑣(𝐵𝑘) = 𝛱𝑑
ℎ=1𝑤ℎ𝑟𝑘ℎ, in their unweighted and weighted forms,

were explored by Maruyama et al. (1977) and later by Panigrahy
et al. (2011). Note that if an item has size 0 in at least one
dimension, then the measure 𝑣(𝑖) is 0, which leads to information
loss while comparing items.

• The Aggregated Rank was proposed by Jangiti et al. (2019b). It is
defined as the sum of rank-values of an item in every dimension,
where for a given dimension, an item 𝑖 is given the rank 𝑢 if it has
the 𝑢th smallest size in this dimension among all items. The rank-
values of bins are defined similarly, with respect to their residual
capacities in every dimension.

• There is no need for computing size measures if items and bins
are ordered lexicographically. Such an ordering may be useful
in the presence of bottleneck dimensions. The item-centric algo-
rithms of this type were explored by Kou and Markowsky (1977)
and Stillwell et al. (2010).

A more complicated version of the item-centric approach is proposed
by Spieksma (1994) for the 2-dimensional case; see also Caprara and
Toth (2001). Having found a first solution, its part corresponding to
“well-filled” bins is kept, and an attempt is made to obtain a better so-
lution for the items from the remaining bins. The new, smaller problem
is solved by the same item-centric algorithm, but with modified weights
𝑤ℎ in the expressions for the item and bin size-measures. Note that
the 𝓁1-size measure is used by Spieksma (1994) and Caprara and Toth
(2001), while in fact the iterative heuristic can use any weighted size
measure from Table 2 in combination with any item-centric algorithm.
The generalization of that approach to the 𝑑-dimensional case with
𝑑 > 2 is not trivial and beyond the scope of our paper.

3. Bin-centric approach

Bin-centric algorithms pack bins one at a time. The unpacked items
feasible for the current bin are prioritized in accordance with a spec-
ified policy, and they are assigned to the current bin until no further
items can be packed. After that a new bin is activated and the process
continues until all items are packed.

In the two simplest versions of the bin-centric approach, the items
are prioritized either according to their numbering or according to
their size 𝑣(𝑖), with the ‘largest item first’ rule. In the former case, the
bin-centric algorithm produces the same solution as the item-centric
algorithm FF. In the latter case, the solution is the same as the one
found by FFD.

Instead of considering item sizes in isolation, it can be preferable
to take into account the item sizes together with the free space in the
current bin, and to estimate the appropriateness of a candidate item
to a bin. Table 3 presents various item-bin scores 𝜉𝑖𝑘, which measure
how well an unallocated item 𝑖 ∈ ∗ fits into a current bin 𝐵𝑘. The
scores are computed only for items which are feasible for bin 𝐵𝑘 in

terms of condition (1). The weights 𝑤ℎ for each dimension are defined

4 
in Section 4. The expressions for the scores are designed so that the
items which use the residual bin capacity to the highest extent receive
the highest scores. At each packing step, the bin-centric algorithm gives
preference to the item which delivers the largest score for the current
bin.

For an item 𝑖 and a bin 𝐵𝑘, the closeness between the vector of
the item sizes 𝐬𝑖 and the vector of the bin residual capacities 𝐫𝑘 can
be measured via the Dot-Product 𝐬𝑖 ⋅ 𝐫𝑘 of the two vectors. The three
dot-product scores in Table 3 differ in scaling coefficients. The first
dot-product score is a natural generalization of the dot-product formula
which uses different weights 𝑤ℎ for dimensions. It was proposed and
evaluated in experiments by Panigrahy et al. (2011). The other two dot-
product scores were proposed by Gabay and Zaourar (2016) to measure
the angle between the two vectors (the lower the angle, the better), and
the projection of the item vector 𝐬𝑖 to the free space vector 𝐫𝑘 (the larger
the projection, the better). Note that the difference in Dot-Product 1
and Dot-Product 3 scores has no effect in a bin-centric algorithm since
the scaling weight 1∕

(

‖

‖

𝐫𝑘‖‖2
)2 has a constant value for the current bin.

We keep the expression for Dot-Product 3 in the table since we reuse
the 𝜉-expressions in the MB-Pairing algorithm (Section 5), where the
scores are computed for all item-bin pairs.

The Normalized Dot-Product score can be considered as a slightly
modified version of the Fitness score of Cai et al. (2022). In the expres-
sion, the item sizes 𝑠𝑖ℎ are normalized by 𝐷ℎ, the total demand of all
items in dimension ℎ, and the residual capacities 𝑟𝑘ℎ of the bins are
normalized by 𝑅ℎ, the total residual capacity of all bins in dimension
ℎ. While 𝐷ℎ is treated as a constant computed once at the beginning
of the algorithm, the values of 𝑅ℎ are recalculated dynamically, each
time an item is allocated to a bin and its residual capacity changes.

The 𝓁2-Norm of Slacks, also introduced by Panigrahy et al. (2011),
measures the norm of residual capacity that would be left in bin 𝐵𝑘
if item 𝑖 was allocated to it. The best allocation corresponds to the
smallest slack value. Since the bin-centric algorithm gives preference
to the highest score, the 𝜉-expression for the slack is set as negative.

We introduce in this work two new item-bin scores, denoted by
Tight Fill, which measure how well an item would use free space in
a bin, if allocated. The ratios 𝑠𝑖ℎ∕𝑟𝑘ℎ characterize the fitness of item 𝑖
for allocation to bin 𝐵𝑘 with respect to dimension ℎ. The first Tight Fill
expression is the weighted sum of the fitness values, while the second
expression focuses on the dimension with the smallest fitness value.

4. Prioritizing dimensions

The expressions for size measures 𝑣(𝑖) and 𝑣(𝐵𝑘) introduced in
Section 2 and item-bin scores 𝜉𝑖𝑘 in Section 3 are presented in the
most general form, possibly with different weights 𝑤ℎ for dimensions
ℎ = 1,… , 𝑑. The expressions for 𝑤ℎ, collected from multiple sources,
are summarized in Table 4. We do not report alternative definitions
of 𝑤ℎ that were found unsuccessful in the existing body of research.

In particular, the usage of the degree of dominancy weight proposed
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Table 3
Bin-item scores for bin-centric algorithms.
Score type Score formula with item 𝑖 ∈ ∗, bin 𝐵𝑘 ∈ 

Dot-Product 1 𝜉𝑖𝑘 =
𝑑
∑

ℎ=1
𝑤ℎ𝑠𝑖ℎ𝑟𝑘ℎ

Dot-Product 2 𝜉𝑖𝑘 = 1
‖𝐬𝑖‖2⋅‖𝐫𝑘‖2

𝑑
∑

ℎ=1
𝑤ℎ𝑠𝑖ℎ𝑟𝑘ℎ

Dot-Product 3 𝜉𝑖𝑘 = 1
(‖𝐫𝑘‖2)

2

𝑑
∑

ℎ=1
𝑤ℎ𝑠𝑖ℎ𝑟𝑘ℎ

Normalized Dot-Product 𝜉𝑖𝑘 =
𝑑
∑

ℎ=1
𝑤ℎ

𝑠𝑖ℎ
𝐷ℎ

⋅ 𝑟𝑘ℎ
𝑅ℎ

(

𝐷ℎ =
∑

𝑖∈
𝑠𝑖ℎ, 𝑅ℎ =

∑

𝐵𝑘∈
𝑟𝑘ℎ

)

a

𝓁2-Norm of Slacks 𝜉𝑖𝑘 = −
𝑑
∑

ℎ=1
𝑤ℎ

(

𝑟𝑘ℎ − 𝑠𝑖ℎ
)2

Tight fill with sum 𝜉𝑖𝑘 =
𝑑
∑

ℎ=1
𝑤ℎ

𝑠𝑖ℎ
𝑟𝑘ℎ

Tight fill with min 𝜉𝑖𝑘 = min
1≤ℎ≤𝑑

𝑤ℎ
𝑠𝑖ℎ
𝑟𝑘ℎ

a The values 𝐷ℎ, 1 ≤ ℎ ≤ 𝑑, are computed only once, considering the whole set of items , while
the values 𝑅ℎ are recalculated dynamically each time the load of one of the activated bins from 
changes.
Table 4
Weights 𝑤ℎ for dimension ℎ, 1 ≤ ℎ ≤ 𝑑. For Exponential, a small constant 𝜀 is selected for scaling.
Weights Static Dynamic Dynamic

item-based item-based bin-based
Unit 𝑤ℎ = 1 N/A N/A
Average 𝑤ℎ = 𝑑ℎ 𝑤ℎ = 𝑑∗ℎ 𝑤ℎ = 𝑟ℎ
Exponential 𝑤ℎ = 𝑒𝜀𝑑ℎ 𝑤ℎ = 𝑒𝜀𝑑

∗
ℎ 𝑤ℎ = 𝑒𝜀𝑟ℎ

Reciprocal average 𝑤ℎ = 1∕𝑑ℎ 𝑤ℎ = 1∕𝑑∗ℎ 𝑤ℎ = 1∕𝑟ℎ
Utilization ratio N/A 𝑤ℎ = 𝐷∗

ℎ∕𝑅ℎ
a
A
c

5

n

by Maruyama et al. (1977) was not found superior to other rules in
the extensive experiments by Stillwell et al. (2010).

The expressions use the following characteristics of items and acti-
vated bins:

• 𝑑ℎ = 1
||

∑

𝑖∈ 𝑠𝑖ℎ, the average size (demand) of all items  in
dimension ℎ,

• 𝐷∗
ℎ =

∑

𝑖∈∗ 𝑠𝑖ℎ and 𝑑∗ℎ = 1
|∗|

∑

𝑖∈∗ 𝑠𝑖ℎ, the total and the average
size (demand) of all unallocated items ∗ ⊆  in dimension ℎ,

• 𝑅ℎ =
∑

𝐵𝑘∈ 𝑟𝑘ℎ and 𝑟ℎ = 1
||

∑

𝐵𝑘∈ 𝑟𝑘ℎ, the total and the average
residual capacity of all activated bins  in dimension ℎ.

The Unit weights are useful if all dimensions ℎ, 1 ≤ ℎ ≤ 𝑑, are
f equal importance. They were popular in early papers on VBP; see,
.g., Kou and Markowsky (1977) and Maruyama et al. (1977).

The Average weights, initially proposed by Caprara and Toth (2001)
or the 2-dimensional case, and Exponential weights, proposed by Pan-
grahy et al. (2011), are computed based on the average demand 𝑑ℎ
f all items in dimension ℎ or on average residual capacities of the
ctivated bins in dimension ℎ.

The Reciprocal Average and Utilization Ratio weights were originally
ntroduced by Gabay and Zaourar (2016) for the purpose of solving
BP(𝑚). The effect of using such weights is similar to normalization
f item sizes in each dimension. Note that a slightly modified version
f the Reciprocal Average weight was used by Cai et al. (2022) for
omputing measures for items and bins similar to our 𝓁1-size as defined
n Section 2.

Each weight formula is defined in three variations, depending on
hether the weights are computed once, or updated dynamically and
ased on item or bin characteristics. Static item-based weights are
omputed once, using the initial characteristics 𝑑ℎ of the set of items
. Dynamic item-based weighs are computed dynamically, every time a
ecision is made to allocate an item to a bin. Therefore, their formulae
 o

5 
depend on the subset of unallocated items ∗ and (possibly) the subset
of activated bins . Dynamic bin-based weights take into account
activated bins only and they also require regular updates.

In the case of bin-centric algorithms, applying one of the expressions
from Table 4 is straightforward: once the expression is selected, it is
used consistently in all computations of item-bin scores 𝜉𝑖𝑘. In the case
of item-centric algorithms, different approaches can be adopted. One
option is to select a single expression from Table 4 for computing the
weights

(

𝑤1, 𝑤2,… , 𝑤𝑑
)

and to use the common 𝑑-tuple of weights for
finding item sizes 𝑣(𝑖) and bin sizes 𝑣(𝐵𝑘). Another option is to use
one 𝑤-expression of type ‘static item-based’ or ‘dynamic item-based’
for finding item sizes 𝑣(𝑖) and another 𝑤-expression of type ‘dynamic
bin-based’ for finding bin sizes 𝑣(𝐵𝑘); see Section 8 for further details.

Overall the weight formulae presented in Table 4 are rather general
and can be easily tuned or replaced by other formulae, with 𝑤ℎ ≥ 0. For
example, in the presence of a bottleneck dimension ℎ′ it is reasonable
to keep 𝑤ℎ′ = 1 and to eliminate the remaining dimensions from
consideration by setting 𝑤ℎ = 0 for ℎ ≠ ℎ′. Note also that when the
sum of item sizes is equal in every dimension, then all static item-based
weights are similar to the Unit weights.

In the course of an algorithm, it may happen that the total size
of remaining items in a dimension ℎ equals 0 or, possibly, the total
residual capacity of the bins in the dimension equals 0. In such a
case, dimension ℎ is deactivated by setting 𝑤ℎ = 0. This way we
void numerical issues (division by 0) when computing the Reciprocal
verage and Utilization Ratio weights, as well as the item-bin scores of
ertain type, namely the Normalized Dot-Product and Tight Fill.

. Multi-bin activation approach

In this section we propose an approach that overcomes the myopic
ature of item-centric and bin-centric heuristics: instead of activating

ne bin at a time only when it is necessary, it activates multiple bins
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at the start and makes decisions on the items’ allocation considering
the whole pool of bins. Since the minimum number of bins is not
known in advance, the multi-bin (MB) algorithm solves a series of
problems VBP(𝑚), with a trial parameter 𝑚 for the number of bins in
se. Depending on the outcome of solving VBP(𝑚), the MB approach
tops and outputs the current feasible solution, or attempts to find a
olution to VBP(𝑚′) with a different input 𝑚′.

Compared to item-centric and bin-centric approaches, MB approach
as more freedom in decision making. This comes at the cost of in-
reased running time since VBP(𝑚) has to be solved multiple times with
ifferent trial values of 𝑚; see Fig. 1 for algorithm types and complexity
stimates.

The two key ingredients of an MB algorithm are the bin activation
trategy to select the trial values 𝑚, and an algorithm for solving VBP(𝑚).

We use notation (𝑚) for a single call of an algorithm  that solves
he VBP(𝑚) problem, and MB- for multiple calls of (𝑚) with different
alues of 𝑚, organized via a specified bin activation strategy.

.1. Bin activation strategies

The simplest approach is incremental. It starts with a lower bound
on the number of bins and solves a series of problems VBP(𝑚),

BP(𝑚+1), VBP(𝑚+2), . . . , terminating the first time when VBP(𝑚+𝑘)
turns out to be solvable. The search can be sped up by using a batched
bin activation approach, incrementing 𝑚 in larger steps.

Another approach is to use binary search over a series of trial 𝑚 -
values, with 𝑚 ∈ {𝑚,… , 𝑚}, where 𝑚 is the lower bound, as before,
and 𝑚 is an upper bound found by one of the item-centric or bin-centric
pproaches.

The usage of the batched or binary search strategy is justifiable if an
lgorithm for solving VBP(𝑚) is monotonic; see Section 6 for definitions

and monotonicity results.

5.2. Algorithms for solving VBP(𝑚)

Any of the item-centric or bin-centric algorithms discussed in Sec-
ions 2–3 can be adapted for VBP(𝑚) by introducing an initial step:
ctivating 𝑚 bins  =

{

𝐵1,… , 𝐵𝑚
}

at the start.
An adaptation of an item-centric algorithm for VBP(𝑚) considers a

urrent item 𝑖 and selects one of the bins from the whole set  according
to the rules from Table 1. For the algorithm notation we use the same
name as in Section 2 , adding parameter 𝑚 in parentheses to highlight
the main feature of the multi-bin approach (e.g., WFD(𝑚)).

An adaptation of a bin-centric algorithm for VBP(𝑚) computes item-
bin scores 𝜉𝑖𝑘 for all unallocated items and the bins of the set  that can
fit them, and selects a highest score pair for the next allocation. Recall
that the scores are defined in Table 3 . We call the resulting algorithms
Pairing(𝑚). Due to the large number of pairs to be explored, Pairing(𝑚)
is more demanding in terms of computation time compared to the
item-centric adaptation; see Fig. 1 for algorithm types and complexity
estimates.

Some versions of the adapted algorithms can be excluded from
consideration since they produce exactly the same solution as their
counterparts with bins activated one-by-one. Those which perform
differently are listed in the next statement.

Statement 1. The following algorithms with 𝑚 preactivated bins pro-
duce (possibly) different solutions compared to those they produce in the
traditional scenario, with bins activated one-by-one:

• WF(𝑚) and WFD(𝑚) with a forward size measure (𝓁∞, 𝓁1 and
𝓁2-sizes of residual capacity);
BF(𝑚) and BFD(𝑚) with a reverse size measure (𝓁2-size of bin load);

• Pairing(𝑚) with 𝜉-scores computed as Dot-Product 1-3 and Normal-
ized Dot-Product, assuming the weights 𝑤ℎ are non-negative, 1 ≤ ℎ ≤
𝑑.
 o
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Proof. Consider the first part of the statement, namely the item-centric
algorithms WF(𝑚) and WFD(𝑚) with a forward size measure. They
prioritize the selection of the bin with the largest residual capacity,
measured as 𝑣(𝐵𝑘), to pack an item. This way, they attempt to achieve
a balanced load over all 𝑚 bins at every step, performing differently
if compared to WF and WFD applied in a scenario with bins activated
one-by-one. The same is true for BF(𝑚) and BFD(𝑚) with a reverse bin
ize measure.

The alternative item-centric algorithms, FF(𝑚), FFD(𝑚) (with any
in size measure), WF(𝑚) and WFD(𝑚) with a reverse bin size measure,
nd BF(𝑚) and BFD(𝑚) with a forward bin size measure, place a current
tem into an empty bin 𝐵𝑘 only if that item does not fit into any of the
artially loaded bins 𝐵1,… , 𝐵𝑘−1. The resulting solution is the same
s the one found by one of the item-centric algorithms applied in a
cenario with bins activated one-by-one.

To prove the second part of the statement, we first show that the
ollowing algorithms should be excluded from consideration:

• Pairing(𝑚) with 𝓁2-Norm of Slacks score,
• Pairing(𝑚) with Tight Fill with Sum score,
• Pairing(𝑚) with Tight Fill with Min score.

onsider Pairing(𝑚) with the 𝓁2-Norm of Slacks score. Let 𝑖 be an
tem of size (𝑠𝑖1, 𝑠𝑖2,… , 𝑠𝑖𝑑 ), 𝐵𝑘 be a non-empty bin with residual
apacity (𝑟𝑘1, 𝑟𝑘2,… , 𝑟𝑘𝑑 ) and 𝐵𝑞 be an empty bin with residual capacity
1, 1,… , 1). We assume that item 𝑖 fits in bin 𝐵𝑘, i.e.,

𝑠𝑖ℎ ≤ 𝑟𝑘ℎ ≤ 1 for all ℎ = 1,… , 𝑑.

Then the scores for allocating 𝑖 to 𝐵𝑘 and 𝐵𝑞 are

𝑖𝑘 = −
𝑑
∑

ℎ=1
𝑤ℎ(𝑟𝑘ℎ − 𝑠𝑖ℎ)2 and 𝜉𝑖𝑞 = −

𝑑
∑

ℎ=1
𝑤ℎ(1 − 𝑠𝑖ℎ)2, (4)

o that

𝑖𝑘 ≥ 𝜉𝑖𝑞 ,

rovided 𝑤ℎ ≥ 0, 1 ≤ ℎ ≤ 𝑑. Therefore, Pairing(𝑚) uses an empty bin
nly if no item fits any of the partially loaded bins.

The proofs for the scores Tight Fill with Sum and Tight Fill with Min
re similar. We just need to replace expressions (4) by

𝑖𝑘 =
𝑑
∑

ℎ=1
𝑤ℎ

𝑠𝑖ℎ
𝑟𝑘ℎ

and 𝜉𝑖𝑞 =
𝑑
∑

ℎ=1
𝑤ℎ𝑠𝑖ℎ,

or by

𝜉𝑖𝑘 = min
1≤ℎ≤𝑑

𝑤ℎ
𝑠𝑖ℎ
𝑟𝑘ℎ

and 𝜉𝑖𝑞 = min
1≤ℎ≤𝑑

𝑤ℎ𝑠𝑖ℎ.

To illustrate that Pairing(𝑚) algorithms with the scores listed in the
second part of the statement can produce different solutions in the
multi-bin scenario and in the scenario with bins activated one-by-one,
consider the following example with two dimensions and unit weights.
There are 𝑚 = 2 bins and 𝑛 = 2 items with sizes (0.3, 0.01) and
0.2, 0.01). Both items fit into a single bin. However, in the cases of
ot-Product 1, Dot-Product 3 and Normalized Dot-Product, Pairing(2)
laces the first item into one bin and the second item into another bin.
n the case of Dot-Product 2, Pairing(2) selects initially the second item
nd places it into one bin and then it places the first item into another
in. ■

Note that algorithms WF and WFD are not quite popular in the bin
acking literature. A rare exception is the application of WFD(𝑚) as part
f the MB approach for the version of the one-dimensional BP problem
ith an additional constraint on the number of items per bin. Proposed
nd analyzed by Krause et al. (1975), the algorithm was later cited
nder the name Iterated Lowest Fit Decreasing ; see Coffman et al. (1984).
n this work, we produce complementary results on non-monotonicity

f WF(𝑚) and WFD(𝑚); see Section 6.
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The domain where WF(𝑚) and WFD(𝑚) are popular and recognized
as successful approaches is scheduling, namely, the problem of allocat-
ing 𝑛 jobs to 𝑚 parallel identical machines in order to minimize the
makespan. The one-dimensional versions of WF(𝑚) and WFD(𝑚) can be
seen as the List Scheduling algorithm and the Longest Processing Time
(LPT) algorithm, both analyzed by Graham (1969). Note that LPT is
one of the most popular algorithms used by practitioners.

Finally, although FFD(𝑚) is not useful as part of the MB approach
for solving VBP according to Statement 1, it plays the key role in
solving the parallel machine scheduling problem as part of the famous
Multifit algorithm proposed by Coffman et al. (1978) for solving the
makespan minimization problem on 𝑚 parallel machines. Multifit uses
inary search, calling algorithm FFD(𝑚,𝐶) for a series of trial values of
he makespan 𝐶, where 𝐶 corresponds to the bin capacity in the BP
nterpretation. Algorithm FFD(𝑚,𝐶) is non-monotonic with respect to
𝐶, as shown by Coffman et al. (1978): it can find a feasible solution for
some 𝐶 but fails for a larger value of 𝐶. Contrarily, in the BP context,
FFD(𝑚,𝐶) is monotonic with respect to 𝑚: if the algorithm succeeds to
solve VBP(𝑚) for some 𝑚, then it uses the same number of bins even
if more than 𝑚 bins have been activated initially, providing a solution
for VBP(𝑚 + 1).

6. Monotonic and anomalous behavior of the algorithms for BP(𝒎)
and VBP(𝒎)

Problems BP(𝑚) and VBP(𝑚) are defined with parameter 𝑚 for
a given number of preactivated bins. As established in Section 5.2,
only some algorithms benefit from preactivating multiple bins, namely,
WF(𝑚), WFD(𝑚), BF(𝑚), BFD(𝑚) and Pairing(𝑚), with appropriately
chosen size measures and scores; see Statement 1. In this section, we
study whether the listed algorithms have monotonic behavior or exhibit
anomalies when the number of activated bins 𝑚 changes. We define the
terms monotonicity and anomaly in Definition 2.

Note that the known results in the literature on non-monotonic
behavior of the bin-packing heuristics are related to the item-centric
applications in the one-dimensional case. In particular, each of the
algorithms BF, BFD, FF, FFD, WF and WFD may use fewer bins when
applied to a dominating instance compared to the application of the
same algorithm to an instance which is smaller in the sense of the
number of items and/or their sizes; see, e.g., Murgolo (1988) for a
summary of the results.

For the multi-bin approaches we consider, there are 𝑚 preactivated
bins, a given set of items to pack and algorithm (𝑚) for solving
VBP(𝑚). We declare that (𝑚) succeeds if it finds a feasible allocation
of the items to 𝑚 bins and fails if it cannot find a feasible allocation.

Definition 2. Algorithm (𝑚) is monotonic if for any instance and any
positive integers 𝑚′ and 𝑘,

(𝑖) whenever (𝑚′) succeeds, (𝑚′ + 𝑘) succeeds as well,
𝑖𝑖) whenever (𝑚′) fails, (𝑚′ − 𝑘) fails as well (here 𝑚′ > 𝑘).

lgorithm (𝑚) is anomalous if there exists an instance such that (𝑚′)
ucceeds for some 𝑚′ > 0, but (𝑚′ + 𝑘) fails.

Let 𝑚∗ be the smallest number of bins 𝑚, for which an algorithm em-
loyed for solving VBP(𝑚) finds a feasible solution. If the algorithm is
onotonic, then the binary search bin activation strategy is guaranteed

o find 𝑚∗, and the batched strategy is guaranteed to find 𝑚∗ within a
iven accuracy bound. If an algorithm is anomalous or its monotonicity
s not established, then the incremental bin activation strategy should be
sed for finding 𝑚∗.

It appears that the behavior of multi-bin activation algorithms
epends essentially on the dimension of an instance. Our two main
esults are formulated as Theorems 3 and 4, and they are proved
n Appendices A and B, respectively. In these theorems, we consider
nly the algorithms listed in Statement 1, excluding from consideration

hose which do not benefit from multiple bin preactivation.

7 
heorem 3. In the one-dimensional case, the following algorithms are
onotonic:

• WF(𝑚) and WFD(𝑚) with 𝓁∞, 𝓁1 and 𝓁2 size measures of residual
capacity;
BF(𝑚) and BFD(𝑚) with the 𝓁2 size measure of bin load,

• Pairing(𝑚) with 𝜉-scores computed as Dot-Product 1-3 and Normal-
ized Dot-Product, assuming the weights 𝑤ℎ are non-negative, 1 ≤ ℎ ≤
𝑑.

Theorem 4 establishes that the majority of the listed algorithms
re non-monotonic in the multidimensional case, in contrast to their
onotonic behavior in the one-dimensional case. We assume that the

ize measures are static. We believe that the presented results also hold
or dynamic weights, but we do not have formal proofs for that.

heorem 4. Algorithms WF(𝑚), WFD(𝑚) with the (static) 𝓁1, 𝓁2 and 𝓁∞
ize measures, and BF(𝑚), BFD(𝑚) with the (static) 𝓁2 size measure of bin
oad are non-monotonic if 𝑑 ≥ 2.
Algorithm Pairing(𝑚) with the scores computed as Dot-Product 1 (with

tatic weights) is non-monotonic. The same is true for the static version of
he Normalized Dot-Product scores.

We leave the question about (non)monotonicity of Pairing(𝑚) with
he scores computed as Dot-Product 2 or 3 as open. Note that in our
omputational experiments performed on a broad variety of instances
e have not observed non-monotonic behavior of Pairing(𝑚) with Dot-
roduct 2 and Dot-Product 3 scores, while there have been rare cases
f non-monotonic behavior of Pairing(𝑚) with Dot-Product 1 score. The
etails of our experiments are discussed in Section 8.

. Theoretical analysis of the multi-bin activation algorithm

In this section we estimate the accuracy of the multi-bin activa-
ion algorithm, if it uses WF(𝑚) or WFD(𝑚). We are interested in
inding out whether there exists a factor 𝜌(𝑑) such that algorithms

F(𝑚) and WFD(𝑚) are guaranteed to successfully pack all items when
≥ 𝜌(𝑑) ⋅𝑂𝑃𝑇 , where 𝑂𝑃𝑇 is the minimum number of bins for a given

nstance, and 𝜌(𝑑) may depend only on the dimension, but not on the
umber 𝑛 of items. We show that for WF(𝑚) no factor 𝜌(𝑑) exists, while
or WFD(𝑚)

∕2 ≤ 𝜌(𝑑) ≤ 2𝑑, (5)

ssuming a forward bin capacity measure is used and all dimensions
ave weights 𝑤ℎ = 1, ℎ = 1,… , 𝑑.

heorem 5. Assume that WF(𝑚) uses a forward bin capacity measure. For
≥ 1, there is no factor 𝜌(𝑑) (which may depend only on the dimension, but
ot on the number 𝑛 of items) such that WF(𝑚) is guaranteed to successfully
ack all items when 𝑚 ≥ 𝜌(𝑑) ⋅ 𝑂𝑃𝑇 .

roof. Assume for a contradiction that there is such a factor 𝜌(𝑑).
onsider any 𝐾 > 1 and the following list of items: (𝜌(𝑑) ⋅𝐾) tiny

tems of size 𝑠𝑖ℎ = 1∕(𝜌(𝑑) ⋅𝐾) in each dimension ℎ = 1,… , 𝑑, followed
y (𝐾 − 1) large items of size 𝑠𝑖ℎ = 1 in each dimension. Observe that
𝑃𝑇 = 𝐾 as all tiny items fit into one bin and there are 𝐾 − 1 large

tems.
Run WF(𝑚) for 𝑚 = 𝜌(𝑑) ⋅ 𝑂𝑃𝑇 = 𝜌(𝑑) ⋅ 𝐾. The algorithm packs

ne tiny item into each of the 𝑚 bins and then it fails to pack any of
he large items. This is a contradiction to the assumption that WF(𝑚)
uccessfully packs all items into 𝑚 = 𝜌(𝑑) ⋅ 𝑂𝑃𝑇 bins. ■

Consider now WFD(𝑚). For norms 𝓁1 and 𝓁2 the algorithm always
ives preference to an empty bin, if one exists. For norm 𝓁∞ an algo-
ithm may wrongly select a non–empty bin 𝐵𝑘 if its residual capacity
omputed as 𝓁∞-norm is 1. This happens if the total size of all allocated
tems in one dimension is 0. Therefore, we assume the tie-breaking rule
or the 𝓁 size measure which always selects an empty bin if one exists.
∞
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Theorem 6. Assume that WFD(𝑚) uses a forward bin capacity measure
and all dimensions have unit weights (𝑤ℎ = 1, ℎ = 1,… , 𝑛). If 𝑚 ≥
𝑑 ⋅ 𝑂𝑃𝑇 , then WFD(𝑚) successfully packs all items.

roof. Let 𝑣(𝑖) denote the combined size of item 𝑖 computed as 𝓁1-,
𝓁∞- or 𝓁2-norm; see Table 2. For a bin 𝐵𝑘 that already contains a set
of items 𝑘, define the total load of the bin as

𝜆1(𝐵𝑘) =
𝑑
∑

ℎ=1

∑

𝑖∈𝑘

𝑠𝑖ℎ for 𝓁1 − norm,

∞(𝐵𝑘) = max
1≤ℎ≤𝑑

{

∑

𝑖∈𝑘

𝑠𝑖ℎ

}

for 𝓁∞ − norm,

2(𝐵𝑘) =
𝑑
∑

ℎ=1

(

∑

𝑖∈𝑘

𝑠𝑖ℎ

)2

for 𝓁2 − norm.

ote that

1(𝐵𝑘) ≥ 𝜆∞(𝐵𝑘), (6)

1(𝐵𝑘) ≥
(

𝜆2(𝐵𝑘)
)1∕2 . (7)

n the proof we use the following estimate on the optimal number of
ins 𝑂𝑃𝑇 :

𝑃𝑇 ≥ 1
𝑑

𝑑
∑

ℎ=1

∑

𝑖∈
𝑠𝑖ℎ, (8)

which follows from (3).
Assume for a contradiction that there is an input for which WFD(𝑚)

annot successfully pack all items into 𝑚 bins for some 𝑚 ≥ 2𝑑 ⋅𝑂𝑃𝑇 . Let
be the first item that WFD(𝑚) cannot pack. We distinguish between

wo cases, depending on the size of item 𝑖.

ase 1: item 𝑖 is ‘large’, which is defined as 𝑣(𝑖) ≥ 1
2 for norms 𝓁1 and

𝓁∞, and 𝑣(𝑖) ≥ 1
4 for norm 𝓁2. Then each of the 𝑚 bins already contains

at least one item 𝑗 with 𝑣(𝑗) ≥ 𝑣(𝑖) (because 𝑗 was packed before 𝑖).

Norm 𝓁1. For any bin 𝐵𝑘, 1 ≤ 𝑘 ≤ 𝑚,

𝜆1(𝐵𝑘) ≥
1
2
. (9)

Therefore, the combined 𝓁1-size of all items is no less than the
combined size of all packed items over all 𝑚 bins plus the 𝓁1-size
of item 𝑖, so that
𝑑
∑

ℎ=1

∑

𝑖∈
𝑠𝑖ℎ ≥ 𝑚 ⋅

1
2
+ 𝑣(𝑖) > 𝑚 ⋅

1
2
.

By (8), we get 𝑂𝑃𝑇 > 𝑚∕(2𝑑), a contradiction to 𝑚 ≥ 2𝑑 ⋅ 𝑂𝑃𝑇 .

Norm 𝓁∞. For any bin 𝐵𝑘, 1 ≤ 𝑘 ≤ 𝑚,

𝜆∞(𝐵𝑘) ≥
1
2
,

which by (6) implies (9). The remaining part of the proof is the
same as that for norm 𝓁1.

Norm 𝓁2. For any bin 𝐵𝑘, 1 ≤ 𝑘 ≤ 𝑚,

𝜆2(𝐵𝑘) ≥
1
4
,

which by (7) implies (9). Again, the remaining part of the proof
is the same as that for norm 𝓁1.

Case 2: item 𝑖 is ‘small’, which is defined as 𝑣(𝑖) < 1
2 for norms 𝓁1 and

∞, and 𝑣(𝑖) < 1
4 for norm 𝓁∞. This means that, for any norm, 𝑠𝑖ℎ < 1

2
for all ℎ, 1 ≤ ℎ ≤ 𝑑. As 𝑖 does not fit into any of the 𝑚 bins, each of the
𝑚 bins must have a load greater than 1

2 in at least one dimension, and
ence ∑𝑑

ℎ=1
∑

𝑖∈𝑘 𝑠𝑖ℎ ≥ 1
2 , or, equivalently, (9) holds for each bin 𝐵𝑘.

The remaining part of the proof is the same as that for Case 1. ■
8 
An algorithm for VBP has approximation ratio 𝜌 if it uses at most
𝜌 ⋅ 𝑂𝑃𝑇 bins on any VBP instance, where 𝑂𝑃𝑇 denotes the optimal
number of bins for that instance. It has asymptotic approximation ratio 𝜌
if it uses at most 𝜌⋅𝑂𝑃𝑇 +𝑐 bins for some constant 𝑐 that is independent
of the instance.

Corollary 7. The multi-bin algorithm that uses WFD(𝑚) with binary search
over 𝑚 has approximation ratio of at most 2𝑑. This holds for 𝓁1, 𝓁2 and 𝓁∞
ize measures.

roof. As WFD(𝑚) will pack the items successfully for all 𝑚 ≥ 2𝑑 ⋅𝑂𝑃𝑇 ,
he binary search is guaranteed to terminate with a value of 𝑚 that is
t most 2𝑑 ⋅ 𝑂𝑃𝑇 . ■

xample 1. We show that 𝑑
2 ⋅ 𝑂𝑃𝑇 bins are not always sufficient for

WFD(𝑚) to be able to pack all items. We give an example for 𝑑 = 2, but
generalizing it to larger values of 𝑑 is straightforward. The example
works for 𝓁1, 𝓁2 and 𝓁∞ size measures. Consider the following set of
items:

• (1, 0) (𝓁1-size 1, 𝓁∞-size 1, 𝓁2-size 1)
• (0, 1) (𝓁1-size 1, 𝓁∞-size 1, 𝓁2-size 1)
• (𝜀, 𝜀) (𝓁1-size 2𝜀, 𝓁∞-size 𝜀, 𝓁2-size 2𝜀2)

hese items can be packed into 2 bins: the first two items can be packed
ogether into bin 1, and the last item into bin 2. Hence, 𝑂𝑃𝑇 = 2.

WFD(2) starts by packing the first two items into two separate bins
nd then it fails to pack the last item. Therefore 𝑑

2 ⋅ 𝑂𝑃𝑇 = 2 bins are
not sufficient.

The upper bound of 2𝑑 ⋅𝑂𝑃𝑇 bins and the lower bound of 𝑑
2 ⋅𝑂𝑃𝑇

bins are a factor of 4 apart. We leave as an open question whether both
he lower and the upper bounds can be improved.

. Computational experiments

In the previous sections we described the main three classes of
euristics for VBP: item-centric, bin-centric and multi-bin activation.
n this section we analyze their performance empirically.

Note that analytical results are available mostly for the one-
imensional case: for item-centric and bin-centric approaches asymp-
otic approximation ratios are 11∕9 for BFD and FFD (Coffman et al.,
013), and approximation ratios are 1.7 for BF and FF (Dosa and Sgall,
013, 2014). For the 𝑑-dimensional case, asymptotic approximation
atios are known only for FF and FFD, namely, 𝑑 + 0.7 and 𝑑 + 1∕3
see Garey et al., 1976), and also for several special algorithms, which
re not closely related to item-centric and bin-centric approaches (see
he survey paper by Christensen et al. (2017)). Recall that in Section 7
t is shown that the multi-bin activation approach has an approximation
atio of at most 2𝑑.

The VBP algorithms discussed in this paper are implemented as
C++ library called Vectorpack. It contains all versions of the item-

entric, bin-centric and multi-bin approaches. Taking into account
ifferent size measures of items and bins, scores for item-bin pairs and
xpressions for dimension weights, there are, in total, 351 algorithms
nd their variations in Vectorpack: 209 item-centric, 66 bin-centric and
6 multi-bin activation algorithms. The library is publicly available on
itHub1 under the LGPL-3.0 license and it is open for further exten-

ions. All experimental data, including benchmark generation scripts,
he summaries of the results and illustrative figures, are available in a
ompanion repository on GitHub.2 The total number of instances tested
s 2940.

1 https://github.com/Vectorpack/Vectorpack_cpp.
2 https://github.com/Vectorpack/experiments_vector_paper.

https://github.com/Vectorpack/Vectorpack_cpp
https://github.com/Vectorpack/experiments_vector_paper
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8.1. Benchmark instances

In our computational experiments we use 3 types of benchmark
instances, which we denote as Panigrahy, Triplet and New. Recall that
the algorithms in the previous sections are presented for the bins of
unit capacities in all dimensions and item sizes normalized in [0, 1]. The
instances used in experiments follow the setups from the original papers
where they were introduced. While we observe those setups, the data
are then normalized in order to apply the algorithms with size-measures
and item-bin scores specified in Tables 2–3.

The benchmark set Panigrahy consists of 9 classes of instances,
proposed by Panigrahy et al. (2011) as an extension of well-known
classes of one-dimensional instances introduced by Caprara and Toth
(2001). Following the same setup, we generated 10 instances for
each class and each combination of the parameters 𝑑 and 𝑛, with
the number of dimensions 𝑑 ∈ {3, 5, 10} and the number of items
𝑛 ∈ {20, 40, 60, 120, 250, 500}. In total, there are 10 × 9 × 3 × 6 = 1620
instances of the Panigrahy type.

The benchmark set Triplet includes instances with ‘triplets’ of items,
where each triplet perfectly fills up a bin. We perform experiments
with 2 classes of Triplet instances: instances of type Triplet Class F
are generated following the original procedure described by Falkenauer
(1996), while instances of type Triplet Class CT are generated following
the procedure described by Caprara and Toth (2001) for their Class 10.
We generated 10 instances for each class and each combination of 𝑑 ∈
{3, 5, 10} and 𝑛 ∈ {60, 120, 249, 501}. In total, there are 10×2×3×4 = 240
instances of the Triplet type.

The benchmark set New consists of 6 newly introduced classes
of instances: Class 1 is characterized by item sizes which are less
uniform and more heterogeneous compared to the Panigrahy and Triplet
benchmarks; Classes 2 and 3 have small-size items, and Classes 4, 5 and
6 consist of items of mixed sizes. In all instances of the New set, the bin
capacity is set to 100 for each dimension.

All instances in New Class 1 contain 𝑑 groups of items. The items
in group ℎ have large sizes in dimension ℎ (1 ≤ ℎ ≤ 𝑑) and small sizes
in all other dimensions. There are 𝑛∕𝑑 items in each group, except for
the last one, which may have additionally (𝑛 mod 𝑑) items, if 𝑛 is not
divisible by 𝑑. The item sizes are randomly picked following a uniform
distribution in the range [50, 100] for a large size, and in the range [0, 25]
for a small size.

The instances of New Classes 2 and 3 contain items that are small in
every dimension. Item sizes of Class 2 are randomly selected following
the normal distribution with the mean 𝜇 = 20 and standard deviation
𝜎 = 10. Item sizes of Class 3 follow the same distribution with 𝜇 = 30
and 𝜎 = 15.

The instances of New Classes 4, 5 and 6 contain items of two
types: items that are large in every dimension and items that are small
in every dimension. The number of large items in each instance is
randomly chosen from {0, 1,… , 𝑛} following the normal distribution
with parameters 𝜇 = 𝑛∕10 and 𝜎 = 1

2

√

𝑛. The sizes of large and
small items in each dimension are randomly selected following the
normal distribution with different parameters, specific for each class:
for Class 4, 𝜇large = 70, 𝜇small = 30, 𝜎 = 15; for Class 5, 𝜇large = 80,
small = 20, 𝜎 = 10; for Class 6, 𝜇large = 70, 𝜇small = 15, 𝜎 = 10.

We generated 10 instances for each class of the New type and each
ombination of 𝑑 ∈ {3, 5, 10} and 𝑛 ∈ {20, 40, 60, 120, 250, 500}, so that,
n total, there are 10 × 6 × 3 × 6 = 1080 instances.

.2. Evaluation methodology and metrics

We run each of the 351 versions of the VBP algorithms on every
nstance of the three benchmarks and, for each combination of algo-
ithm and instance, we store the number of bins of the solution found
nd the time taken to find the solution. The experiments are performed
n a single core of a machine equipped with one Intel Xeon Gold 6138
PU having 8 cores, with 16 GB of memory per core.
 i

9 
To evaluate the performance of the algorithms, we use a primary
etric 𝜚 defined as the average percentage error of the solution found

elative to the optimal solution, when known, or to the lower bound.
summary of available optimal solutions is presented in Appendix C.

ower bounds are found as the maximum of the trivial lower bound
omputed by (3) and a clique-based lower bound by Gurski and Rehs
2020). For the latter, we use the heuristic max-clique algorithm
y Johnson (1974) applied to the graph defined by Gurski and Rehs
2020).

As a secondary metric, we compare the computation times of the
lgorithms.

.3. Algorithm naming

The names of item-centric algorithms combine the heuristic name
rom Table 1: FF, FFD, BF, BFD, WF, WFD, and the metric name of
he size measure from Table 2: Linf, L1, L2 and L2Load. Recall that
he same type of metric is used for both, item sizes 𝑣(𝑖) and residual
apacities of the bins 𝑣(𝐵𝑘), if using algorithms BF, BFD, WF, WFD.

The names of bin-centric algorithms have prefix BC followed by the
core type from Table 3: DP1, DP2 and DP3 for Dot-Product 1, 2 and 3,
ormDP for Normalized Dot-Product, L2Slacks for 𝓁2 Norm of Slacks,
FSum for Tight Fill with Sum, and TFMin for Tight Fill with Min.

The names of the multi-bin activation algorithms start with MB-
FD, MB-BFD or MB-Pairing, followed by the algorithm specifics: the

ize measure (for MB-WFD and MB-BFD) or the score formula (for
B-Pairing).

Each algorithm name has an ending indicating the weights for
imensions, as defined in Table 4: Unit, Avg, Expo, RecipAvg and Util-
atio. By default, the static item-based weight formulae from Table 4
first column) are used. Additional suffixes ‘-Dyn’ and ‘-Bin’ indicate
ynamic item-based (second column) and bin-based versions (third
olumn) of the weight formulae. Note that the bin-based weights are
sed only in conjunction with the BC and MB-Pairing algorithms.

In addition, special notations are added to algorithms BFD and WFD
o specify which types of weights for dimensions are used. Type ‘T1’
ndicates that the same item-based weights are used for ordering items
nd bins (first or second column of Table 4). Type ‘T2’ indicates that
tem-based weights are used for items (first or second column) and bin-
ased weights are used for bins (third column), with both expressions
aken from the same row of Table 4. Type ‘T3’ indicates a scenario
imilar to ‘T2’, but with the two expressions taken from different rows
f Table 4. For example, algorithm ‘WFD-T3-Linf-Avg-Dyn-RecipAvg’
enotes the version of WFD of type T3, in which item sizes 𝑣(𝑖) are
omputed as the 𝓁∞ size measure with Average dimension weights
ℎ = 𝑑∗ℎ updated dynamically, while residual bin capacities 𝑣(𝐵𝑘) are

omputed as the 𝓁∞ size measure with Reciprocal Average weights
ℎ = 1∕𝑟ℎ. Algorithms MB-WFD and MB-BFD are based on their item-

entric counterparts but only for the type ‘T1’ weights, and thus we
mit the ‘T1’ in their names.

.4. Analysis of computational results

.4.1. Preliminary notes
In our experiments, we observed that the item-centric algorithms

F and WF were often outperformed by a simpler and faster algorithm
F, regardless of the measure or weights formulae used. However, in a
mall proportion of instances (less than 100 instances out of the 2940),
ome BF and WF versions found better solutions not only in comparison
ith FF, but even in comparison with the usually best performing
lgorithms BC-DP1 and MB-Pairing-DP3. Since superior performance of
F and WF is rather rare, we do not show their results in the summary
iagrams presented in this section.

We eliminate from our analysis the multi-bin activation algorithms
hich use the incremental or batched bin activation strategies: the
ncremental method leads to extensive computation times, while the
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batched method is hard for tuning when choosing the increments in
𝑚-values. In the summary diagrams we only keep multi-bin algorithms
in combination with the binary search strategy. In spite of the potential
anomalies of WFD(𝑚), BFD(𝑚) and Pairing(𝑚) discussed in Section 6,
he actual performance of these algorithms combined with binary
earch is often fairly good.

Generally speaking, for each family of algorithms, there is no algo-
ithm consistently outperforming the others. Moreover, the best per-
orming algorithms vary for different classes of the three types of
enchmarks. Looking for consistency in algorithms’ behavior, we se-
ected 4 representative classes. Instances of Panigrahy Class 5 typically
ave solutions with 14 items per bin on average, with item sizes
etween 25 and 100 and a bin capacity of 1000 in every dimension.
nstances of Panigrahy Class 8 are characterized by negative correlation
f item sizes in every two consecutive dimensions, and solutions con-
ain 2 items per bin on average. Instances of New Class 5 have about
0% of large items and 90% of small items, and solutions contain 3
tems per bin on average. Finally, we selected Triplets Class F instances
onstructed by Falkenauer’s generation procedure: for any instance, an
ptimum solution is characterized by triplets of items which perfectly
it a bin without any gaps; see Section 8.1. Note that an optimal bin
umber is known for any Triplet instance (it is equal to the lower
ound (3)). Contrarily, for the instances of Panigrahy Class 5 and New
lass 5 optimal solutions are known only for small size instances; see
ppendix B.

In the following, we present the results for the 4 selected classes
f instances. For completeness, we keep the summary figures for other
lasses of instances in the companion GitHub repository.3

.4.2. Comparing heuristics with unit weights
When all dimensions have unit weights, we are left with the 26

lgorithms, which we group into ‘families’ as follows:

tem-Centric

a) FF (used as a reference to what is achievable by the fastest and
simplest method);

b) FFD, with 3 expressions for 𝑣(𝑖) from Table 2;

c) BFD, with 4 pairs of expressions for 𝑣(𝑖) and 𝑣(𝐵𝑘) from

Table 2;

(d) WFD, also with 4 pairs of expressions for 𝑣(𝑖) and 𝑣(𝐵𝑘);

Bin-Centric

(e) 6 versions, with scores 𝜉𝑖𝑘 defined in Table 3, with the exception
of DP3, which in the case of unit weights reduces to DP1;

Multi-Bin Activation

(f) MB-Pairing, with 4 scores 𝜉𝑖𝑘, namely DP1, DP2, DP3 and Nor-
mDP (the remaining 3 scores from Table 3 are excluded from
consideration by Statement 1);

(g) MB-WFD, with 3 pairs of expressions for 𝑣(𝑖) and 𝑣(𝐵𝑘) from
Table 2, namely Linf, L1 and L2 (the pair of expressions from
the last row of Table 2 is excluded from consideration by State-
ment 1), and also MB-BFD, with L2Load size measure for 𝑣(𝑖)
and 𝑣(𝐵𝑘) (with remaining pairs of expressions excluded by the
same statement).
10 
Figs. 2–3 show the average percentage error 𝜚 of the algorithms as a
function of the number of items 𝑛. For readability of the figures, each
family of algorithms is represented by the best performing algorithm.
Interestingly, best performing algorithms of types FFD, BFD and WFD
produce very similar results and they are often represented by the same
plot in the figures.

For instances of Panigrahy Class 5 (Fig. 2(a)), the best multi-bin ac-
tivation algorithm (MB-Pairing-NormDP-Unit) and the best bin-centric
algorithm (BC-L2Slacks-Unit) outperform other algorithms. Their av-
erage 𝜚-values, taken over all instances with different 𝑑 and 𝑛, are
𝜚 = 2.8 and 𝜚 = 2.9, respectively. The next successful algorithm
is from the remaining multi-bin activation family (MB-WFD-L2-Unit),
with 𝜚 = 5.5. The best item-centric algorithms conclude the list, with
FFD-L2-Unit, BFD-T1-L2Load-Unit and WFD-T1-L2Load-Unit, all having
𝜚 = 5.9. Interestingly, the simplest item-centric algorithm FF performs
quite similarly compared to more sophisticated item-centric algorithms.

For instances of Panigrahy Class 8 (Fig. 2(b)), the best multi-bin
ctivation algorithm (MB-WFD-Linf-Unit) achieves a slightly better ac-
uracy compared to best item-centric algorithm, with 𝜚 = 1.5. The
emaining item-centric algorithms consistently demonstrate slightly
arger 𝜚, but still they outperform the multi-bin activation algorithms of
ype MB-Pairing (with 𝜚 = 3.2 for MB-Pairing-DP3-Unit) and the family
f bin-centric algorithms (with 𝜚 = 3.6 for BC-DP1-Unit). FF consistently
emonstrates a worse performance.

For instances of New Class 5 (Fig. 3(a)), the best algorithms in
ach family perform similarly, with a slight advantage for the bin-
entric and MB-Pairing families. Again, FF consistently demonstrates a
orse performance. Contrary to the two previous classes, the 𝜚 -values

or New Class 5 significantly depend on the number of dimensions
. Specifically, considering best performing algorithms in each family,
∈ [6.5, 7.4] when 𝑑 = 3, 𝜚 ∈ [10.8, 11.6] when 𝑑 = 5, and 𝜚 ∈ [17, 17.6]
hen 𝑑 = 10.

Finally, for instances of Triplet Class F (Fig. 3(b)), almost all al-
orithms perform similarly with 𝜚 = 17.8, except for one outlier —
B-Pairing-DP1-Unit. It achieves a lower average error 𝜚 = 11.7 when
= 3 and a larger average error 𝜚 = 22.5 when 𝑑 = 10.

Regarding algorithms’ running times, the item-centric algorithms
re the fastest, followed by the bin-centric algorithms: FF and FFD
amilies of algorithms are able to solve the largest instances in less than
ms, BFD and WFD families need at most 15 ms, while the bin-centric

lgorithms require up to 56 ms. For the multi-bin activation algorithms,
he family of MB-WFD and MB-BFD solves the largest instances in
ess than 105 ms. The running times of the MB-Pairing algorithms are
uch larger: 12, 000 ms on average and up to 32, 000 ms for the largest

nstances.

.4.3. The impact of replacing unit weights by average weights
Introduction of Average weights generally improves the perfor-

ance of the algorithms, and using the dynamic version of Average
eights leads to further improvements in the majority of cases. We il-

ustrate this by considering the algorithms identified as the best ones in
he previous section for the instances from Panigrahy Class 5 restricted
o 𝑛 = 500 and 𝑑 = 10. The level of improvements is demonstrated in
ig. 4.

Item-centric algorithms FFD-L2 and WFD-T1-L2Load, which have
elatively large 𝜚 = 11.5 in the case of Unit weights, achieve an
mprovement, with 𝜚 = 10.9 and 𝜚 = 11.2 for the static version
f Average weights, and even a further improvement, with 𝜚 = 9.3,
or the dynamic version of Average weights. Algorithm BC-L2Slacks,
he best-performing bin-centric algorithm for the benchmarks under
onsideration, improves its 𝜚-value from 4.3, for Unit weights, to 4, for
oth static and dynamic Average weights.

3 https://github.com/Vectorpack/experiments_vector_paper.

https://github.com/Vectorpack/experiments_vector_paper
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Fig. 2. Performance summary of the best-performing algorithms with Unit weights in each family.
There are rare cases when the introduction of Average weights does
not lead to better results, or the improvement is insignificant. For ex-
ample, there is generally no change in 𝜚-values for MB-Pairing-NormDP
and a minor change for MB-WFD-L2: 𝜚 = 11.2 for Unit weights and 𝜚 =
10.9 for the static version of Average weights. Interestingly, dynamic
11 
version of Average weights MB-WFD-L2-Avg-Dyn is less beneficial than
its static version MB-WFD-L2-Avg.

Regarding algorithms’ running times, introduction of static Average
weights instead of Unit weights does not slow down the algorithms
significantly. The situation with dynamic Average weights is different.
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Fig. 3. Performance summary of the best-performing algorithms with Unit weights in each family (cont.).
For item-centric algorithms, their running times increase by up to 100
times. Still the largest instances are solvable in less than 100 ms. A
similar behavior is observed for MB-WFD and MB-BFD algorithms, with
a maximum running time of 382 ms for the largest instances.

On the positive side, using dynamic weights does not essentially
affect the running times of the bin-centric algorithms and MB-Pairing.
12 
This is explained by the fact that the cost of re-computing the weights
in each packing step is dominated by the cost of computing the scores
for selecting the next item-bin pair. On average, the best bin-centric al-
gorithms solve the largest instances in under 20 ms, with a maximum of
40 ms, while the best MB-Pairing algorithms solve the largest instances
in less than 12,000 ms, with a maximum of 33, 000 ms.



C. Mommessin et al. Computers and Operations Research 173 (2025) 106860 
Fig. 4. Impact of Average weights in the experiments for the Panigrahy Class 5, with 𝑛 = 500 and 𝑑 = 10.
N
e
a

𝜚
n
c
p
r

a
t
i
p
a

a
M
f

8.4.4. Comparing heuristics with all types of weights
We now discuss the experiments performed on all 351 variations of

algorithms with different types of weights. Recall that for Unit weights
we have 26 variations of algorithms.

Similar to the case of Unit weights, there is no algorithm consis-
tently outperforming the others, and the best-performing algorithms
vary for different types of instances. The results for the selected four
classes of instances are summarized in Figs. 5–6. As before, we select
the best performing algorithm in each family of algorithms, where
algorithms’ families are defined in Section 8.4.2. In this section, each
family contains all versions of the relevant algorithms with static item-
based weights, dynamic item-based weights and dynamic bin-based
weights; see Table 4 for weight formulae. Recall that the complete
summary of the results is available in the companion GitHub repository.

For instances of Panigrahy Class 5, Panigrahy Class 8 and New
Class 5, the majority of best-performing algorithms use the dynamic
versions of Average or Reciprocal Average weights. For instances of
Triplet Class F, the majority of best-performing algorithms use the
Utilization Ratio weights.

We now compare the algorithms within each family. For item-
centric algorithms BFD and WFD, the type T2 and type T3 are generally
no better than their T1 counterparts; see Section 8.3 for the definitions
of T1-T3. The choice of a specific size measure does not significantly
affect the performance of BFD, but in the case of WFD the reverse 𝓁2
measure of bin load is beneficial. Note that the latter version of WFD is
similar to BFD with the forward 𝓁2 measure, although they occasionally
may produce different results.

In the family of bin-centric algorithms, BC-DP1 with any type of
dynamic weights is superior, although the dynamic Average weights
stand out, followed by L2Slacks.

In the family of MB-Pairing algorithms, although the DP1 or
NormDP scores with RecipAvg weights are the best in some cases (e.g.,
Figs. 5(a) and 6(b)), the DP3 score with static Average weights is
superior on average.

Considering the bin-based weights combined with the bin-centric
and MB-Pairing algorithms, we observe that they do not generally pro-
vide an improvement over the item-based dynamic weights. Recall that
bin-based weights are only applicable to bin-centric and MB-Pairing
algorithms.

In addition to the previously defined algorithms, we also evaluated

the virtual performance of two ‘‘meta’’ algorithms: meta-centric executes

13 
all versions of item-centric and bin-centric algorithms and keeps the
best solution found, and meta-all executes all versions of all algorithms,
item-centric, bin-centric and multi-bin activation, and keeps the best
solution found. The running time of a meta algorithm is defined as the
sum of the running times of individual algorithms.

For instances of Panigrahy Class 5 (Fig. 5(a)), meta-centric has 𝜚 =
1.7 with a running time of at most 6000 ms, and meta-all has 𝜚 = 1.2 with
a running time of 83,000 ms on average and 130, 000 ms at maximum.
Since different individual algorithms deliver superior solutions on dif-
ferent instances in the class, each individual algorithm cannot achieve
the accuracy of meta-all on all instances. In particular, the overall best-
performing individual algorithm is MB-Pairing-NormDP-RecipAvg-Bin
with 𝜚 = 2.1 and a running time under 6000 ms for the largest instances.

ote that the best item-centric algorithm achieves 𝜚 = 4.7 and solves
ven the largest instances in less than 30 ms, while the best bin-centric
lgorithm achieves 𝜚 = 2.6 with a maximum running time of 46 ms.

For instances of Panigrahy Class 8 (Fig. 5(b)), meta-centric has
= 0.2 with a running time of 8 s on average, and meta-all does

ot get a further improvement in terms of 𝜚, but incurs much more
omputation time, around 9 min. For comparison, the overall best-
erforming individual algorithm is FFD-L2-Avg-Dyn with 𝜚 = 1 and a
unning time of 27 ms.

For instances of New Class 5 (Fig. 6(a)), meta-centric has 𝜚 = 9.2 with
running time of 9 s on average, and meta-all only marginally improves

his result with a running time of 10 min on average for the largest
nstances, and a maximum of 15 min. For comparison, the overall best-
erforming individual algorithm is BC-DP1-Avg-Dyn with 𝜚 = 11.1 and
running time of 26 ms.

For instances of Triplet Class F (Fig. 6(b)), meta-centric has 𝜚 = 16.7
with a running time of 9 s on average, and meta-all has 𝜚 = 14.5 with a
running time of about 9 min for the largest instances, and up to 12 min
t maximum. Interestingly the best-performing individual algorithm is
B-Pairing-DP1-RecipAvg-Dyn, not included in meta-centric. It outper-

orms the meta-centric algorithm, achieving 𝜚 = 16.5 as the average
value over all experiments, but at the cost of a larger running time,
15 s. For comparison, the other individual algorithms mostly achieve
a similar 𝜚 of 17.6, with a maximum running time under 60 ms. It is
also worth noticing that the performance of the MB-Pairing algorithm
is not stable when the number of dimensions changes. The algorithm

significantly outperforms item-centric and bin-centric algorithms when
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Fig. 5. Performance summary of the best-performing algorithm in each family considering all weights.
𝑑 = 3, has a similar performance when 𝑑 = 5, but it is outperformed by
the others when 𝑑 = 10 (with the exception of the simplest algorithm,
FF).

As a summary, we present Fig. 7 to illustrate the trade-off between
𝜚-values and running times for best-performing algorithms representing
each family. The 𝜚-values are averaged over all instances of Panigrahy
14 
Class 5. We highlight three algorithms: FFD-L1-RecipAvg is very fast
but moderately accurate (𝜚 = 10.6, the running time is 0.5 ms), BC-
L2Slacks-Avg-Bin is accurate but with intermediate running time (𝜚 =
4.3, the running time is 35 ms), and MB-Pairing-DP3-Avg-Dyn is among
the most accurate algorithms but with a larger running time (𝜚 = 4, the
running time is 1300 ms).
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Fig. 6. Performance summary of the best-performing algorithm in each family considering all weights (cont.).
8.4.5. Impact of 𝑛 and 𝑑 on algorithms’ accuracy
The experiments discussed in the previous sections focus on four

classes of instances: two of the Panigrahy type, one of the New type
and one of the Triplet type. In this section we summarize our findings
for all classes of instances of all types, Panigrahy, New and Triplet.
15 
In the majority of classes, 𝜚-values increase as the number of dimen-
sions 𝑑 increases. There are 4 exceptions: the instances of Panigrahy
Class 2 and Class 3, which are almost always solved to optimality,
the instances of Panigrahy Class 6, which were noted as the most
difficult instances for the one-dimensional BP, and the instances of
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Fig. 7. Performance summary of algorithms for Panigrahy Class 5, with 𝑛 = 500 and 𝑑 = 10. The marks for BFD-T1-Linf-Avg-Dyn and BFD-T2-Linf-
Avg-Dyn mostly coincide with the mark for BFD-T3-Linf-Avg-Dyn-RecipAvg.
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Panigrahy Class 7, where item sizes have positive correlation in every
two consecutive dimensions. It is worth noticing that, for these 4
classes, solutions contain on average between 2 and 2.5 items per bin.

For almost all classes of the Panigrahy type, 𝜚-values are close to 0
hen 𝑛 = 20 and they increase with the number of items 𝑛. Exceptional

nstances are those of Panigrahy Class 8, for which the opposite is
bserved (Fig. 5(b)), and Panigrahy Class 5, for which there seems to
e a plateau for large values of 𝑛 (Fig. 7).

For the instances of the New benchmark, the 𝜚-values increase
s 𝑛 increases. That increase is generally more significant in larger
imensions (see Figs. 3(a) and 6(a)). On the contrary, for the instances
f the Triplet benchmark the 𝜚-values tend to decrease as 𝑛 increases.

Finally, quite naturally, the running times of algorithms increase
hen 𝑛 and 𝑑 increase.

.4.6. Finding optimal solutions
Among the algorithms with Unit weights, guaranteed optimal solu-

ions were found for 893 instances out of 1620 of the Panigrahy type,
ith 601 of them matching the lower bounds. Note that the actual
umber of optimal solutions found might be higher, since comparison
s done with the lower bound if an optimal solution is not known. For
he instances of the New type, at least 200 optimal solutions were found
ut of 1080 instances, with 87 of them matching the lower bounds. For
40 instances of the Triplet type, the algorithms did not find optimal
olutions.

The algorithms with non-unit weights find a larger number of opti-
al solutions. Considering all algorithms with all weights, the number

f guaranteed optimal solutions found increases to 992 for the instances
f the Panigrahy type, with 643 of them matching the lower bound, 260
ptimal solutions for the instances of the New type, with 116 of them
atching the lower bound. Still no optimal solutions were found for

he instances of the Triplet type. Interestingly, the majority of optimal
olutions are found by item-centric and bin-centric algorithms, namely,

85 and 257 optimal solutions for the instances of the Panigrahy and

16 
ew type, respectively.

.4.7. Summary of algorithms’ evaluation
The experiments performed on instances of different types confirm

hat among the 351 algorithm variations tested, there is no one which is
n ultimate winner. Recommendations can be given for instances with
ommon features, like those grouped in special classes of benchmarks.
epending on an acceptable time limit, practitioners can conduct ex-
eriments with the whole collection of algorithms to pinpoint those
hich are best suited for a given use-case. The results obtained with

he two meta-algorithms show that executing all algorithms, returning
he best solution found, is consistently successful. The downside of this
ethod is the running time that may become prohibitively large, but

n the positive side the method helps in identifying most promising
pproaches for a class of instances under consideration.

Alternatively, one may consider the following list of the most
romising algorithms, selected through our experiments on a variety
f benchmarks.

• The bin-centric algorithm with Dot-Product 1 or 𝓁2-Norm of
Slacks scores does stand out, especially if combined with static
Average weights or dynamic Average weights.

• In the group of multi-bin activation algorithms, MB-Pairing with
Dot-Product 3 score and static Average weights demonstrates
particularly good performance, comparable to or even better than
the best performing bin-centric algorithms.

• In the group of item-centric algorithms, BFD- and WFD-type algo-
rithms are not significantly superior if compared to the FFD-type
algorithms.

On a different note, optimal solvers, such as VPSolver by Brandão
nd Pedroso (2016), are powerful but limited to small- or medium-
ize instances, when the number of items per bin is not too large; see
ppendix B. Larger instances can be solved in reasonable time mostly

n the case of 𝑑 = 2; see Spieksma (1994), Caprara and Toth (2001)
nd Wei et al. (2020). The usage of heuristics is fully justified for large
ize instances in the multidimensional case.
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9. Conclusions

Our work bridges the gap between the body of research on theo-
retical analysis of Bin Packing and Vector Bin Packing algorithms, and
applied work on actual performance of heuristics when addressing real-
world applications. The need for applied research on VBP has become
particularly apparent with the growing demand of modern distributed
systems for effective and efficient algorithms which optimize resource
usage, see, e.g., Kumaraswamy and Nair (2019) and Mann (2015).
Thus, the main motivation of our study is to analyze empirically tra-
ditional and new heuristics for VBP, providing a foundation for future
study of enhanced VBP models arising in distributed computing and
other areas.

The main contribution of our paper is twofold:

(1) a systematic classification of heuristics for the Vector Bin Packing
problem and algorithms’ tuning parameters of three types: size
measures for items and bins, scores for item-bin pairs, and
weights to differentiate dimensions;

(2) evaluation of the algorithms’ performance via extensive computa-
tional experiments, identifying the most successful algorithms
for datasets of different types, global top performers and less
promising approaches.

In our study, we use elementary construction heuristics, item-centric
and bin-centric, as the basis for developing more complicated multi-
bin activation heuristics. Some of the newly introduced algorithms,
e.g., MB-Pairing (with the tuning parameters Dot Product 3 for item-
bin scores and dynamic Average weights for prioritizing dimensions)
or MB-WFD (with the 𝓁1-size measure for items and bins’ residual
capacities), can achieve superior results compared to the traditional
item-centric and bin-centric approaches. Note that algorithms’ tun-
ing parameters are collected and put together from multiple sources
and enhanced with newly introduced parameters. Further evidence of
the power of the proposed multi-bin activation approach is provided
in our recent work on optimizing resource provisioning in shared
clusters (Mommessin et al., 2023).

We foresee the following directions for future work. First, the
proposed multi-bin activation algorithms, presented in the context of
the decision problem VBP(𝑚), might be useful for solving the Multiple
Multidimensional Knapsack Problem, the decision version of which is
the same as VBP(𝑚). Second, the toolkit for the classical VBP prob-
lem can be adjusted and extended for solving the versions of VBP
with additional features: packing items with restrictions (e.g., conflicts,
see Gendreau et al. (2004)), unequal bin capacities, cost constraints
(monetary or energy), and various further features arising, for example,
in the context of Distributed Computing. Finally, having classified the
VBP algorithms and implemented them as the C++ Vectorpack library,
we consider them as a starting point for the design of more complicated,
hybrid algorithms, as well as self-tunable hyperheuristics and Machine
Learning algorithms.
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Appendix A. The proof of Theorem 3

The first result of Section 6 is Theorem 3 that establishes mono-
tonicity of WF(𝑚) and WFD(𝑚) for 𝓁∞, 𝓁1 and 𝓁2 size measures,

onotonicity of BF(𝑚) and BFD(𝑚) for the 𝓁2 size measure of bin load,
s well as monotonicity of Pairing(𝑚).

We start with the proof for WF(𝑚). It holds for WFD(𝑚) as well
ince ordering items in a specific way does not affect the proof.

Compare the operation of WF(𝑚) on an instance with 𝑛 items and the
peration of WF(𝑚+1) on the same instance. We call the two scenarios 𝛼
nd 𝛽, respectively. The comparison is performed at various timesteps:
t timestep 0 no item is packed yet; at timestep 𝑗, the first 𝑗 items have
een packed.

Let 𝑟𝛼𝑘(𝑗) and 𝑟𝛽𝑘(𝑗) denote the residual capacity of the 𝑘th bin after
imestep 𝑗 in scenario 𝛼 and 𝛽, respectively. To simplify the analysis,
e repeatedly renumber the bins in nondecreasing order of residual

apacities every time an item is allocated, so that for each timestep 𝑗,
𝛼
1 (𝑗) ≤ 𝑟𝛼2 (𝑗) ≤ ⋯ ≤ 𝑟𝛼𝑚(𝑗),

𝑟𝛽1 (𝑗) ≤ 𝑟𝛽2 (𝑗) ≤ ⋯ ≤ 𝑟𝛽𝑚(𝑗) ≤ 𝑟𝛽𝑚+1(𝑗).

Without loss of generality we consider a tie breaking rule that always
places a current item into the last bin. At each timestep, the current
item is allocated to the last bin and that bin ‘‘bubbles’’ forward in the
list to observe the residual capacity order.

The monotonicity of WF(𝑚) follows from the property:

𝑟𝛼𝑘(𝑗) ≤ 𝑟𝛽𝑘(𝑗), for each timestep 𝑗 = 0, 1, 2,… , 𝑛 and any 𝑘, 1 ≤ 𝑘 ≤ 𝑚.

(10)

Here we assume that item 𝑗 can be feasibly packed by WF in both
scenarios 𝛼 and 𝛽.

Clearly, property (10) holds for any 𝑗 ≤ 𝑚, since in either scenario, 𝛼
or 𝛽, each of the 𝑗 items is placed into a separate bin. Consider timestep
𝑗 > 𝑚 and suppose (10) holds for all previous timesteps 0, 1, 2,… , 𝑗 −1.
We prove by induction that (10) holds for 𝑗.

Let 𝑘′ (𝑘′′) be the index of the bin containing item 𝑗 after that item is
allocated under scenario 𝛼 (scenario 𝛽) and bins have been renumbered.
Then the following useful property holds:

𝑟𝛼𝑘′ (𝑗) ≤ 𝑟𝛽𝑘′′ (𝑗) for 𝑗 > 𝑚. (11)

Indeed

𝑟𝛼𝑘′ (𝑗) = 𝑟𝛼𝑚(𝑗 − 1) − 𝑠𝑗 ,

𝑟𝛽𝑘′′ (𝑗) = 𝑟𝛽𝑚+1(𝑗 − 1) − 𝑠𝑗 ,

and additionally

𝑟𝛼𝑚(𝑗 − 1)
induction
hypothesis

≤ 𝑟𝛽𝑚(𝑗 − 1)
bin

numbering
≤ 𝑟𝛽𝑚+1(𝑗 − 1),

where the first inequality holds by the induction hypothesis and the
second inequality holds due to the bin numbering at timestep 𝑗 − 1.

We now turn to proving inequality (10) for 𝑗 > 𝑚, assuming it is
satisfied for 0, 1, 2,… , 𝑗 − 1.

If 𝑘 < min
{

𝑘′, 𝑘′′
}

, then

𝛼 𝛼
induction
hypothesis 𝛽 𝛽
𝑟𝑘(𝑗) = 𝑟𝑘(𝑗 − 1) ≤ 𝑟𝑘(𝑗 − 1) = 𝑟𝑘(𝑗).
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Table 5
Proof of Theorem 4: item sizes for WF(𝑚) and WFD(𝑚).
Item 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑠𝑖1 0.485 0.484 0.505 0.495 0.02 0.01
𝑠𝑖2 0.99 0.985 0 0 0.01 0.014

𝑣(𝑖) for 𝓁∞ 0.99 0.985 0.505 0.495 0.02 0.014
𝑣(𝑖) for 𝓁1 1.475 1.469 0.505 0.495 0.03 0.024
𝑣(𝑖) for 𝓁2 1.215325 1.204481 0.255025 0.245025 0.00050 0.000296
s
s

m
c
t
o
m

W
W
✓

i
r
a

r

B

=
t

d

u
a
t
∑

v
s
i
w
s
c
{
b

𝐷

t

t
s

Similarly, if 𝑘 > max
{

𝑘′, 𝑘′′
}

, then

𝑟𝛼𝑘(𝑗) = 𝑟𝛼𝑘−1(𝑗 − 1)
induction
hypothesis

≤ 𝑟𝛽𝑘−1(𝑗 − 1) = 𝑟𝛽𝑘(𝑗).

It remains to prove that inequality (10) holds for any 𝑘, min
{

𝑘′, 𝑘′′
}

≤ 𝑘 ≤ max
{

𝑘′, 𝑘′′
}

. We distinguish between the following two cases.
Case 1: if 𝑘′′ ≤ 𝑘′, then for any 𝑘, 𝑘′′ ≤ 𝑘 ≤ 𝑘′,

𝑟𝛼𝑘(𝑗)
bin

numbering
≤ 𝑟𝛼𝑘′ (𝑗)

(11)
≤ 𝑟𝛽𝑘′′ (𝑗)

bin
numbering

≤ 𝑟𝛽𝑘(𝑗).

Case 2: if 𝑘′ < 𝑘′′, then for any 𝑘, 𝑘′ ≤ 𝑘 < 𝑘′′,

𝑟𝛼𝑘(𝑗)
bin

numbering
≤ 𝑟𝛼𝑘+1(𝑗) = 𝑟𝛼𝑘(𝑗 − 1)

induction
hypothesis

≤ 𝑟𝛽𝑘(𝑗 − 1) = 𝑟𝛽𝑘(𝑗),

and for 𝑘 = 𝑘′′

𝑟𝛼𝑘′′ (𝑗) = 𝑟𝛼𝑘′′−1(𝑗 − 1)
induction
hypothesis

≤ 𝑟𝛽𝑘′′−1(𝑗 − 1) = 𝑟𝛽𝑘′′−1(𝑗)
bin

numbering
≤ 𝑟𝛽𝑘′′ (𝑗).

The proof for BF(𝑚) and BFD(𝑚) with the 𝓁2 size measure of bin load
is similar to the proof presented above.

Consider now Pairing(𝑚) with the scores listed in Theorem 3.

• Pairing(𝑚) with Dot-Product 1 becomes MB-WFD. Indeed, the
scores are 𝜉𝑖𝑘 = 𝑠𝑖𝑟𝑘, and the maximum value is achieved for the
bin 𝐵𝑘 with the largest 𝑟𝑘 and for the item 𝑖 with the largest size
𝑠𝑖, 𝑠𝑖 ≤ 𝑟𝑘. The same holds for Pairing(𝑚) with Normalized Dot
Product.

• Pairing(𝑚) with Dot-Product 2 computes the scores 𝜉𝑖𝑘 = 1 for all
item-bin combinations, so that with an appropriate tie-breaking
rule it performs like FF.

• Pairing(𝑚) with Dot-Product 3 becomes BFD. Indeed, the scores
𝜉𝑖𝑘 = 𝑠𝑖

𝑟𝑘
are computed for all item-bin pairs with 𝑠𝑖 ≤ 𝑟𝑘, the pair

(𝑖∗, 𝐵𝑘∗ ) with the highest score is selected and item 𝑖∗ is packed
into bin 𝐵𝑘∗ . If 𝑖∗ has the largest size among all unallocated items,
then allocation (𝑖∗, 𝐵𝑘∗ ) is the same as the one which would be
adopted by BFD. If 𝑖∗ is not the largest item, then BFD would
handle larger items first, which would not affect 𝐵𝑘∗ (larger items
do not fit 𝐵𝑘∗ ) and at some stage it would allocate 𝑖∗ to 𝐵𝑘∗ in the
same fashion as Pairing(𝑚).

Appendix B. The proof of Theorem 4

The second result of Section 6 is Theorem 4 that establishes non-
monotonicity of multi-bin and bin-centric algorithms in the multi-
dimensional case. We consider multi-bin algorithms in part B1 and
bin-centric algorithms in part B2.

B.1. Non-monotonicity of WF(𝑚) and WFD(𝑚)

The proof is based on the instance given by Table 5 with the set of
𝑛 = 6 two-dimensional items  = {𝑎, 𝑏,… , 𝑓}. We show that for each
size measure, all items can be packed by the algorithm into 𝑚 = 2 bins,
but the same algorithm fails to find a feasible packing when 𝑚 = 3.
According to the definition of algorithm WF(𝑚), it considers the items
from  in the order they appear on the list. Since 𝑣(𝑎) ≥ 𝑣(𝑏) ≥ ⋯ ≥ 𝑣(𝑓 )
for each type of the forward size measure, the same item order is

observed by algorithm WFD(𝑚); see the three bottom rows of Table 5.
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In the case of 𝓁∞, algorithms WF(2) and WFD(2) find a feasible
olution {𝑎, 𝑑, 𝑒}, {𝑏, 𝑐, 𝑓}. Algorithms WF(3) and WFD(3) find a partial
olution {𝑎}, {𝑏, 𝑒}, {𝑐, 𝑑}, failing to allocate the remaining item 𝑓 .

The decision making for WF(𝑚) and WFD(𝑚) with the 𝓁∞-size
easure is illustrated in Table 6, where ✓ indicates the allocation of a

urrent item to a bin and × indicates impossibility of allocating an item
o a bin. The numbers in the table specify the residual capacities 𝑣(𝐵𝑘)
f the bins computed via the 𝓁∞-norm after an allocation decision is
ade.

Now we show that for the 𝓁1-size measure, algorithms WF(2) and
FD(2) find a feasible solution {𝑎, 𝑑, 𝑒}, {𝑏, 𝑐, 𝑓}, while algorithms
F(3) and WFD(3) fail to allocate all items into 3 bins. In Table 7,

indicates the allocation of a current item to a bin and × indicates
mpossibility of allocating an item to a bin. The numbers specify the
esidual capacities 𝑣(𝐵𝑘) of the bins computed via the 𝓁1-norm after an
llocation decision is made.

Finally, we repeat the calculations for the 𝓁2-size measure. The
esults are presented in Table 8.

A similar reasoning can be applied to prove non-monotonicity of
F(𝑚) and BFD(𝑚) with the 𝓁2-size measure of bin load.

Note that the item sizes given in Table 5 satisfy: ∑𝑖∈ 𝑠𝑖1 =
∑

𝑖∈ 𝑠𝑖2
1.999. Thus, with the common constant 𝑑ℎ = 1

||
∑

𝑖∈ 𝑠𝑖ℎ for ℎ = 1, 2,
he theorem holds for any weight-function presented in Table 4.

To conclude we observe that the results hold for any number of
imensions 𝑑 ≥ 3 by setting 𝑠𝑖ℎ = 1

2 (𝑠𝑖1 + 𝑠𝑖2) for all items 𝑖 ∈ 
in dimensions ℎ = 3,… , 𝑑. Note that for the modified data we have
𝑣(𝑎) > 𝑣(𝑏) > 𝑣(𝑐) > 𝑣(𝑑) > 𝑣(𝑒) > 𝑣(𝑓 ), so that the item ordering
sed by WFD(𝑚) remains the same as in the instance elaborated above,
nd algorithms WF(𝑚) and WFD(𝑚) operate in the same way as in the
wo-dimensional case. Note also that for the 𝑑-dimensional instance,
𝑖∈ 𝑠𝑖ℎ is the same constant in each dimension ℎ = 1,… , 𝑑, so that

the instance works for any weight-function.

B.2. Non-monotonicity of Pairing(𝑚)

Consider the instance of the two-dimensional problem with 𝑛 = 6
items with sizes given in Table 9.

Suppose the scores are computed as Dot-Product 1. The operation of
Pairing(2) and Pairing(3) is illustrated in Tables 10 and 11. The initial
alues of the residual capacities of the bins and initial scores 𝜉𝑖𝑘 are
pecified in the top part of these tables. In both cases the first decision
s the same: allocating item 𝑎 to bin 𝐵1, according to the largest score,
ith ties broken in favor of the smallest indexed bin; the corresponding

core is enframed. Next steps perform regular updates of bin residual
apacities and scores. Pairing(2) produces a feasible solution {𝑎, 𝑑, 𝑒},
𝑏, 𝑐, 𝑓}, while Pairing(3) produces a partial solution {𝑎}, {𝑏, 𝑒}, {𝑐, 𝑑},
ut fails to allocate item 𝑓 .

We conclude the proof by observing that in the formulated instance
ℎ =

∑

𝑖∈ 𝑠𝑖ℎ = 2 and 𝑑ℎ = 1
||

∑

𝑖∈ 𝑠𝑖ℎ = 2∕7 for ℎ = 1, 2. This implies

hat 𝑤1 = 𝑤2 whichever 𝑤ℎ-formula from column (a) of Table 4 is used.
Considering now the Normalized Dot-Product score, we observe that

he scores for the formulated instance are the same as for Dot-Product 1
ubject to the multiplier 1

𝐷ℎ
= 1∕2, common for all item-bin pairs.

Finally, non-monotonicity holds for the multidimensional case with
any 𝑑 ≥ 2 by setting 𝑠𝑖ℎ = 0 for all items 𝑖 ∈  in all dimensions ℎ
strictly greater than 2.
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Table 6
Operation of WF(𝑚) and WFD(𝑚) under 𝓁∞-size measure.

Operation of WF(2) and WFD(2) Operation of WF(3) and WFD(3)
(𝓁∞ size measure) (𝓁∞ size measure)

Item 𝐵1 𝑣(𝐵1) 𝐵2 𝑣(𝐵2) Item 𝐵1 𝑣(𝐵1) 𝐵2 𝑣(𝐵2) 𝐵3 𝑣(𝐵3)

𝑎 ✓ 0.515 1 𝑎 ✓ 0.515 1 1
𝑏 0.515 ✓ 0.516 𝑏 0.515 ✓ 0.516 1
𝑐 0.515 ✓ 0.015 𝑐 0.515 0.516 ✓ 1
𝑑 ✓ 0.020 0.015 𝑑 0.515 0.516 ✓ 1
𝑒 ✓ 0 0.015 𝑒 0.515 ✓ 0.496 × 1
𝑓 0 ✓ 0.001 𝑓 × 0.515 × 0.496 × 1
Table 7
Operation of WF(𝑚) and WFD(𝑚) under 𝓁1-size measure.
Operation of WF(2) and WFD(2) Operation of WF(3) and WFD(3)
(𝓁1 size measure) (𝓁1 size measure)

Item 𝐵1 𝑣(𝐵1) 𝐵2 𝑣(𝐵2) Item 𝐵1 𝑣(𝐵1) 𝐵2 𝑣(𝐵2) 𝐵3 𝑣(𝐵3)

𝑎 ✓ 0.525 2 𝑎 ✓ 0.525 2 2
𝑏 0.525 ✓ 0.531 𝑏 0.525 ✓ 0.531 2
𝑐 0.525 ✓ 0.026 𝑐 0.525 0.531 ✓ 1.495
𝑑 ✓ 0.03 0.026 𝑑 0.525 0.531 ✓ 1
𝑒 ✓ 0 0.026 𝑒 0.525 ✓ 0.501 × 1
𝑓 0 ✓ 0.002 𝑓 × 0.525 × 0.501 × 1
Table 8
Operation of WF(𝑚) and WFD(𝑚) under 𝓁2-size measure.
Operation of WF(2) and WFD(2) Operation of WF(3) and WFD(3)
(𝓁2 size measure) (𝓁2 size measure)

Item 𝐵1 𝑣(𝐵1) 𝐵2 𝑣(𝐵2) Item 𝐵1 𝑣(𝐵1) 𝐵2 𝑣(𝐵2) 𝐵3 𝑣(𝐵3)

𝑎 ✓ 0.265325 2 𝑎 ✓ 0.265325 2 2
𝑏 0.265325 ✓ 0.266481 𝑏 0.265325 ✓ 0.266481 2
𝑐 0.265325 ✓ 0.000346 𝑐 0.265325 0.266481 ✓ 1.245025
𝑑 ✓ 0.0005 0.000346 𝑑 0.265325 0.266481 ✓ 1
𝑒 ✓ 0 0.000346 𝑒 0.265325 ✓ 0.246041 × 1
𝑓 0 ✓ 0.000002 𝑓 × 0.265325 × 0.246041 × 1
Table 9
Proof of Theorem 4: item sizes for Pairing(𝑚).

Item 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑠𝑖1 0.485 0.484 0.505 0.495 0.02 0.011
𝑠𝑖2 0.981 0.974 0.006 0.011 0.008 0.02

Appendix C. Optimal solutions for evaluating accuracy of heuris-
tics

Optimal solutions for the Triplet benchmarks are known, as the
instances are generated to get full occupancy of the bins.

For the remaining two types of benchmarks, Panigrahy and New, we
attempt finding optimal solutions using the state-of-the-art solver for
VBP by Brandão and Pedroso (2016), available as open-source software
VPSolver; see Brandão (2016). VPSolver is used in our experiments in
conjunction with the Gurobi solver 8.1.1. The Gurobi parameters are
the same as in the experiments by Brandão and Pedroso (2016), with
the exception of MIPFocus = 1 and Thread = 8. The experiments are
performed on a single machine equipped with one Intel Xeon Gold 6138
CPU having 8 cores, with 16 GB of memory per core. We set a time limit
of 4 hours for the Gurobi solver.

The instances of the Panigrahy type are of mixed complexity for
VPSolver. Instances of Classes 1, 4 and 5 are the hardest to solve,
as the average number of items per bin in a solution is larger than
for other instances (about 4, 8 and 16 items per bin, respectively).
Optimal solutions have been found for Class 1 instances with up to 120
items and only for a few instances of Classes 4 and 5, with 20 or 40
items. It is worth noticing that instances with hundreds of items often
incur substantial computation time for creating the arc-flow model of
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VPSolver (e.g., more than 8 hours for a Class 1 instance with 500 items)
and this stage may fail due to memory overflow (e.g., 128 GB was
insufficient for one Class 4 instance with 120 items). For the remaining
classes of the Panigrahy type, all instances could be solved in less than
5 min, and in some cases in a few seconds, except for the instances
with 500 items of Classes 6 and 7, which require up to 3 hours of
computation time.

The instances of the New type are generally hard to solve optimally.
For Classes 1, 2 and 5, no instance with 250 or 500 items could be
solved under 4 hours. For Classes 3 and 4, no instance with 500 items
could be solved under 4 hours. For Class 6, only instances with up to
60 items could be solved under 4 hours.

Finally, we observe that small dimension instances often incur more
computation time than higher dimension instances, if VPSolver is used.
It is likely that there are more feasible combinations of items for
packing when the dimension is smaller, and therefore the associated
arc-flow model has more variables and constraints.

Appendix D. Supplementary data

The heuristics for VBP discussed in this paper are implemented as
the C++ library Vectorpack available at https://github.com/Vectorpac
k/Vectorpack_cpp. The library is open for further extensions.

The supplementary materials, including all data, scripts, the sum-
maries of the results and illustrative diagrams, are available in a com-
panion repository: https://github.com/Vectorpack/experiments_vector_
paper.
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Table 10
Operation of Pairing(𝑚) when 𝑚 = 2.

𝑟𝑘1 𝑟𝑘2 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

Initial values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 (𝑖 ∈ , 𝑘 = 1, 2, ℎ = 1, 2)
𝐵1 ∶ 1 1 𝜉𝑖1 ∶ 1.466 1.458 0.511 0.506 0.028 0.031
𝐵2 ∶ 1 1 𝜉𝑖2 ∶ 1.466 1.458 0.511 0.506 0.028 0.031

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑎 to 𝐵1
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – 0.268 0.260 0.255 0.010 0.006
𝐵2 ∶ 1 1 𝜉𝑖2 ∶ – 1.458 0.511 0.506 0.028 0.031

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑏 to 𝐵2
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – – 0.260 0.255 0.010 0.006
𝐵2 ∶ 0.516 0.026 𝜉𝑖2 ∶ – – 0.261 0.256 0.011 0.006

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑐 to 𝐵2

𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – – – 0.2551 0.0105 0.0060
𝐵2 ∶ 0.011 0.020 𝜉𝑖2 ∶ – – – 0.0057 0.0004 0.0005

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑑 to 𝐵1
𝐵1 ∶ 0.020 0.008 𝜉𝑖1 ∶ – – – – 0.00046 0.00038
𝐵2 ∶ 0.011 0.020 𝜉𝑖2 ∶ – – – – 0.00038 0.00052

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑓 to 𝐵2

𝐵1 ∶ 0.20 0.008 𝜉𝑖1 ∶ – – – – 0.00046 -
𝐵2 ∶ 0 0 𝜉𝑖2 ∶ – – – – 0 -
Table 11
Operation of Pairing(𝑚) when 𝑚 = 3.

𝑟𝑘1 𝑟𝑘2 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

Initial values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 (𝑖 ∈ , 𝑘 = 1, 2, ℎ = 1, 2)
𝐵1 ∶ 1 1 𝜉𝑖1 ∶ 1.466 1.458 0.511 0.506 0.028 0.031
𝐵2 ∶ 𝜉𝑖2 ∶ 1.466 1.458 0.511 0.506 0.028 0.031
𝐵3 ∶ 1 1 𝜉𝑖3 ∶ 1.466 1.458 0.511 0.506 0.028 0.031

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑎 to 𝐵1
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – 0.268 0.260 0.255 0.010 0.006
𝐵2 ∶ 1 1 𝜉𝑖2 ∶ – 1.458 0.511 0.506 0.028 0.031
𝐵3 ∶ 1 1 𝜉𝑖3 ∶ – 1.458 0.511 0.506 0.028 0.031

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑏 to 𝐵2
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – – 0.260 0.255 0.010 0.006
𝐵2 ∶ 0.516 0.026 𝜉𝑖2 ∶ – – 0.261 0.256 0.011 0.006
𝐵3 ∶ 1 1 𝜉𝑖3 ∶ – – 0.511 0.506 0.018 0.031

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑐 to 𝐵3
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – – – 0.2551 0.0105 0.0060
𝐵2 ∶ 0.516 0.026 𝜉𝑖2 ∶ – – – 0.2557 0.0105 0.0062
𝐵3 ∶ 0.495 0.994 𝜉𝑖3 ∶ – – – 0.2560 0.0178 0.0253

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑑 to 𝐵3
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – – – – 0.01045 0.00604
𝐵2 ∶ 0.516 0.026 𝜉𝑖2 ∶ – – – – 0.01053 0.00620
𝐵3 ∶ 0 0.983 𝜉𝑖3 ∶ – – – – 0.00786 ×

The values of 𝑟𝑘ℎ and 𝜉𝑖𝑘 after allocating 𝑒 to 𝐵2
𝐵1 ∶ 0.515 0.019 𝜉𝑖1 ∶ – – – – – ×
𝐵2 ∶ 0.496 0.018 𝜉𝑖2 ∶ – – – – – ×
𝐵3 ∶ 0 0.983 𝜉𝑖3 ∶ – – – – – ×
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