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Abstract

This study presents the application of a 3D Finite Fracture Mechanics (FFM) criterion for 
predicting fatigue life estimation of laminates exhibiting free edge effects. The proposed 3D 
FFM fatigue criterion incorporates interface properties such as the critical interlaminar stress 
and the incremental energy release rate as functions of the number of cycles. Material constants 
calibration involves computing critical interlaminar stress using effective stress distribution 
over an average delamination onset width while assuming a quadratic relation between critical 
incremental energy release rate and nominal remote maximum stress cycle. The 3D FFM 
fatigue criterion system of equations consists of two inequalities solved for a unique solution 
by assuming homothetic crack extension and utilising a non-linear constraint optimisation. The 
proposed methodology predicts that lower angles of ply orientation in angle-ply laminates 
exhibit greater finite fatigue life for a given remote cyclic load. Predictions of fatigue life 
estimation align well with the experimental results from the literature.

Keywords:

Fatigue life assessment, Finite Fracture Mechanics (FFM), Interlaminar stresses, Energy 
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Nomenclature

𝑎, 𝑏         Two semi-axes of a semi-elliptical crack 

𝑏𝑐
𝑎𝑣 Average delamination onset width

𝐸1,𝐸2, 𝐺12,ʋ12, ʋ23      Elastic properties of the ply

𝐺              Energy release rate

𝐺  Total incremental energy release rate

𝐺𝑐              Interfacial/mixed-mode fracture toughness
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𝐺𝑚𝑎𝑥 Critical incremental energy release rate at maximum cyclic load

ℎ              Ply thickness 

ℎ𝑜 Nominal ply thickness

𝐼/𝐼𝐼/𝐼𝐼𝐼   Three modes of fracture

𝑙𝑠, 𝑙𝑔, 𝑚𝑠, 𝑚𝑔 Material constants 

𝐿 Length of laminate

n               Normalized ply thickness (ℎ/ℎ𝑜)

𝑁𝑓  Number of cycles to failure

𝑁𝑓,𝑒𝑥𝑝  Experimental number of cycles to failure

𝑃𝑠  Probability of survival

𝑄𝑚𝑎𝑥, 𝑄𝑐 Maximum and critical values of applied load

𝑅  Loading ratio

𝑠 Number of tested specimens for a given stress range 

𝑆𝑥     Interlaminar shear strength for 𝜎𝑥𝑧

𝑡               Total thickness of the laminate

𝑡𝑑𝑖𝑠 t-multiplier from the t-distribution

𝑊         Half-width of laminate

𝑥, 𝑦, 𝑧       Global coordinate system

( ∙ )𝑐 Critical value in static regime

( ∙ )𝑓 Critical value in finite fatigue life regime

( ∙ )H  Homothetic coordinate system

( ∙ )𝑙  Critical value in fatigue limit regime

ℑ              Tsai’s Modulus

𝛼,𝛽          Normalised crack lengths 

𝛿𝑚𝑎𝑥        Maximum remote cyclic displacement 

∆𝜎𝑜 Interlaminar shear fatigue limit

∆𝜎∞ Applied remote stress range
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∆𝐺𝑡ℎ Threshold value of energy release rate range

𝜃              Ply orientation 

Λ  Normalised incremental energy release rate

𝜎𝑥𝑧        Interlaminar shear stress 

𝜎∞ Remote quasi-static stress

𝜎𝑐
∞ Predicted critical static stress

𝜎𝑒𝑥𝑝 Experimental critical static stress

𝜎∞
𝑚𝑎𝑥 Maximum remote cyclic stress

𝜎𝑐
𝑥𝑧 Critical interlaminar shear stress at maximum cyclic load

𝜙              Polar angle at the semi-elliptical crack front

𝜒, 𝜓          Stress function and correction factor

ERR        Energy Release Rate 

FEM         Finite Element Method 

FFM         Finite Fracture Mechanics  

IERR        Incremental Energy Release Rate 

VCCT      Virtual Crack Closure Technique

1. Introduction

Composite laminates are crucial materials for applications requiring lightweight design. Their 
effective properties can be adjusted based on the individual layers’ orientation. The mismatch 
in ply orientation between adjacent layers causes stress singularities at the laminate’s free edge, 
which may lead to interlaminar failure under quasi-static, moisture, fatigue, or thermal loading 
conditions. This stress concentration, termed the free edge effect, plays a crucial role in 
aerospace structures. Although interlaminar failure due to the free edge effect has been 
extensively studied under quasi-static loading conditions, very little has been done to address 
it under fatigue loading. First identified by Hayashi [1] in the 1960s, the free edge effect 
phenomenon does not have an exact solution [2]. Therefore, extensive research has been carried 
out by researchers over the past fifty years to better understand this effect. Building on the 
initial work of Pipes and Pagano [3], researchers have employed semi-analytical [4,5], closed-
form [6–15], and numerical approaches [16–18] to study the free edge effect. Numerous 
detailed review papers discussing the existing methods and models for the free edge effect can 
be found in references [2,19–21]. 
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Since the stresses are singular at the free edge [9], traditional local strength of materials 
criterion is always satisfied. However, Linear Elastic Fracture Mechanics (LEFM) depends on 
the existence of a flaw to be effective, which limits its use in structures without flaws. An 
alternative approach is non-local strength-based failure criterion that offers a way to overcome 
issues arising from singularities by averaging interlaminar stresses over a characteristic/critical 
length from the free edge. This approach has been implemented by Zhou and Sun [22], Kim 
and Soni [23], Lagunegrand et al. [24], and Brewer and Lagace [25], drew upon the insights 
from Whitney and Nuismer [26] in their studies. Another approach involves a fracture 
mechanics-based criterion, which presumes the presence of a flaw and involves evaluating 
interfacial energy release rates, as shown in works by Wang and Crossman [27], Leguillon 
[28], and O’Brien [29]. However, both types of criteria necessitate determining an unknown 
characteristic/critical length through experimentation beforehand and lack a clearly defined 
physical meaning. These non-local failure criteria are summarised within the framework of the 
Theory of Critical Distances (TCD) [30]. In contrast, Leguillon [31] introduced the Finite 
Fracture Mechanics (FFM) approach, which addresses this issue by formulating a coupled 
stress and energy criterion. Unlike non-local stress or energy-based approaches, FFM removes 
the need for priori experimental assessment of the characteristic/critical length, depending only 
on material intrinsic properties like strength and fracture toughness. FFM has been applied 
across broad spectrum of structures, involving both singular and non-singular stress raisers. 
Comprehensive review papers have been covered by Weißgraeber et al. [32] and Doitrand et 
al. [33] on its theory and application. Additionally, a recent review paper on TCD methods and 
the FFM approach in the context of delamination of laminates exhibiting free edge effects can 
be found in [34].

In 2D scenarios, crack extension primarily involves length and direction. However, 3D analysis 
requires additional assumption to precisely define the shape of the crack front extension, which 
involves an infinite number of parameters. Leguillon [35] expanded the FFM coupled criterion 
to 3D using matched asymptotic expansions. García et al. [36] utilised the 3D FFM to analyse 
the development of transverse cracks in cross-ply laminates, whereas Doitrand et al. [37] 
implemented it in the study of woven composites for the prediction of critical strain for damage 
initiation. In their investigation of crack initiation in aluminium-epoxy specimens subjected to 
four-point bending, Doitrand and Leguillon [38] determined the crack shape using interface 
normal stress isocontours, depending on a single parameter. Subsequently, they applied this 
methodology to predict initiation of crack in scarf adhesive joints [39], parameterizing the 
crack shape based on its surface area. Regarding applications to the free edge effect, Hebel et 
al. [40], Martin et al. [41], Dölling et al. [5], and Frey et al. [42] utilised FFM to predict the 
delamination initiation in composite laminates. However, it is noted here that all these FFM 
models to predict delamination of laminates exhibiting free edge effects are based on a 
generalised plane strain condition. 

It is noteworthy that most of the aforementioned research on the free edge delamination has 
been performed under quasi-static loading conditions. Little work has been reported on fatigue 
loading conditions. O’Brien [29] established a power law relation between interfacial energy 
release rate and delamination growth rates in laminates with free edges under fatigue loading. 
Later O’Brien [43–45] illustrated that the critical strain energy release rate governed the free 
edge delamination onset subjected to cyclic loads. An investigation was performed by Scarponi 
and Barboni [46] involving numerical analysis to determine three-dimensional stress state at 
free edge under quasi-static loading with the aim to observe the interfaces that are critical and 
analysing fatigue tests to determine if delamination occurred at expected interfaces. The 
interlaminar shear stress was utilised by Kim and Crasto [47] to predict the onset of 
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delamination in conjunction with the SN correlation for in-plane shear. A progressive damage 
model was developed by Papanikos et al. [48] to predict life of composite laminates subjected 
to fatigue loading. Stress analysis was performed by three-dimensional Finite Element Method 
(FEM) model and fatigue failure analysis was conducted by utilising a set of Ye-delamination 
and Hashin-type failure criterion. Since, fracture in composites due to cyclic loads is one of the 
prevalent failure mechanisms, the investigation of free edge delamination onset under fatigue 
loading holds significant importance and therefore should be incorporated into laminate design 
consideration. 

As previously mentioned, the TCD approach depends on a length parameter. This parameter is 
considered a material property and serves as an input for the TCD model. In contrast, in FFM, 
the length parameter is a structural parameter that depends also on geometry and is an output 
to the model. Moreover, TCD breaks down when the structural size approaches or falls below 
the critical/characteristic length, whereas FFM generally provides improved solutions in such 
cases. For predicting delamination onset an adequate criterion is required and to the best of 
authors’ knowledge, FFM has not yet been applied to the fatigue loading in the free edge 
delamination. Therefore, in this paper, a 3D FFM criterion is proposed for predicting 
delamination of laminates exhibiting free edge effects under fatigue (constant amplitude) 
loading conditions for a given loading ratio. The two new interface properties (critical stress 
and incremental energy release rate) in the finite fatigue regime are introduced. These 
properties are functions of number of cycles to finite fatigue failure and therefore the material 
constants are estimated using power laws. The system of equations in 3D FFM fatigue fracture 
criterion is solved by an optimisation problem along with a homothetic crack extension 
assumption. The symmetric angle-ply laminates are considered, and the predicted finite fatigue 
life is compared with the experimental results. 

This paper is organised as follows. In Section 2.1, the 3D FFM fracture criterion is introduced 
for static and in Section 2.2 for fatigue limit. Section 2.2 also presents an extension to the finite 
fatigue regime, followed by the procedures for computation of interface properties in this 
regime in Section 2.3. The evaluation of a 3D FFM fatigue criterion is then discussed in Section 
2.4, along with the finite element models employed in Section 2.5. Results on interlaminar 
stresses and incremental energy release rates are discussed in Section 3.1. Sections 3.2 and 3.3 
are dedicated to the results on interface properties in static and fatigue regimes, respectively. 
The validation of the 3D FFM criterion and its application for fatigue life estimation are 
addressed in Section 3.4, followed by the conclusions provided in Section 4. 

2. Theory

A four-layer symmetric angle-ply laminate under a remote cyclic load resulting in a maximum 
cyclic displacement 𝛿𝑚𝑎𝑥 is considered, as illustrated in Fig. 1. Each ply is treated as 
homogenous, orthotopic, and linear-elastic material with thickness ℎ. The total thickness of the 
laminate is 𝑡, with length (𝐿 ≫ ℎ), and to ensure that the interlaminar stresses of adjacent edges 
do not interact, a width of (2𝑊 ≥ 16ℎ) is considered. The angle 𝜃 represents the ply orientation 
in the angle-ply laminate. The global Cartesian coordinate system is established at the (
―𝜃/ ― 𝜃) interface, centred in the longitudinal direction of the laminate near the free edge, as 
it is convenient to create the coordinate system at this point due to the singular nature of the 
stresses. In this setup, the 𝑥-axis corresponds to the longitudinal direction, the 𝑦-axis to the 
transverse direction, and the 𝑧-axis to the through-the-thickness direction. it is assumed that all 
interfaces are perfect, ensuring displacement continuity. The resulting reaction forces can be 
employed to calculate the maximum remote cyclic stress, denoted as 𝜎∞

𝑚𝑎𝑥. 
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The cracked laminate configuration at the delamination onset under cyclic loading is depicted 
in Fig. 2. As shown experimentally in [24,25,49] interlaminar delamination onset occurs at the 
(𝜃/ ― 𝜃) dissimilar interface in symmetric angle-ply laminates. It is assumed that four identical 
semi-elliptical delaminations, with semi-axes 𝑎 and 𝑏 and polar angle 0° < 𝜙 < 180°, originate 
at these (𝜃/ ― 𝜃) dissimilar interfaces near the laminate’s free edge.  

It is important to note here that if a symmetrical laminate is stacked back-to-back, meaning the 
same sequence of layers is stacked on top of itself, so that the total laminate thickness increases 
while the ply thickness remains constant. The distribution of interlaminar stress components at 
any interface remains unchanged, or is zero at the interfaces between sub-laminates, because 
they are self-equilibrating. As a result, the failure load of back-to-back symmetrical laminates 
remain same, regardless of the number of stackings, as demonstrated by Lagace et al. [50]. 
Therefore, ply thickness is a controlling parameter and not laminate thickness in laminates 
exhibiting free edge effects. Moreover, if the crack dimensions are small compared to the width 
of the laminate, as is the case in free-edge delamination, the energy release rate of one crack 
remain unaffected by the presence of other cracks. Therefore, the values computed can also be 
utilised if only some of the cracks develop (not necessarily all four, as shown in Fig. 2). This 
aligns with general observations in experimental mechanics, which indicate that cracks tend to 
develop in regions where local flaws are present, and there is no expectation of symmetry in 
crack propagation.

Fig. 1. Symmetric angle-ply laminate with perfect (uncracked) +𝜃/ ― 𝜃 dissimilar interfaces 
under applied remote cyclic loading.
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Fig. 2. Symmetric cracked angle-ply laminate with four identical semi-elliptically shaped 
delaminations located at the +𝜃/ ― 𝜃 dissimilar interfaces under applied remote cyclic 

loading.

2.1. Finite Fracture Mechanics

FFM fracture criterion, under quasi-static loading, suggests that a crack of finite size forms 
instantaneously upon initiation if both the stress and energy criteria are simultaneously 
satisfied. This criterion allows for the prediction of failure load and corresponding unknown 
finite crack size [31]. In the context of predicting delamination of laminates exhibiting free 
edge effects in angle-ply laminates, particularly when the interlaminar shear stress 𝜎𝑥𝑧 
predominates and under consideration of a semi-elliptically shaped crack nucleation, the 3D 
FFM criterion is given as [51]:

2𝜎∞

𝜋𝑎𝑏

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜒𝑥𝑧 𝑑𝑦 𝑑𝑥 ≥ 𝑆𝑥 

   𝐺 =
2𝜎∞

2ℎ
𝜋𝑎𝑏ℑ

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2 𝑑𝑦 𝑑𝑥 ≥ 𝐺𝑐

.
(1)

(2)

Here 𝜎∞ represents the remote quasi-static stress, 𝑆𝑥 denotes the interlaminar shear strength 
for 𝜎𝑥𝑧, 𝐺𝑐 signifies mixed mode/interfacial fracture toughness, and ℑ represents Tsai’s 
modulus [52], which is computed from 3D stiffness matrix components. The left-hand side of 
the expression (2) is incremental energy release rate (IERR) 𝐺 and it represents the average 
differential energy release rate 𝐺 over the area of finite crack ∆𝐴 [32]: 

𝐺 =
1

∆𝐴

∆𝐴

0

𝐺 𝑑𝐴 .       
(3)

Furthermore, 𝜒𝑥𝑧 and 𝜓𝐼𝐼, 𝜓𝐼𝐼𝐼 represents the normalised interlaminar shear stress and energy 
release rate in mode II and III, respectively, calculated semi-analytically using FE models and 
with the following expressions:

𝜎𝑥𝑧 = 𝜎∞ 𝜒𝑥𝑧

𝐺𝑖 =
𝜎∞

2ℎ
ℑ 𝜓𝑖

2   𝑖 ∈ {𝐼𝐼,𝐼𝐼𝐼}.
(4)

The details of these equations, derived from dimensional analysis, are covered in Ref. [51] and 
are not reported here for the sake of conciseness. Also, the normalised IERR is denoted by Λ 
and from the equation (2) is written as:
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Λ =
𝐺ℑ

𝜎∞2 ℎ =
 2

𝜋𝑎𝑏

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2  𝑑y 𝑑𝑥 . (5)

The stress function 𝜒 exhibits dependency on material and geometric parameters, whereas 𝜓 is 
influenced by crack parameters in conjunction with both material and geometric aspects. It is 
noted here that 𝜓𝐼 (mode I) is insignificant in angle-ply laminates compared to 𝜓𝐼𝐼 (mode II) 
and 𝜓𝐼𝐼𝐼 (mode III) and therefore is not considered [51]. The equation (1) represents a stress 
condition that requires the interlaminar stress, averaged over the potential semi-elliptical crack, 
must exceed the corresponding interlaminar strength of the material to induce fracture 
initiation. The equation (2) depicts an energy condition, according to which the total energy 
release rate for the nucleation of a finite semi-elliptical crack must exceed the fracture 
toughness to initiate fracture.  

For a given interfacial strength and fracture toughness, the set of two equations ((1), (2)) has 
three unknowns (𝜎𝑐

∞, 𝑎𝑐, 𝑏𝑐) representing the critical state. Therefore, the system is 
underdetermined, and infinite many solutions exist. Moreover, system of equations ((1), (2)) 
presents an issue in determining the evolving shape and dimensions of the delamination as it 
extends, given that a semi-elliptical crack involves two dimensions. To address this challenge, 
Burhan et al. [51] proposed a homothetic approach to crack extension, where the crack shape 
stays consistent during extension, ensuring a constant aspect ratio 𝑎/𝑏. Furthermore, an 
additional inequality is asserted to ensure that the actual fracture load is minimised among all 
predicted loads. These adjustments serve to transform the set of equations ((1), (2)) into a 
uniquely solvable problem, approached as a constrained optimisation problem.

2.2. Fatigue loading

Sapora et al.[53,54] proposed the FFM criterion for estimation of fatigue limit of notches. A 
similar extension of current 3D FFM static criterion ((1), (2)) to estimate fatigue limit of angle-
ply laminates with free edge effect can be written as:

2∆𝜎∞

𝜋𝑎𝑏

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜒𝑥𝑧  𝑑𝑦 𝑑𝑥 = ∆𝜎𝑜

  
2∆𝜎∞

2 ℎ 
𝜋𝑎𝑏ℑ

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2  𝑑𝑦 𝑑𝑥 = ∆𝐺𝑡ℎ

, (6)

where ∆𝜎𝑜 and ∆𝐺𝑡ℎ are the two material properties that represent interlaminar shear fatigue 
limit and threshold value of ERR range respectively. Also, ∆𝜎∞ signifies the applied remote 
stress range. Again Eq.(6), like its static counterparts has three unknown variables, fatigue limit 
∆𝜎𝑙

∞ and crack nucleation dimensions (𝑎𝑙, 𝑏𝑙), that represents the critical state. Note, both 
properties (∆𝜎𝑜, ∆𝐺𝑡ℎ) refer to same load ratio 𝑅. 

Similar to static and fatigue limit cases, where interface properties (𝑆𝑥,𝐺𝑐) and (∆𝜎𝑜, ∆𝐺𝑡ℎ) are 
required for the FFM criterion, the finite fatigue life regime existing between these two limit 
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cases necessitates the introduction of two new interface properties. These are denoted as 𝜎𝑐
𝑥𝑧 

and 𝐺𝑚𝑎𝑥, representing the critical interlaminar shear stress and IERR at maximum cyclic load, 
respectively. Implementing these two properties in system of equations ((1), (2)), for a given 
maximum remote cyclic stress 𝜎∞

𝑚𝑎𝑥, the 3D FFM criterion for the fatigue life estimation in 
angle-ply laminate is written as:

2𝜎∞
𝑚𝑎𝑥

𝜋𝑎𝑏

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜒𝑥𝑧  𝑑𝑦 𝑑𝑥 ≥ 𝜎𝑐
𝑥𝑦 = 𝜎𝑐

𝑥𝑦(𝑁)

  
2(𝜎∞

𝑚𝑎𝑥)2ℎ 
𝜋𝑎𝑏ℑ

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2  𝑑𝑦 𝑑𝑥 ≥ 𝐺𝑚𝑎𝑥 = 𝐺𝑚𝑎𝑥(𝑁)

,
(7)

where 𝑁 represents number of cycles. A similar extension of the FFM criterion to estimate 
fatigue life in notched components is proposed by Mirzaei et al. [55]. 

The interlaminar shear stress 𝜎𝑥𝑧 at the dissimilar interface is the critical component for fracture 
in angle-ply laminates and therefore Kim and Crasto [47] used it in conjunction with power 
law relation for in-plane shear to predict free edge delamination onset under fatigue loading. 
On the other hand, a power law relation on 𝑁 is utilized in Ref. [56] for calculation of ERR at 
the fatigue delamination onset in End Notched Flexure (ENF) specimens. Therefore, Wohler’s 
curve can be utilised to represent the functions 𝜎𝑐

𝑥𝑧 and 𝐺𝑚𝑎𝑥 as a variation with 𝑁 until finite 
fatigue failure as: 

𝜎𝑐
𝑥𝑧 = 𝜎𝑐

𝑥𝑧(𝑁) = 𝑙𝑠 𝑁―𝑚𝑠

  𝐺𝑚𝑎𝑥 = 𝐺𝑚𝑎𝑥(𝑁) = 𝑙𝑔 𝑁―𝑚𝑔 ,
(8)

where material constants 𝑙𝑠, 𝑙𝑔, 𝑚𝑠, 𝑚𝑔 are positive numbers and are determined by least-
square regression analysis of experimental data (with probability of survival, 𝑃𝑠, equal to 50%) 
[57]. 

Once the interface properties (𝜎𝑐
𝑥𝑧, 𝐺𝑚𝑎𝑥) in finite fatigue regime are known, by using Eq.(8), 

Eq.(7) is written as:

2𝜎∞
𝑚𝑎𝑥

𝜋𝑎𝑏

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜒𝑥𝑧  𝑑𝑦 𝑑𝑥 ≥ 𝑙𝑠 𝑁―𝑚𝑠

  
2(𝜎∞

𝑚𝑎𝑥)2ℎ 
𝜋𝑎𝑏ℑ

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2  𝑑𝑦 𝑑𝑥 ≥ 𝑙𝑔 𝑁―𝑙𝑔

.
(9)

The system of equations (9) above represents the 3D FFM criterion for the finite fatigue life 
evaluation of angle-ply laminates, for a given material system and load ratio.   



10

The interface properties (𝜎𝑐
𝑥𝑧, 𝐺𝑚𝑎𝑥) within the finite fatigue regime, like their counterpart in 

static loading (interlaminar shear strength 𝑆𝑥, and fracture toughness 𝐺𝑐), are generally 
unknown. This is because these properties are influenced by fibre, matrix material, and ply 
orientation [58,59]. Furthermore, for a given 𝜎∞

𝑚𝑎𝑥, set of equations (9) is indeterminate with 
three unknown variables: the critical number of cycles to finite fatigue fracture 𝑁𝑓, and its 
corresponding finite crack initiation area (represented by 𝑎𝑓and 𝑏𝑓). 

The following sections are devoted to address the calculation of interface properties (fatigue 
regime) and solution of the indeterminate FFM fatigue criterion.    

2.3. Computation of interface properties in the fatigue regime

As delamination onset in angle-ply laminates is solely attributed to interlaminar shear loading, 
the stress-life (SN) curve should be generated specifically for interlaminar shear stress [47]. In 
structures where singularities exist (e.g., notches, free edges), an averaging approach is often 
implemented to compute the effective stress to be used in the SN curve method [60]. 

In recent years, the Theory of Critical Distances (TCD), initially introduced in [61] and 
subsequently reviewed in [30] has been firmly established as a means of an averaging method 
in a certain length for evaluating fracture in various materials under quasi-static and fatigue 
loading conditions. Typically, the length scale considered in laminates with free edge effects 
subjected to static loading is single [23] or [62] double ply thickness for effective stress 
computation.

In the present investigation, since the interface property in fatigue regime (𝜎𝑐
𝑥𝑧) is not known, 

the length scale for its calculation using effective interlaminar stress is assumed as the average 
of the delamination onset width 𝑏𝑐

𝑎𝑣 (which is an output computed from the 3D FFM static 
criterion as outlined in set of equations ((1), (2))), across the laminate configurations taken 
under consideration subjected to fatigue loading. This approach eliminates the ambiguity of 
using a single or double ply thickness as in TCD, ensuring the length scale is derived from the 
FFM static model. Therefore, the critical interlaminar shear stress at maximum cyclic load 𝜎𝑐

𝑥𝑧, 
as an interface property, is expressed as the interlaminar shear stress averaged in 𝑏𝑐

𝑎𝑣: 

𝜎𝑐
𝑥𝑧 =

1
𝑏𝑐

𝑎𝑣

𝑏𝑐
𝑎𝑣

0

𝜎𝑥𝑧 𝑑𝑦 .       (10)

Using Eq. (4), 𝜎𝑐
𝑥𝑧 can be computed for a maximum remote cyclic stress 𝜎∞

𝑚𝑎𝑥 as:

𝜎𝑐
𝑥𝑧 = 𝜎𝑐

𝑥𝑧(𝑁) =
𝜎∞

𝑚𝑎𝑥 
𝑏𝑐

𝑎𝑣

𝑏𝑐
𝑎𝑣

0

𝜒𝑥𝑧 𝑑𝑦 .       (11)

The benchmark case for delamination onset from an initial flaw in Ref. [56], the maximum 
load 𝑄𝑚𝑎𝑥 is calculated in ENF specimens based on a quadratic relationship between 𝑄𝑚𝑎𝑥 
and the energy release rate at maximum load in mode II, 𝐺𝐼𝐼𝑚𝑎𝑥:
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𝐺𝐼𝐼𝑚𝑎𝑥

𝐺𝑐
=

𝑄𝑚𝑎𝑥

𝑄𝑐

2

,      
(12)

where 𝐺𝑐 and 𝑄𝑐 are critical values of energy release rate in mode II and applied static load, 
respectively. A similar approach can be followed to calculate the incremental energy release 
rate at maximum cyclic load 𝐺𝑚𝑎𝑥, where it is supposed to be a quadratic function of 𝜎∞

𝑚𝑎𝑥. 
Therefore, 𝐺𝑚𝑎𝑥 is written as:

𝐺𝑚𝑎𝑥 = 𝐺𝑚𝑎𝑥(𝑁) = 𝐺𝑐
𝜎∞

𝑚𝑎𝑥

𝜎𝑒𝑥𝑝

2

,     
(13)

where 𝜎𝑒𝑥𝑝 is a critical static load known experimentally and mixed mode toughness (𝐺𝑐) is 
estimated through an inverse calculation using 3D FFM static criterion proposed in Ref. [51]. 
The procedure to estimate 𝐺𝑐 is outlined in Appendix A.

Upon obtaining the parameters (𝐺𝑐, 𝑏𝑐
𝑎𝑣) using 3D FFM static criterion, the interfacial 

properties (𝐺𝑚𝑎𝑥(𝑁), 𝜎𝑐
𝑥𝑧(𝑁)) for fatigue regime, using Eq.(11) and (13), can be determined 

for a different nominal remote maximum stress cycle 𝜎∞
𝑚𝑎𝑥 that are related to the experiments. 

Subsequently, using these interfacial properties under fatigue regime, the material constants (
𝑙𝑠,𝑚𝑠, 𝑙𝑔, 𝑚𝑔) are computed using Eq.(8) through best-fitting procedure.  

2.4. Evaluation of 3D FFM fatigue criterion

Identical to the 3D FFM criterion under static loading, a homothetic crack extension (Section 
2.1) is presumed in finite fatigue regime. Furthermore, the evaluation of the critical number of 
cycles 𝑁𝑓 and its corresponding size of finite crack initiation (𝑎𝑓, 𝑏𝑓) leads to a constrained 
nonlinear standard optimisation problem. 

The 3D FFM fatigue criterion (equations in (9)) can be explicitly written in terms of 𝑁 as 
follows:

𝑁 ≥
2𝜎∞

𝑚𝑎𝑥

𝑙𝑠𝜋𝑎𝑏

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜒𝑥𝑧  𝑑𝑦 𝑑𝑥

―1
𝑚𝑠

  𝑁 ≥
2(𝜎∞

𝑚𝑎𝑥)2ℎ 
𝑙𝑔𝜋𝑎𝑏ℑ

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2  𝑑𝑦 𝑑𝑥

―1
𝑚𝑔

. (14)

For the solution of system of equations (14), a standard optimisation technique is utilised. In 
the numerical implementation process, for a given random value of maximum nominal remote 
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stress cycle, 𝜎∞
𝑚𝑎𝑥, 𝑁𝑓 and 𝑎𝑓, 𝑏𝑓 are obtained as solutions to the following constrained 

nonlinear optimisation problem:

𝑁𝑓 = min
𝑎,         𝑏

max
𝜎∞

𝑚𝑎𝑥 𝑠(𝜒𝑥𝑧,𝑎,𝑏)
𝑙𝑠𝐴

―1
𝑚𝑠

,
(𝜎∞

𝑚𝑎𝑥)2ℎ 𝑔(𝜓𝑖,𝑎,𝑏)
𝑙𝑔𝐴ℑ 

―1
𝑚𝑔

,
(15)

where 𝐴= 𝜋𝑎𝑏
2  represents the area of the semi-ellipse. The functions 𝑠(𝜒𝑥𝑧,𝑎,𝑏) and 𝑔(𝜓𝑖,𝑎,𝑏) 

characterise the stress and energy conditions, respectively, and are defined as: 

𝑠(𝜒𝑥𝑧,𝑎,𝑏) =

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜒𝑥𝑧 𝑑𝑦 𝑑𝑥

𝑔(𝜓𝑖,𝑎,𝑏) =

𝑎

―𝑎

𝑏 𝑎 𝑎2―𝑥2

0

𝜓𝐼𝐼
2 + 𝜓𝐼𝐼𝐼

2 𝑑𝑦 𝑑𝑥,

(16)

with the nonlinear equality constraint that the number of cycles to failure from both conditions 
must be equal:

𝑐𝑒𝑞(𝑎,𝑏) = 𝑁(𝜒𝑥𝑧,𝑎,𝑏) ― 𝑁(𝜓𝑖,𝑎,𝑏) = 0. (17)

The procedure yields the minimum number of cycles to failure 𝑁𝑓 necessary for nucleating a 
finite semi-elliptical crack characterising by dimensions 𝑎𝑓 and 𝑏𝑓, while ensuring both stress 
and energy criteria are satisfied. The flowchart in Fig. 3 outlines the steps taken to employ the 
3D FFM fatigue criterion for laminates exhibiting free edge effects. 
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Fig. 3. Flowchart illustrating the step-by-step procedure for applying the 3D FFM fatigue 
fracture criterion.

2.5. Finite Element models

For both interlaminar stresses and ERR 3D FE models, linear 8-node brick reduced integration 
elements (C3D8R) are utilised. Full details of the implemented FE models are provided in Ref. 
[63] and are omitted here to maintain conciseness. 

Since [ ± 𝜃n]s laminates are considered which are characterised by only 𝑧-axis symmetry. The 
numerical computation pertaining to interlaminar stresses and energy release rates are 
conducted utilising half-laminate models (0 < 𝑧 < 2ℎ). The prescribed and symmetry 
boundary conditions associated to both models are shown in Fig. 4 and Fig. 5, respectively.

A thin resin-rich transition layer, with a thickness of 2% of a single ply, is modelled at the 
dissimilar interface (see Fig. 4) where the interlaminar stresses are evaluated at Gauss 
integration points using Abaqus. Further information on incorporation and thickness of this 
transition layer can be found in Ref. [63]. This transition layer consists of a single through-
thickness element, with the Gauss integration point of the element at the free edge located 1.25 
% of ℎ from the free edge, ensuring close proximity to the free edge. 

Static experiments FFM static system

Mixed-mode fracture 
toughness 

Inverse calculation

For a given 

Average delamination 
onset width 

Interface properties in 
fatigue regime ( , )Fatigue experiments

Non-linear optimisation

Material constants 
( , , , )

Linear regression

FFM fatigue system

Non-linear optimisation

Solution ( , , ) 

For a given values of 

Solution ( , , )
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Fig. 4. The prescribed and symmetric boundary conditions of a half-uncracked laminate 
with resin-rich transition layer at the (𝜃/ ― 𝜃) dissimilar interface.

Owing to the negligible influence exerted by one crack within the top half laminate (0 < 𝑧 < 2
ℎ) on the stress field of adjacent edge crack situated on the opposite side (as discussed in 
Section 2), only one crack is considered. This is elucidated in Ref. [51] and its illustration is 
provided in Fig. 5. The ERR is computed along the crack front employing the 3D Virtual Crack 
Closure Technique (3D-VCCT) in Abaqus. The relative crack closure length near crack front 
(ratio of size of element to the semi-elliptical crack perimeter) is maintained 0.02 throughout 
[63]. Detailed analysis of the element sizes at the semi-elliptical delamination front for the 
convergence of ERR values using 3D-VCCT is found in Ref. [63].

Fig. 5. The prescribed and symmetric boundary conditions of a half-cracked laminate 
with only one semi-elliptical delamination considered at the (𝜃/ ― 𝜃) dissimiliar 

interface.

A typical FE mesh corresponding to both FE models is shown in Fig. 6. For interlaminar stress 
evaluation (see Fig. 6 (a)), the mesh is refined near the free edge to accurately capture the high-
stress gradients and transitions to a coarser mesh toward the interior of the laminate where the 
stresses rapidly decrease. For ERR calculations (see Fig. 6 (b)), a structured mesh near the 
semi-elliptical crack front ensures element orthogonality to the crack front, a requirement for 
accurate VCCT application [64]. 
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Fig. 6. Typical FE mesh near (a) the free edge for determining interlaminar stresses 
and (b) a semi-elliptical crack emanating from the free edge for computing ERR.

3. Results and Discussion

In this paper, data is referred to two distinct material systems: carbon/epoxy M79/UD600 and 
glass/epoxy Scotchply/1003, as detailed in Table 1. The edge delamination experimental 
findings concerning free edge fracture stresses for angle-ply laminates ([ ± 𝜃n]s of 
M79/UD600, where 𝜃=10, 20, 30 and n=1, 3) are taken from Ref. [65]. Table 1 includes the 
elastic properties and nominal ply thickness, ℎ𝑜, for M79/UD600, also obtained from  Ref. 
[65], along with the interlaminar shear strength, 𝑆𝑥, (acquired from material manufacturer [66]) 
and Tsai’s Modulus, ℑ, (taken from Ref. [67]). For Scotchply/1003, the experimental data of 
free edge fracture stresses for angle-ply laminates ([ ± 𝜃2]s, where 𝜃=25, 35, 45) under both 
static and fatigue (tension-tension with loading ratio, 𝑅=0.05) loading conditions are taken 
from Ref. [68]. Table 1 provides ℎ𝑜 for Scotchply/1003 (from Ref. [68]), along with the 
interlaminar shear strength (from the Ref. [69]) and the elastic properties (from Ref. [70]). 
Further relevant details of the experimental setups, including schematic representations, are 
provided in Table 2. 

Table 1. Elastic properties, ply thickness, and interlaminar shear strengths of material systems 
considered.

Material 
system

𝐸11

(GPa)

𝐸22=𝐸33 
(GPa)

𝐺12=𝐺13 
(GPa)

𝐺23 
(GPa)

𝜈12=
𝜈13

𝜈23 ℑ

(GPa)

ℎ𝑜

(mm)

𝑆𝑥

(MPa)

M79/UD600 136.5 10.1 4.1 3.4 0.37 0.5 194 0.617 75
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Scotchply/1003 43.2 10 4.49 4.17 0.31 0.44 43.2 0.2125 43

Table 2. Relevant details of the edge delamination test experimental setups.

Test setup Edge delamination tests

Reference [65] [68]

Loading 
condition Quasi-static Quasi-static Fatigue

Loading 
details - -

Loading ratio (𝑅=0.05) 

Frequency=2Hz

Material 
system Carbon/epoxy M79/UD600 Glass/epoxy Scotchply/1003

Layup [ ± 𝜃n]s (𝜃=10, 20, 30 and 
n=1, 3) [ ± 𝜃2]s (𝜃=25, 35, 45)

Specimen 
details

Curing (autoclave) at 80℃ 
for 8 hours.   

Vacuum operation of laminates for 18 hours 
at 1.3 Pa absolute pressure. 

Curing (oven) at 150℃ and 172 kPa for 2 
hours.

Procedure
Zwick 100.

Displacement control 
(2mm/min).

MTS (electro-hydraulic servo-controlled).

Load control (1.15 MPa/s)
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Schematic

All dimensions in mm

Considering that Ref. [68] experimentally examined free edge effects on tensile strength and 
fatigue behaviour across laminates of various widths, only experimental data corresponding to 
widths exceeding four times the total thickness are considered. This ensures that the 
interlaminar stresses of adjacent edges do not interact. Consequently, this necessitates a re-
evaluation of the average experimental fracture stresses under static loading conditions based 
on the selected data. As Scotchply/1003 constitutes a glass fibre reinforced polymer, Tsai’s 
Modulus is not applicable, and the longitudinal elastic modulus is utilised in this context.

3.1. Interlaminar stresses & incremental energy release rates

This section discusses the interlaminar stresses and incremental energy release rates, which are 
computed semi-analytically (as mentioned in Sections 2.1 and 2.5), for the selected laminates 
with different ply orientations. The evaluated normalised interlaminar shear, 𝜒𝑥𝑧, and normal, 
𝜒𝑧𝑧, stresses are depicted in Fig. 7 (a) and (b), respectively. The 𝜒𝑥𝑧 for M79/UD600 increases 
with ply orientation as shown in Fig. 7 (a). Although, both 𝜒𝑥𝑧 and 𝜒𝑧𝑧 functions display a 
weak singularity in the vicinity of the free edge, their influence diminishes quickly towards the 
transverse direction of the laminate. The interlaminar shear stress exhibits significant 
dominance compared to interlaminar normal compressive stress. Hence, only shear stresses are 
considered for the evaluation of 3D FFM fatigue criterion. Furthermore, since in symmetric 
angle-ply laminates interlaminar crack initiation originates at the ( + 𝜃/ ― 𝜃) dissimilar 
interface [24,49], only stresses between plies with dissimilar orientations are considered.  
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(a)                                                                         (b)

Fig. 7. Normalised interlaminar (a) shear stress, 𝜒𝑥𝑧, and (b) normal stress, 𝜒𝑧𝑧, for the 
selected laminates along the ( +𝜃/ ― 𝜃) dissimilar interface.

The normalised IERR Λ for the considered laminates with different ply orientations is shown 
in Fig. 8, utilising the homothetic coordinate system [51]. In this coordinate system, each point 
of the domain denotes a potential/possible extension of the delamination (semi-elliptical in 
shape) via a homothetic path, where the aspect ratio of the crack is kept constant. The axes of 
this coordinate system are represented by the normalised crack semi-axes with a superscript H, 
𝛼H = 𝑎/ℎ, and 𝛽H = 𝑏/ℎ. The normalised IERR Λ is observed to increase with ply orientation 
and 𝛼H, however decreases slightly at higher values of 𝛽H.

Fig. 8. Normalised IERR Λ with respect to homothetic crack parameters for the considered 
laminates.

3.2. Fracture toughness and average delamination onset  

This section presents the results of mixed-mode fracture toughness and average delamination 
onset width parameters (𝐺𝑐, 𝑏𝑐

𝑎𝑣), which have been computed using 3D FFM static criterion as 
outlined in Section 2.3. These parameters are evaluated for the selected laminates with different 
ply orientations. For a given interlaminar shear strengths (Table 1), Fig. 9 (a) and Fig. 10 (a) 
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illustrates the interface toughness for the M79/UD600 and Scotchply/1003, respectively, 
alongside corresponding residuals depicted in Fig. 9 (b) and Fig. 10 (b) with respect to the 
number of iterations. The analysis for M79/UD600 includes assessment of both normalised ply 
thickness (n=total/nominal ply thickness) and ply orientation, while Scotchply/1003 is assessed 
only for different ply orientations. 

An evident trend shows that interface fracture toughness decreases as both normalised ply 
thickness and ply orientation increase. Size effects in fracture toughness evaluation are often 
observed. In fact, these observations are in accordance with several researchers [58,71,72], who 
have observed a decline in fracture toughness as ply thickness increases, and as highlighted in 
Ref. [58], with respect to ply orientation as well. 

(a)                                                                    (b)

Fig. 9. Evaluated interfacial fracture toughness for M79/UD600 laminate with respect to (a) 
experimental failure stress and (b) the corresponding number of iterations, across various ply 

orientations and normalised effective ply thicknesses.  

(a)                                                                    (b)

Fig. 10. Evaluated interface fracture toughness for Scotchply/1003 laminate with respect to 
(a) experimental failure stress and (b) the corresponding number of iterations, across various 

ply orientations.
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The calculated interface fracture toughness values for the considered laminates are presented 
in Fig. 11. In the case of M79/UD600, for fracture toughness validation purposes, a single 
toughness value is utilised for each orientation 𝜃, encompassing varying normalised ply 
thicknesses n, to predict fracture stress under quasi-static loading conditions. The single 
toughness values, displayed in Table 3, are approximately the average toughness values of 
different ply thickness for each ply orientation. This prediction (by solving the 3D FFM static 
system ((1), (2))) is compared against experimental tests [65] and is presented in Fig. 12 (a). 
The corresponding normalised delamination onset width 𝑏𝑐 ℎ is shown on the plot (right y-
axis), illustrating a decreasing trend with increasing ply thickness. 

Fig. 11. The calculated interfacial fracture toughness for selected laminates versus ply 
orientation and norm. ply thickness.

  

(a)                                                                      (b)

Fig. 12. Prediction of failure stresses (solid lines) using 3D FFM static system (present) 
compared against experimental test results [65] (error bars) for (a) M79/UD600 at different 

ply orientations with its corresponding normalised crack width onset (right y-axis) relative to 
normalised ply thickness n, and (b) Scotchply/1003 with respect to ply orientation.

For Scotchply/1003, using the calculated toughness (Fig. 10 (a)), the predicted fracture stresses 
is shown in Fig. 12 (b) alongside experimental results [68]. Additionally, the obtained average 
delamination onset with, 𝑏𝑐

𝑎𝑣, for Scotchply/1003 is 1.198 mm. 
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The determined fracture toughness values signify a noteworthy accuracy, in a sense that 3D 
FFM static criterion effectively predicts the reduction in failure stresses as ply thickness and 
ply orientation increase in the considered angle-ply laminates, aligning closely with 
experimental results. The calculated parameters (𝐺𝑐, 𝑏𝑐

𝑎𝑣) (Table 3) are utilised to evaluate 
interface properties in the fatigue regime (Section 2.3), which is discussed in the following 
section.  

Table 3. Identified fracture toughness and average delamination onset width for selected 
laminates.

Material system 𝐺𝑐 (N/mm) 𝑏𝑐
𝑎𝑣 

(mm)

10° 20° 25° 30° 35° 45°

M79/UD600 0.37* 0.33* - 0.2* - - -

Scotchply/1003 - - 0.355 - 0.323 0.093 1.198

*Approx. average of different ply thickness 

3.3. Interfacial fracture parameters within the fatigue regime

The interface properties (𝜎𝑐
𝑥𝑧(𝑁), 𝐺𝑚𝑎𝑥(𝑁)) in the  finite fatigue regime are evaluated using 

equations (11) and (13) for different nominal remote maximum stress cycle, 𝜎∞
𝑚𝑎𝑥. 

Subsequently, material constants (𝑙𝑠, 𝑚𝑠, 𝑙𝑔, 𝑚𝑔) are estimated using fitting interpolation 
procedure based on linear least squares. Calibration of (𝑙𝑠, 𝑚𝑠) and (𝑙𝑔, 𝑚𝑔) requires at least 
two points on the SN plot. In accordance with Ref. [57], two distinct methods are proposed to 
calibrate the critical distance for notches. The first method involves using only two extreme 
cases, i.e., static and fatigue limits. The second method utilises data on the SN plot spanning 
across a broad range of nominal stress amplitude to calibrate the critical distance. Due to data 
unavailability, the present investigation adopts the two-point data method. However, given the 
dispersion observed in the fatigue experimental data, it is recommended to incorporate 
additional data points to enhance fatigue estimation accuracy. It is noted here that incorporating 
a power law for the critical stress intensity factor (or equivalently ERR) in the fatigue regime 
as a function of number of cycles is equivalent to employing a power law for the critical 
distance [73]. Furthermore, based on fatigue experimental illustrations in Ref. [47] for 
[ ± 45]2s and Ref. [43] for ([0/ ± 35/90]s, [ ± 35/0/90]s, [ ± 45/0/90]s), it is noted that 
stress/strain onset exhibits an approximately linear relationship as a function of the number of 
cycles in a log-log format within the range 102-106 cycles in laminates with free edge effect. 
Therefore, the current study adopts the assumption of a linear relationship in SN data in a log-
log format within the range of 102-105 cycles for angle-ply laminates based on these 
observations, as the available experimental data used in the current study lies within this range. 

It is noted here that only Scotchply/1003 laminate with [ ± 𝜃2]s (where 𝜃=25, 35, 45) is 
considered for fatigue investigation. The interface properties, 𝜎𝑐

𝑥𝑧(𝑁) and 𝐺max(𝑁), as a 
function of number of cycles for [ ± 452]s are shown in Fig. 13 (a) and (b), respectively. The 
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determined critical interlaminar shear stress at maximum nominal stress cycle 𝜎𝑐
𝑥𝑧 for [ ± 452]s 

is set constant for other [ ± 252]s and [ ± 352]s laminates. On the other hand, the critical 
incremental energy release rate at maximum nominal stress cycle, 𝐺𝑚𝑎𝑥, for [ ± 252]s and 
[ ± 352]s are determined and shown in Fig. 14 (a) and (b), respectively. All the calibration 
curves are plotted in log-log format. The solid black lines represent best fitting curve using 
linear regression (Probability of Survival, 𝑃𝑠, 50%). The dashed red scatter bands represent a 
𝑃𝑠 of 97.7% and 2.3%. The calibrated material constants for all considered ply orientations are 
listed in Table 4. 

 

(a)                                                                    (b)

Fig. 13.  Calibration of fatigue curves for Scotchply/1003 for [ ± 452]𝑠: Critical (a) 
interlaminar shear stress and (b) incremental energy release rate, plotted at maximum 

nominal cyclic stress as a function of number of cycles. The dashed red lines represent a 
Probability of Survival (𝑃𝑠) of 97.7% and 2.3%.

(a)                                                                    (b)

Fig. 14. Calibration of fatigue curves for Scotchply/1003: Critical incremental energy release 
rate for (a) [ ± 252]𝑠 and (b) [ ± 352]𝑠, plotted at maximum nominal cyclic stress as a 
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function of number of cycles. The dashed red lines represent a Probability of Survival (𝑃𝑠) of 
97.7% and 2.3%.

Table 4. Determined material constants for different ply orientation. 

Layup

𝜎𝑐
𝑥𝑧(𝑁) = 𝑙𝑠 𝑁―𝑚𝑠 𝐺𝑚𝑎𝑥(𝑁) = 𝑙𝑔 𝑁―𝑚𝑔 

𝑙𝑠

[MPa]

𝑚𝑠 𝑙𝑔  [N/mm] 𝑚𝑔

[ ± 252]𝑠 42.62 0.098 1.208 0.256

[ ± 352]𝑠 42.62 0.098 0.452 0.172

[ ± 452]𝑠 42.62 0.098 0.149 0.196

3.4. Fatigue life assessment and 3D FFM model validation 

This section validates the 3D FFM criterion within finite fatigue regime (Section 2.4) against 
the experimental test results taken from [68]. The experimental data corresponds to the free 
edge delamination of angle-ply laminates ([ ± 𝜃2]s where 𝜃=25, 35, 45) under tension-tension 
loading with a loading ratio of 𝑅=0.05. The experimental data serves as a benchmark for the 
random numerical predictions of number cycles to failure, 𝑁𝑓, which are obtained from the 3D 
FFM fatigue model for a given load ratio and nominal remote maximum stress cycle, 𝜎∞

𝑚𝑎𝑥, 
after estimating the interface properties within the fatigue regime along with material constants 
(Section 3.3). The model's accuracy is assessed by comparing predicted finite fatigue lives 
against experimental values, using coefficient of determination, scatter bands, percentage error 
and prediction intervals. The validation demonstrates how the 3D FFM model captures the 
trends observed in experimental data, and any discrepancies are discussed.

The inequalities in Eq. (14) provide the number of cycles, 𝑁, needed by the stress and energy 
criteria for the initiation of a free edge delamination under fatigue loading, dependant on the 
homothetic crack dimensions 𝑎H and 𝑏H. These conditions are visually represented for the 
selected laminate in Fig. 15, demonstrating their reliance on 𝑎H and 𝑏H. This depiction 
emphasises the interaction between the respective surfaces, and the solution to system of 
equations (14) is achieved using a standard constrained nonlinear optimisation algorithm 
(discussed in Section 2.4). MATLAB’s fmincon function is employed for the optimisation 
problem. The stress criterion indicates that smaller 𝑁 values are associated with smaller 𝑏H 
values for crack initiation. In contrast, according to energy criterion, 𝑁 decreases as both crack 
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lengths increase, suggesting that larger cracks require smaller 𝑁 for delamination onset. The 
surface that corresponds to energy criterion show wavy behaviour where one of the crack 
dimension 𝑎H and 𝑏H approaches to minimum (zero). This region is away from the interested 
zone where surfaces intersect. This may be due to the ERR sensitivity on the mesh near the 
semi-elliptical crack front when one of the crack dimensions approach minimum (zero). On the 
intersection curve of the two respective surfaces, the region with the minimum 𝑁 values to 
failure corresponds to similar values of both delamination onset width and critical finite life. 
This indicates spontaneous delamination extension in 𝑎 direction and the formation of long 
shallow cracks. 

Fig. 15. Depiction of stress and energy conditions for the 3D FFM fatigue analysis: required 
𝑁 values for delamination onset based on homothetic crack lengths 𝑎𝐻 and 𝑏𝐻, for [ ± 452]𝑠 

stacking sequence of Scotchply/1003 material system.

The first example to predict the nominal stress-finite fatigue life of laminate with free edge 
effect using current 3D FFM fatigue criterion is of [ ± 452]s stacking sequence and is presented 
in Fig. 16.  Fig. 17 (a) and (b) shows predictions for [ ± 252]s and [ ± 352]s, respectively. The 
nominal remote maximum stress cycle, 𝜎∞

𝑚𝑎𝑥, is plotted against number of cycles to failure, 
𝑁𝑓. FFM finite fatigue model is in good agreement with the experiments except 
in [ ± 352]s configuration, model predictions are slightly unconservative. This deviation might 
be associated to the choice of interface property in fatigue regime, critical interlaminar 
maximum shear stress, taken for [ ± 352]s. An appropriate choice of which can diminish this 
deviation. However, the deviation in prediction of finite fatigue life against experiments, 
considering the interface properties within fatigue regime, cannot be conclusively clarified. 
The finite delamination onset width, 𝑏𝑓, for [ ± 452]s is plotted on right y-axis in Fig. 16. The 
delamination onset illustrates decreasing trend against the number of cycles to failure. 
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Fig. 16. Predicted finite fatigue life (solid line) compared against experimental test results 
[68] (blue markers) and corresponding normalised crack width onset (right y-axis) for 

Scotchply/1003 with [ ± 452]s stacking sequence.

(a)                                                                    (b)

Fig. 17. Predicted finite fatigue life (solid line) in comparison to experimental tests [68] (blue 
markers) for Scotchply/1003 with (a) [ ± 252]s and (b) [ ± 352]s stacking sequence.

To have a better assessment of 3D FFM fatigue criterion, Fig. 18 shows predictions of FFM 
estimations of finite fatigue life, 𝑁𝑓, of all configurations against the experiments, 𝑁𝑓,𝑒𝑥𝑝. The 
data above the solid black line refers to unconservative predictions. The predictions by FFM 
are comprised in ± 3 (red dashed) and ± 5 (black dashed) scatter bands. Furthermore, for the 
FFM fatigue model performance, coefficient of determination, 𝑅2, is employed for the data 
that refers to the natural logarithm. Its value is 0.2479 with and 0.6761 without considering 
[ ± 352]s laminate. Additionally, the accuracy of the current 3D FFM fatigue criterion model 
is assessed using percentage error in log space for each stress range across all selected laminate 
configurations using: 
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Percentage error (log space) = |1 ―
log10(𝑁𝑓)

1
𝑠 ∑𝑠

𝑖=1 log10(𝑁𝑓,𝑒𝑥𝑝,𝑖) |%, (18)

where 𝑠 represents the number of tested specimens for a given stress range for a selected 
laminate. Prediction interval 95% is also assessed in log space using:

95% Prediction interval (log space)

=
1
𝑠

𝑠

𝑖=1
log10(𝑁𝑓,𝑒𝑥𝑝,𝑖) ± 𝑡𝑑𝑖𝑠 std( log10 (𝑁𝑓,𝑒𝑥𝑝 )) 1 +

1
𝑠, (19)

where 𝑡𝑑𝑖𝑠 is the t-multiplier from the t-distribution with degrees of freedom 𝑠−1, and std is 
the standard deviation calculated on the log-transformed experimental data.

Both Percentage error and prediction interval bounds have been tabulated in Table 5 for each 
stress range for all the selected laminate configurations. The prediction interval is calculated in 
log space as given by Eq.(19) and then converted back to the original scale (Table 5) for 
comparison with predicted finite fatigue life. All predictions are within the 95% prediction 
interval bounds except for the [ ± 352]s laminate at both 243 MPa and 173.5 MPa stress ranges, 
where the percentage error is notably higher at 37.8% and 25.68%, respectively, compared to 
the lower range of 6.55–14.08% observed for [ ± 252]s and [ ± 452]s configurations. As 
previously discussed, this deviation arises from the unconservative predictions of the 3D FFM 
model against experimental results for the [ ± 352]s laminate.

Fig. 18. 3D FFM fatigue model predictions for finite fatigue life of laminates exhibiting free 
edge effects against experimental tests. The ± 3 (red dashed) and ± 5 (black dashed) scatter 
bands are constructed around the 1:1 (solid black) line, representing factors of 3 and 5 of the 

model predictions.

Table 5. Accuracy values of current 3D FFM fatigue criterion against experimental data using 
percentage error and 95% prediction interval. 
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Ply orientation

[ ± 252]s [ ± 352]s [ ± 452]s

Max stress (MPa) 455 350 250 243 173.5 131 93.5

Experiments

𝑁𝑓,𝑒𝑥𝑝 (cycles)

446

603

531

810

795

666

975

1091

769

1610

2485

10497

19050

28326

27815

8608

22650

30445

23213

10545

18003

31494

186

220

247

291

393

354

428

525

630

9862

8257

6511

9680

14094

16618

20095

20502

28106

25296

10877

116

143

147

332

300

359

748

387

654

395

4742

4618

4745

5214

6542

9336

8410

8245

8892

12851

3D FFM Prediction

𝑁𝑓 (cycles)
321 2780 36600 3056 161472 645 15100

Percentage error (%) 7.81 14.08 6.55 37.8 25.68 13.23 8.77

95% Upper prediction interval 
(cycles) 1109 3178 56887 909 42818 1354 16143

95% lower prediction interval 
(cycles) 246 343 6472 126 4531 68 2990

Furthermore, the effects of ply orientation on finite fatigue life in laminates with free edge 
effect are studied. Fig. 19 (a) depicts that a higher nominal remote maximum stress cycle, 𝜎∞

𝑚𝑎𝑥, 
is required for a laminate to fracture due to the free edge effect in lower angles of ply 
orientation, 𝜃, to achieve the same fatigue life. However, for a given nominal remote maximum 
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stress cycle (percentage of static tensile strength, 𝜎𝑒𝑥𝑝), fatigue life decreases with increasing 
the ply orientation angle (Fig. 19 (b)). Fig. 19 (a) also reveals that decrease in 𝜎∞

𝑚𝑎𝑥 to increase 
fatigue life is more noticeable in lower 𝜃 than higher. It is important to note here that 𝑁𝑓 of the 
[ ± 352]s configuration, as shown in Fig. 19 (b), exhibits a higher value compared to the 
anticipated decreasing trend. This deviation is due to an unconservative prediction in finite 
fatigue life, as seen in Fig. 17 (b). Typically, a decreasing trend can be expected when there is 
a good agreement in finite fatigue life predictions.

(a)                                                                    (b)

Fig. 19. Influence of ply orientation on (a) nominal remote maximum stress cycle for a given 
finite fatigue lives, and (b) finite fatigue life for a given nominal remote maximum cycle 

stresses (percentages of static tensile strength, 𝜎𝑒𝑥𝑝) on a semi-log plot.

In lightweight structural design, such as in aerospace applications, stress concentrations such 
as free edge effect play a crucial role. Based on the current results, designers optimising 
laminate layups for improved fatigue resistance can consider lower ply orientation angles, as 
these can enhance fatigue life for a given nominal remote maximum stress cycle.

4. Conclusions

The 3D FFM model is proposed for prediction of fatigue life estimation of laminates exhibiting 
free edge effect. A 3D FFM fatigue criterion requires information of interface properties in 
fatigue regime, such as critical interlaminar stress and incremental energy release rate, as a 
function of number of cycles. For calibration of material constants, the critical stress is 
computed using effective interlaminar stress distribution in a certain length that is taken equal 
to average delamination onset width, while a quadratic relation is assumed between critical 
incremental energy release rate and nominal remote maximum stress cycle. The quantities like 
interlaminar stresses and incremental energy release rates are computed utilising expressions 
(obtained from dimensional analysis) and FE models. The 3D FFM criterion within fatigue 
regime also requires computation of fracture toughness and solution of static criterion for 
delamination onset width. Subsequently, the two inequalities of 3D FFM fatigue criterion is 
solved using non-linear constraint optimisation problem for a unique solution by assuming a 
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homothetic crack extension. The predictions of fatigue life estimation using proposed 3D FFM 
fatigue criterion is in general in good agreement with the experimental results from literature. 
The effects of ply orientation on finite fatigue life are also predicted. It is observed that lower 
angles of ply orientation in angle-ply laminates have higher fatigue life for a given remote 
cyclic load. The proposed 3D FFM fatigue criterion offers valuable insights into predicting 
delamination in laminates exhibiting free edge effects under fatigue loading. However, it 
requires a new numerical implementations at the interface for different composite layups, 
depending on which interface of the laminate triggers free edge delamination. This is because 
closed-form solutions for quantities such as interlaminar stresses and ERR may not be readily 
available for different stacking sequences. The applicability of the method relies on the 
accurate determination of these quantities for each specific composite configuration. Further 
work is needed to assess the reliability and accuracy of the proposed 3D FFM fatigue criterion, 
particularly regarding the incorporation of broader SN data for laminates exhibiting free edge 
effects.  

CRediT authorship contribution statement

Mohammad Burhan: Conceptualisation, Methodology, Software, Validation, Formal 
Analysis, Investigation, Writing-Original Draft, Visualisation. Zahur Ullah: Writing - 
review and editing, Supervision, Project Administration, Funding acquisition. Zafer 
Kazancı: Writing - review and editing. Giuseppe Catalanotti: Writing - review and 
editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This study was conducted as part of the Belfast Maritime Consortium UKRI Strength in Places 
project, ‘Decarbonisation of Maritime Transportation: A return to Commercial Sailing’ led by 
Artemis Technologies, Project no. 107138.

Appendix A

The outline to calculate 𝐺𝑐 in laminates exhibiting free edge effects, considering prominent 
𝜎𝑥𝑧, is as follows:

Step 1: Initialise 𝐺𝑐 with random value, higher than the expected, 𝐺𝑐(𝑖).

Step 2: For a given static experimental failure stress 𝜎𝑒𝑥𝑝, and interlaminar shear strength 𝑆𝑥, 
solve numerically the system of equations:
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𝜋𝑎𝑏

2 ∫𝑎
―𝑎 ∫

𝑏 𝑎 𝑎2―𝑥2

0
𝜒𝑥𝑧
𝑆𝑥

𝑑𝑦 𝑑𝑥
― 𝜎𝑒𝑥𝑝 = 𝑅1

   
𝜋𝑎𝑏ℑ𝐺𝑐(𝑖)

2ℎ ∫𝑎
―𝑎 ∫

𝑏 𝑎 𝑎2―𝑥2

0 (𝜓𝐼𝐼2 + 𝜓𝐼𝐼𝐼2) 𝑑𝑦 𝑑𝑥
― 𝜎𝑒𝑥𝑝 = 𝑅2, (20)

For 𝑎, and 𝑏 while satisfying the condition of min(𝑅2
1 + 𝑅2

2), where 𝑅1and 𝑅2 are residuals 
from the system of equations (1), respectively.

Step 3: Using calculated 𝑎 and 𝑏 in one of the equations (1) and solve numerically for 𝜎∞(𝑖). 
Now use the calculated 𝜎∞(𝑖) in updating 𝐺𝑐(𝑖) using: 

𝐺𝑐(𝑖 + 1) = 𝐺𝑐(𝑖) 1 +
𝜎𝑒𝑥𝑝 ― 𝜎∞(𝑖)

𝜎𝑒𝑥𝑝 , 
(21)

with the condition 𝜎𝑒𝑥𝑝 ≤ 𝜎∞(𝑖) < 2𝜎𝑒𝑥𝑝. In the instances if this condition is not satisfied, 
resulting in a 𝐺𝑐(𝑖 + 1) that is either negative, zero or greater than 𝐺𝑐(𝑖), it becomes imperative 
to adjust the initialised value 𝐺𝑐(𝑖) to ensure the validity of the subsequent iterations.

Step 4: Check whether the condition:

𝐺𝑐(𝑖 + 1)≅𝐺𝑐(𝑖) , (22)

is satisfied, in that case 𝐺𝑐(𝑖 + 1) is the interface toughness, otherwise go to step 2 with the 
next iteration and repeat the process until convergence is achieved.
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