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eLife assessment
In this valuable study, the authors use a computational model to investigate how recurrent connec-
tions influence the firing patterns of grid cells, which are thought to play a role in encoding an 
animal's position in space. The work suggests that a one-dimensional network architecture may be 
sufficient to generate the hexagonal firing patterns of grid cells, a possible alternative to attractor 
models based on recurrent connectivity between grid cells. However, the support for this proposal 
was incomplete, as some conclusions for how well the model dynamics are necessary to generate 
features of grid cell organization were not well supported.

Abstract Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling 
the position of the animal within an environment. Grid maps of cells belonging to the same module 
share spacing and orientation, only differing in relative two-dimensional spatial phase, which could 
result from being part of a two-dimensional attractor guided by path integration. However, this 
architecture has the drawbacks of being complex to construct and rigid, path integration allowing 
for no deviations from the hexagonal pattern such as the ones observed under a variety of exper-
imental manipulations. Here, we show that a simpler one-dimensional attractor is enough to align 
grid cells equally well. Using topological data analysis, we show that the resulting population activity 
is a sample of a torus, while the ensemble of maps preserves features of the network architecture. 
The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representa-
tion manifold with the feedforward inputs, rather than imposing it. More generally, our results repre-
sent a proof of principle against the intuition that the architecture and the representation manifold 
of an attractor are topological objects of the same dimensionality, with implications to the study of 
attractor networks across the brain.

Introduction
Grid cells in the medial entorhinal cortex and other brain areas provide a representation of the 
spatial environment navigated by an animal, through maps of hexagonal periodicity that have been 
compared to a system of Cartesian axes (Moser et al., 2008; Fyhn et al., 2004; Buzsáki and Moser, 
2013). While different mechanisms have been proposed as the basis to make a neuron develop a 
collection of responsive fields distributed in space with hexagonal periodicity, the alignment of axes of 
symmetry between neighboring, co-modular neurons in most computational models occurs through 
local synaptic interactions between them (Kropff and Treves, 2008; Couey et al., 2013; Burak and 
Fiete, 2009; Burgess et al., 2007). In general, the network responsible for this communication can 
be thought of as a two-dimensional continuous attractor (Knierim and Zhang, 2012). Models tend to 
focus either on grid cells performing path integration (Barry et al., 2007; Couey et al., 2013; Burak 
and Fiete, 2009; Burgess et al., 2007) or, as in the case of this work, on mapping of spatial inputs.
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Attractor networks are among the clearest examples of unsupervised self-organization in the brain. 
Point-like attractors emerge naturally in a network with dense recurrent connectivity equipped with 
Hebbian plasticity, and can be used to store and retrieve discrete pieces of information (Hopfield, 
1982). If a number of point-like attractors is set close enough to each other along some manifold, a 
continuous attractor emerges. One-dimensional ring attractors have been used to model head direc-
tion cells (Redish et al., 1996; Zhang, 1996), while two dimensional attractors have been used to 
model population maps of space such as those of place cells or grid cells (Burak and Fiete, 2009; 
Battaglia and Treves, 1998; Gardner et al., 2022). A common underlying assumption is that the 
dimensionality of the network architecture mimics that of the space that is being represented, which 
explains why the word ‘dimensionality’ applied to an attractor is indistinctly used to refer to one or 
the other. However, the network activity does not only depend on recurrent connections, but also 
on inputs, and the potential interplay between these two sources has so far received little atten-
tion. Grid cells have been modeled using two-dimensional attractors because they represent two-
dimensional space, but a number of reasons call for the exploration of alternatives. First, grid cells 
are also capable of representing one dimensional variables such as space, time or the frequency of 
a sound, or three-dimensional space, exhibiting poor to no periodicity (Aronov et al., 2017; Kraus 
et al., 2015; Yoon et al., 2016; Hafting et al., 2008; Grieves et al., 2021; Ginosar et al., 2021). 
Second, two-dimensional attractors impose a rather rigid constraint on the activity of neurons, but 
grid maps can suffer global or local modifications in response to different experimental manipulations 
(Barry et al., 2007; Yoon et al., 2013; Krupic et al., 2015; Krupic et al., 2018; Boccara et al., 2019; 
Butler et  al., 2019; Sanguinetti-Scheck and Brecht, 2020). While distortions do not necessarily 
speak against attractor activity, they are difficult to explain from the point of view of attractors purely 
guided by path integration. Third, the mechanisms behind the formation and maintenance of such a 
complex and fine-tuned network are far from understood, and theoretical proposals tend to involve 
as a prerequisite an independent functional representation of two-dimensional space to serve as a 
tutor (Si and Treves, 2013; Widloski and Fiete, 2014). Fourth, a recent experiment shows that when 
animals are trained to navigate deprived from sensory and vestibular feedback, entorhinal cells tend 
to develop a surprising ring (1D) rather than toroidal (2D) population dynamic (Gonzalo Cogno et al., 
2024).

Here, we explore the possibility that grid cells are aligned by simpler, one-dimensional attractors, 
which, as we show, have the potential to flexibly organize the population activity into a space with a 
dimensionality that is negotiated with the inputs rather than pre-defined. Crucially, we show for the 

c 1 m d e 45 cm

Spatial
inputs

Grid
cells

H
ebbian 

FF conn.

Structured
RC conn.

2D

1D

a

1 
m

Max.0 Mean rate 1-0.4 Corr.b

100 cells

100 cells

Figure 1. Attractors with a 2D or 1D architecture align grid maps. (a) Schematics of the network model, including an input layer with place cell-like 
activity (purple), feedforward all-to-all connections with Hebbian plasticity and a grid cell layer (green) with global inhibition and a set of excitatory 
recurrent collaterals of fixed structure. (b) Schematics of the recurrent connectivity from a given cell (orange) to its neighbors (green) in a 2D (top) or 1D 
(bottom) setup. (c) Representative examples of maps belonging to the same 2D (top) or 1D (bottom) network at the end of training. (d) Average of all 
autocorrelograms in the same two simulations, highlighting the 6 maxima around the center (black circles). (e) Superposition of the 6 maxima around the 
center (as in d) for all individual autocorrelograms in the same two simulations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Spatial phases present characteristic patterns for simple attractors, although this is not a necessary feature for slightly more 
complex architectures.

https://doi.org/10.7554/eLife.89851
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first time with mathematical rigor that the architecture and representational space of an attractor 
network can be two different topological objects. This proof of principle broadens the spectrum of 
potential candidates for the recurrent architecture interconnecting grid cells, opening the possibility 
of variability along animal development and maturation, or across the multiple brain areas where grid 
cells have been described.

Results
Grid maps aligned by a one-dimensional attractor
To understand if grid maps can be aligned by an architecture of excitatory recurrent collateral connec-
tions simpler than a two-dimensional attractor, we trained a model in which grid maps are obtained 
from spatial inputs through self-organization (Kropff and Treves, 2008). In this model, a layer of 
spatially stable inputs projects to a layer of grid cells through feedforward connections equipped 
with Hebbian plasticity (Figure 1a). Two factors, all-to-all inhibition and adaptation, force neurons in 
the grid cell layer to take turns to get activated. This dynamic promotes selectivity in the potentia-
tion of afferent synapses to any given grid cell. As a virtual animal navigates an open-field environ-
ment, modeled entorhinal cells self-organize, acquiring maps with hexagonal symmetry as a result of 
Hebbian sculpting of the feedforward connectivity matrix. Previous work shows that these maps are 
not naturally aligned unless excitatory recurrent collaterals are included (Kropff and Treves, 2008; Si 
and Treves, 2013).

We performed 100 simulations of a simplified version of this self-organizing network (Methods), 
including 225 input cells and NEC = 100 grid cells, in two otherwise identical setups. In the first scenario 
(2D), we added to the grid cell layer a classical architecture of recurrent collateral connections shaped 
as a torus (Figure 1b). In the second scenario (1D), we used instead a much simpler ring attractor 
architecture. At the end of the learning process, maps in both types of simulation had hexagonal 
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Figure 2. Quantification of the alignment and contraction of grid maps by different attractor architectures. (a) Distribution (i.q.r., n = 10000) of gridness 
(left), spacing (center), and spread (right) at the end of the learning process across conditions (quartiles; identical simulations except for the architecture 
of recurrent collaterals). (b) Smoothed distribution of maxima relative to the main axis of the corresponding autocorrelogram. (c) Mean evolution of 
gridness (top) and spacing (bottom) in transient maps along the learning process, calculated from individual (left) or average (right) autocorrelograms. 
Individual spacing negatively correlates with time for the 2D (R: –0.78, p: 10–84), 1D (R: –0.77, p: 10–79), and 1 DL (R: –0.74, p: 10–71).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Too weak, too strong or shuffled attractors fail to align grid cells.

Figure supplement 2. Instant improvement in gridness by turning off recurrent collaterals is reverted by learning.

https://doi.org/10.7554/eLife.89851
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symmetry (Figure  1c). The mean population autocorrelogram also had hexagonal symmetry, indi-
cating that individual maps within the network shared spacing and orientation (Figure 1d), which was 
further confirmed by the clustering into six well-defined groups of first-order autocorrelogram maxima 
for the pool of all cells (Figure 1e), with phases were distributed in distinctive patterns for both condi-
tions (Figure 1—figure supplement 1). Similar alignment was obtained for the 2D architecture, which 
was constructed ad hoc for this purpose, and for the much simpler 1D architecture.

For a quantitative comparison of grid cell properties, we incorporated two additional conditions: a 
stripe-like linear attractor (1 DL), similar to 1D but with no periodic boundaries, and a condition with no 
recurrent collaterals (No), in setups otherwise identical to those of 1D and 2D. We compared across 
conditions the hexagonality of maps (through a gridness index), the spacing between neighboring 
fields and the angular spread in axes of symmetry across the population, indicative of alignement 
(Figure 2a). We found marked differences only between the No condition and the other three. Grid-
ness was highest for 1D, followed closely by 2D and 1 DL, while the No condition exhibited markedly 
lower values. Spacing and spread were lowest for the 2D condition, followed by a small margin by 1D 
and 1 DL, with the No condition again presenting the largest differences with the rest. These results 
suggest that attractor connectivity of all investigated types not only aligns grid cells similarly but also 
has the effect of compressing maps in terms of spacing. To visualize how individual maps varied across 
categories, we plotted the distribution of pooled maxima (as in Figure 1e) relative to the axis of the 
corresponding autocorrelogram presenting the highest correlation value (Figure 2b).

To address differences in the self-organization dynamics, we next inspected maps along the learning 
process (Figure 2c). We found that the mean gridness of cells initially increased at a similar pace for all 
conditions, saturating early in this process only for the No condition. Further increase in gridness was 
an emergent property only allowed by attractor dynamics, which in the 2D condition took a slightly 
slower start compensated later by an elbow toward plateauing behavior at higher gridness values. 
For simulations with attractors, population gridness, while always lower than mean individual grid-
ness, increased steadily, with 2D exhibiting slightly higher values most of the time, but no substantial 
increase was observed in the No condition given the absence of alignment between maps. A similar 
lack of alignment was found for a condition in which recurrent input weights were either too strong or 
too weak compared with feedforward weights, as well as for a condition in which recurrent inputs to a 
neuron where shuffled (Figure 2—figure supplement 1). The asymptotic behavior for both individual 
and population gridness was similar for all conditions with attractors. Individual spacing in maps with 
attractors showed a decrease throughout most of the learning process, more pronounced in the 2D 
condition, while the No condition evidenced a steady increase toward an asymptote. A combination 
of progressive increase in gridness and decrease in spacing across days has been observed in animals 
familiarizing with a novel environment (Barry et al., 2007). Our results, although only qualitatively 
exhibiting similar trends, point to the efficiency of excitatory collaterals in imposing constraints to the 
population activity as a possible mechanism. This compression of maps resulting from experience, also 
observable by turning off the attractor in a trained network (Figure 2—figure supplement 2), was less 
evident in the mean population spacing, obtained from average autocorrelograms, indicating that, at 
least in our simulations, this phenomenon has a strong driver in the deviation of individual cells from 
the coordinated population behavior, which would explain why the contraction is more marked for 
the most rigid constraint (2D). Despite these subtle differences, gridness, spacing and spread looked 
overall very similar across conditions with attractors, and markedly different in the No condition.

Toroidal topology of the population activity space
Classical features such as gridness and spacing looked similar in maps obtained with different attractor 
geometry. We next asked, more generally, if the topology of the population activity was also the same 
for different conditions. Every pixel in the arena where the virtual animal runs is associated with a 
vector containing the mean activity of each neuron in that position. These vectors are the columns of 
the population matrix M, where the element Mij is the mean activity of the ith neuron in the jth pixel. 
This set of vectors form a point cloud of size equal to the number of pixels in a space of dimension NEC 
(the number of grid cells). It is commonly understood, given the symmetry of grid maps, that this cloud 
should be a sample of a low dimensional structure represented by a twisted torus and embedded in a 
high dimensional space (Knierim and Zhang, 2012), as recently shown in experimental data (Gardner 
et al., 2022; see Methods and Figure 3—figure supplement 1).

https://doi.org/10.7554/eLife.89851
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The topology of a point cloud can in some cases be completely determined through a series of 
methods in topological data analysis. The theorem of classification of closed surfaces states that if 
the population activity space is a sample of a geometric object that (i) is locally two-dimensional, (ii) 
has neither boundary nor singularities and (iii) is orientable, then its topology is determined by its 
homology (Hatcher, 2002; see Methods).

To understand whether and when this is true in our simulations, we first studied the local dimension 
of the population activity space (i) for the different conditions. To avoid irregularities sometimes found 
at the perimeter of the environment, we used for all further analyses the 60 cm wide central square 
of each 1 m wide map, and our conclusions apply to this area. For every data point, we extracted 
the principal components of a local neighborhood around it (Figure 3—figure supplement 1). We 
defined the local dimension at this point as the number of principal components for which an elbow in 
the rate of explained variance in the local neighborhood was found. In all conditions, most of the data 
points had a local dimensionality equal to 2 (more than 90% in all conditions), with eventual outliers 
that had some impact on the mean but not on the median (Figure 3a). To understand if these devi-
ations were the result of noise or, in contrast, had a structure in the physical space, we next plotted 
individual maps of local dimensionality (Figure 3b) and their average across simulations of the same 
condition (Figure 3c). We only observed a structure in the No condition, where mean values close to 
3 were concentrated at the corners of the reduced map. These results suggest that the population 
activity in all conditions with attractors is concentrated around a structure with a local dimension of 2.

Next, to understand if the data had boundary or singularities (ii), we studied the local homology of 
the underlying space by estimating the first Betti number β1 in an annulus neighborhood around each 
data point (Stolz et al., 2020; Figure 3d). Roughly, Betti numbers (β₀, β₁, β₂) indicate the number of 
connected components (β₀), holes (β₁), or voids (β₂) in a point cloud. These numbers are estimated from 
persistence diagrams, which aim to identify cycles in the point cloud that persist across a wide range 
of typical distances (see Methods and Appendix I). In a sample of a locally two-dimensional manifold 
with neither boundary nor singularities, the data inside the annulus neighborhood is expected to form 
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Figure 3. The population activity in all attractor conditions is locally two-dimensional, with no boundary or singularities. (a) Distribution across 
conditions of the fraction of the data with local dimensionality of 2 (i.q.r., n = 100). (b) Distribution of local dimensionality across physical space in 
representative examples of 1D and 2D conditions. (c) Average distribution of local dimensionality for all conditions (same color code as in (b)). (d-f) As 
(a–c) for but exploring deviations of the local homology H1 from a value of 1, the value expected away from borders and singularities.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Methods in topological data analysis and examples.

https://doi.org/10.7554/eLife.89851


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Benas, Fernandez et al. eLife 2023;12:RP89851. DOI: https://doi.org/10.7554/eLife.89851 � 6 of 19

a ring, with local β1=1, while points in the boundary are characterized by β1=0 and singularities by β1>1 
(Figure 3—figure supplement 1d). We observed that most of the data points had β1=1, which was 
the case for more than 90% of data in conditions with attractors and around 70% in the No condition. 
The No condition had not only the lowest fraction of data with β1=1, but also the lowest deviation in 
the distribution, pointing to a systematic decrease in β1. This could be explained by examining indi-
vidual maps of local β1 (Figure 3e) and averages across simulations (Figure 3f). The conditions with 
attractors exhibited no structure in eventual deviations from β1=1, but the average for the No condi-
tion had a value β1=0 in the pixels close to the perimeter of the reduced map, indicating a non-empty 
boundary set in the population activity.

Put together, these results suggest that the population activity for simulations with attractors is 
locally two-dimensional, without boundary or singularities, forming a closed surface. In contrast, data 
clouds in the No condition do not meet the first two conditions of the theorem of classification of 
closed surfaces, and are compatible with a two-dimensional sheet exhibiting a boundary along the 
edge of the space selected for analysis.

We next studied the orientability (iii) of the population activity space for the conditions with attrac-
tors. For each simulation, we obtained and compared persistence diagrams in Z2 and Z3. The pooled 
distribution of such diagrams and the averages across 100 simulations of each type (Methods) were 
almost identical for conditions 1D, 2D (Figure 4a and b) and 1 DL (Figure 4—figure supplement 1), 
indicating that the population activity in all cases is an orientable manifold.

Given that for simulations with attractors the three conditions posed by the theorem of classi-
fication of closed surfaces were met, we were able to conclude that the topology of the popula-
tion activity is determined by its Betti numbers. From the average diagrams for all conditions with 
attractors, Betti numbers could be qualitatively estimated as those of a torus: β0=1, β1=2 and β2=1 
(Figure 4a). This was the case not only for average persistence diagrams, but also for most of the 
individual simulations, as shown in the plots of the distribution across simulations of the difference in 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Persistent homology and Betti numbers for condition 1 DL.

https://doi.org/10.7554/eLife.89851
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lifetime of consecutive generators ordered from largest to smallest (Figure 4c). When quantifying the 
Betti numbers for individual simulations using a common cutoff value (Methods), 82 (out of 100) were 
classified as [1, 2, 1] in the 1D condition and 76 in the 2D condition (Figure 4d), with small deviations 
compatible with a noisy scenario for the rest of the simulations.

In summary, our analyses show that different attractor architectures (torus, ring, stripe) similarly 
constrain the population activity into a torus embedded in a high dimensional space. This is not 
surprising for the 2D condition, where the architecture has itself the topology of a torus, but is an 
unprecedented result in the case of the 1D and 1 DL conditions, given that these simpler attractors 
were not tailored to represent two-dimensional neighboring relations.

Features of network architecture in the spatial maps
Our analyses showed that all conditions with attractors had a population activity with the topology of 
a torus, irrespective of the architecture of recurrent connections. We next asked if similar tools could 
be used to unveil differences between conditions, following the intuition that the network architec-
ture could perhaps be reflected in the geometry of map similarity relationships across neurons. We 
computed Betti numbers for the point cloud given by spatial maps of individual neurons, represented 
by a set of NEC = 100 points (the number of neurons) in a 625-dimensional space (the number of pixels 
in the reduced map; Figure 5). This is equivalent to what was done in the previous section, but with 
the transpose of the matrix M introduced there.

For the 2D condition, the mean diagram could qualitatively be described as having the Betti 
numbers of a torus [1,2,1], which was also apparent in the difference between consecutive ordered 
lifetimes (Figure 5a and b). However, in individual persistence diagrams only 27 simulations had Betti 
numbers [1,2,1], while 69 had Betti numbers [1,2,0] where the cavity could not be correctly identified 
(Figure 5c). The reason for this discrepancy, or the failure to find the cavity in individual diagrams, is 
possibly related to the low number of datapoints used in this analysis (100 vs 625 in the previous case) 
taking the signal-to-noise ratio close to the limit of no detection. In contrast, 1D simulations had an 
average persistence diagram similar to the majority of individual diagrams (86%), characterized by the 
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Betti numbers of a ring [1,1,0], while for 1 DL simulations the average diagram and 97% of individual 
diagrams had Betti numbers [1,0,0] compatible with a stripe.

In summary, the analysis on the matrix M showed that all conditions with attractors had a popula-
tion activity embedded in a torus, while the analysis on its transpose showed qualitative differences 
across conditions, where in general the homology recapitulated that of the architecture of recurrent 
connections.

Flexibility of one-dimensional attractors
Given that one-dimensional attractors are not constructed in an ad hoc way to guarantee the correct 
organization of the population activity into a pre-defined configuration, we next asked what kind of 
geometrical arrangement was found by our self-organizing model to allow covering two-dimensional 
space with a one-dimensional arrangement of neurons. To visualize the population activity in space, 
we colored neurons in the 1D ring attractor according to hue, so that connected neurons along the 
ring were assigned similar colors. We then assigned to each pixel in the virtual space the color that 
best described the mean population activity associated with it. This allowed us to plot for each simu-
lation a map in which color represented the mean population activity (Figure 6a). While all individual 
colors in these maps had hexagonal periodicity, as expected from a population of aligned grid maps, 
the geometry of the attractor layout in physical space allowed for a classification into 4 orders (O0 to 
O3) with different prevalence (Figure 6b). A way to understand these configurations is to imagine a 
cycle along the attractor. The cycle begins and ends in the same color, but since in physical space any 
given color is constrained to have hexagonal periodicity, the end has to lie either in the same place as 
it started (O0) or in an n-order neighboring field (in our case n=1–3; Figure 6c). This conceptualization 
implies that, although we only found 4 configurations for aligning grid cells with a 1D attractor, the 
constraint imposed by hexagonal symmetry is compatible with a countably infinite number of them 
(as many as orders of neighbors in a hexagonal grid), provided attractors are able to stretch enough 
in physical space. We speculate that the number of neurons in the grid cell layer (NEC) could play a 
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Figure 6. Multiple configurations for the alignment of grid maps by one-dimensional attractors. (a) Top: 
Population map for 4 representative examples of 1D simulations with increasing configuration order (indicated) 
from left to right. Color indicates the region of the ring attractor best describing the mean population activity at 
each position. Schematics of some of the frontiers, defined by abrupt changes in color (black), and hexagonal tiles 
maximally coinciding with these frontiers (semi-transparent white) are included for visualization purposes. Bottom: 
Schematic representation of the order of the solution as the minimum number of colors traversing the perimeter 
of the hexagonal tile or, equivalently, the minimum number of hexagonal tiles whose perimeter is traversed by one 
cycle of the attractor. (b) Table indicating the number of simulations out of 100 in which each configuration order 
was found. (c) Schematic representation of the ring attractor extending in space from a starting point to different 
order neighbors in a hexagonal arrangement. (d) As (a) but for the 1 DL condition. Gray scale emphasizes the lack of 
connections between extremes of the stripe attractor.

https://doi.org/10.7554/eLife.89851


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Benas, Fernandez et al. eLife 2023;12:RP89851. DOI: https://doi.org/10.7554/eLife.89851 � 9 of 19

critical role in determining to what extent the attractor can stretch and which configurations can be 
achieved in practice by a given network. Simulations of the 1 DL condition were classified into catego-
ries following the same logic, by assessing the distance between the two extremes of the attractor 
(colored black and white) in terms of neighboring order in a hexagonal grid (Figure 6b and d).

These results show that the weak constraint imposed by one-dimensional flexible attractors allows 
for many possible solutions to co-exist as local minima of the self-organization energy landscape.

Visualization of the twisted torus
Dimensionality reduction techniques are a popular way of visualizing high dimensional data, such as 
the population activity in our simulations. It should be noted, however, that in general they provide no 
guarantee of preserving the topology of the data cloud in the original high dimensional space. For our 
data, three-dimensional Isomap projections (Tenenbaum et al., 2000) allowed for the visualization of 
the twisted torus in all conditions with attractors. In many simulations, the three-dimensional reduction 
of the population activity looked like a tetrahedron (Figure 7a). If data were grouped using k-means 
clustering (k=4) in the reduced Isomap space, a four-color checkerboard emerged in physical space. 
The minimal tile containing all four colors was a square in which one pair of opposite sides had simple 
periodicity while the other had a periodicity with a 180° twist, which is the basic representation for 
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Figure 7. Two different visualizations of the twisted torus obtained with Isomap. (a) Top: Representative examples of dimensionality reduction into 
a structure resembling a tetrahedron for different conditions (indicated). Data points are colored according to the distance to one of the four cluster 
centers obtained with k-means (each one close to tetrahedron vertices; k=4). Bottom: Same data and color code but plotted in physical space. 
The white square indicates the minimal tile containing all colors, with correspondence between edges, indicated by arrows, matching the basic 
representation of the twisted torus. (b) Representative examples of dimensionality reduction into a torus structure squeezed at two points, obtained in 
other simulations using identical Isomap parametrization. Hue (color) and value (from black to bright) indicate angular and radial cylindrical coordinates, 
respectively. (c) For the same two examples (indicated), three-dimensional renderings. To improve visualization of the torus cavity, color is only preserved 
for data falling along the corresponding dashed lines in (b).
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the twisted torus (Figure 3—figure supplement 1). Other times the same reduction technique, with 
identical parameters, produced directly a torus-like shape, squeezed at two opposite sides (Figure 7b 
and c). While extreme solutions looked like the tetrahedron or the torus, intermediate visualizations 
were also found which could not be clearly interpreted as one or the other. The fact that the same 
procedure produced so different visualizations calls for a cautious approach to interpreting the geom-
etry of reduced data when using non-linear methods such as Isomap. This technique does not aim to 
preserve the global geometry of the original point cloud, but instead the relative distance between 
data points.

Our results show that there are multiple ways in which continuous attractors can align grid cells, 
including simple architectures such as ring or stripe attractors. In topological terms, the resulting 
population activity is equivalent (homeomorphic), despite differences in the topology of the architec-
ture or in projections obtained through dimensionality-reduction techniques.

Discussion
Our main result is that the alignment of hexagonal axes in a model of grid cells can result from inter-
actions between neurons following a simple one-dimensional architecture, not constructed ad hoc for 
representation of two-dimensional spaces. This possibility has not been assessed before in modeling 
because a common assumption is that recurrent collateral architecture perfectly defines the geometry 
of the manifold that the population activity is constrained to by the attractor. We show for the first 
time that this seemingly reasonable assumption is wrong, providing two counter-examples in which 
the representational space is a torus but the architecture, either a ring or a stripe, has a different 
topology and even lower dimensionality. Crucially, if the attractor is inactive, weak or shuffled, grid 
maps obtained under otherwise identical conditions exhibit markedly lower levels of hexagonal 
symmetry and do not align, failing to constrain the population activity into a torus. Our results open 
the way to considering the potential of simple flexible attractors for a wide spectrum of modeling 
applications, given their capability of enacting on the population activity a negotiated constraint, as 
opposed to rigid attractors with no such degrees of freedom.

Advantages of flexible attractors are versatility and simplicity in network design. Grid cells, for 
example, represent multiple geometries with individual characteristics in each case. Two-dimensional 
maps of familiar environments are highly symmetric and periodic, but this is not the case for maps in 
other dimensionalities. In one- and three-dimensional spatial tasks grid cells exhibit multiple fields, as 
in two-dimensional navigation, but with larger and more irregular spacing (Yoon et al., 2016; Hafting 
et al., 2008; Grieves et al., 2021; Ginosar et al., 2021). In other one-dimensional tasks, involving the 
representation of frequency of a sound or time, they much more often develop single response fields 
(Aronov et al., 2017; Kraus et al., 2015). To properly model this collection of scenarios with rigid 
attractors, one should consider a number of them embedded on the same network architecture, each 
specialized for a single purpose, and possibly a mechanism to select the attractor best suited for every 
situation. Alternatively, the same could perhaps be achieved with a single architectonic principle. 
One-dimensional attractors are simple enough to emerge independently of experience, as exhibited 
by head direction cells in rats prior to eye-opening (Bjerknes et al., 2015) or internally generated 
sequences in the hippocampus (Pastalkova et al., 2008). Future computational explorations should 
include a wider range of architectures to assess whether even simpler configurations than the ones 
used here, such as a collection of short fragmented sequences, could align grid cells in a similar way.

Most grid cell models, in contrast to the one in this work, are focused on path integration, or the 
capacity of spatial maps to persist in the absence of spatial inputs based on self-motion information 
(Burak and Fiete, 2009; Burgess et  al., 2007; Widloski and Fiete, 2014). Experiments in which 
animals navigate in the dark support this functionality for hippocampal and entorhinal maps, and it 
has been recently shown that the path integrator can be recalibrated in an almost online fashion (Jaya-
kumar et al., 2019). However, although from a theoretical perspective grid cells are ideal candidates 
to implement path integration, the involvement of some or all grid cells in this operation still needs to 
find direct experimental proof. In contrast, a growing corpus of evidence suggests that grid cells can 
exhibit behaviors that deviate from pure path integration. This includes local and global distortions 
of the two-dimensional grid map in response to a variety of experimental manipulations (Barry et al., 
2007; Krupic et al., 2015; Krupic et al., 2018; Boccara et al., 2019; Butler et al., 2019; Sanguinetti-
Scheck and Brecht, 2020), as well as the progressive refinement in symmetry and decrease in spacing 

https://doi.org/10.7554/eLife.89851
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observed across days of familiarization to a novel environment (Yoon et al., 2013; Barry et al., 2012). 
In our model, this last result could be understood as an increase in the efficiency with which collateral 
connections impose their constraint. As feedforward synaptic weights are modified, neurons become 
better tuned to the constraint and individual deviation from the collective behavior decreases. More 
generally, understanding how this heterogeneous set of experimental results could emerge from inter-
actions between path integration and mapping is a challenge for future work in which the concept of 
flexible attractors could prove useful. Path integration is an operation that needs to be computed in 
the direction of movement, which is at a given instant a one-dimensional space. Many grid cell models 
can be thought of as employing several overlapping two-dimensional attractors, each specialized in 
one direction of movement, to achieve path integration in all directions (Burak and Fiete, 2009), 
a task that, we speculate, one-dimensional attractors might be naturally suited for without loss of 
flexibility.

In a recent experiment, mice were trained to run head-fixed at a free pace on a rotating wheel, in 
complete darkness and with no other sensory or behavioral feedback (Cogno et al., 2022). It could be 
expected that in such a situation the population activity deprived of inputs is influenced to a greater 
extent by its internal dynamics, so that this kind of experiment offers a window into the architecture of 
the attractor. The experimenters observed that the entorhinal population dynamic engaged in cycles, 
with a period of tens of seconds to minutes. These cycles, naturally occurring here but not in other 
areas of the brain, point to the possibility of one-dimensional attractor arrangements, modelled by 
either our 1D or 1 DL conditions, as a prevailing organizational principle of the entorhinal cortex. Future 
efforts should focus on whether or not a relationship exists between the organization of grid cells 
within entorhinal cycles and their relative spatial phases in two-dimensional open field experiments, 
contrasting the population map with configurations shown in Figure 6.

Grid cells were originally described in superficial layers of the medial entorhinal cortex, but were 
later found also in other entorhinal layers and even in an increasing number of other brain areas 
(Boccara et al., 2010; Long et al., 2021a; Long and Zhang, 2021b). Our work points to the possi-
bility that organizational principles simpler than previously thought could act in some of these areas to 
structure grid cell population activity. In addition, given that grid cell properties change substantially 
during the early life of rodents (Langston et al., 2010; Wills et al., 2010), flexible attractors could 
also be taken into account as a potential intermediate stage toward the formation of more complex 
architectures.

Our work shows that attractor networks have capabilities that so far have not been exploited in 
modeling. Addressing the dimensionality of an attractor network, as is common practice to describe 
it, becomes challenging from the perspective of our results, given that a single network architecture 
can organize population activity into manifolds of diverse geometry, and the same geometry can 
be achieved by architectures of different dimensionality. Generally speaking, operations of cross-
dimensional embedding achieved by flexible attractors could shed light on the way we map a world 
of unknown complexity through our one-dimensional experience.

Methods
The model is inspired in a previous work that describes extensively the mechanism and reasons why 
Hebbian learning sculpts hexagonal maps through self-organization (Kropff and Treves, 2008). We 
here describe the main ingredients of the model and small modifications aimed to make it simpler and 
computationally less expensive.

The network has an input layer of NI = 225 neurons projecting to a layer of NEC = 100 cells. While 
the model works with arbitrary spatially stable inputs (Kropff and Treves, 2008), for simplicity we 
use place cell like inputs. Input cells had Gaussian response fields with a standard deviation of 5.4 cm 
centered at preferred positions uniformly distributed across the 1 m arena.

The total field h received by grid cell i at time t is given by two terms. The first one includes the 
contributions of the feedforward connections from input cells. The second one includes recurrent 
contributions
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where rj
I(t) and rk

EC(t) are the firing rate of input cell j and grid cell k, respectively. The feedforward 
synaptic weight matrix WI is equipped with Hebbian plasticity, while for the purposes of this paper the 
recurrent synaptic weigh WEC is fixed (see next section).

The field of the cell is inserted into a set of two equations with two internal variables, hact and hinact 
and a parameter β aimed to mimic adaptation or neural fatigue within the cell,
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Once the value of hact is obtained for all grid cells, a threshold linear transfer function with gain G 
is applied. A threshold T mimicking inhibition is established so that only the fraction A of cells with 
highest hact values has non-zero firing rate, while a normalization, acting as an effective gain, ensures 
that Hebbian plasticity does not get stuck at the beginning of the learning process due to low post-
synaptic activity. The activity of each cell is obtained as
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where the operation |…|>0 represents a rectifying linear transformation and <…>denotes averaging 
across all cells. This normalization is effectively equivalent to controlling the sparseness of the network 
(Kropff and Treves, 2008) but is much more efficient computationally.

The update of the feedforward synaptic weight Wi,j
I is given by de Hebbian rule
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where ε is a learning parameter and the computationally efficient temporal average operation
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is used. Negative values of WI are set to zero and the vector of all presynaptic weights entering a given 
postsynaptic grid cell is divided by its Euclidean norm to ensure that it remains inside a hypersphere.

In our hands, the condition 2D was the one with the greatest sensibility to model parameters. For 
this reason, they were fine-tuned using the 2D recurrent architecture, aiming to reduce as much as 
possible the number of cells and thus optimize the computational cost. This was achieved by reducing 
the grid cell layer to 100 cells, a number below which self-organization of the population activity into a 
torus ceased to be consistent. We noticed that including a greater number of neurons in the input layer 
had a substantial impact on the speed and stability of the learning process, which led us to include 
225 input cells. Once the 2D architecture simulations were optimized, the other conditions were run 
using the same values for all parameters and initial conditions, except for the parameters describing 
the recurrent collateral architecture itself. The following are some important model parameters.

Parameters ensuring that the mean contributions of feed forward and recurrent inputs to a neuron 
are of the same order of magnitude:

•	 Gain A for otherwise normalized recurrent inputs: 2.
•	 Gain G for feedforward inputs: 0.1.
•	 Peak value for inputs rI: 20.
•	 Adaptation parameter β: 0.04.
•	 Average parameter δ: 0.5
•	 Side of the square arena: 1 m.
•	 Input field standard deviation: 5.4 cm.
•	 Distance traveled in one simulation step: 0.6 cm.
•	 Variation in direction at each step: normal distribution with 0° mean and 17° s.d.
•	 Overall number of steps per simulation 2 107.

•	 Grid cells allowed to have non-zero activity at any given time: 60%.

Other parameters:

•	 Adaptation parameter β: 0.04.

https://doi.org/10.7554/eLife.89851
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•	 Average parameter δ: 0.5
•	 Side of the square arena: 1 m.
•	 Input field standard deviation: 5.4 cm.
•	 Distance traveled in one simulation step: 0.6 cm.
•	 Variation in direction at each step: normal distribution with 0° mean and 17° s.d.
•	 Overall number of steps per simulation 2 107.

Recurrent collateral architectures
Toroidal architecture
For the purpose of designing the 2D architecture of recurrent collaterals, each neuron in a given simu-
lation was assigned a position, uniformly covering a 2D arena. The strength of connectivity between 
a given pair of cells k and l was set to depend on their relative position x = [xk - xl, yk - yl], through a 
function f(x) that was defined as the sum of three cosine functions in directions ki, 120° and 240° from 
each other, i.e. an ideal grid map (Kropff and Treves, 2008),

	﻿‍
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‍�

The spacing of this imaginary grid map (inverse to the modulus of k) could be varied along a wide 
range of values without noticeable consequences on the simulations. For simulations included in this 
work it was set to 60 cm.

Ring architecture
For the 1D condition, neurons were uniformly distributed along an imaginary ring, spaced by 3.6°. 
The connection strength between any pair of neurons was defined as proportional to a 7.2° standard 
deviation Gaussian function of the minimum angle between them.

Stripe architecture
For the 1 DL condition, neurons were uniformly distributed along an imaginary stripe. The connection 
strength between any pair of neurons was defined as proportional to Gaussian function of the distance 
between them, with standard deviation equal to twice the distance between consecutive neurons.

Fragmented architecture
To prove that characteristic organization of spatial phases is not a necessary outcome of flexible 
attractors, a Fragmented 1D condition was used (Figure 1—figure supplement 1). The architecture 
of connectivity was constructed by repeating 20 times the process of randomly selecting 10 cells and 
adding to their mutual weights those corresponding to a 1 DL attractor connecting them. The resulting 
architecture corresponds to the overlap of 20 short 1 DL attractors. Such an architecture can be under-
stood as simpler to obtain from biological processes compared to other 1D architectures studied 
here, but more difficult to fully characterize, which led us to restrict the analysis of this architecture 
to demonstrating that flexible attractors do not necessarily require organized spatial phases to align 
grid cells.

Rate maps
Mean rate for each pixel in space was obtained from the instantaneous rate of each neuron observed 
during visits to the pixel. To optimize memory usage, at any given time the pixel currently traversed 
by the rat was identified and its mean rate for each neuron j, mj updated as

	﻿‍ mj = mj
(
1 − τ

)
+ rj

(
t
)
τ ‍�

where rj is the instantaneous firing rate and τ is 0.03. The rest of the pixels of the map were not 
modified at this step.

Autocorrelograms were obtained by correlating two copies of each map displaced relatively to one 
another in all directions and magnitudes. To reduce the absolute value close to the borders, where 
correlations can reach extreme values with poor statistical power, a 1 m circular hamming window was 
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applied to each autocorrelogram. Mean population autocorrelograms were obtained by averaging 
the autocorrelogram across all neurons in a given simulation.

Quantification of grid properties
Spacing
Autocorrelograms were interpolated to a Cartesian grid in polar coordinates, so that correlation could 
be analyzed for all angles at any fixed radius. Spacing was defined as the radius with maximal 6-period 
Fourier component modulation of the correlation across angles.

Gridness
For the radius that defined spacing, gridness was defined as the mean autocorrelation at the six 
60 degree spaced maxima minus that at the six 60 degree spaced minima.

Angular spread
For each cell in a given simulation, the six maxima around the center of the autocorrelogram were 
identified. A k-means clustering algorithm was applied to the pool of all maxima in the simulation 
(MATLAB kmeans() function, with k=6, otherwise default parameters and 10 repetitions to avoid local 
minima). The spread was defined as the mean absolute angle difference between pairs of points 
belonging to the same cluster.

Metric structure of the population activity
To study the topology of the population activity (Figure 4), the central 60 cm of each map in a simu-
lation was considered. The population activity thus determines point clouds of 625 points — the size 
of the arena, that is, 25x25 — in ‍RNEC ,‍ where NEC = 100 is the number of simulated grid cells. For 
the purpose of capturing the intrinsic geometry of the underlying space determined by these point 
clouds, and to avoid the effects of the ‘curse of dimensionality’, we endowed each point cloud with 
an estimator of the geodesic distance. This estimator, known as the kNN-distance, is defined as the 
length of the shortest path along the k-nearest neighbors graph, a graph with an edge between every 
data point and each of its k-nearest neighbors with respect to the ambient Euclidean distance. We set 
the value k=10 for all our analyses but similar results could be obtained for a range of similar values 
of k.

To recover network architecture features (Figure 5), we studied the simultaneous spatial activity 
of grid cells. The associated point cloud is a set of NEC = 100 vectors in R625 representing the average 
activity of every grid cell on each pixel of the arena. This point cloud, when endowed with the metric 
structure given by the Pearson correlation distance, shares geometric features with the combinatorial 
architecture of the underlying neural network.

Persistent homology
We aimed to robustly recover geometric information, such as the number of connected components, 
cycles and holes of different dimensions, from the simulated data (Figure 3—figure supplement 1a). 
To do so, we computed the persistent homology Boissonnat et al., 2018; Edelsbrunner and Harer, 
2008; Edelsbrunner et al., 2024; Zomorodian and Carlsson, 2005 of each point cloud endowed 
with its respective metric structure. As output we obtained persistence diagrams, graphical represen-
tations of the evolution of the generators of the homology groups associated to each point cloud, for 
different parameter scales (Figure 3—figure supplement 1c). Each generator is described as a point 
whose first coordinate represents its birth and the second coordinate, its lifetime. Generators with 
long lifetime indicate topological features, while the ones with short lifetime are linked to noise. Note 
that persistent homology at degree 0 encodes the evolution of connected components. It is always 
the case that a single generator of H0 has an infinite lifetime, as a consequence of the compactness 
of the point cloud. Its lifetime was set to an arbitrary value larger than generators associated to noise 
but with a similar magnitude, to facilitate visualization. To summarize the information of the persistent 
homology over all simulations, we computed both the average of the persistence diagrams as its 
Frechet mean (Mileyko et al., 2011; Turner et al., 2014), as well as the density associated with the 
distribution of points in the diagrams (Figure 4).

https://doi.org/10.7554/eLife.89851
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All the computations of persistence diagrams, related to both the population activity and the cross-
cell similarities, were performed with the Ripser package (Bauer, 2021), while the Frechet mean (or 
barycenter of persistence diagrams) was obtained using the corresponding library in GUDHI (Maria 
et al., 2024).

Automated quantification of individual persistence diagrams
Betti numbers are typically assessed from persistence diagrams in a qualitative way. Profiting from 
the fact that we had 100 similar persistence diagrams for every condition, we designed an automated 
procedure to determine cutoff values for each homology group and condition. A histogram of life-
time with 100 bins between 0 and the maximum value was obtained for the pool of all cycles in all 
simulations belonging to the condition. The histogram was smoothed with a 3-bin standard deviation 
gaussian window. Locations of minima in this smoothed histogram were identified and the one repre-
senting the greatest fall from the previous maximum was set as the cutoff lifetime value. Persistence 
diagrams for individual simulations were analyzed by counting how many cycles had a lifetime greater 
than the corresponding cutoff value.

Local principal component analysis
Local Principal Component Analysis (PCA) is a well-established procedure to detect the local dimen-
sion of point clouds (Fukunaga and Olsen, 1971). It is based on the popular method PCA of linear 
dimensionality reduction, applied to local k-nearest neighborhoods of each data point (Figure 3—
figure supplement 1b). We employed local neighborhoods of size k=70 for all simulations of popula-
tion activity with attractors and k=20 for the ones in the No condition. These values were determined 
as the center of a range of k values with stable outcomes.

For every local neighborhood, we computed the evolution of the rate of explained variance after 
adding each principal component (in decreasing eigenvalue-order). An estimator of the local dimen-
sion at a point is the number of dimensions at which there is a drop off (or ‘elbow’) in the curve of 
explained variances (Figure 3—figure supplement 1b). For elbow detection we used the Python 
package kneed Satopaa, 2011.

Local persistent homology
Persistent homology can also be used to capture the topological structure around each data point. 
Even though homology does not distinguish among local neighborhoods of different dimensions (and 
hence, it is not useful to identify local dimensions), it is an appropriate method to detect anomalies 
such as points in the boundary or singularities. The main idea is to identify the shape of the region 
surrounding each point, by studying the persistent homology of an annular neighborhood (Stolz 
et al., 2020).

We defined the annular local neighborhood of a point x as the set of points in the point cloud 
(ordered according to the Euclidean distance to x) between the k1

th and the k2
th nearest neighbors, 

with  ‍k1‍ = 50, ‍k2‍ = 100 for the simulations with attractor, and  ‍k1‍ = 10, ‍k2‍ = 30 for the ones in the 
No condition (Figure 3—figure supplement 1d). We used the Ripser package Bauer, 2021 for the 
computation of local persistent homology.

Orientability
Orientability is the geometric property that ensures a consistent local coordinate system in a manifold. 
In the special case of closed manifolds (compact connected manifolds without boundary), this homeo-
morphism invariant can be detected by its homology.

We computed the persistence diagrams of the point clouds obtained from 100 simulations of the 
population activity of grid cells in all conditions, using coefficients in both ‍Z2‍ and ‍Z3‍ (Figure 3—figure 
supplement 1e). A summary of the persistent homology over all the simulations (for every coefficient 
field) was presented via the Frechet mean and the density of the distribution of the generators in the 
persistent diagrams.

Note that for any closed manifold M of dimension 2, ‍H2
(
M, Z2

)
̸= 0‍. This is consistent with salient 

generator in the (Frechet mean) persistence diagram for ‍H2‍ that we can detect in all conditions with 
attractors (Figure 4). We also observe that the Frechet mean of persistence diagrams remains unal-
tered after the change of coefficients from ‍Z2‍ to ‍Z3‍. This proves the orientability of the underlying 

https://doi.org/10.7554/eLife.89851
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surfaces in all cases. If the sample belonged to a non-orientable surface, the salient generator of 
the persistent diagram representing ‍H2

(
M, Z2

)
‍ should disappear when compared with ‍H2

(
M, Z3

)
‍ 

(Figure  3—figure supplement 1e). This should also be accompanied by the disappearance of a 
salient generator of ‍H1

(
M, Z2

)
‍ when contrasted with ‍H1

(
M, Z3

)
‍. This phenomenon of simultaneous 

changes in homology is explained by the independence of the Euler characteristic on the choice of 
field of coefficients.

Dimensionality reduction
Among the most popular techniques in manifold learning are the procedures for dimensionality reduc-
tion, that aim to project high-dimensional point clouds into a low-dimensional space while preserving 
some properties of the original data.

Isomap is a celebrated (non-linear) dimensionality reduction method that assumes the data is a 
sample of a low dimensional manifold embedded in a high dimensional Euclidean space. It reduces 
the dimensionality by mapping the original data into a lower dimensional Euclidean space while 
preserving geodesic distances on the manifold subjacent in the data. Since the intrinsic distance in the 
underlying manifold is unknown, it estimates the geodesic distance by the kNN graph distance, where 
the parameter k represents the number of nearest neighbors used in the construction of the graph.

We performed Isomap projections of the population activity in all conditions 2D, 1D, 1 DL and No 
condition, with a parameter value of k=10 (although comparable results are obtained for a range of 
similar values). We employed the method Isomap from the Python library sklearn.manifold.

We remark that, even though dimensionality reduction procedures may serve as a useful tool for 
data visualization and feature extraction as part of a machine learning pipeline, they do not provide 
guarantee a priori to preserve the topology of the underlying manifold, so they do not constitute in 
general a proof of structure of the original data neither an accurate preprocessing method for a subse-
quent rigorous geometric analysis.
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