
Received: 6 October 2024 Revised: 7 November 2024 Accepted: 7 November 2024

DOI: 10.1112/blms.13204

Bulletin of the London
Mathematical SocietyRESEARCH ARTICLE

The infinite Dyson Brownian motion with 𝜷 = 𝟐

does not have a spectral gap

Kohei Suzuki

Department of Mathematical Science,
Durham University, Durham, UK

Correspondence
Kohei Suzuki, Department of
Mathematical Science, Durham
University, South Road, Duhram, DH1
3LE, UK.
Email: kohei.suzuki@durham.ac.uk

Abstract
We prove that the Dirichlet forms associated with the
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inverse temperature 𝛽 = 2 do not have a spectral gap.
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The interacting particle system 𝕏𝑡 = (𝑋𝑖
𝑡)𝑖∈ℕ discussed in this paper is formally described as the

following stochastic differential equation of infinitely many particles in ℝ:

𝑑𝑋𝑖
𝑡 =

𝛽

2

∑
𝑗∶𝑗≠𝑖

1

𝑋𝑖
𝑡 − 𝑋

𝑗
𝑡

𝑑𝑡 + 𝑑𝐵𝑖𝑡, 𝑖 ∈ ℕ , (DBM)

where (𝐵𝑖𝑡 ∶ 𝑖 ∈ ℕ) is the family of infinitely many independent Brownianmotions inℝ and 𝛽 > 0

is a positive constant called inverse temperature. The solution𝕏 to (DBM) is called infinite Dyson
Brownianmotionwith inverse temperature 𝛽, named after Dyson [1], which has a particular impor-
tance in relation to randommatrix theory. It can be thought of as a diffusion process in the space
𝚼 of locally finite point measures (called configuration space) by dropping the labelling via the
map (𝑥𝑖)∞𝑖=1 ↦

∑∞
𝑖=1 𝛿𝑥𝑖 , which is called unlabelled solution and denoted by 𝖷. Over these 35 years,

the construction of weak/strong solutions and their uniqueness have been studied, for example,
in [2, 4, 6–8, 10, 12].
A question that is addressed in this paper is a spectral gap of the unlabelled solution 𝖷 in the

case 𝛽 = 2. In this case, a weaker property, what is called irreducibility (called also ergodicity, or
convergence to equilibrium), has been recently settled affirmatively in [5, 9, 11]. In particular, the
law of the time marginal 𝖷𝑡 converges to an equilibrium measure as 𝑡 → ∞, which is the law
of the 𝗌𝗂𝗇𝖾2 point process. Any aspect of quantitative rate of this convergence, however, remains
uncharted so far. The objective of this paper is to provide a negative result for spectral gaps of the
unlabelled solution 𝖷 with 𝛽 = 2.
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2 SUZUKI

List of notation

∙  = ∞𝑐 (ℝ) for the space of real-valued compactly supported smooth functions in ℝ;
∙ ∞

𝑏
(ℝ𝑘) for the space of real-valued smooth functions in ℝ𝑘 (𝑘 ∈ ℕ) whose arbitrary order of

derivative is continuous and bounded;
∙ Γℝ(𝑢, 𝑣) for the square field of functions 𝑢, 𝑣 ∶ ℝ → ℝ defined as Γℝ(𝑢, 𝑣) ∶= (

𝑑

𝑑𝑥
𝑢)(

𝑑

𝑑𝑥
𝑣);

∙ 𝚼 for the configuration space over ℝ, that is, the space of Radon point measures on ℝ;
∙ 𝜇 for the law of the 𝗌𝗂𝗇𝖾2 point process. Namely, 𝜇 is the law of the determinantal point process
whose 𝑛-point correlation function is

𝜌(𝑛)(𝑥1, … , 𝑥𝑛) = 𝖽𝖾𝗍
(
𝐾(𝑥𝑖, 𝑥𝑗)

𝑛
𝑖,𝑗=1

)
, 𝐾(𝑥𝑖, 𝑥𝑗) =

sin 𝜋(𝑥𝑖 − 𝑥𝑗)

𝜋(𝑥𝑖 − 𝑥𝑗)
;

∙ 𝐿𝑝(𝚼, 𝜇) (1 ⩽ 𝑝 < ∞) for the 𝜇-equivalence classes of functions 𝑢 ∶ 𝚼 → ℝ with ‖𝑢‖𝑝
𝐿𝑝(𝜇)

∶=

∫
𝚼 |𝑢|𝑝 𝑑𝜇 < ∞;

∙ 𝖵𝖺𝗋(𝑢) for the variance of 𝑢 ∈ 𝐿2(𝚼, 𝜇) defined as 𝖵𝖺𝗋(𝑢) ∶= ∫
𝚼 𝑢

2 𝑑𝜇 −
(∫

𝚼 𝑢 𝑑𝜇
)2
;

∙ 𝑢∗ ∶ 𝚼 → ℝ for linear statistics of 𝑢 ∶ ℝ → ℝ defined as

𝑢∗(𝛾) ∶= ∫ℝ 𝑢(𝑥) 𝑑𝛾(𝑥) , 𝛾 ∈ 𝚼 ;

∙ ∞
𝑏
() for the space of cylinder functions 𝑈 ∶ 𝚼 → ℝ:

𝑈 = Φ(𝑢∗1, … , 𝑢∗
𝑘
) , {𝑢1, … , 𝑢𝑘} ⊂  , Φ ∈ ∞

𝑏
(ℝ𝑘) , 𝑘 ∈ ℕ ;

∙ Γ𝚼 for the square field operator in 𝚼:

Γ𝚼(𝑈) ∶=

𝑘∑
𝑖,𝑗=1

𝜕𝑖Φ
(
𝑢∗1, … , 𝑢∗

𝑘

)
𝜕𝑗Φ

(
𝑢∗1, … , 𝑢∗

𝑘

)
Γℝ(𝑢𝑖, 𝑢𝑗)

∗, 𝑈 ∈ ∞
𝑏
() ;

∙  for the functional  ∶ ∞
𝑏
() × ∞

𝑏
() → ℝ defined as

(𝑢, 𝑣) ∶= 1

2 ∫𝚼 Γ
𝚼(𝑢, 𝑣) 𝑑𝜇 , 𝑢, 𝑣 ∈ ∞

𝑏
() , (1)

where Γ𝚼(𝑢, 𝑣) ∶= 1

4

(
Γ𝚼(𝑢 + 𝑣) − Γ𝚼(𝑢 − 𝑣)

)
. We write (𝑢, 𝑢) = (𝑢).

Let  ∶ 𝐿2(𝚼, 𝜇) × 𝐿2(𝚼, 𝜇) → ℝ ∪ {∞} be a symmetric bilinear function with a dense
domain  ∶= {𝑢 ∈ 𝐿2(𝚼, 𝜇) ∶ (𝑢, 𝑢) < ∞} and (𝑢, 𝑢) ⩾ 0 for every 𝑢 ∈  . It is called closed if
the space  endowed with the norm ‖ ⋅ ‖ defined as ‖ ⋅ ‖2 ∶= (⋅) + ‖ ⋅ ‖2

𝐿2(𝜇)
is a real Hilbert

space. A pair (,) is a closed extension of ( ,∞
𝑏
()) if (,) is closed and

∞
𝑏
() ⊂  ,  =  on ∞

𝑏
() × ∞

𝑏
() .
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SPECTRAL GAP OF DYSON BROWNIANMOTION 3

In the rest of the paper, we keep the same symbol  for extensions and simply say that ( ,)
is a closed extension of ( ,∞

𝑏
()). The unlabelled solution 𝖷 of (DBM) with 𝛽 = 2 starting at

a particular class of admissible initial conditions has been identified with the diffusion process
properly associated with a closed extension of ( ,∞

𝑏
()), see [7, Thm. 24].

Theorem. Any closed extension ( ,) of ( ,∞
𝑏
()) does not have a spectral gap, that is,

inf
𝑢∈
𝑢≠0

(𝑢)
Var(𝑢)

= 0 .

1 PROOF OF THE THEOREM

In the rest of the arguments, we often use the following facts about the 𝗌𝗂𝗇𝖾2 point process.

∙ (Intensity measure) If 𝑢 ∈ 𝐿1(ℝ), then 𝑢∗ ∈ 𝐿1(𝚼, 𝜇) and

∫𝚼 𝑢
∗ 𝑑𝜇 = ∫ℝ 𝑢 𝑑𝑥 . (2)

∙ (Two-point correlation) For every Borel measurable 𝑢 ∶ ℝ → ℝ,

∫𝚼
∑
𝑥,𝑦∈𝛾
𝑥≠𝑦

𝑢(𝑥)𝑢(𝑦)𝑑𝜇(𝛾) = ∫ℝ2
𝑢(𝑥)𝑢(𝑦)𝜌(2)(𝑥, 𝑦)dxdy (⩽ ∞), (3)

where 𝜌(2) is the two-point correlation function given by

𝜌(2)(𝑥, 𝑦) = 1 −
sin2

(
𝜋(𝑥 − 𝑦)

)
𝜋2(𝑥 − 𝑦)2

.

Proof of the theorem. Take 𝑢𝜎(𝑥) ∶= 𝑥e−
𝑥2

2𝜎2 and define the associated linear statistics𝑈𝜎 ∶ 𝚼 → ℝ

as 𝑈𝜎(𝛾) ∶= 𝑢∗𝜎(𝛾) = ∫
ℝ
𝑢𝜎(𝑥) 𝑑𝛾. In the following argument, we fix 𝜎 and simply write 𝑢 and 𝑈.

We first compute the variance of 𝑈. By the intensity formula (2) and the mean zero
property ∫

ℝ
𝑢 𝑑𝑥 = 0,

𝖵𝖺𝗋(𝑈) = ∫𝚼 𝑈
2 𝑑𝜇 −

(
∫𝚼 𝑈 𝑑𝜇

)2

= ∫𝚼 𝑈
2 𝑑𝜇 −

(
∫ℝ 𝑢 𝑑𝑥

)2

= ∫𝚼 𝑈
2 𝑑𝜇 .

The right-hand side can be further deduced to

∫𝚼
(∑
𝑥∈𝛾

𝑢(𝑥)

)2

𝑑𝜇(𝛾) = ∫𝚼
(∑
𝑥∈𝛾

𝑢(𝑥)2 +
∑
𝑥,𝑦∈𝛾
𝑥≠𝑦

𝑢(𝑥)𝑢(𝑦)

)
𝑑𝜇(𝛾) (4)

= ∫ℝ 𝑢(𝑥)
2 𝑑𝑥 + ∫ℝ2

𝑢(𝑥)𝑢(𝑦)𝜌(2)(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=

√
𝜋𝜎3

2
+ ∫ℝ2

𝑢(𝑥)𝑢(𝑦)𝜌(2)(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 .
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4 SUZUKI

Wenowgive the evaluation on the second term ∫
ℝ2 𝑢(𝑥)𝑢(𝑦)𝜌

(2)(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. Recalling𝜌(2)(𝑥, 𝑦) =
1 −

sin2(𝜋(𝑥−𝑦))

𝜋2(𝑥−𝑦)2
and ∫

ℝ2 𝑢(𝑥)𝑢(𝑦) 𝑑𝑥 𝑑𝑦 = 0, we focus only on the evaluation of

−∫ℝ2
𝑢(𝑥)𝑢(𝑦)

sin2(𝜋(𝑥 − 𝑦))

𝜋2(𝑥 − 𝑦)2
𝑑𝑥 𝑑𝑦 . (5)

By the change of variables (the rotation by 45◦)

𝑥 =
1√
2
(𝑢 + 𝑣) , 𝑦 =

1√
2
(𝑣 − 𝑢) ,

the integral (5) comes down to

−
1

4 ∫ℝ2
(𝑣2 − 𝑢2)e−

𝑢2+𝑣2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2𝑢2
𝑑𝑢 𝑑𝑣

=
1

4 ∫ℝ2
e−

𝑢2+𝑣2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2
𝑑𝑢 𝑑𝑣 −

1

4 ∫ℝ2
𝑣2e−

𝑢2+𝑣2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2𝑢2
𝑑𝑢 𝑑𝑣

=∶ (I) + (II) .

By using the following formula (a proof will be given later):

∫ℝ e
−

𝑢2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2
𝑑𝑢 =

𝜎e−4𝜋2𝜎2(e4𝜋2𝜎2 − 1)√
2𝜋3∕2

, (6)

the first term can be further computed as

(I) =
1

4 ∫ℝ e
− 𝑣2

2𝜎2 𝑑𝑣 ∫ℝ e
− 𝑢2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2
𝑑𝑢 =

√
2𝜋𝜎

4
×
𝜎e−4𝜋2𝜎2(e4𝜋2𝜎2 − 1)√

2𝜋3∕2

=
𝜎2

4𝜋
(1 − e−4𝜋2𝜎2) .

For the second term, we first note that ∫
ℝ

sin2(
√
2𝜋𝑢)

𝜋2𝑢2
𝑑𝑢 =

√
2, which can be immediately seen

by the formula ∫
ℝ

sin2(𝑢)

𝑢2
𝑑𝑢 = 𝜋 and the change of variable. Thus, we have

(II) = −
1

4 ∫ℝ e
−

𝑢2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2𝑢2
𝑑𝑢 ∫ℝ 𝑣

2e−
𝑣2

2𝜎2 𝑑𝑣 = −∫ℝ e
−

𝑢2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2𝑢2
𝑑𝑢 ×

√
2𝜋𝜎3

4

⩾ −∫ℝ
sin2(

√
2𝜋𝑢)

𝜋2𝑢2
𝑑𝑢 ×

√
2𝜋𝜎3

4
= −

√
𝜋𝜎3

2
.

By plugging these estimates into Equation (4),

𝖵𝖺𝗋(𝑈) ⩾

√
𝜋𝜎3

2
−

√
𝜋𝜎3

2
+
𝜎2

4𝜋
(1 − e−4𝜋2𝜎2) = 𝜎2

4𝜋
(1 − e−4𝜋2𝜎2) . (7)
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SPECTRAL GAP OF DYSON BROWNIANMOTION 5

We next compute (𝑈) = (1∕2) ∫𝚼 Γ𝚼(𝑈) 𝑑𝜇. By, for example, [3, Prop. 4.6], 𝑈 = 𝑈𝜎 ∈  for
every 𝜎 > 0 and Γ𝚼(𝑈) = Γℝ(𝑢)∗ 𝜇-a.e. Thus, for 𝜇-a.e. 𝛾,

Γ𝚼(𝑈)(𝛾) =
∑
𝑥∈𝛾

Γℝ(𝑢)(𝑥) ⩽ 2
∑
𝑥∈𝛾

e−
𝑥2

𝜎2 (𝑥) +
2

𝜎4

∑
𝑥∈𝛾

𝑥4e−
𝑥2

𝜎2 (𝑥) .

By the intensity formula (2), we have

(𝑈) = 1

2 ∫𝚼 Γ
𝚼(𝑈) 𝑑𝜇 ⩽ ∫𝚼

(∑
𝑥∈𝛾

e−
𝑥2

𝜎2 (𝑥) +
1

𝜎4

∑
𝑥∈𝛾

𝑥4e−
𝑥2

𝜎2 (𝑥)

)
𝑑𝜇(𝛾)

= ∫ℝ
(
e−

𝑥2

𝜎2 +
1

𝜎4
𝑥4e−

𝑥2

𝜎2

)
𝑑𝑥

=
√
𝜋𝜎 +

3
√
𝜋𝜎

4
.

Therefore, we conclude

inf
𝐹∈
𝐹≠0

(𝐹)
𝖵𝖺𝗋(𝐹)

⩽ inf
𝜎>0

(𝑈𝜎)

𝖵𝖺𝗋(𝑈𝜎)
⩽

√
𝜋𝜎 +

3
√
𝜋𝜎

4

𝜎2

4𝜋
(1 − e−4𝜋2𝜎2)

𝜎→∞
LLLLL→ 0 .

□

Proof of Equation (6). By the formula sin2 𝑢 = (1 − cos(2𝑢))∕2,

∫ℝ e
−

𝑢2

2𝜎2
sin2(

√
2𝜋𝑢)

𝜋2
𝑑𝑢 =

1

2𝜋2 ∫ℝ e
−

𝑢2

2𝜎2
(
1 − cos(2

√
2𝜋𝑢)

)
𝑑𝑢

=
1

2𝜋2

√
2𝜋𝜎 −

1

2𝜋2 ∫ℝ e
− 𝑢2

2𝜎2 cos(2
√
2𝜋𝑢) 𝑑𝑢 .

Let ℎ(𝑎) ∶= ∫ ∞

0 e−𝑏𝑢2 cos(𝑎𝑢) 𝑑𝑢 for 𝑎, 𝑏 > 0. As the integrant e−𝑏𝑢2 cos(𝑎𝑢) is symmetric in
variable 𝑢, we have 2ℎ(𝑎) = ∫

ℝ
e−𝑏𝑢2 cos(𝑎𝑢) 𝑑𝑢. It is straightforward to check

𝜕𝑎ℎ = −
𝑎

2𝑏
ℎ , ℎ(0) = ∫

∞

0

e−𝑏𝑢2 𝑑𝑢 =

√
𝜋

2
√
𝑏
.

Solving this first-order ordinary differential equation, we get 2ℎ(𝑎) =
√
𝜋√
𝑏
e−

𝑎2

4𝑏 . Plugging 𝑎 =

2
√
2𝜋 and 𝑏 = 1∕(2𝜎2), the sought formula is obtained. □

2 CONCLUDING REMARK

Remark 2.1 (Growth of variance and spectral gap). Let 𝜇 be the law of a point process in ℝ

with constant intensity, 𝖵𝖺𝗋𝜇 be the variance with respect to 𝜇, and 𝜇 be the functional defined
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6 SUZUKI

in Equation (1) with 𝜇. The proof of the theorem shows that as long as

𝜎

𝖵𝖺𝗋𝜇(𝑢
∗
𝜎)

𝜎→∞
LLLLL→ 0 , (8)

any closed extension of (𝜇,∞
𝑏
()) (if it exists) does not have a spectral gap. In the case where

𝜇 is the law 𝜋 of the Poisson point process inℝwith intensity 1, Equation (8) holds true as we have

𝖵𝖺𝗋𝜋(𝑢
∗
𝜎) =

√
𝜋𝜎3

2
.

To find an example 𝜇with which (𝜇,∞
𝑏
()) has a spectral gap, we need to look into point pro-

cesses having a considerably slower growth of the variance than that of the Poisson point process
so that Equation (8) does not hold. This might be related to the property called hyperuniformity.
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