
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Payment scheduling in the Interval Debt Model ✩

Tom Friedetzky , David C. Kutner ,∗, George B. Mertzios ,1, Iain A. Stewart ,

Amitabh Trehan
Department of Computer Science, Durham University, Upper Mountjoy Campus, Stockton Road, Durham DH1 3LE, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Temporal graph

Financial network

Payment scheduling

Computational complexity

The network-based study of financial systems has received considerable attention in recent years
but has seldom explicitly incorporated the dynamic aspects of such systems. We consider this
problem setting from the temporal point of view and introduce the Interval Debt Model (IDM)
and some scheduling problems based on it, namely: Bankruptcy Minimization/Maximization,
in which the aim is to produce a payment schedule with at most/at least a given number of
bankruptcies; Perfect Scheduling, the special case of the minimization variant where the
aim is to produce a schedule with no bankruptcies (that is, a perfect schedule); and Bailout
Minimization, in which a financial authority must allocate a smallest possible bailout package
to enable a perfect schedule. We show that each of these problems is NP-complete, in many cases
even on very restricted input instances. On the positive side, we provide for Perfect Scheduling

a polynomial-time algorithm on (rooted) out-trees although in contrast we prove NP-completeness
on directed acyclic graphs, as well as on instances with a constant number of nodes (and hence
also constant treewidth). When we allow non-integer payments, we show by a linear programming
argument that the problem Bailout Minimization can be solved in polynomial time.

1. Introduction

A natural problem in the study of financial networks is that of whether and where a failure will occur if no preventative action
is taken. We focus specifically on the flexibility that financial entities are afforded as regards the precise timing of their outgoings
and for this purpose introduce the Interval Debt Model (IDM) in which a set of financial entities is interconnected by debts due within
specific time intervals. In the IDM, a payment schedule specfies timings of payments to serve the debts. We examine the computational
hardness of determining the existence of a schedule of payments with ``good'' properties, e.g., no or few bankruptcies, or minimizing
the scale of remedial action. In particular, we establish how hardness depends on variations in the exact formalism of the model (to
allow some small number of bankruptcies or insist on none at all) and on restrictions on the structure or lifetime of the input instance.
A unique and novel feature of the IDM is its capacity to capture the temporal aspects of real-world financial systems; previous work
has seldom explicitly dealt with this intrinsic facet of real-world debt.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.

E-mail addresses: tom.friedetzky@durham.ac.uk (T. Friedetzky), david.c.kutner@durham.ac.uk (D.C. Kutner), george.mertzios@durham.ac.uk (G.B. Mertzios),
i.a.stewart@durham.ac.uk (I.A. Stewart), amitabh.trehan@durham.ac.uk (A. Trehan).

1 Partially supported by the EPSRC grant EP/P020372/1.

https://doi.org/10.1016/j.tcs.2024.115028

Received 18 March 2024; Received in revised form 17 October 2024; Accepted 6 December 2024

Theoretical Computer Science 1028 (2025) 115028

Available online 13 December 2024
0304-3975/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0002-1299-5514
http://orcid.org/0000-0003-2979-4513
http://orcid.org/0000-0001-7182-585X
http://orcid.org/0000-0002-0752-1971
http://orcid.org/0000-0002-2998-0933
mailto:tom.friedetzky@durham.ac.uk
mailto:david.c.kutner@durham.ac.uk
mailto:george.mertzios@durham.ac.uk
mailto:i.a.stewart@durham.ac.uk
mailto:amitabh.trehan@durham.ac.uk
https://doi.org/10.1016/j.tcs.2024.115028
https://doi.org/10.1016/j.tcs.2024.115028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.115028&domain=pdf
http://creativecommons.org/licenses/by/4.0/

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Financial networks Graph theory provides models for many problems of practical interest for analyzing (or administering) financial
systems. For example, Eisenberg and Noe’s work [1] abstracts a financial system to be a weighted digraph (in which each node
is additionally labelled according to the corresponding entity’s assets). The authors of that work are focused on the existence and
computation of a clearing vector, which is essentially a set of payments among nodes of the graph which can be executed synchronously
without violating some validity constraints. Their model provides the basis for much subsequent work in the network-based analysis
of financial systems: it has been adapted to incorporate default costs [2], Credit Default Swaps [3] (CDSs) (that is, derivatives through
which banks can bet on the default of another bank in the system) and the sequential behaviour of bank defaulting in real-world
financial networks [4].

An axiomatic aspect of Eisenberg and Noe’s model is the so-called principle of proportionality: that a defaulting bank pays off each
of its creditors proportionally to the amount it is owed. Some recent work has considered alternative payment schemes, which allow,
for example, paying some debts in full and others not at all (so-called non-proportional payments). For example, Bertschinger, Hoefer
and Schmand [5] study financial networks in a setting where each node is a rational agent which aims to maximize flow through
itself by allocating its income to its debts. The focus of that work is on game-theoretic questions, such as the price of anarchy, or the
existence, properties, and computability of equilibria. Papp and Wattenhoffer [6] also study a non-proportional setting, additionally
incorporating CDSs.

Complementing the decentralized, game-theoretic approach is the question of the (centralized) computability of a globally ``good''
outcome through bailout allocation [7] (also called cash injection [8]), or timing default announcements [4], among other operations.
In such works, the prototypical objective is to minimize the number of bankruptcies; related measures include total market value [7],
or systemic liquidity [8]. Egressy and Wattenhoffer [7] focus solely on computational complexity of leveraging bailouts to optimize
a range of objectives, in a setting which incorporates proportional payments and default costs. Kanellopoulos, Kyropoulou and Zhou
[8,9] apply both a game-theoretic and a classical complexity perspective to two mechanisms: debt forgiveness (deletion of edges in
the financial network) and cash injection (bailouts). Notably, in this work the central authority may remove debts in a way which
may be detrimental to certain individuals, but benficial to the total systemic liquidity.

Previous research on financial networks has also drawn from ecology [10], statistical physics [11] and Boolean networks [12].

A central motivation of financial network analysis is to inform central banks’ and regulators’ policies. The concepts of solvency

and liquidity are core to this task: a bank is said to be solvent if it has enough assets (including, e.g., debts owed to it) to meet all
its obligations; and it is said to be liquid if it has enough liquid assets (that is, cash) to meet its obligations on time. An illiquid but
solvent bank may exist even in modern interbank markets [13]. In such cases, a central bank may act as a lender of last resort and
extend loans to such banks to prevent them defaulting on debts [13,14]. The optimal allocation of bailouts to a system in order to
minimize damage has also been studied as an extension of Eisenberg and Noe’s model [15]. Here, bailouts refer to funds provided by
a third party (such as a government) to entities to help them avoid bankruptcy.

Temporal graphs Temporal graphs are graphs whose underlying connectivity structure changes over time. Such graphs allow us
to model real-world networks which have inherent dynamic properties, such as transportation networks [16], contact networks
in an epidemic [17,18] and communication networks; for an overview see [19,20]. Most commonly, following the formulation
introduced by Kempe, Kleinberg and Kumar [21], a temporal graph has a fixed set of vertices together with edges that appear and
disappear at integer times up to an (integer) lifetime. Often, a natural extension of a problem on static graphs to the temporal setting
yields a computationally harder problem; for example, finding node-disjoint paths in a temporal graph remains NP-complete even
when the underlying graph is itself a path [22], and finding a temporal vertex cover remains NP-complete even on star temporal
graphs [23].

Contributions In this paper we present a novel framework, the Interval Debt Model (IDM), for considering problems of bailout alloca

tion and payment scheduling in financial networks by using temporal graphs to account for the isochronal aspect of debts between
financial entities (previous work has almost exclusively focused on static financial networks). In particular, the IDM offers the flex

ibility that entities can pay debts earlier or later, within some agreed interval. We introduce several natural problems and problem
variants in this model and show that the tractability of such problems depends greatly on the network topology and on the restrictions
on payments (i.e., the admission or exclusion of partial and fractional payments on debts).

Our work explores the natural question of whether and how payments can be scheduled to avert large-scale failures in financial
networks. Broadly, we establish that computing a zero-failure schedule (a perfect schedule) is NP-complete even when the network
topology is highly restricted, unless we admit fractional payments, in which case determining the existence of a perfect schedule is
tractable in general. Interestingly, if we allow a small number 𝑘 of bankruptcies to occur then every problem variant is computationally
hard even on inputs with 𝑂(1) nodes. This can be thought of analogously to Max 2SAT being strictly harder than 2SAT (unless P=NP)
despite being a ``relaxation'': in Max 2SAT we allow up to 𝑘 clauses to not be satified. Furthermore, in the setting where we insist
not only on payments being for integer amounts but more strongly that any payment is for the full amount of the corresponding debt,
finding a perfect schedule is NP-complete even if there are only four nodes.

We begin by introducing, first by example and then formally, the Interval Debt Model in Section 2. In Section 3 we present
our results: in Section 3.1--3.3 we establish some sufficient criteria for NP-hardness for each of the problems we consider; and in
Section 3.4 we present two polynomial-time algorithms. Our conclusions and directions for further research are given in Section 4.

Theoretical Computer Science 1028 (2025) 115028

2

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑢

30

𝑣

20

𝑤

10

20@[1,3]

15@[4,5]

25@2

25@[4,6]

Fig. 1. A simple instance of the Interval Debt Model (IDM). Numbers in square boxes represent the initial external assets of the node (for example, e30 for node 𝑢),
directed edges represent debts, and the label on an edge represents the terms of the associated debt (for example, 𝑢 must pay 𝑣 e20 between time 1 and time 3).

2. The Interval Debt Model

In this section, we introduce (first by example and then formally) the Interval Debt Model, a framework in which temporal graphs
are used to represent the collection of debts in a financial system.

2.1. An illustrative example

As an example, consider a tiny financial network consisting of the 3 banks 𝑢, 𝑣 and 𝑤 with e30, e20 and e10, respectively, in
initial external assets and where there are the following inter-bank financial obligations:

• bank 𝑢 owes bank 𝑣 e20 which it must pay by time 3 and e15 which it must pay at time 4 or time 5 (note that all payments
must be made at integer times)

• bank 𝑣 must pay bank 𝑤 a debt of e25 at time 2 exactly

• bank 𝑤 must pay e25 to bank 𝑣 between times 4 and 6 (that is, at time 4, 5 or 6).

A graphical representation of this system is shown in Fig. 1 (the descriptive notation used should be obvious and is retained throughout
the paper).

Several points can be made about this system: node 𝑢 is insolvent as its e30 in initial external assets are insufficient to pay all its
debts; node 𝑣 may be illiquid for it may default on part of its debt to 𝑤, e.g., if 𝑢 pays all of its first debt at time 3, or may remain
liquid, e.g., if it receives at least e5 from 𝑢 by time 2; and node 𝑤 is solvent and certain to remain liquid in any case. The choices
made by the various banks, in the form of a (payment) schedule, clearly affect the status of the overall financial system. Note that
solvency is determined solely by whether sufficient funds exist whereas liquidity depends upon when debts are paid and owed.

One may ask several questions about our toy financial system such as: Are partial payments allowed (e.g., 𝑢 paying e18 of the

e20 debt at time 1, and the rest later)? If so, are non-integer payments allowed? Can money received be immediately forwarded (e.g.,
𝑢 paying 𝑣 e20 at time 2 and 𝑣 paying 𝑤 e25 at time 2)? Does 𝑣 necessarily have to pay its debt to 𝑤 at time 2 if it has the liquid
assets to do so? We now expand upon these questions and specify in detail the setting we consider in the remainder of the paper.
Note that throughout the paper we use the euro e as our monetary unit of resource even though, as we will see, we have a variant of
the Interval Debt Model within which payments can be made for any rational fraction of a euro. We often prfix monetary payments
with the symbol e to make our proofs more readable.

2.2. Formal setting

Formally, an Interval Debt Model (IDM) instance is a 3-tuple (𝐺,𝐷,𝐴0) as follows.

• 𝐺 = (𝑉 ,𝐸) is a finite digraph with the set of 𝑛 nodes (or, alternatively, banks) 𝑉 = {𝑣𝑖 ∶ 𝑖 = 1, 2, … , 𝑛} and the set of 𝑚 directed
labelled edges 𝐸 ⊆ 𝑉 × 𝑉 × ℕ, with the edge (𝑢, 𝑣, 𝑖𝑑) ∈ 𝐸 denoting that there is an edge, or debt, whose label is 𝑖𝑑, from the
debtor 𝑢 to the creditor 𝑣. We can have multi-edges but the labels of the edges from some node 𝑢 to some node 𝑣 must be distinct
and form a contiguous integer sequence 0,1,2,…. We refer to the subset of edges directed out of or in to some specific node 𝑣 by
𝐸out(𝑣) and 𝐸in(𝑣), respectively. We also refer to the undirected graph obtained from 𝐺 by ignoring the orientations on directed
edges as the footprint of 𝐺.

• 𝐷 ∶𝐸 → {(𝑎, 𝑡1, 𝑡2) ∶ 𝑎, 𝑡1, 𝑡2 ∈ℕ ⧵ {0}, 𝑡1 ≤ 𝑡2} is the debt function which associates terms to every debt (ordinarily, we abbreviate
𝐷((𝑢, 𝑣, 𝑖𝑑)) as 𝐷(𝑢, 𝑣, 𝑖𝑑)). Here, if 𝑒 is a debt with terms 𝐷(𝑒) = (𝑎, 𝑡1, 𝑡2) then 𝑎 is the monetary amount (or monetary debt) to be
paid and 𝑡1 (resp. 𝑡2) is the first (resp. last) time at which (any portion of) this amount can be paid. For any debt 𝑒 ∈𝐸, we also
write 𝐷(𝑒) = (𝐷𝑎(𝑒),𝐷𝑡1

(𝑒),𝐷𝑡2
(𝑒)). For simplicity of notation, we sometimes denote the terms 𝐷(𝑒) = (𝑎, 𝑡1, 𝑡2) by 𝑎@[𝑡1, 𝑡2] or

by 𝑎@𝑡1 when 𝑡1 = 𝑡2 (as we did in Fig. 1); also, for simplicity, we sometimes just refer to 𝑎@[𝑡1, 𝑡2] as the debt.

• 𝐴0 = (𝑐0
𝑣1
, 𝑐0

𝑣2
, ...𝑐0

𝑣𝑛
) ∈ℕ𝑛 is a tuple with 𝑐0

𝑣𝑖
denoting the initial external assets (i.e. starting cash) of bank 𝑣𝑖.

We refer to the greatest time-stamp 𝑇 that appears in any debt for a given instance as the lifetime and assume that all net

work activity ceases after time 𝑇 . The instance shown in Fig. 1, which has lifetime 𝑇 = 6, is formally given by: 𝑉 = {𝑢, 𝑣,𝑤},
𝐸 = {(𝑢, 𝑣,0), (𝑢, 𝑣,1), (𝑣,𝑤,0), (𝑤,𝑣,0)}, 𝐷(𝑢, 𝑣,0) = (20,1,3), 𝐷(𝑢, 𝑣,1) = (15,4,5), 𝐷(𝑣,𝑤,0) = (25,2,2), 𝐷(𝑤,𝑣,0) = (25,4,6) and
𝐴0 = (𝑐0

𝑢
, 𝑐0

𝑣
, 𝑐0

𝑤
), where 𝑐0

𝑢
= 30, 𝑐0

𝑣
= 20 and 𝑐0

𝑤
= 10. Similarly, the instance shown in Fig. 2 has lifetime 𝑇 = 2 and is given by

𝑉 = {𝑢, 𝑣,𝑤}, 𝐸 = {(𝑢, 𝑣,0), (𝑣,𝑤,0)}, 𝐷(𝑢, 𝑣,0) = (1,1,2), 𝐷(𝑣,𝑤,0) = (1,1,1) and 𝐴0 = (𝑐0
𝑢
, 𝑐0

𝑣
, 𝑐0

𝑤
), where 𝑐0

𝑢
= 1, 𝑐0

𝑣
= 0 and 𝑐0

𝑤
= 0.

Theoretical Computer Science 1028 (2025) 115028

3

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑢

1

𝑣

0

𝑤

0

1@[1,2] 1@1

Fig. 2. An IDM instance for which every schedule is described by four payment values 𝑝1(𝑢,𝑣,0), 𝑝1(𝑣,𝑤,0) , 𝑝2(𝑢,𝑣,0) and 𝑝2(𝑣,𝑤,0) .

The size of the instance (𝐺,𝐷,𝐴0) is dfined as 𝑛 + 𝑚 + log(𝑇) + 𝑏, where 𝑏 is the maximum number of bits needed to encode
any of the (integer) numeric values appearing as the monetary amounts in the debts. Note that in what follows, we usually do not
mention the label 𝑖𝑑 of a debt (𝑢, 𝑣, 𝑖𝑑) but just refer to the debt as (𝑢, 𝑣) when this causes no confusion.

2.3. Schedules

Given an IDM instance (𝐺,𝐷,𝐴0), a (payment) schedule 𝜎 describes the times at which the banks transfer assets to one another
via payments. Formally, a schedule 𝜎 is a set of |𝐸|𝑇 payment values 𝑝𝑡

𝑒
≥ 0, one for each edge-time pair (𝑒, 𝑡) (note that no payments

are made at time 0). Equivalently, a schedule can be expressed as an |𝐸| × 𝑇 matrix 𝑆 with the payment values 𝑝𝑡
𝑒

the entries of the
matrix. The value 𝑝𝑡

𝑒
is the monetary amount of the debt 𝑒 paid at time 𝑡. Our intention is that at any time 1 ≤ 𝑡 ≤ 𝑇 , every payment

value 𝑝𝑡
𝑒
> 0 of a schedule 𝜎 is paid by the debtor of 𝑒 to the creditor of 𝑒, not necessarily for the full monetary amount 𝐷𝑎(𝑒) but

for the amount 𝑝𝑡
𝑒
. A schedule for the instance of Fig. 2 consists of the four payments values 𝑝1(𝑢,𝑣,0) , 𝑝

1
(𝑣,𝑤,0), 𝑝

2
(𝑢,𝑣,0) and 𝑝2(𝑣,𝑤,0). Note

that, using the above representation of a schedule 𝜎, we might have a large number of zero payments. Therefore, for simplicity of
presentation, in the remainder of the paper we specify schedules by only detailing the non-zero payments. An example schedule for
the IDM instance in Fig. 2 is then 𝑝1(𝑢,𝑣,0) = 1, 𝑝1(𝑣,𝑤,0) = 1.

We now introduce some auxiliary variables which are not strictly necessary but help us to concisely express constraints on and
properties of schedules. For nodes 𝑢, 𝑣 ∈ 𝑉 and time 0 ≤ 𝑡 ≤ 𝑇 , the following values are with respect to some specific schedule.

• Denote by 𝐼𝑡
𝑣

the total monetary amount of incoming payments of node 𝑣 at time 𝑡.
• Denote by 𝑂𝑡

𝑣
the total monetary amount of outgoing payments (expenses) of node 𝑣 at time 𝑡.

• We write 𝑝𝑡
𝑢,𝑣

to denote the total amount of all payments made from debtor 𝑢 to creditor 𝑣 at time 𝑡 in reference to all debts from
𝑢 to 𝑣; that is, 𝑝𝑡

𝑢,𝑣
=
∑

𝑖 𝑝
𝑡
(𝑢,𝑣,𝑖).

• The vector 𝐴0 = (𝑐0
𝑣1
, 𝑐0

𝑣2
,… , 𝑐0

𝑣𝑛
) specfies the initial external assets (cash) of each node at time 0. For 𝑡 > 0, we denote by 𝑐𝑡

𝑣

node 𝑣’s cash assets at time 𝑡; that is, 𝑐𝑡
𝑣
= 𝑐𝑡−1

𝑣
+ 𝐼𝑡

𝑣
−𝑂𝑡

𝑣
.

For clarity, we refer to the starting cash of banks as ``initial external assets'' and to liquid assets in general as cash assets. By cash assets
‘at time 𝑡’ (resp. ‘prior to time 𝑡’) we mean after all (resp. before any) of the payments associated with time 𝑡 have been executed.
Cash assets at time 0 are then precisely the initial external assets at time 0 (possibly supplemented by some bailout, as we shall see
later).

We have been a little vague so far as regards the form of the payment values in any schedule and have not specfied whether these
values are integral, rational or do not necessarily equal the full monetary amount of the debt. As we detail below, we have variants
of the model covering different circumstances (with perhaps the standard version being when payment values are integral but do not
necessarily equal the full monetary amount of the debt).

Recall the example schedule from Fig. 2, which we can represent as 𝑝1
𝑢,𝑣

= 1, 𝑝1
𝑣,𝑤

= 1. As we shall soon see, the payments in this
schedule can be legitimately discharged in order to satisfy the terms of all debts but in general this need not be the case. However,
there might be schedules that are not valid, as well as valid schedules in which banks default on debts (that is, go bankrupt). We deal
with the key notions of validity and bankruptcy now.

Definition 1. A schedule is valid if it satifies the following properties (for any debt 𝑒, terms 𝐷(𝑒) = (𝑎, 𝑡1, 𝑡2) and node 𝑣):

• all payment values are non-negative; that is, 𝑝𝑡
𝑒
≥ 0, for 1≤ 𝑡 ≤ 𝑇

• all cash asset values (as derived from payment values and initial external assets) are non-negative; that is, 𝑐𝑡
𝑣
≥ 0, for 0≤ 𝑡 ≤ 𝑇

• no debts are overpaid; that is,
∑𝑇

𝑡=1 𝑝
𝑡
𝑒
≤ 𝑎

• no debts are paid too early; that is,
∑𝑡1−1

𝑡=1 𝑝𝑡
𝑒
= 0.

Given some IDM instance, some schedule and some debt 𝑒 with terms 𝐷(𝑒) = (𝑎, 𝑡1, 𝑡2), the debt 𝑒 is said to be payable at any time
in the interval [𝑡1, 𝑡2 − 1]. At time 𝑡2, 𝑒 is said to be due. At time 𝑡2 ≤ 𝑡 ≤ 𝑇 , if the full amount 𝑎 has not yet been paid (including
payments made at time 𝑡2) then 𝑒 is said to be overdue at time 𝑡. A debt is active whenever it is payable, due or overdue. However,
a bank is said to be withholding if, at some time 1 ≤ 𝑡 ≤ 𝑇 , it has an overdue debt and sufficient cash assets to pay (part of, where
fractional or partial payments are permitted; see below) the debt. If any bank is withholding (at any time) in the schedule then the
schedule is not valid.

So, for example and with reference to the IDM instance in Fig. 2, if, according to some schedule, bank 𝑢 pays 1 to bank 𝑣 at time
1 but 𝑣 makes no payment to 𝑤 at time 1 then 𝑣 is withholding and the schedule is not valid.

Theoretical Computer Science 1028 (2025) 115028

4

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Definition 2. With reference to some schedule, a bank is said to be bankrupt (at time 𝑡) if it is the debtor of an overdue debt (at time
𝑡). We say that a schedule has 𝑘 bankruptcies if 𝑘 distinct banks are bankrupt at some time in the schedule (the times at which these
banks are bankrupt might vary). A bank may recover from bankruptcy if it subsequently receives sufficient income to pay off all its
overdue debts.

Definition 3. A bank 𝑣 is said to be insolvent if all its assets (that is, the sum of all debts due to 𝑣 and of 𝑣’s initial external assets)
are insufficient to cover all its obligations (that is, the sum of all debts 𝑣 owes). Formally, 𝑣 is insolvent if

𝑐0
𝑣
+

∑
𝑒∈𝐸in(𝑣)

𝐷𝑎(𝑒) <
∑

𝑒∈𝐸out(𝑣)
𝐷𝑎(𝑒).

A bank which is insolvent will necessarily be bankrupt in any schedule.

We will not be concerned with the precise timing of bankruptcy or the recovery or not of any bank in this paper.

We now detail three variants of the model (alluded to earlier) in which different natural constraints are imposed on the payment
values.

Definition 4. In what follows, 𝑒 is an arbitrary debt and 1 ≤ 𝑡 ≤ 𝑇 some time.

• In the Fractional Payments (FP) variant, the payment values may take rational values; that is, 𝑝𝑡
𝑒
∈ℚ and we allow payments for

a smaller amount than the full monetary amount of 𝑒.
• In the Partial Payments (PP) variant, the payment values may take only integer values; that is, 𝑝𝑡

𝑒
∈ℕ and we allow payments for

a smaller amount than the full monetary amount of 𝑒.
• In the All-or-Nothing (AoN) variant, every payment value must fully cover the relevant monetary amount of 𝑒; that is, every

payment value must be for the full monetary amount of 𝑒 or zero. So, 𝑝𝑡
𝑒
∈ {𝐷𝑎(𝑒),0}.

For example, the instance of Fig. 2 has the following valid schedules:

• (in all variants) the schedule above in which 𝑝1
𝑢,𝑣

= 𝑝1
𝑣,𝑤

= e1 (all debts are paid in full at time 1)

• (in all variants) the schedule in which 𝑝2
𝑢,𝑣

= 𝑝2
𝑣,𝑤

= e1 (all debts are paid in full at time 2)

– under this schedule, node 𝑣 is bankrupt at time 1 as e1 of the debt (𝑣,𝑤,0) is unpaid and that debt is overdue

• (in the FP variant only) for every 𝑎 ∈ℚ, where 0< 𝑎 < 1, the schedule in which 𝑝1
𝑢,𝑣

= 𝑝1
𝑣,𝑤

= e𝑎 and 𝑝2
𝑢,𝑣

= 𝑝2
𝑣,𝑤

= e1 − 𝑎

– under each of these schedules, node 𝑣 is bankrupt at time 1 as e1 − 𝑎 of the debt (𝑣,𝑤,0) is unpaid and that debt is overdue.

It is worthwhile clarifying the concepts of instant forwarding and payment-cycles. We emphasize that we allow a bank to instantly
spend income received. Note that in any valid schedule for the instance in Fig. 2, 𝑣 instantly forwards money received from 𝑢 to 𝑤
(so as not to be withholding); so, the cash assets of 𝑣 never exceed 0 in any valid schedule. This behaviour is consistent with the
Eisenberg and Noe model [1] in which financial entities operate under a single clearing authority which synchronously executes
payments. Indeed, in such cases a payment-chain of any length is permitted and the payment takes place instantaneously regardless
of chain length.

Furthermore, and still consistent with the Eisenberg and Noe model, there is the possibility of a payment-cycle which is a set of
banks {𝑢1, 𝑢2,… , 𝑢𝑐}, for some 𝑐 ≥ 2, with a set of debts {𝑒𝑖 = (𝑢𝑖, 𝑢𝑖+1, 𝑙𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑐 − 1} ∪ {𝑒𝑐 = (𝑢𝑐 , 𝑢0, 𝑙𝑐)} so that at some time 𝑡,
all debts are active yet none has been fully paid and where each bank makes a payment, at time 𝑡, of the same value 𝑎 towards its
debt. As an illustration, Fig. 3 shows three ‘cyclic’ IDM instances, all with lifetime 𝑇 = 2. By our definition of a valid schedule, the
schedule 𝑝1

𝑢,𝑣
= 𝑝1

𝑣,𝑤
= 𝑝1

𝑤,𝑥
= 𝑝1

𝑥,𝑢
= e1, forming a payment-cycle, is valid in all three instances. This is intuitive for Fig. 3a, where

each node has sufficient initial external assets available to pay all its debts in full at any time, irrespective of income. In Fig. 3b, we
may imagine that the e1 moves from node 𝑢 along the cycle, satisfying every debt at time 1. This is a useful abstraction but not strictly
accurate: rather, we should imagine that all four banks simultaneously order payments forward under a single clearing system. The
clearing system calculates the balances that each bank would have with those payments executed, ensures they are all non-negative
(one of our criteria for schedule validity) and then executes the payments by updating all accounts simultaneously. This distinction
is significant when we consider Fig. 3c in which no node has any initial external assets. A clearing system ordered to simultaneously
pay all debts would have no problem doing so in the Eisenberg and Noe model and in our model this constitutes a valid schedule.
We highlight that there also exist valid schedules for the instance in Fig. 3c in which all four banks go bankrupt, one schedule being
where all payments at any time are 0: here, no bank is withholding (they all have zero cash assets), so the schedule is valid, but every
bank has an overdue debt and so is bankrupt.

We use payment-cycles throughout our constructions in a context such as that in Fig. 4. Here, a valid schedule is where all nodes
pay their corresponding debts in full at time 𝑡. The effect is that the e1 of cash assets at node 𝑢 is ‘transferred’ to e1 of cash assets at
node 𝑣.

Theoretical Computer Science 1028 (2025) 115028

5

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑢

1

𝑣

1

𝑤

1

𝑥

1

1@[1,2]

1@[1,2]

1@[1,2]

1@[1,2]

(a) All nodes start with e1.

𝑢

1

𝑣

0

𝑤

0

𝑥

0

1@[1,2]

1@[1,2]

1@[1,2]

1@[1,2]

(b) Only 𝑢 starts with e1.

𝑢

0

𝑣

0

𝑤

0

𝑥

0

1@[1,2]

1@[1,2]

1@[1,2]

1@[1,2]

(c) All nodes start with e0.

Fig. 3. Examples illustrating the behaviour of cycles in the IDM. In all instances shown the schedule in which all nodes pay their debts in full at time 1 is valid.

𝑢

1

𝑤

0

𝑥

0

𝑣

0

𝑦

0

1@𝑡 1@𝑡 1@𝑡

2@𝑡 2@𝑡

Fig. 4. Using a payment-cycle to effectively transfer e1 of assets from node 𝑢 to node 𝑣.

2.4. Canonical instances

We wish to replace certain IDM instances with equivalent yet simpler ones. For example, consider the instance given in Fig. 1
but where every time-stamp in the instance is multiplied by a factor of 100 (so that, for example, the debt from 𝑤 to 𝑣 becomes
25@[400,600]). This ‘iflated’ instance is in essence equivalent to the original one but has a lifetime of 600.

Definition 5. Let (𝐺,𝐷,𝐴0) be an instance. Then the set of time-stamps {𝑡 ∶ 𝐷𝑡1
(𝑒) = 𝑡 or 𝐷𝑡2

(𝑒) = 𝑡, for some edge 𝑒} is the set of
extremal time-stamps.

There is a simple preprocessing step such that we can assume that the lifetime 𝑇 of any IDM instance is polynomially bounded
in 𝑛 and 𝑚 (that is, the numbers of banks and debts, respectively). This preprocessing step modfies the instance such that every
1 ≤ 𝑡 ≤ 𝑇 is an extremal time-stamp with the process being to simply omit non-extremal time-stamps and then compact the remaining
time-stamps. Observe that this procedure is such that any valid schedule in the original IDM instance can be transformed into a valid
schedule in the compacted instance so that these schedules have the same number of bankruptcies, eventual assets and so forth, and
vice versa when the compacted instance is expanded into the original instance. Hence, we need not consider pathological cases in
which the lifetime is, say, exponential in the number of nodes and debts. Given this restriction, we can now revise the notion of the
size of an IDM instance to say that it is 𝑛 +𝑚 + 𝑏 where 𝑛 is the number of banks, 𝑚 is the number of debts and 𝑏 is the maximum
number of bits needed to encode any of the numeric values appearing as monetary amounts of debts.

Lemma 1. For any given IDM instance and any schedule, in any of the FP, PP or AoN variants, it is possible in polynomial-time both to check
whether the schedule is valid and to compute the number of bankruptcies under the schedule.

Proof sketch. It is possible to iterate over the schedule once and calculate: the cash assets of every node, and which debts are
overdue at each time-stamp. Computing the set {𝑣|𝑣 has some overdue debt under 𝜎} is then straightforward, and the number of
bankruptcies is the cardinality of that set.

It remains to check the validity of the schedule. We can efficiently verify that there are:

No withholding banks: iterate once over the debts overdue at each time. If the debt 𝑒 = (𝑢, 𝑣, 𝑖) is overdue at time 𝑡, verify that 𝑐𝑡
𝑢

is
insufficient to make a payment toward 𝑒 (i.e. 𝑐𝑡

𝑢
= 0 in the FP or PP model, or 𝑐𝑡

𝑢
< 𝐷𝑎(𝑒) in the AoN model).

No overpaid debts: iterate over all debts and ensure payments made with reference to each are no more than the debt amount.
No debts paid too early: ensure 𝑝𝑡

𝑒
= 0 for any 𝑡 < 𝐷𝑡1

(𝑒), for each debt 𝑒. □

2.5. Problem definitions

We now dfine some decision problems with natural real-world applications.

Theoretical Computer Science 1028 (2025) 115028

6

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Bankruptcy Minimization

Instance: an IDM instance (𝐺,𝐷,𝐴0) and an integer 𝑘
Yes-instance: an instance for which there exists a valid schedule 𝜎 such that at most 𝑘 banks go bankrupt at some time in
the schedule 𝜎.

Perfect Scheduling

Instance: an IDM instance (𝐺,𝐷,𝐴0)
Yes-instance: an instance for which there exists a valid schedule 𝜎 such that no debt is ever overdue in 𝜎; that is, a perfect
schedule.

Bailout Minimization

Instance: an IDM instance (𝐺,𝐷,𝐴0) (with 𝑛 banks) and an integer 𝑏
Yes-instance: an instance for which there exists a positive bailout vector 𝐵 = (𝑏1, 𝑏2,… , 𝑏𝑛) with

∑𝑛

𝑖=1 𝑏𝑖 ≤ 𝑏 and valid
schedule 𝜎 such that 𝜎 is a perfect schedule for the instance (𝐺,𝐷,𝐴0 +𝐵).

The problem Perfect Scheduling is equivalent to the Bailout Minimization problem where 𝑏 = 0 and to the Bankruptcy
Minimization problem where 𝑘 = 0.

Bankruptcy Maximization

Instance: an IDM instance (𝐺,𝐷,𝐴0) and an integer 𝑘
Yes-instance: an instance for which there exists a valid schedule 𝜎 such that at least 𝑘 banks go bankrupt at some time in
the schedule 𝜎.

The problem Bankruptcy Maximization is interesting to consider for quantifying a ‘worst-case’ schedule where banks’ behaviour
is unconstrained beyond the terms of their debts.

All of the problems above exist in the AoN, PP and FP variants and are in NP: for every yes-instance, there exists a witness schedule,
polynomial in the size of the input, the validity of which can be verfied in polynomial time (see Lemma 1).

Every valid PP schedule is a valid FP schedule whereas not every valid AoN schedule is a valid PP schedule. In an AoN schedule, a
bank may go bankrupt while still having assets (insufficient to pay off any of its debts) whereas this is prohibited in any PP schedule
as that bank would be withholding. If we restrict the instances to only those in which for every debt 𝑒, 𝐷𝑎(𝑒) = 1 then every valid
AoN schedule for that instance is a valid PP schedule and a valid FP schedule.

We call a digraph 𝐺 from some IDM instance a multiditree whenever the footprint of 𝐺 is a tree. We call a multiditree in which
every edge is directed away from the root a rooted out-tree (or just out-tree). By an out-path we mean an out-tree where the footprint
is a path and the root is either of the endpoints. We take this opportunity to note that an out-tree is both a directed acyclic graph
(DAG) and a multiditree, but that not every multiditree DAG is an out-tree.

A summary of some of our upcoming results is given in Table 1 (with NP-c denoting ‘NP-complete’ and P denoting ‘polynomial

time’). However, note that there are other, more nuanced results in what follows that do not feature in Table 1. Also, even though
hardness for out-trees entails hardness for multiditrees and DAGs, we reference a separate result for the latter two settings where
that is proven under different (stronger) constraints for the more general graph class. For example, our proof that AoN Bankruptcy
Minimization is NP-complete on out-trees uses a construction requiring 𝑇 ≥ 2, but our proof of Theorem 1 has 𝑇 = 1.

2.6. Discussion of the model

We describe here some notable differences (and similarities) of the IDM as compared with other studied models.

First and foremost, the IDM is a temporal model; the eponymous ``interval debts'' are its principal distinguishing feature when
contrasted with other financial network models. The timing of payments, not their allocation to one payee or another, is the principal
question. In fact, in Perfect Scheduling this is the only question. As we shall see, under the restriction 𝐷𝑡1

=𝐷𝑡2
that problem (and

its superproblem Bailout Minimization) becomes straightforwardly solvable in all variants. All of our hardness results arise from
the expressivity of that degree of freedom (the scheduling of payments sooner or later). Indeed, in Bankruptcy Minimization and

Bankruptcy Maximization that freedom remains, and the problems remain NP-complete under the same restriction 𝐷𝑡1
= 𝐷𝑡2

.

Theoretical Computer Science 1028 (2025) 115028

7

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Table 1
Summary of results.

problem out-tree multiditree DAG general case

FP Bankruptcy Minimization ? ? NP-c
(Theorem 1)

NP-c
(Theorem 1)

PP Bankruptcy Minimization ? NP-c
(Theorem 4)

NP-c
(Theorem 1)

NP-c
(Theorem 1)

AoN Bankruptcy Minimization NP-c
(Theorem 6)

NP-c
(Theorem 6)

NP-c
(Theorem 1)

NP-c
(Theorem 1)

FP Perfect Scheduling P
(Theorem 9)

P
(Theorem 9)

P
(Theorem 9)

P
(Theorem 9)

PP Perfect Scheduling P
(Theorem 11)

NP-c
(Theorem 4)

NP-c
(Theorem 3)

NP-c
(Theorem 3)

AoN Perfect Scheduling NP-c
(Theorem 6)

NP-c
(Theorem 6)

NP-c
(Theorem 3)

NP-c
(Theorem 3)

FP Bailout Minimization P
(Theorem 9)

P
(Theorem 9)

P
(Theorem 9)

P
(Theorem 9)

PP Bailout Minimization P
(Theorem 11)

NP-c
(Theorem 4)

NP-c
(Theorem 3)

NP-c
(Theorem 3)

AoN Bailout Minimization NP-c
(Theorem 6)

NP-c
(Theorem 6)

NP-c
(Theorem 3)

NP-c
(Theorem 3)

FP Bankruptcy Maximization ? ? NP-c
(Theorem 7)

NP-c
(Theorem 7)

PP Bankruptcy Maximization ? ? NP-c
(Theorem 7)

NP-c
(Theorem 7)

AoN Bankruptcy Maximization NP-c
(Theorem 8)

NP-c
(Theorem 8)

NP-c
(Theorem 8)

NP-c
(Theorem 8)

Consequently, the results of other works which do not have a temporal component [6,7,9] do not straightforwardly carry over to the
IDM.

We take this opportunity to emphasize that interval debts are practically motivated; in particular, some real-world debts may be
paid neither early nor late (see, e.g., Fig. 5).

Non-proportional payments on debts are likewise nothing new to financial networks. Recent work has considered frameworks
wherein priorities are associated with each debt, with higher-priority debts paid off before lower-priority debts [6,9]. In such a
setting, the priority of some debt may be either chosen by a regulatory authority or left to the individual agents. In the former case,
the hardness of computing a solution which maximizes utility is of particular interest, whereas game-theoretic approaches are more
relevant in the latter. Our focus in the present work is solely on questions of computational complexity from a centralized perspective.

We note that Bailout Minimization and its subproblem Perfect Scheduling remain unchanged as decision problems if
bankruptcy in the IDM is redfined to require proportional payments, or immediate deletion of the bankrupt node. Both problems
fundamentally ask whether a perfect schedule exists; consequently, the manner in which bankruptcy and defaulting are modelled
in the IDM are irrelevant. If there is a perfect schedule 𝜎, then under 𝜎 all debts are by definition paid on time, in full (and hence
proportionally). Conversely, if no such 𝜎 exists, then a bankruptcy (however it is modelled) must occur, and we have a no-instance
of the respective problems.

Lastly, we would like to comment briefly on the respective practical value of the AoN, PP and FP variants. The FP variant is quite
intuitive for theoreticians, and yields our main tractable case. On the other hand, the PP variant realizes the practical constraint that
arbitrarily small transfers are impractical, and may be of interest where a fungible but indivisible resource needs to be exchanged.
Personal communication [24] suggests that, perhaps unexpectedly, the AoN variant may well be the one of most interest to the finance
community. Unlike most other models, the AoN model has the unintuitive property that a bankrupt bank may retain some assets. We
note that this modelling of bankruptcy is not required for any of our hardness of tractability proofs in the AoN model.

3. Our results

In this section we investigate the complexity of the problems presented above. We present our hardness results for Bankruptcy
Minimization, Perfect Scheduling and Bankruptcy Maximization in Sections 3.1, 3.2 and 3.3, respectively, and then in Sec

tion 3.4 show that under certain constraints the problem Bailout Minimization and its subproblem Perfect Scheduling become
tractable.

Theoretical Computer Science 1028 (2025) 115028

8

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Fig. 5. A real-life interval debt: this 1978 US government bond is payable between 2003 and 2008.

3.1. Hardness results for Bankruptcy Minimization

We begin with our core hardness result.

Theorem 1. For each of the AoN, PP and FP variants, the problem Bankruptcy Minimization is NP-complete, even when we restrict to
IDM instances (𝐺,𝐷,𝐴0) for which: 𝑇 = 1; 𝐺 is a directed acyclic graph with a longest path of length 4, has out-degree at most 2 and has
in-degree at most 3; the monetary amount of any debt is at most e3; and initial external assets are at most e3 per bank.

Proof. We build a polynomial-time reduction from the problem 3-Sat-3 to Bankruptcy Minimization so that all target instances
satisfy the constraints in the statement of the theorem (the problem 3-Sat-3, dfined below, was shown to be NP-complete in [25]).

3-Sat-3

Instance: a c.n.f. formula 𝜙 over 𝑛 Boolean variables 𝑣1, 𝑣2, ..., 𝑣𝑛 so that each of the 𝑚 clauses 𝑐1, 𝑐2, ..., 𝑐𝑚 has size at most 3 and
where there are exactly 3 occurrences of 𝑣𝑖 or ¬𝑣𝑖 in the clauses

Yes-instance: there exists a satisfying truth assignment for 𝜙.

We may (and do, throughout the paper) restrict ourselves to those instances in which every literal appears at least once and at most
twice (that is, both 𝑣𝑖 and ¬𝑣𝑖 appear in some clause, for 1 ≤ 𝑖 ≤ 𝑛) and where no clause contains both a literal and its negation. We
dfine the size of an instance 𝜙 to be 𝑛.

Suppose that we are given a 3-Sat-3 instance 𝜙 of size 𝑛. We construct an IDM instance (𝐺,𝐷,𝐴0) as follows. For any variable 𝑣𝑖,
denote by 𝑐𝑜𝑢𝑛𝑡𝑣𝑖 (resp. 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖) the number of occurrences of the literal 𝑣𝑖 (resp. ¬𝑣𝑖) in 𝜙 (of course, 𝑐𝑜𝑢𝑛𝑡𝑣𝑖 + 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖 = 3). We
build a digraph 𝐺 with:

• a source node 𝑠𝑖, for each variable 𝑣𝑖, so that this node has initial external assets e3 (every other type of node will have initial
external assets e0)

• two literal nodes 𝑥𝑖 and ¬𝑥𝑖, for each variable 𝑣𝑖
• a clause node 𝑞𝑗 , for each clause 𝑐𝑗
• a sink node 𝑑.

We then add edges and debts as follows. For every 1 ≤ 𝑖 ≤ 𝑛:

• we add the debt (𝑠𝑖, 𝑥𝑖) with terms 3@1
• we add the debt (𝑠𝑖,¬𝑥𝑖) with terms 3@1
• we add the debt (𝑥𝑖, 𝑑) with terms 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖@1 (note that the monetary amount to be paid is either e1 or e2)

Theoretical Computer Science 1028 (2025) 115028

9

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑠𝑖

3

𝑥𝑖

¬𝑥𝑖

𝑞𝑗𝑑

3@1

3@1

𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖@1

𝑐𝑜𝑢𝑛𝑡𝑣𝑖@1

1@1 if 𝑣𝑖 ∈ 𝑐𝑗

1@1 if ¬𝑣𝑖 ∈ 𝑐𝑗

1@1

Fig. 6. Construction sketch for an IDM instance from a given formula 𝜙. Note that each of 𝑥𝑖 and ¬𝑥𝑖 owes e3 in total.

• we add the debt (¬𝑥𝑖, 𝑑) with terms 𝑐𝑜𝑢𝑛𝑡𝑣𝑖@1 (note that the monetary amount to be paid is either e1 or e2)

• for every 1 ≤ 𝑗 ≤𝑚:

– we add the debt (𝑞𝑗 , 𝑑) with terms 1@1
– if the literal 𝑣𝑖 ∈ 𝑐𝑗 then we add the debt (𝑥𝑖, 𝑞𝑗) with terms 1@1
– if the literal ¬𝑣𝑖 ∈ 𝑐𝑗 then we add the debt (¬𝑥𝑖, 𝑞𝑗) with terms 1@1.

Fig. 6 shows a sketch of this construction (where nodes without any depicted initial external assets start with e0). The IDM instance
(𝐺,𝐷,𝐴0) can clearly be built from 𝜙 in polynomial-time.

We claim that the instance ((𝐺,𝐷,𝐴0),2𝑛) of Bankruptcy Minimization as constructed above is a yes-instance of Bankruptcy
Minimization (no matter which of the AoN, PP and FP variants we work with) iff 𝜙 is a yes-instance of 3-Sat-3.

Before we proceed, we have the following remark. Recall that for each 1 ≤ 𝑖 ≤ 𝑛, 𝑐𝑜𝑢𝑛𝑡𝑣𝑖 + 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖 = 3; consequently, 𝑐𝑜𝑢𝑛𝑡𝑣𝑖 = 2
iff 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖 = 1, and vice versa. For each 1 ≤ 𝑖 ≤ 𝑛, node 𝑥𝑖 (resp. ¬𝑥𝑖) has a total monetary debt to the clause nodes of 𝑐𝑜𝑢𝑛𝑡𝑣𝑖
(resp. 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖) and a total monetary debt to the sink node 𝑑 of 𝑐𝑜𝑢𝑛𝑡¬𝑣𝑖 (resp. 𝑐𝑜𝑢𝑛𝑡𝑣𝑖); so, each literal node has a total monetary
debt of e3.

Claim 1. If 𝜙 is a yes-instance of 3-Sat-3 then ((𝐺,𝐷,𝐴0),2𝑛) is a yes-instance of Bankruptcy Minimization.

Proof. Suppose that 𝜙 is satifiable via some truth assignment 𝑋. Consider the schedule 𝜎 for (𝐺,𝐷,𝐴0) in which:

• every source node 𝑠𝑖 payse3 (at time 1, as are all payments) to the literal node 𝑥𝑖 (resp. ¬𝑥𝑖) if 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒 (resp. 𝑋(𝑣𝑖) = 𝐹𝑎𝑙𝑠𝑒)

• every literal node 𝑥𝑖 (resp. ¬𝑥𝑖) for which 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒 (resp. 𝑋(𝑣𝑖) = 𝐹𝑎𝑙𝑠𝑒) pays all its debts in full

– as remarked above, this literal node has total monetary debt e3 but, from above, it receives e3 from 𝑠𝑖
• every clause node pays its e1 debt to the sink node 𝑑

– this is necessarily possible because 𝑋 is a satisfying truth assignment, meaning every clause node receives at least e1 from
some literal node corresponding to a literal in that clause set to 𝑇 𝑟𝑢𝑒 by 𝑋.

Note that 𝜎 is valid in all three IDM variants. The total number of bankruptcies in 𝜎 is 2𝑛: exactly 𝑛 bankrupt source nodes and
exactly 𝑛 bankrupt literal nodes. Hence, if 𝜙 is satifiable then the schedule 𝜎 for (𝐺,𝐷,𝐴0) results in at most (in fact, exactly) 2𝑛
bankruptcies. □

Claim 2. If (𝐺,𝐷,𝐴0),2𝑛) is a yes-instance of Bankruptcy Minimization then 𝜙 is a yes-instance of 3-Sat-3.

Proof. Suppose that we have a schedule 𝜎 for (𝐺,𝐷,𝐴0) with at most 2𝑛 bankruptcies. Consider the set of all literals 𝐿 =
{𝑣1,¬𝑣1, 𝑣2,¬𝑣2, ..., 𝑣𝑛,¬𝑣𝑛} w.r.t. 𝜙. Dfine the set of bankrupt literals 𝐵 ⊆ 𝐿 to consist of every literal whose corresponding (lit
eral) node is bankrupt within 𝜎. Dfine 𝑋(𝑤) = 𝑇 𝑟𝑢𝑒 iff 𝑤 ∈ 𝐿 ⧵𝐵. We claim that 𝑋 is a (complete) truth assignment. Suppose it is
not and that 𝑋(𝑣𝑖) =𝑋(¬𝑣𝑖) = 𝑇 𝑟𝑢𝑒; so, both 𝑥𝑖 and ¬𝑥𝑖 are bankrupt within 𝜎. However, in any valid schedule (no matter what the
IDM variant) every source node 𝑠𝑖 will necessarily go bankrupt and at least one of the literal nodes 𝑥𝑖 and ¬𝑥𝑖 will go bankrupt. Thus,
as we have at most 2𝑛 bankruptcies, our supposition is incorrect. Alternatively, suppose that 𝑋(𝑣𝑖) = 𝑋(¬𝑣𝑖) = 𝐹𝑎𝑙𝑠𝑒; so, neither
𝑥𝑖 nor ¬𝑥𝑖 is bankrupt within 𝜎. But, as stated, this cannot be the case. So, 𝑋 is a truth assignment; moreover, 𝜎 has exactly 2𝑛
bankruptcies with exactly one of any pair of ‘oppositely-oriented’ literal nodes bankrupt.

Suppose, for contradiction, that 𝑋 is not a satisfying assignment. So, there exists at least one clause, 𝑐𝑗 say, such that every literal
in the clause is made 𝐹𝑎𝑙𝑠𝑒 by 𝑋. By definition of 𝑋, we have that every literal node corresponding to one of these literals is a
bankrupt node. Any such literal node must receive e0 (as the ‘oppositely-oriented’ literal node is not bankrupt and receives e3);

Theoretical Computer Science 1028 (2025) 115028

10

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

consequently, the clause node 𝑞𝑗 receives e0 and is bankrupt. This yields a contradiction as we have exactly 2𝑛 bankrupt nodes (as
detailed above). □

Consequently, 𝜙 is satifiable iff the IDM instance (𝐺,𝐷,𝐴0) admits a schedule with at most 2𝑛 bankruptcies (again, this holds
for each IDM variant). This concludes our proof. □

Our next result is perhaps rather surprising in that we restrict to IDM instances (𝐺,𝐷,𝐴0) where 𝐺 is a fixed digraph.

Theorem 2. For each of the AoN, PP and FP variants, the problem Bankruptcy Minimization is weakly NP-complete, even when we
restrict to instances ((𝐺,𝐷,𝐴0), 𝑘) where 𝐺 is a fixed, specific digraph with 32 nodes and 𝑘= 16.

Proof. We build a polynomial-time reduction from Equal Cardinality Partition to Bankruptcy Minimization (Equal Car

dinality Partition, dfined below, was proven weakly NP-complete in [26]).

Equal Cardinality Partition

Instance: a multi-set of positive integers 𝑆 = {𝑎1, 𝑎2, ..., 𝑎𝑛} where 𝑛 is even and with sum 𝑠𝑢𝑚(𝑆) = 2𝑘
Yes-instance: there exist a partition of 𝑆 into two equal-sized sets 𝑆1 and 𝑆2 such that 𝑠𝑢𝑚(𝑆1) = 𝑠𝑢𝑚(𝑆2) = 𝑘.

The size of such an instance is 𝑛𝑏 where 𝑏 is the least number of bits so that any integer 𝑎𝑖 can be represented in binary using 𝑏 bits.

Given an instance 𝑆 = {𝑎1, 𝑎2, ..., 𝑎𝑛} of Equal Cardinality Partition (where 𝑛 ≥ 1), we construct the IDM instance (𝐺,𝐷,𝐴0)
that is illustrated in Fig. 7. Every appearance of the shaded node 𝑝 in Fig. 7 corresponds to the same single node, that we refer to
as the sink, and thus this instance has 32 nodes in total. We use the symbol ‘∞’ to denote a suitably high monetary amount (though
2𝑘 + 𝑛 + 1 suffices) and 𝑇 = 10𝑛 + 7. Our IDM instance can trivially be constructed from 𝑆 in time polynomial in the size of the
instance 𝑆 . We now show that (𝐺,𝐷,𝐴0) admits a valid schedule with at most 16 bankruptcies iff 𝑆 is a yes-instance of Equal
Cardinality Partition (no matter whether we are in the AoN, PP or FP variant). Until further stated, we will work solely within
the PP variant and return to the AoN and FP variants later.

Claim 3. If the IDM instance ((𝐺,𝐷,𝐴0),16) is a yes-instance of Bankruptcy Minimization then 𝑆 is a yes-instance of Equal Cardi

nality Partition.

Proof. Suppose that (𝐺,𝐷,𝐴0
𝑒
) admits a valid schedule 𝜎 with at most 16 bankruptcies. Note that the 14 nodes 𝑚1 , 𝑚3, 𝑚𝐴

4 , 𝑚𝐴
6 , 𝑚𝐴

8 ,
𝑚𝐴
11, 𝑚𝐴

13, 𝑚𝐴
15, 𝑚𝐵

4 , 𝑚𝐵
6 , 𝑚𝐵

8 , 𝑚𝐵
11, 𝑚𝐵

13 and 𝑚𝐵
15 are necessarily bankrupt in every valid schedule because they are debtors of debts of

monetary amount ∞ at time 1 and no payments are made before time 10 (these nodes are dashed and highlighted in red in Fig. 7 as
are the debts at time 1 of monetary amount ∞). Note also that these nodes can never have any cash assets at any time and nor can
the nodes 𝑚2, 𝑚𝐴

5 , 𝑚𝐴
9 , 𝑚𝐴

10, 𝑚𝐴
14, 𝑚𝐵

5 , 𝑚𝐵
9 , 𝑚𝐵

10 and 𝑚𝐵
14 (as they would otherwise be withholding). Consequently, we can only have at

most another 2 nodes going bankrupt within 𝜎. We begin by showing that one of {𝑚𝐴
7 ,𝑚

𝐴
12} must be bankrupt and one of {𝑚𝐵

7 ,𝑚
𝐵
12}

must be bankrupt (which will account for all bankrupt nodes).

Suppose that none of the nodes 𝑚𝐴
7 , 𝑚𝐴

9 , 𝑚𝐴
10 and 𝑚𝐴

12 are bankrupt in 𝜎. By considering 𝑚𝐴
12 at the times 𝑡 ∈ {11,21,… ,10𝑛+ 1},

on at least 𝑛 2 of these occasions 𝑚𝐴
12 must have received at least e1 via payments from 𝑚𝐴

11 (so as to service all its debts to 𝑚𝐴
7).

Consider the first occasion 𝑡′ ∈ {11,21,… ,10𝑛+1} that 𝑚𝐴
12 receives a non-zero payment from 𝑚𝐴

11 (note that all payments from 𝑚𝐴
11

to 𝑚𝐴
12 are made at some time from {11,21,… ,10𝑛+ 1}). There must have been a payment of e1 from 𝑚𝐴

10 to 𝑚𝐴
11 at time 𝑡′ as well

as payments of e1 from 𝑚𝐴
9 to 𝑚𝐴

10 and from 𝑚𝐴
8 to 𝑚𝐴

9 at time 𝑡′. So, 𝑚𝐴
8 must receive at least e1 from 𝑚𝐴

7 and 𝑚𝐴
11 at time 𝑡′. As 𝑚𝐴

11
makes a non-zero payment to 𝑚𝐴

12 at time 𝑡′, any payment from 𝑚𝐴
11 to 𝑚𝐴

7 at time 𝑡′ must be for some amount strictly less than e1.
Consequently, 𝑚𝐴

8 must receive a non-zero payment from 𝑚𝐴
7 at time 𝑡′. The only way that this can happen is if there is an overdue

debt from 𝑚𝐴
7 to 𝑚𝐴

8 ; that is, 𝑚𝐴
7 is bankrupt, which yields a contradiction. Hence, at least one of 𝑚𝐴

7 , 𝑚𝐴
9 , 𝑚𝐴

10 and 𝑚𝐴
12 is bankrupt.

An analogous argument shows that at least one of 𝑚𝐵
7 , 𝑚𝐵

9 , 𝑚𝐵
11 and 𝑚𝐵

12 is bankrupt. Hence, exactly one of 𝑚𝐴
7 , 𝑚𝐴

9 , 𝑚𝐴
10 and 𝑚𝐴

12 is
bankrupt and exactly one of 𝑚𝐵

7 , 𝑚𝐵
9 , 𝑚𝐵

11 and 𝑚𝐵
12 is bankrupt.

Suppose that 𝑚𝐴
9 is bankrupt. So, 𝑚𝐴

10 is necessarily bankrupt. Conversely, if 𝑚𝐴
10 is bankrupt then 𝑚𝐴

9 must be bankrupt also.
Consequently, neither 𝑚𝐴

9 nor 𝑚𝐴
10 is bankrupt and we must have that either 𝑚𝐴

7 or 𝑚𝐴
12 is bankrupt and analogously either 𝑚𝐵

7 or 𝑚𝐵
12

is bankrupt. In particular, 𝑠, 𝑚2, 𝑚𝐴
5 , 𝑚𝐴

13, 𝑚𝐴
15, 𝑚𝐵

5 , 𝑚𝐵
13 and 𝑚𝐵

15 are not bankrupt.

Let us turn to analysing the flow of resource via the schedule 𝜎. As 𝜎 is valid, we must have that both debts from 𝑚𝐴
16 and 𝑚𝐵

16 are
paid on time with e2𝑘 in total reaching 𝑑. The question is: does this resource consist of the e2𝑘 emanating from 𝑠 or does it consist
of resource emanating from 𝑠 but supplemented with resource emanating from 𝑚𝐴

12 or 𝑚𝐵
12? Let us look at the possible debt payments

at time 10 (which is the earliest time that payments can be made). In particular, let us look at payments made by 𝑚𝐴
6 to 𝑚𝐴

7 at time
10. Note that all payments made from 𝑚𝐴

6 to 𝑚𝐴
7 are at a time from {10,20,… ,10𝑛}.

Case (a): An amount of e𝑥 > 0 is paid from 𝑚𝐴
6 to 𝑚𝐴

7 at time 10.

There are two essential sub-cases at time 10:

Theoretical Computer Science 1028 (2025) 115028

11

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑠

2𝑘

𝑚1𝑝
∞@1

𝑚2

𝑚3

∞@1

𝑎1@10, 𝑎1@15
...

𝑎𝑛@10𝑛, 𝑎𝑛@10𝑛+ 5

𝑎1@10, 𝑎1@15
...

𝑎𝑛@10𝑛, 𝑎𝑛@10𝑛+ 5

𝑎1@[10,15]
...

𝑎𝑛@[10𝑛,10𝑛+ 5]

𝑚𝐴
4

𝑝
∞@1

𝑚𝐴
5

𝑚𝐴
6

∞@1

𝑎1@10
...

𝑎𝑛@10𝑛

𝑎1@10
...

𝑎𝑛@10𝑛

∞@1

𝑚𝐴
7

∞@1

𝑚𝐴
8

𝑝

∞@1

𝑚𝐴
9

𝑚𝐴
10

𝑚𝐴
11 𝑚𝐴

12

𝑛∕2

1@10
...

1@10𝑛

1@11
...

1@10𝑛+ 1

1@11
...

1@10𝑛+ 1

1@11
...

1@10𝑛+ 1

∞@1

∞@1

1@11
...

1@10𝑛+ 1

𝑚𝐴
13

𝑝
∞@1

𝑚𝐴
14

𝑚𝐴
15

𝑚𝐴
16

𝑘@[1, 𝑇]

𝑎1@12
...

𝑎𝑛@10𝑛+ 2

𝑎1@12
...

𝑎𝑛@10𝑛+ 2

∞@1

∞@1

𝑚𝐵
4

𝑝
∞@1

𝑚𝐵
5

𝑚𝐵
6

∞@1

𝑎1@15
...

𝑎𝑛@10𝑛+ 5

𝑎1@15
...

𝑎𝑛@10𝑛+ 5

∞@1

𝑚𝐵
7

∞@1

𝑚𝐵
8

𝑝

∞@1

𝑚𝐵
9

𝑚𝐵
10

𝑚𝐵
11𝑚𝐵

12

𝑛∕2

1@15
...

1@10𝑛+ 5

1@16
...

1@10𝑛+ 6

1@16
...

1@10𝑛+ 6

1@16
...

1@10𝑛+ 6

∞@1

∞@1

1@16
...

1@10𝑛+ 6

𝑚𝐵
13

𝑝
∞@1

𝑚𝐵
14

𝑚𝐵
15

𝑚𝐵
16

𝑘@[1, 𝑇]

𝑎1@17
...

𝑎𝑛@10𝑛+ 7

𝑎1@17
...

𝑎𝑛@10𝑛+ 7

∞@1

∞@1

𝑑

𝑘@𝑇 𝑘@𝑇

Fig. 7. Construction of an IDM instance (with 𝑘 = 16) corresponding to the Equal Cardinality Partition instance 𝑆 = {𝑎1 ,… , 𝑎𝑛}. Dashed red edges are ``practically
ifinite'' bankrupting debts.

(i) 𝑚𝐴
7 services its debt to 𝑚𝐴

8 , which pays e1 to the sink, with perhaps e𝑦 ≥ 0 paid from 𝑚𝐴
7 to 𝑚𝐴

13 and from there to the sink, so
that e𝑥− 𝑦− 1 ≥ 0 resides at 𝑚𝐴

7 in cash assets at time 10

(ii) 𝑚𝐴
7 does not service its debt to 𝑚𝐴

8 and pays e𝑥 to 𝑚𝐴
13 with this payment immediately going to the sink, so that e0 resides at

𝑚𝐴
7 in cash assets at time 10; hence, 𝑚𝐴

7 is bankrupt (note that no cash assets can reside at 𝑚𝐴
7 at time 10 as otherwise 𝑚𝐴

7 would
be withholding).

Now consider what happens at time 11. Suppose that we are in Case (a.i). There must be a payment-cycle involving 𝑚𝐴
8 , 𝑚𝐴

9 , 𝑚𝐴
10

and 𝑚𝐴
11 and as 𝑛 2 ≥ 1, 𝑚𝐴

12 must service its debt to 𝑚𝐴
7 , with perhaps 𝑚𝐴

7 paying e𝑧 ≥ 0 to 𝑚𝐴
13 which is immediately paid to the sink.

The e1 from 𝑚𝐴
12 does not supplement the resource emanating from 𝑠 but just ‘replaces’ e1 which was ‘lost’ to the sink at time 10.

Note that the cash assets of 𝑚𝐴
12 at time 11 are 𝑛 2 − 1.

Theoretical Computer Science 1028 (2025) 115028

12

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Suppose that we are in Case (a.ii). Note that as 𝑚𝐴
7 is bankrupt, 𝑚𝐴

12 can never become bankrupt and so must service its debts
when required. There are four possibilities as regards what happens at time 11 (bearing in mind the overdue debt from 𝑚𝐴

7 to 𝑚𝐴
8):

(1) 𝑚𝐴
12 pays e1 to 𝑚𝐴

7 which pays e1 to 𝑚𝐴
8 which immediately goes to the sink, with a payment-cycle involving 𝑚𝐴

8 , 𝑚𝐴
9 , 𝑚𝐴

10 and
𝑚𝐴
11

(2) 𝑚𝐴
12 pays e1 to 𝑚𝐴

7 which pays e1 to 𝑚𝐴
8 which pays e1 to 𝑚𝐴

9 which pays e1 to 𝑚𝐴
10 which pays e1 to 𝑚𝐴

11 which pays e1 to
𝑚𝐴
8 which immediately goes to the sink

(3) 𝑚𝐴
12 pays e1 to 𝑚𝐴

7 which pays e1 to 𝑚𝐴
13 which immediately goes to the sink, with a payment-cycle involving 𝑚𝐴

8 , 𝑚𝐴
9 , 𝑚𝐴

10 and
𝑚𝐴
11

(4) 𝑚𝐴
12 pays e1 to 𝑚𝐴

7 which pays e1 to 𝑚𝐴
8 which pays e1 to 𝑚𝐴

9 which pays e1 to 𝑚𝐴
10 which pays e1 to 𝑚𝐴

11 which pays e1 to
𝑚𝐴
12; that is, we have a payment cycle involving 𝑚𝐴

7 , 𝑚𝐴
8 , 𝑚𝐴

9 , 𝑚𝐴
10, 𝑚𝐴

11 and 𝑚𝐴
12.

In (1-3) above, the e1 from 𝑚𝐴
12 does not supplement the resource emanating from 𝑠 but is lost to the sink (as are the e𝑥 > 0 at time

10). Note that in (3), the debt from 𝑚𝐴
7 to 𝑚𝐴

8 at time 10 is overdue and cannot be paid at time 11 as 𝑚𝐴
7 has no cash assets at time

10; so it remains overdue. In (4), again no supplement is made, although e 𝑛
2 still resides at 𝑚𝐴

12 in cash assets at time 11, and e𝑥 > 0
emanating from 𝑠 has been lost to the sink.

In both Case (a.i) and Case (a.ii), at time 12, the only possible non-payment-cycle payments involve 𝑠, 𝑚1, 𝑚𝐴
7 , 𝑚𝐴

13, 𝑚𝐴
14 and 𝑚𝐴

15
but any such payments do not affect whether the resources emanating from 𝑚𝐴

12 or 𝑚𝐵
12 supplement the resource emanating from 𝑠.

In Case (a.ii.3), the debt from 𝑚𝐴
7 to 𝑚𝐴

8 at time 10 is overdue and so must be paid from the cash assets of 𝑚𝐴
7 at time 12, if it has any

and unless all of these assets are paid to 𝑚𝐴
13. All such payments by 𝑚𝐴

7 will immediately go to the sink.

Case (b): No payment is made from 𝑚𝐴
6 to 𝑚𝐴

7 at time 10.

Consequently, 𝑚𝐴
7 cannot pay its debt to 𝑚𝐴

8 and becomes bankrupt. At time 11, 𝑚𝐴
12 must necessarily service its debt to 𝑚𝐴

7 and
there are four possibilities with these possibilities being exactly the possibilities (1-4) in Case (a.ii). As before, at time 12, the only
possible non-payment-cycle payments made involve 𝑠, 𝑚1, 𝑚𝐴

7 , 𝑚𝐴
13, 𝑚𝐴

14 and 𝑚𝐴
15 but any such payments do not affect whether the

resources emanating from 𝑚𝐴
12 or 𝑚𝐵

12 supplement the resources emanating from 𝑠. Note that in (3), the debt from 𝑚𝐴
7 to 𝑚𝐴

8 at time
10 is still overdue at time 11 and cannot be paid at time 12 as 𝑚𝐴

7 has no cash assets at time 12; so it remains overdue. In (4), again
no supplement is made, although e 𝑛

2 still resides at 𝑚𝐴
12 in cash assets at time 12.

So, the resources emanating from 𝑚𝐴
12 cannot supplement the resources emanating from 𝑠 at any time 𝑡 < 15. An identical argument

can be applied to time 15 so as to yield a similar conclusion as regards the resources emanating from 𝑚𝐵
12 at any time 𝑡 < 20.

Consider the situation at time 20. With regard to the sub-network involving 𝑚𝐴
6 , 𝑚𝐴

7 , 𝑚𝐴
8 , 𝑚𝐴

9 , 𝑚𝐴
10, 𝑚𝐴

11, 𝑚𝐴
12 and 𝑚𝐴

13 (that is, the
sub-network of study above), the situation is similar to that at time 10 except that there may be additional restrictions on what can
happen given: a possible existing overdue debt from 𝑚𝐴

7 to 𝑚𝐴
8 (the debt due at time 10); possible non-zero cash assets at 𝑚𝐴

7 ; and
possibly reduced cash assets at 𝑚𝐴

12 of 𝑛 2 − 1. Note that if 𝑚𝐴
7 has cash assets prior to time 20 then this can be thought of as 𝑚𝐴

7 having
acquired these assets from 𝑚𝐴

6 at time 20; that is, we are in Case (a) above. Given the fact that the situation at time 20 is a restricted
version of the situation at time 10 where the resources emanating from 𝑚𝐴

12 could not supplement those emanating from 𝑠, the same
is true again. By analysing each time 𝑡 = 25,30,35,…, we can see that no resources emanating from either 𝑚𝐴

12 or 𝑚𝐵
12 can supplement

those emanating from 𝑠. Hence, in order to secure total cash assets of e2𝑘 at 𝑑 after time 𝑇 , we need that all of the e2𝑘 resource
emanating from 𝑠 reaches 𝑑; that is, none of it is lost to the sink en route (although some of it might have been ‘replaced’ as per Case
(a.i)).

We can now repeat the above analysis except that now we know that we cannot lose resource emanating from 𝑠 unless it is
replaced as in Case (a.i). This simplfies things considerably. If 𝑚𝐴

7 has e𝑥 > 0 at time 𝑡 ∈ {10,20,… ,10𝑛} (either as cash assets or
from a payment by 𝑚𝐴

6 at time 𝑡) then it must be the case that 𝑚𝐴
7 services the debt to 𝑚𝐴

8 at time 𝑡, e1 is lost to the sink and 𝑚𝐴
7

retains 𝑥−1 in cash assets. At time 𝑡+ 1, 𝑚𝐴
12 must service its debt to 𝑚𝐴

7 so as to replace the lost e1, with e𝑥 residing at 𝑚𝐴
7 in cash

assets at time 𝑡+1. Consequently, there can only be at most 𝑛 2 times in {10,20,… ,10𝑛} when 𝑚𝐴
7 receives a payment from 𝑚𝐴

6 (recall
that 𝑚𝐴

6 only makes payments to 𝑚𝐴
7 at times from {10,20,… ,10𝑛}). When 𝑚𝐴

7 either has no cash assets or receives no payment from
𝑚𝐴
6 at time 𝑡 ∈ {10,20,… ,10𝑛}, we either lose e1 of cash assets from 𝑚𝐴

12 to the sink (and so we also lose some capacity to ‘replace’
resource emanating from 𝑠 that is lost to the sink) or we are in case (4) above and have a payment cycle involving 𝑚𝐴

7 , 𝑚𝐴
8 , 𝑚𝐴

9 , 𝑚𝐴
10,

𝑚𝐴
11 and 𝑚𝐴

12. Analogous comments can be made as regards the corresponding nodes superscripted 𝐵 and times in {15,25,… ,10𝑛+5}.

Bearing in mind that none of the resource emanating from 𝑠 goes to the sink before it reaches either 𝑚𝐴
6 or 𝑚𝐵

6 , at least 𝑛 distinct
payments are made from 𝑠 and these payments result in at least 𝑛 payments in total from 𝑚𝐴

6 to 𝑚𝐴
7 or from 𝑚𝐵

6 to 𝑚𝐵
7 . Thus, from

above, 𝑚𝐴
6 must make exactly 𝑛 2 payments to 𝑚𝐴

7 and 𝑚𝐵
6 must make exactly 𝑛 2 payments to 𝑚𝐵

7 . This means that any payment from
𝑚𝐴
6 to 𝑚𝐴

7 or from 𝑚𝐵
6 to 𝑚𝐵

7 must be for an amount from {𝑎1, 𝑎2,… , 𝑎𝑛} and we have a partition of {𝑎1, 𝑎2,… , 𝑎𝑛} into equal-sized
sets both of whose sum is 𝑘; that is, our instance 𝑆 of Equal Cardinality Partition is a yes-instance and the claim follows. □

Claim 4. If 𝑆 is a yes-instance of Equal Cardinality Partition then ((𝐺,𝐷,𝐴0),16) is a yes-instance of Bankruptcy Minimization.

Theoretical Computer Science 1028 (2025) 115028

13

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Proof. Suppose that our instance 𝑆 = {𝑎1, 𝑎2,… , 𝑎𝑛} of Equal Cardinality Partition is such that 𝑛 = 2𝑚 and
∑𝑚

𝑖=1 𝑎𝛼𝑖 =
∑𝑚

𝑖=1 𝑎𝛽𝑖 ,
where {𝛼𝑖, 𝛽𝑖 ∶ 1 ≤ 𝑖 ≤𝑚} = {1,2,… , 𝑛}. We need to build a valid schedule 𝜎 for (𝐺,𝐷,𝐴0) with at most 16 bankruptcies. Let 1 ≤ 𝑖 ≤ 𝑛

and suppose that 𝑖 = 𝛼𝑗 , where 1 ≤ 𝑗 ≤𝑚. The node 𝑠 pays its 𝑖th debt to 𝑚1 (that is, the debt 𝑎𝑖@[10𝑖,10𝑖+ 5]) at time 10𝑖 and this
payment is percolated all the way down to 𝑚𝐴

7 at time 10𝑖. The debt 1@10𝑖 from 𝑚𝐴
7 to 𝑚𝐴

8 is paid at time 10𝑖 with this e1 being
replaced from 𝑚𝐴

12 at time 10𝑖+ 1 (see Case (a.i) from the proof of Claim 3 above). We also have a payment cycle involving 𝑚𝐴
8 , 𝑚𝐴

9 ,
𝑚𝐴
10 and 𝑚𝐴

11 at time 10𝑖+1. The cash assets of 𝑎𝑖 at 𝑚𝐴
7 are percolated down to 𝑚𝐴

16 at time 10𝑖+2. At time 10𝑖+5, we have suitable
payment cycles involving: 𝑚1, 𝑚2 and 𝑚3; 𝑚4, 𝑚5 and 𝑚6; and 𝑚𝐴

13, 𝑚𝐴
14 and 𝑚𝐴

15. We also have a payment cycle involving 𝑚𝐴
7 , 𝑚𝐴

8 ,
𝑚𝐴
9 , 𝑚𝐴

10, 𝑚𝐴
11 and 𝑚𝐴

12 (see (4) from the proof of Claim 3 above). An analogous course of action is taken if 𝑖 = 𝛽𝑗 , for some 1 ≤ 𝑗 ≤𝑚.
The resulting schedule is valid and the 16 nodes 𝑚1, 𝑚3, 𝑚𝐴

4 , 𝑚𝐴
6 , 𝑚𝐴

7 , 𝑚𝐴
8 , 𝑚𝐴

11, 𝑚𝐴
13, 𝑚𝐴

15, 𝑚𝐵
4 , 𝑚𝐵

6 , 𝑚𝐵
7 , 𝑚𝐵

8 , 𝑚𝐵
11, 𝑚𝐵

13 and 𝑚𝐵
15 are

bankrupt. The claim follows. □

So, our main result holds for the PP variant of Bankruptcy Minimization. Note that everything above holds for the AoN variant
too, though Theorem 6 is a strictly stronger result for that setting.

Let us consider now the FP variant. As it happens, an argument similar to that above works within the FP variant although there
are more complicated nuances. Rather than repeat the whole nuanced argument in detail, and given the above complete proof for
the PP variant, we only sketch the proof for the FP variant. Henceforth, we assume that we are working within the FP variant.

Consider the proof of the corresponding version of Claim 3. The reasoning that establishes that we must have that either 𝑚𝐴
7 or

𝑚𝐴
12 is bankrupt and that either 𝑚𝐵

7 or 𝑚𝐵
12 is bankrupt holds for the FP variant. Consider payments made from 𝑚𝐴

6 to 𝑚𝐴
7 at time 10.

Case (a): An amount of e𝑥 > 0 is paid from 𝑚𝐴
6 to 𝑚𝐴

7 at time 10.

There are two essential sub-cases at time 10:

(i) 𝑚𝐴
7 services its debt to 𝑚𝐴

8 , which pays e1 to the sink, with perhaps e𝑦 ≥ 0 paid from 𝑚𝐴
7 to 𝑚𝐴

13 and from there to the sink, so
that e𝑥− 𝑦− 1 ≥ 0 resides at 𝑚𝐴

7 in cash assets at time 10

(ii) 𝑚𝐴
7 does not fully service its debt to 𝑚𝐴

8 but pays e𝑤, where 0≤𝑤< 1, to 𝑚𝐴
8 , which immediately goes to the sink, and e𝑥−𝑤

to 𝑚𝐴
13, which immediately goes to the sink, so that e0 resides at 𝑚𝐴

7 in cash assets at time 10; hence, 𝑚𝐴
7 is bankrupt.

Consider what happens at time 11. In Case (a.i), there must be a payment cycle involving 𝑚𝐴
8 , 𝑚𝐴

9 , 𝑚𝐴
10 and 𝑚𝐴

11 and 𝑚𝐴
12 services

its debt to 𝑚𝐴
7 . The e1 from 𝑚𝐴

12 does not supplement the resource emanating from 𝑠 but just ‘replaces’ e1 which was ‘lost’ to the
sink at time 10.

Suppose that we are in Case (a.ii). There are two scenarios:

(1) 𝑚𝐴
12 pays e1 to 𝑚𝐴

7 which pays e1−𝑤 to 𝑚𝐴
8 of which e𝑤′ goes immediately to the sink and e1−𝑤−𝑤′ is paid to 𝑚𝐴

9 ; 𝑚𝐴
7 has

cash assets of at most e𝑤 as it may be the case that 𝑚𝐴
7 also makes a payment to 𝑚𝐴

13 which goes straight to the sink, or

(2) 𝑚𝐴
12 pays e1 to 𝑚𝐴

7 which pays e𝑦 to 𝑚𝐴
8 , where 0≤ 𝑦 < 1 −𝑤, of which e𝑦′ goes immediately to the sink and e𝑦− 𝑦′ is paid to

𝑚𝐴
9 ; also, e1 − 𝑦 is paid to 𝑚𝐴

13 which goes straight to the sink.

In (1), it must be the case that 𝑚𝐴
8 receives at least 𝑤 +𝑤′ from 𝑚𝐴

11 (so as to fully service its debt to 𝑚𝐴
9); hence, 𝑚𝐴

11 pays at most

e1−𝑤−𝑤′ to 𝑚𝐴
12. In any case, e𝑥 have been lost to the sink with 𝑚𝐴

7 gaining e𝑤 from 𝑚𝐴
12 (with 𝑥 ≥𝑤). In (2), it must be the case

that 𝑚𝐴
8 receives at least e1 − (𝑦− 𝑦′) from 𝑚𝐴

11 (so as to fully service its debt to 𝑚𝐴
9); hence, 𝑚𝐴

11 pays at most e𝑦− 𝑦′ to 𝑚𝐴
12. In any

case, e𝑥 have been lost to the sink with 𝑚𝐴
7 gaining nothing from 𝑚𝐴

12.

Case (b): No payment is made from 𝑚𝐴
6 to 𝑚𝐴

7 at time 10.

At time 11, it must be the case that 𝑚𝐴
12 services its debt to 𝑚𝐴

7 and then we are essentially in Case (a.ii) above.

The outcome is that the resources emanating from 𝑚𝐴
12 cannot supplement the resources emanating form 𝑠 at any time 𝑡 < 15. An

identical argument can be applied to time 15 so as to yield a similar conclusion as regards the resources emanating from 𝑚𝐵
12 at any

time 𝑡 < 20. The rest of the proof of Claim 3 holds for the FP variant and we have that Claim 3 holds for the FP variant.

The schedule 𝜎 described in the proof of Claim 4 is a valid schedule in the FP variant and so Claim 4 also holds for the FP variant.
This complete our proof of the main theorem. □

The proof of Theorem 2 clearly demonstrates the intricacies of reasoning in our financial networks. By Theorem 2, it follows that
each of the AoN, PP and FP variants of Bankruptcy Minimization are para-NP-hard when parameterized by any parameter that
is upper-bounded by the number of vertices, such as, e.g., the number of bankruptcies 𝑘 or the treewidth of the footprint. Note that
Theorem 2 concerns weak completeness results (in particular, the integers in an instance of Equal Cardinality Matching appear
explicitly as monetary debts in the corresponding instance of Bankruptcy Minimization).

Theoretical Computer Science 1028 (2025) 115028

14

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑚0
2

𝑚1

𝑚2

𝑚3

𝑠

2

in

out

2@[1,3]

2@3

1@[2,3]

1@[1,3]
1@[1,2]

1@1

1@[1,3]

∗ 2

Fig. 8. The multiplier gadget. Intuitively, the gadget ``amplifies'' payments into it at time 1 by a factor 2.

3.2. Hardness results for Perfect Scheduling

We now turn to Perfect Scheduling. Since this is a subproblem of Bankruptcy Minimization and Bailout Minimization,
hardness results in this section also apply to both of those problems.

Theorem 3. The problem Perfect Scheduling is NP-complete for the AoN and PP variants even when we restrict to IDM instances
(𝐺,𝐷,𝐴0) for which: 𝑇 ≤ 3; 𝐺 is a directed acyclic graph with out-degree at most 3 and in-degree at most 3; the monetary amount of any
debt is at most e2; and any initial cash assets of a node is at most e3 per bank.

Proof. Let us work within the PP variant until further notice. We introduce the multiplier gadget shown in Fig. 8 and use this gadget
in our main reduction (the gadget sits within the blue dotted line). We claim the following.

Claim 5. Assume that the node 𝑖𝑛 of the multiplier gadget has initial cash assets of e1.

(a) In any perfect schedule for the multiplier gadget, if no payment is made by 𝑖𝑛 to 𝑚1 at either time 1 or time 2 then no payment is made
by 𝑚0 to 𝑜𝑢𝑡 at time 1.

(b) There is a perfect schedule 𝜎0 for the multiplier gadget so that a payment is made by 𝑖𝑛 at time 3.

(c) There is a perfect schedule 𝜎1 for the multiplier gadget so that a payment is made by 𝑖𝑛 to 𝑚1 at time 1 and a payment of e2 is made
from 𝑚0 to 𝑜𝑢𝑡 at time 1.

Proof. Suppose that no payment is made by 𝑖𝑛 to 𝑚1 at times 1 and 2; so 𝑚1 receives no payment at time 1 and makes no payment
at time 1. As there is a payment of e1 from 𝑚2 to 𝑚3 at time 1, there must be a payment of e1 from 𝑚0 to 𝑚2 at time 1. Suppose
that a payment of e1 is made from 𝑚0 to 𝑜𝑢𝑡 at time 1. If so then 𝑚0 can make no payment to 𝑚1 at time 2 and 𝑚1 is bankrupt which
yields a contradiction. Hence, there is no payment from 𝑚0 to 𝑜𝑢𝑡 at time 1. The statement (a) follows.

Consider the schedule whereby:

• at time 1: 𝑚0 pays e1 to 𝑚2; 𝑚2 pays e1 to 𝑚3
• at time 2: 𝑚0 pays e1 to 𝑚1; 𝑚1 pays e1 to 𝑚2
• at time 3: 𝑠 pays e2 to 𝑚0; 𝑚0 pays e2 to 𝑜𝑢𝑡; 𝑖𝑛 pays e1 to 𝑚1.

This yields a perfect schedule and statement (b) follows.

Suppose that there is a payment of e1 made from 𝑖𝑛 to 𝑚1 at time 1; so, we can also make payments of e1 from 𝑚1 to 𝑚2 and
from 𝑚2 to 𝑚3 at time 1. Additionally, we can make a payment of e2 from 𝑚0 to 𝑜𝑢𝑡 at time 1. At time 2, no payments are made.
At time 3, we can make payments of: e2 from 𝑠 to 𝑚0; e1 from 𝑚0 to 𝑚2; and e1 from 𝑚0 to 𝑚1. This yields a perfect schedule and
statement (c) follows. □

Theoretical Computer Science 1028 (2025) 115028

15

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑠𝑖

1

𝑎𝑖

1

𝑥𝑖¬𝑥𝑖

𝑞𝑗

𝑑

∗ 2∗ 2

1@3

1@[1,3]1@[1,3]

2@[1,3]2@[1,3]

1@[1,3] if 𝑣𝑖 ∈ 𝑐𝑗1@[1,3] if ¬𝑣𝑖 ∈ 𝑐𝑗

1@1

Fig. 9. Illustration of the reduction from 3-SAT 3 to Perfect Scheduling restricted to Directed Acyclic Graphs (DAGs).

Our reduction is from 3-Sat-3 (again) to Perfect Scheduling. As before, we assume that all 3-Sat-3 instances are such that
every literal appears at least once and at most twice and that no clause contains both a literal and its negation. Given a 3-Sat-3

instance 𝜙 involving 𝑛 Boolean variables and 𝑚 clauses, we construct an IDM instance (𝐺,𝐷,𝐴0) as portrayed in Fig. 9 (we omit
the formal description of (𝐺,𝐷,𝐴0) as it can be immediately derived from Fig. 9; moreover, we proceed similarly with other IDM
instances that we construct later on). The types of nodes (source, literal, clause and sink) are as in the proof of Theorem 1, although
we have additional so-called 𝑎-type nodes, and we abbreviate our multiplier gadget as a square box with ∗ 2 inside (note that we
have 2𝑛 distinct copies of our multiplier gadget where the node 𝑖𝑛 is taken as 𝑎𝑖 and the node 𝑜𝑢𝑡 as the literal node 𝑥𝑖 or the literal
node ¬𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑛; of course, we have 𝑚 clause nodes, 𝑛 source nodes, 𝑛 𝑎-type nodes and one sink node).

Claim 6. If (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling then 𝜙 is a yes-instance of 3-Sat-3.

Proof. Dfine the truth assignment 𝑋 via: if, within 𝜎, 𝑥𝑖 receives a payment of at least e1 at time 1 then 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒; otherwise
𝑋(𝑣𝑖) = 𝐹𝑎𝑙𝑠𝑒.

Fix 1 ≤ 𝑗 ≤ 𝑚. We must have that 𝑞𝑗 pays e1 to 𝑑 at time 1 and so 𝑞𝑗 must receive e1 from some node 𝑥𝑖 at time 1 or e1 from
some node ¬𝑥𝑖 at time 1.

Suppose that 𝑞𝑗 receives e1 from 𝑥𝜏𝑗
at time 1; in particular, 𝑣𝜏𝑗 ∈ 𝑐𝑗 . Hence, 𝑥𝜏𝑗

receives at least e1 from its corresponding
multiplier gadget at time 1 and so, by definition, 𝑋(𝑣𝜏𝑗) = 𝑇 𝑟𝑢𝑒 with the clause 𝑐𝑗 satified by 𝑋.

Alternatively, suppose that 𝑞𝑗 receives e1 from ¬𝑥𝜏𝑗
at time 1; in particular, ¬𝑣𝜏𝑗 ∈ 𝑐𝑗 . Hence, ¬𝑥𝜏𝑗

receives at least e1 from its
corresponding multiplier gadget at time 1. By Claim 5.a, there must be a payment of e1 made from 𝑎𝜏𝑗 to this multiplier gadget at
either time 1 or time 2. Consequently, no payment is made by 𝑎𝜏𝑗 to the complementary multiplier gadget (that is, the one with a
debt to 𝑥𝜏𝑗

) at either time 1 or time 2. By Claim 5.a, no payment is received by 𝑥𝑖 at time 1 and so, by definition, 𝑋(𝑣𝜏𝑗) = 𝐹𝑎𝑙𝑠𝑒

with the clause 𝑐𝑗 satified by 𝑋. The claim follows. □

Claim 7. If 𝜙 is a yes-instance of 3-Sat-3 then (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling.

Proof. Let 𝑋 be a satisfying truth assignment for 𝜙. For each clause 𝑐𝑗 , let 𝑣𝜏𝑗 be a Boolean variable whose occurrence in 𝑐𝑗 , either
via the literal 𝑣𝜏𝑗 or the literal ¬𝑣𝜏𝑗 , leads to 𝑐𝑗 being satifiable. So, we get a list 𝐿 = 𝑣𝜏1

, 𝑣𝜏2
,… , 𝑣𝜏𝑚

of ‘satisfying’ Boolean variables,
possibly with repetitions although no variable appears in the list more than twice and if a Boolean variable 𝑣 does appear twice then
the corresponding literals in the two corresponding clauses are both positive or both negative (of course, this stems from the format
of 𝜙 as an instance of 3-Sat-3): if the occurrences are positive then we say that 𝑣 has positive polarity, with negative polarity dfined
analogously. Note that any debt from a literal node to a clause node in our IDM instance exists solely because of the occurrence of
the corresponding literal in the corresponding clause; in particular, we can never have debts from both literal nodes corresponding
to some variable to the same clause node.

Theoretical Computer Science 1028 (2025) 115028

16

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Consider the following schedule 𝜎. At time 1, for each 1 ≤ 𝑗 ≤𝑚:

• 𝑞𝑗 pays e1 to 𝑑
• if 𝑣𝜏𝑗 appears in 𝐿 with positive (resp. negative) polarity then 𝑥𝜏𝑗

(resp. ¬𝑥𝜏𝑗
) pays e1 to 𝑞𝑗

• if 𝑣𝜏𝑗 appears in 𝐿 with positive (resp. negative) polarity then 𝑎𝜏𝑗 pays e1 to the multiplier gadget which has a debt to 𝑥𝜏𝑗
(resp.

¬𝑥𝜏𝑗
).

In addition, for each 1 ≤ 𝑗 ≤𝑚, if 𝑣𝜏𝑗 appears in 𝐿 with positive (resp. negative) polarity then:

• within the multiplier gadget that has a debt to 𝑥𝜏𝑗
(resp. ¬𝑥𝜏𝑗

), we include the schedule 𝜎1 from Claim 5.c

• within the multiplier gadget that has a debt to ¬𝑥𝜏𝑗
(resp. 𝑥𝜏𝑗

), we include the schedule 𝜎0 from Claim 5.b.

At time 3, for each 1 ≤ 𝑗 ≤𝑚:

• 𝑠𝜏𝑗
pays e1 to 𝑎𝜏𝑗

• if 𝑣𝜏𝑗 appears in 𝐿 with positive (resp. negative) polarity then 𝑎𝜏𝑗 pays e1 to the multiplier gadget which has a debt to ¬𝑥𝜏𝑗
(resp. 𝑥𝜏𝑗

).

Finally, having done the above, add any Boolean variable 𝑣 not appearing in 𝐿 to 𝐿 and proceed as above with these Boolean variables
and assuming that they have positive polarity (note that the restriction of 𝑋 to these Boolean variables has no effect on whether 𝑋
satifies 𝜙). What results is a perfect schedule. □

Given that our IDM instance (𝐺,𝐷,𝐴0) of Perfect Scheduling can be built from the instance 𝜙 of 3-Sat-3 in polynomial time,
we obtain our result for the PP variant.

Consider now the AoN variant. As it happens, all of the above schedules are perfect schedules within the AoN variant and all
associated reasoning still holds. Hence, we have our result for the AoN variant too. □

Theorem 4. The problem Perfect Scheduling is NP-complete for the PP and AoN variants even when we restrict to IDM instances
(𝐺,𝐷,𝐴0) for which: 𝐺 is a multiditree with diameter 6; all debts have monetary amount e1; and there is a maximum of 6 debts between
any pair of nodes.

Proof. We show that, given an instance 𝜙 of 3-Sat-3, involving 𝑛 Boolean variables and 𝑚 clauses, we can construct in polynomial

time an IDM instance (𝐺,𝐷,𝐴0) where 𝐺 satifies the criteria stated in the theorem so that (𝐺,𝐷,𝐴0) admits a perfect schedule iff 𝜙
has a satisfying truth assignment. As usual, we restrict ourselves to those instances of 3-Sat-3 in which every literal appears at least
once and at most twice and where no clause contains both a literal and its negation. In particular, we can label any appearance of
any literal in 𝜙 as the first appearance or the second appearance.

Our reduction is portrayed in Fig. 10. There is a distinct variable gadget for each Boolean variable 𝑣𝑖, with 1 ≤ 𝑖 ≤ 𝑛, and a distinct
clause gadget, for each clause 𝑐𝑗 , with 1 ≤ 𝑗 ≤ 𝑚. There is one node 𝑟. The debts in any variable gadget or involving the node 𝑟 are
self-evident whereas the debts in a clause gadget are more involved.

• If the literal 𝑣𝑖 is in the clause 𝑐𝑗 and this appearance is the first (resp. second) appearance of 𝑣𝑖 in 𝜙 then there are:

– debts 1@10(𝑖− 1) + 1 (resp. 1@10(𝑖− 1) + 3) from 𝑏𝑗 to 𝑎𝑗 and from 𝑒𝑗 to 𝑑𝑗
– debts 1@10(𝑖− 1) + 2 (resp. 1@10(𝑖− 1) + 4) from 𝑎𝑗 to 𝑏𝑗 and from 𝑑𝑗 to 𝑒𝑗 .

• If the literal ¬𝑣𝑖 is in the clause 𝑐𝑗 and this appearance is the first (resp. second) appearance of ¬𝑣𝑖 in 𝜙 then there are:

– debts 1@10(𝑖− 1) + 6 (resp. 1@10(𝑖− 1) + 8) from 𝑏𝑗 to 𝑎𝑗 and from 𝑒𝑗 to 𝑑𝑗
– debts 1@10(𝑖− 1) + 7 (resp. 1@10(𝑖− 1) + 9) from 𝑎𝑗 to 𝑏𝑗 and from 𝑑𝑗 to 𝑒𝑗 .

• If the clause 𝑐𝑗 has 3 literals (resp. 2 literals) then there are:

– two separate2 debts 1@[1, 𝑇] (resp. a single debt 1@[1, 𝑇]) from 𝑎𝑗 to 𝑒𝑗 and from 𝑒𝑗 to 𝑎𝑗 .

The legend in Fig. 10 shows the time intervals corresponding to each literal, which we call the active windows of the literals, and the
occurrence of 𝑥1 (resp. ¬𝑥2, 𝑥6) in 𝑐𝑗 in Fig. 10 is the first (resp. second, first) occurrence.

Claim 8. If (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling then 𝜙 is a yes-instance of 3-Sat-3.

Proof. Suppose that there is a perfect schedule 𝜎 for (𝐺,𝐷,𝐴0). Consider a clause gadget, corresponding to the clause 𝑐𝑗 . There are
4 debts due within each active window corresponding to a literal in the clause. Suppose that the active windows are [𝛼1 , 𝛽1], [𝛼2, 𝛽2]

2 By having only unit debts in the instance we have that every PP schedule is also an AoN schedule, and vice versa; for the PP variant we could instead have a single
debt 2@[1, 𝑇].

Theoretical Computer Science 1028 (2025) 115028

17

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑟

𝑢𝑖

1

𝑦𝑖 𝑤𝑖

1@10𝑖+ 1
1@10𝑖+ 6

1@10𝑖+ 4
1@10𝑖+ 9

1@[10𝑖+ 1,10𝑖+ 9]

1@[10𝑖+ 1,10𝑖+ 9]

variable gadget for 𝑣𝑖

𝑎𝑗𝑏𝑗
1

𝑒𝑗𝑑𝑗

1@1 1@18 1@51

1@2 1@19 1@52

1@[1, 𝑇]
1@[1, 𝑇]

1@[1, 𝑇]
1@[1, 𝑇]

1@1 1@18 1@51

1@2 1@19 1@52

clause gadget for 𝑐𝑗 = (𝑥1,¬𝑥2, 𝑥6)

1@[1,T]

1@[1,T]

1@[10𝑖+ 1,

10𝑖+ 9]

1@[10𝑖+ 1,

10𝑖+ 9]

literal active window

𝑥1 [1,4]

¬𝑥1 [6,9]

𝑥2 [11,14]

¬𝑥2 [16,19]

.
𝑥𝑖+1 [10𝑖+ 1,10𝑖+ 4]
¬𝑥𝑖+1 [10𝑖+ 6,10𝑖+ 9]
.

Fig. 10. A reduction from 3-Sat-3 to Perfect Scheduling restricted to multiditrees.

and [𝛼3, 𝛽3], with 𝛽1 < 𝛼2 and 𝛽2 < 𝛼3 (we are assuming that our clause has 3 literals but the arguments for clauses with only 2 literals
run analogously). If no payment has been received by 𝑒𝑗 from 𝑟 by time 𝛽1 + 1 then: the e1 at 𝑏𝑗 within the clause gadget must have
been used in 𝜎:

• to pay the debts of 𝑏𝑗 to 𝑎𝑗 , 𝑎𝑗 to 𝑒𝑗 and 𝑒𝑗 to 𝑑𝑗 at time 𝛼1
• to pay the debts of 𝑑𝑗 to 𝑒𝑗 , 𝑒𝑗 to 𝑎𝑗 and 𝑎𝑗 to 𝑏𝑗 at time 𝛼1 + 1,

if the appearance of the corresponding literal is the first; or

• to pay the debts of 𝑏𝑗 to 𝑎𝑗 , 𝑎𝑗 to 𝑒𝑗 and 𝑒𝑗 to 𝑑𝑗 at time 𝛼1 + 2
• to pay the debts of 𝑑𝑗 to 𝑒𝑗 , 𝑒𝑗 to 𝑎𝑗 and 𝑎𝑗 to 𝑏𝑗 at time 𝛼1 + 3 = 𝛽1,

if the appearance of the corresponding literal is the second (note that the payments made towards the debts of 𝑎𝑗 to 𝑒𝑗 and 𝑒𝑗 to 𝑎𝑗
are only partial payments). We have an analogous situation as regards the interval [𝛼2, 𝛽2] when no payment has been received by
𝑒𝑗 from 𝑟 by time 𝛽2 + 1. However, if no payment has been received by 𝑒𝑗 from 𝑟 by time 𝛽3 + 1 then we obtain a contradiction as
the debts from 𝑎𝑗 to 𝑒𝑗 and from 𝑒𝑗 to 𝑎𝑗 will have been fully paid and consequently 𝑒𝑗 will be bankrupt at time 𝛽3. Hence, within
𝜎, there must be a payment of e1 received by 𝑒𝑗 from 𝑟 and this is the only payment made from 𝑟 to 𝑒𝑗 . Furthermore, there can be
no payment from 𝑒𝑗 to 𝑟 strictly before the time at which a payment is made from 𝑟 to 𝑒𝑗 and if a payment is made from 𝑒𝑗 to 𝑟 at
the same time that a payment is made from 𝑟 to 𝑒𝑗 then this can be interpreted as no resource leaving or entering the clause gadget,
with the external resource satisfying both debts involving 𝑟 and 𝑒𝑗 , which cannot be the case.

Theoretical Computer Science 1028 (2025) 115028

18

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Consider now a variable gadget, corresponding to the variable 𝑣𝑖. At times 𝑡 ∈ [0,10𝑖] ∪ [10𝑖+ 4,10𝑖+ 5] ∪ [10𝑖+ 9, 𝑇] there must
be cash assets of (at least) e1 at node 𝑢𝑖. So, outside the active windows of the literals associated with the variable 𝑣𝑖 , there must be
at least e1 of cash assets at the node 𝑢𝑖. Also, note that the e1 originating at node 𝑢𝑖 can only leave and return to the variable gadget
at some times in [10𝑖+ 1,10𝑖+ 5] or in [10𝑖+ 6,10𝑖+ 9] but not both. Consequently, at any time, there is at most e1 of resource that
originated within a variable gadget outside that particular variable gadget.

Consider the time interval [1,9]. Within this time interval, the e1 originating at 𝑢1 is the only euro that might be possibly ‘outside’
the variable gadget corresponding to 𝑣1. Call this euro 𝐸. Suppose 𝐸 leaves its variable gadget at some time in [1,4]. It needs to be
back at 𝑦1 by time 4 (and will never leave the variable gadget again). Suppose that 𝐸 is paid from 𝑟 to 𝑒𝑗 , for some 𝑗, within the
time interval [1,4]. If the literal 𝑥1 is not in 𝑐𝑗 then all debts involving only 𝑎𝑗 and 𝑏𝑗 and all debts involving only 𝑑𝑗 and 𝑒𝑗 will be
due at some time outside [1,4] and so 𝐸 is of no use to the clause gadget for 𝑐𝑗 . If 𝐸 is paid from 𝑟 to 𝑒𝑗 at time 1 (resp. by time 3)
and the literal 𝑥1 is in clause 𝑐𝑗 as the first (resp. second) appearance then 𝐸 can be used to pay the debts from 𝑒𝑗 to 𝑑𝑗 at time 1
(resp. time 3) and from 𝑑𝑗 to 𝑒𝑗 at time 2 (resp. time 4). Note that 𝐸 cannot be used to pay the debt from 𝑎𝑗 to 𝑏𝑗 at time 2 or time
4 as it would not get back to its variable gadget by time 4. Given that 𝐸 leaves the clause gadget by time 4, no more resource either
enters or leaves the clause gadget. Alternatively, suppose that 𝐸 leaves the variable gadget corresponding to 𝑣1 at some time in [6,9].
Exactly the same argument can be made as that above except with respect to the literal ¬𝑥1 appearing in some clause or other.

Let us continue with the time interval [11,19] and the e1 originating at 𝑢2. An analogous argument to that above holds. Note that
all clause gadgets that were previously ‘visited’ by 𝐸, above, are now ‘closed’ in that they accept or eject no further resource. Indeed,
an analogous argument to that above holds for every euro originating at some node 𝑢𝑖 . As 𝜎 is a perfect schedule, every clause gadget
must be visited by some euro originating in some variable gadget and the particular literal corresponding to the active window during
which the euro left its variable gadget must appear in the clause. Dfine the truth assignment 𝑋 via: 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒 (resp. 𝐹𝑎𝑙𝑠𝑒) if
the euro from the variable gadget corresponding to 𝑣𝑖 leaves its variable gadget during the active window [10𝑖 + 1,10𝑖 + 4] (resp.
[10𝑖 + 6,10𝑖 + 9]) and visits a clause gadget, with any Boolean variables 𝑣𝑖 for which 𝑋(𝑣𝑖) has not been dfined such that 𝑋(𝑣𝑖) is
dfined arbitrarily. Given the above discussion, it should be clear that 𝑋 satifies 𝜙. □

Claim 9. If 𝜙 is a yes-instance of 3-Sat-3 then (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling.

Proof. Suppose that 𝑋 is a satisfying truth assignment for 𝜙. Dfine the schedule 𝜎 as follows.

If 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒 then at time 10(𝑖− 1) + 1, the euro originating at 𝑢𝑖 is paid from 𝑢𝑖 to 𝑦𝑖 to 𝑤𝑖 to 𝑟.

• If the clause 𝑐𝑗 containing the first appearance of the literal 𝑥𝑖 exists and has not been visited by some euro originating within a
variable gadget then at time 10𝑖+ 1, the euro is paid from 𝑟 to 𝑒𝑗 and on to 𝑑𝑗 . At time 10𝑖+ 2, the same euro is paid from 𝑑𝑗 to
𝑏𝑗 and on to 𝑟.

• If there is no clause containing the literal 𝑥𝑖 or if the clause gadget corresponding to the first appearance of 𝑥𝑖 has already been
visited in the schedule 𝜎 by some euro originating within a variable gadget, then do nothing.

• If the clause 𝑐𝑗 containing the second appearance of the literal 𝑥𝑖 exists and has not been visited by some euro originating within
a variable gadget then at time 10𝑖+ 3, the euro is paid from 𝑟 to 𝑒𝑗 and on to 𝑑𝑗 . At time 10𝑖+ 4, the same euro is paid from 𝑑𝑗
to 𝑏𝑗 and on to 𝑟.

• If there is no clause containing the literal 𝑥𝑖 or if there is no second appearance of the literal 𝑥𝑖 or if the clause gadget corre

sponding to the second appearance of 𝑥𝑖 has already been visited in the schedule 𝜎 by some euro originating within a variable
gadget, then do nothing.

• Our euro at 𝑟 is paid at time 10𝑖+ 4 from 𝑟 to 𝑤𝑖 to 𝑦𝑖 to 𝑢𝑖.

If 𝑋(𝑣𝑖) = 𝐹𝑎𝑙𝑠𝑒 then at time 10𝑖+ 6, the euro originating at 𝑢𝑖 is paid from 𝑢𝑖 to 𝑦𝑖 to 𝑤𝑖 to 𝑟.

• If the clause 𝑐𝑗 containing the first appearance of the literal ¬𝑥𝑖 exists and has not been visited by some euro originating within
a variable gadget then at time 10𝑖+ 6, the euro is paid from 𝑟 to 𝑒𝑗 and on to 𝑑𝑗 . At time 10𝑖+ 7, the same euro is paid from 𝑑𝑗
to 𝑒𝑗 and on to 𝑟.

• If there is no clause containing the literal ¬𝑥𝑖 or if the clause gadget corresponding to the first appearance of ¬𝑥𝑖 has already
been visited in the schedule 𝜎 by some euro originating within a variable gadget, then do nothing.

• If the clause 𝑐𝑗 containing the second appearance of the literal ¬𝑥𝑖 exists and has not been visited by some euro originating
within a variable gadget then at time 10𝑖 + 8, the euro is paid from 𝑟 to 𝑒𝑗 and on to 𝑑𝑗 . At time 10𝑖 + 9, the same euro is paid
from 𝑑𝑗 to 𝑒𝑗 and on to 𝑟.

• If there is no clause containing the literal ¬𝑥𝑖 or if there is no second appearance of the literal ¬𝑥𝑖 or if the clause gadget
corresponding to the second appearance of ¬𝑥𝑖 has already been visited in the schedule 𝜎 by some euro originating within a
variable gadget, then do nothing.

• Our euro at 𝑟 is paid at time 10𝑖+ 9 from 𝑟 to 𝑤𝑖 to 𝑦𝑖 to 𝑢𝑖.

Within any clause gadget corresponding to 𝑐𝑗 , the euro originating at 𝑏𝑗 is used to pay the debts corresponding to the literal not
addressed by the euro from a variable gadget. It can easily be seen that 𝜎 is valid and a perfect schedule. □

The result follows, given that the construction of (𝐺,𝐷,𝐴0) can clearly be undertaken in polynomial-time. □

Theoretical Computer Science 1028 (2025) 115028

19

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑣𝐿 𝑣𝐶 𝑣𝑅𝑣′
𝑅

𝑣′′
𝐿

1@[1, 𝑇] 1@[1, 𝑇]

1@𝑇1@𝑇

1@1 1@3 … 1@𝑇 − 2

1@[1, 𝑇 − 1]
…

1@[1, 𝑇 − 1]
(𝑛− 1 times)

1@2 1@4 … 1@𝑇 − 1

1@[1, 𝑇 − 1]
…

1@[1, 𝑇 − 1]
(𝑛− 1 times)

1@𝑇

at-least-once(𝑖)

Fig. 11. An at-least-once gadget. Note that as 𝑇 = 2𝑛+ 1 there are, 𝑛 e1 debts owed by 𝑣𝐿 to 𝑣𝐶 and by 𝑣𝐶 to 𝑣𝑅 .

In all the above results, the input IDM instance is allowed to have unlimited (i.e., unbounded) total initial assets which might be
unrealistic in practically relevant financial systems. We now show that even in the highly restricted case where there is just e1 in
initial external assets in total, Perfect Scheduling still remains NP-complete in the AoN and PP variants.

Theorem 5. The problem Perfect Scheduling is NP-complete in the AoN and PP variants even when the total value of all initial external
assets in any instance is e1.

Proof. The following proof applies to both the AoN and PP variants. Our reduction is a reduction from the problem Sourced
Hamiltonian Path dfined as follows.

Sourced Hamiltonian Path

Instance: a digraph 𝐻 and a vertex 𝑥
Yes-instance: there exists a Hamiltonian path in 𝐻 with source 𝑥.

This problem can be trivially shown to be NP-complete by reducing from the standard problem of deciding whether a digraph has a
Hamiltonian path [26].

Let 𝐻 be some digraph on the 𝑛 vertices {𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} and w.l.o.g. let 𝑥 = 𝑥1. In order to describe our reduction, we first describe
a gadget, namely the at-least-once gadget. We have one of these gadgets for each vertex of 𝐻 and we refer to the gadget corresponding
to the vertex 𝑥𝑖 of 𝐻 as at-least-once(𝑖). Our at-least-once gadget can be dfined as in Fig. 11 where the value 𝑇 is dfined as 2𝑛+1.
Note that the gadget is exactly the nodes and debts within the blue dotted box and so contains its own copies of nodes 𝑣𝐿 , 𝑣𝐶 and
𝑣𝑅 and the 4𝑛 − 1 debts involving them. The nodes 𝑣′

𝑅
and 𝑣′′

𝐿
are not part of the gadget but are nodes in other gadgets as we now

explain.

Set 𝑇 = 2𝑛+ 1. Our IDM instance (𝐺,𝐷,𝐴0) can be dfined as follows:

• there is the at-least-once(𝑖) gadget, for 1 ≤ 𝑖 ≤ 𝑛

• for every edge (𝑥𝑖, 𝑥𝑗) of 𝐻 , there is a debt of e1 from 𝑣𝑅 of at-least-once(𝑖) to 𝑣𝐿 of at-least-once(𝑗) to be paid in the interval
[1, 𝑇] and a debt of e1 from 𝑣𝐿 of at-least-once(𝑗) to 𝑣𝑅 of at-least-once(𝑖) to be paid at time 𝑇

• all nodes have initial external assets of 0 except for node 𝑣𝐿 of at-least-once(1) which has initial external assets of 1.

We refer to the single euro of initial external assets as the initial euro. The IDM instance (𝐺,𝐷,𝐴0) can clearly be constructed in time
polynomial in 𝑛.

Claim 10. If (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling then (𝐻,𝑥) is a yes-instance of Sourced Hamiltonian Path.

Proof. Note that strictly prior to time 𝑇 , the only payment-cycles that can exist within 𝐺 involve the two nodes 𝑣𝐿 and 𝑣𝐶 of some
at-least-once gadget or the two nodes 𝑣𝐶 and 𝑣𝑅 of some at-least-once gadget. Note also that within some gadget there are 𝑛 debts of

e1 from 𝑣𝐿 to 𝑣𝐶 needing to be satified and 𝑛 − 1 debts of e1 from 𝑣𝐶 to 𝑣𝐿. An analogous statement can be made as regards 𝑣𝐶
and 𝑣𝑅. Consequently, in order to satisfy all debts involving 𝑣𝐿 and 𝑣𝐶 within some gadget, at some odd time in [1, 𝑇 −1], the initial
euro must be within that gadget so as to satisfy some debt from 𝑣𝐿 to 𝑣𝐶 (by moving from 𝑣𝐿 to 𝑣𝐶). Similarly, at some even time in
[1, 𝑇 − 1], the initial euro must be within the gadget so as to satisfy some debt from 𝑣𝐶 to 𝑣𝐿 (by moving from 𝑣𝐶 to 𝑣𝑅). Moreover,
at any time in [1, 𝑇 − 1], the initial euro can only satisfy at most one of the debts mentioned above. Hence, given that 𝑇 = 2𝑛+ 1, at
any time in [1, 𝑇 − 1], the initial euro must be satisfying exactly one of the above debts.

Suppose that the initial euro satifies some debt from 𝑣𝐿 to 𝑣𝐶 in some at-least-once gadget at time 𝑡. As the initial euro needs
to satisfy one of the above debts at time 𝑡 + 1, we need that at time 𝑡 + 1 the initial euro satifies a debt from 𝑣𝐶 to 𝑣𝑅 in the same

Theoretical Computer Science 1028 (2025) 115028

20

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑣𝐿

𝑣𝐶

𝑣𝑅

𝑣𝐿𝑣𝐶
𝑣𝑅

𝑣𝐿

𝑣𝐶

𝑣𝑅

𝑣𝐿

𝑣𝐶

𝑣𝑅

𝑣𝐿
𝑣𝐶 𝑣𝑅

⋯

𝑣𝐿

𝑣𝐶

𝑣𝑅

at-least-once(1)

at-least-once(2)

at-least-once(3)

at-least-once(4)

at-least-once(5)

at-least-once(𝑛)

2

34

4

5

6

6

7

8

8

9 10
10

2𝑛− 2

2𝑛− 1

2𝑛

1

2

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1
2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

2𝑛+ 1

Fig. 12. The path taken by the initial euro straightforwardly corresponds to a sourced Hamiltonian path in the original graph.

gadget. Also, it cannot be the case that a debt from 𝑣𝐶 to 𝑣𝑅 in some gadget is satified by the initial euro before the euro satifies
some debt from 𝑣𝐿 to 𝑣𝑅 in the same gadget. As the initial euro starts at 𝑣𝐿 in at-least-once(1), our schedule must be such that the
initial euro ‘moves’ through the at-least-once gadgets corresponding to every node, entering at the node 𝑣𝐿 and exiting at the node
𝑣𝑅. Consequently, its path within 𝐺 corresponds to a path 𝑥 = 𝑥1, 𝑥2,… , 𝑥𝑛 in 𝐻 where every node on this path is distinct and where
there is a directed edge from node 𝑥𝑖 to 𝑥𝑖+1, for 1 ≤ 𝑖 ≤ 𝑛− 1; that is, a Hamiltonian path in 𝐻 with source 𝑥. □

Claim 11. If (𝐻,𝑥) is a yes-instance of Sourced Hamiltonian Path then (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling.

Proof. Let 𝑥 = 𝑥1, 𝑥2,… , 𝑥𝑛 be a Hamiltonian path 𝑃 in the digraph 𝐻 . Consider the following schedule 𝜎:

• the initial euro is used so as to pay the following debts:

– e1 at time 2𝑖− 1 from 𝑣𝐿 to 𝑣𝐶 in at-least-once(𝑥𝑖) and e1 at time 2𝑖 from 𝑣𝐶 to 𝑣𝑅 in at-least-once(𝑥𝑖), for 1 ≤ 𝑖 ≤ 𝑛

– e1 at time 2𝑖 from 𝑣𝑅 in at-least-once(𝑥𝑖) to 𝑣𝐿 in at-least-once (𝑥𝑖+1), for 1 ≤ 𝑖 ≤ 𝑛− 1
• for any 𝑣𝐿 and 𝑣𝐶 within some at-least-once gadget and at any odd time 𝑡 < 𝑇 when a debt is not being paid from 𝑣𝐿 to 𝑣𝐶 using

the initial euro, there is a payment-cycle consisting of payments of e1 from 𝑣𝐿 to 𝑣𝐶 and of e1 from 𝑣𝐶 to 𝑣𝐿
• for any 𝑣𝐶 and 𝑣𝑅 within some at-least-once gadget and at any even time 𝑡 < 𝑇 when a debt is not being paid from 𝑣𝐶 to 𝑣𝑅

using the initial euro, there is a payment-cycle consisting of payments of e1 from 𝑣𝐶 to 𝑣𝑅 and of e1 from 𝑣𝑅 to 𝑣𝐶
• for any edge (𝑥𝑖, 𝑥𝑗) of 𝐻 that does not feature in the Hamiltonian path 𝑃 , there is a payment-cycle consisting of payments at time
𝑇 of e1 from 𝑣𝑅 in at-least-once(𝑥𝑖) to 𝑣𝐿 in at-least-once(𝑥𝑗) and of e1 from 𝑣𝐿 in at-least-once(𝑥𝑗) to 𝑣𝑅 in at-least-once(𝑥𝑖)

• the initial euro is used so as to pay the following debts:

– e1 at time 𝑇 from 𝑣𝑅 to 𝑣𝐿 in at-least-once(𝑥𝑖), for 1≤ 𝑖 ≤ 𝑛

– e1 at time 𝑇 from 𝑣𝐿 in at-least-once(𝑥𝑖) to 𝑣𝑅 in at-least-once(𝑥𝑖−1), for 2 ≤ 𝑖 ≤ 𝑛.

The ‘path’ taken by the initial euro within (𝐺,𝐷,𝐴0) can be visualized as in Fig. 12 where the debt arrows are tagged with the time
of payment. It is clear that 𝜎 is valid and a perfect schedule. □

Our main result follows. □

Of course, one can obtain additional restrictions on the structure of the IDM instances for Perfect Scheduling in Theorem 5
by looking at NP-completeness results relating to Sourced Hamiltonian Path on restricted digraphs; however, we have refrained
from doing so (as nothing of any significance emerges).

Theoretical Computer Science 1028 (2025) 115028

21

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑠

2𝑘

𝑣 𝑤 𝑥

𝑎1@[1,2]
𝑎2@[1,2]

...
𝑎𝑛@[1,2]

𝑘@1
𝑘@2

𝑘@1
𝑘@2

Fig. 13. An IDM instance encoding an instance {𝑎1,… , 𝑎𝑛} of Partition with sum 2𝑘.

We can constraint the digraph 𝐺 of an instance (𝐺,𝐷,𝐴0) of Perfect Scheduling even further in the AoN variant; indeed, so
that it is always a directed path of length 3. The price we pay is that the initial external assets are potentially large.

Theorem 6. Consider the problem Perfect Scheduling restricted so that every instance (𝐺,𝐷,𝐴0) is such that 𝐺 is a directed path of
bounded length.

(a) If, further, 𝑇 is restricted to be 2 then the resulting problem is weakly NP-complete in the AoN variant.

(b) If there are no restrictions on 𝑇 then the resulting problem is strongly NP-complete in the AoN variant.

Proof. Consider (a). We reduce from the problem Partition dfined as follows (and proven in [26] to be weakly NP-complete).

Partition

Instance: a multi-set of integers 𝑆 = {𝑎1, 𝑎2,… , 𝑎𝑛} with 𝑠𝑢𝑚(𝑆) = 2𝑘
Yes-instance: there exists a partition of 𝑆 into two subsets 𝑆1 and 𝑆2 such that 𝑠𝑢𝑚(𝑆1) = 𝑠𝑢𝑚(𝑆2) = 𝑘.

In general, an instance 𝑆 = {𝑎1, 𝑎2,… , 𝑎𝑛} has size 𝑛𝑏 where 𝑏 is the least number of bits required to express any of the integers of 𝑆
in binary.

Let 𝑆 be an instance of Partition of size 𝑛𝑏. Consider the IDM instance (𝐺,𝐷,𝐴0) in Fig. 13. Note that the time taken to construct
(𝐺,𝐷,𝐴0) from 𝑆 is polynomial in 𝑛𝑏.

Claim 12. If (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling then 𝑆 is a yes-instance of Partition.

Proof. Suppose that there is a valid schedule 𝜎 for (𝐺,𝐷,𝐴0) that is a perfect schedule. It must be the case that the total amount
paid by 𝑠 at time 1 is e𝑘 and that this payment is immediately paid by 𝑣 to 𝑤 and from 𝑤 to 𝑥 at time 1. As we are in the AoN
variant, it must be the case that the sum of a subset of integers of 𝑆 amounts to 𝑘. An analogous argument applies to the payments
made at time 2 and the remainder of the integers in 𝑆 . the claim follows. □

Claim 13. If 𝑆 is a yes-instance of Partition then (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling.

Proof. Suppose that 𝑆1 and 𝑆2 is a partition of 𝑆 such that
∑
(𝑆1) =

∑
(𝑆2) = 𝑘. Dfine the schedule 𝜎 so that:

• at time 1: 𝑠 pays e𝑘 to 𝑣; if 𝑎𝑖 ∈ 𝑆1, for 1 ≤ 𝑖 ≤ 𝑛, then 𝑣 pays e𝑎𝑖 to 𝑤; and 𝑤 pays e𝑘 to 𝑥
• at time 2: 𝑠 pays e𝑘 to 𝑣; if 𝑎𝑖 ∈ 𝑆2, for 1 ≤ 𝑖 ≤ 𝑛, then 𝑣 pays e𝑎𝑖 to 𝑤; and 𝑤 pays e𝑘 to 𝑥.

The schedule 𝜎 is a valid perfect schedule. □

The proof of (a) follows. Now consider (b). We reduce from the strongly NP-complete problem 3-Partition dfined as follows
(see [27]).

3-Partition

Instance: a multi-set of integers 𝑆 = {𝑎1, 𝑎2,… , 𝑎3𝑚}, for some 𝑚 ≥ 1, with 𝑠𝑢𝑚(𝑆) =𝑚𝑘

Yes-instance: there exists a partition of 𝑆 into 𝑚 triplets 𝑆1, 𝑆2,…𝑆𝑚 such that 𝑠𝑢𝑚(𝑆𝑖) = 𝑘, for each 1 ≤ 𝑖 ≤𝑚.

In general, an instance 𝑆 = {𝑎1, 𝑎2,… , 𝑎3𝑚} has size 𝑚𝑏 where 𝑏 is the least number of bits required to express any of the integers of
𝑆 in binary.

Let 𝑆 be an instance of 3-Partition of size 𝑚𝑏. By multiplying all integers by 4 if necessary, we may assume that every integer
of 𝑆 is divisible by 4 as is 𝑘. Consider the IDM instance (𝐺,𝐷,𝐴0) in Fig. 14. Note that the time taken to construct (𝐺,𝐷,𝐴0) from
𝑆 is polynomial in 𝑚𝑏.

Claim 14. If (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling then 𝑆 is a yes-instance of 3-Partition.

Theoretical Computer Science 1028 (2025) 115028

22

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑠

𝑚(𝑘+ 3)

𝑣 𝑤 𝑥

𝑎1 + 1@[1,𝑚]
𝑎2 + 1@[1,𝑚]

…
𝑎3𝑚 + 1@[1,𝑚]

𝑘+ 3@1
𝑘+ 3@2

…
𝑘+ 3@𝑚

𝑘+ 3@1
𝑘+ 3@2

…
𝑘+ 3@𝑚

Fig. 14. An IDM instance showing the reduction from 3-Partition to AoN Perfect Scheduling.

𝑢 𝑚1 𝑚2 𝑚3 𝑚𝑙
1@1 1@1 1@1 1@1 1@1. . .

chain(𝑙)

Fig. 15. The chain gadget. In any valid schedule, either 𝑝1
𝑢,𝑚1

< 1 and all vertices 𝑚𝑖 are bankrupt, or 𝑝1
𝑢,𝑚1

= 1 and no vertices 𝑚𝑖 are bankrupt.

Proof. Suppose that there is a valid schedule 𝜎 for (𝐺,𝐷,𝐴0) that is a perfect schedule. It must be the case that the total amount
paid by 𝑠 at time 𝑖, for every 1 ≤ 𝑖 ≤ 𝑚, is e𝑘+ 3 and that this payment is immediately paid by 𝑣 to 𝑤 and by 𝑤 to 𝑥. Suppose that
the payment at time 𝑖 by 𝑣 to 𝑤 pays at least 4 of the debts due. So, there exists another time 𝑗, say, where the payments made by
𝑣 to 𝑤 pay at most 2 debts. So, we have that either 𝑎𝛼 + 𝑎𝛽 + 2 = 𝑘 + 3 or 𝑎𝛼 + 1 = 𝑘 + 3, for some 1 ≤ 𝛼 ≠ 𝛽 ≤ 3𝑚. This yields a
contradiction as the right-hand sides of these equations are equivalent to 3 modulo 4 whereas the left-hand sides are not. So, at any
time 𝑖, for 1 ≤ 𝑖 ≤𝑚, exactly three debts are paid by 𝑣 to 𝑤 at time 𝑖. If 1 ≤ 𝛼, 𝛽, 𝛾 ≤ 3𝑚 are distinct so that debts of monetary amounts
𝑎𝛼 + 1, 𝑎𝛽 + 1 and 𝑎𝛾 + 1 are paid by 𝑣 to 𝑤 at some time then 𝑎𝛼 + 1+ 𝑎𝛽 + 1+ 𝑎𝛾 + 1 = 𝑘+ 3; that is, 𝑎𝛼 + 𝑎𝛽 + 𝑎𝛾 = 𝑘. So, we have
a yes-instance of 3-Partition. The claim follows. □

Claim 15. If 𝑆 is a yes-instance of 3-Partition then (𝐺,𝐷,𝐴0) is a yes-instance of Perfect Scheduling.

Proof. Suppose that 𝑆 can be partitioned into triplets so that the sum of the integers in each triplet is 𝑘; so, suppose that 𝑎𝛼𝑖 +𝑎𝛽𝑖
+𝑎𝛾𝑖

=
𝑘, for each 1 ≤ 𝑖 ≤𝑚, where 𝑆 = {𝑎𝛼𝑖 , 𝑎𝛽𝑖 , 𝑎𝛾𝑖 ∶ 1 ≤ 𝑖 ≤𝑚}. Dfine the following schedule 𝜎: at time 𝑖, for each 1 ≤ 𝑖 ≤𝑚, 𝑠 pays e𝑘+3
to 𝑣; 𝑣 pays e𝑎𝛼𝑖 + 𝑎𝛽𝑖

+ 𝑎𝛾𝑖
+ 3 = 𝑘 + 3 to 𝑤; and 𝑤 pays e𝑘 + 3 to 𝑥. The schedule 𝜎 is valid and a perfect schedule. The claim

follows. □

The main result follows. □

3.3. Hardness results for Bankruptcy Maximization

We now turn to Bankruptcy Maximization.

Theorem 7. The problem Bankruptcy Maximization is NP-complete in the AoN, PP and FP variants even when for an instance (𝐺,𝐷,𝐴0):
𝑇 = 2; 𝐺 is a directed acyclic graph with out-degree at most 2, in-degree at most 3; all monetary debts are at most e2 per edge; and initial
external assets are at most e3 per bank.

Proof. We build a polynomial-time reduction from the problem 3-Sat-3, with the usual restrictions on instances (see the proof of
Theorem 1). Suppose that we have some instance 𝜙 of 3-Sat-3 where there are 𝑛 Boolean variables and 𝑚 clauses. We start with the
chain gadget chain(𝑙), where 𝑙 ≥ 1, as portrayed in Fig. 15 (note that the gadget is the path of 𝑙 nodes within the blue dotted box).
The key point about any chain gadget is that in some schedule: if at time 1, node 𝑢 does not make a payment to node 𝑚1 then 𝑢 and
all the nodes of the chain gadget are bankrupt; and if at time 1, 𝑢 pays its debt to 𝑚1 then none of the nodes of the chain gadget is
bankrupt. As in our proof of Theorem 2, we first work in the PP variant unless otherwise stated, though the reasoning will apply to
the AoN and FP variants as well.

We now dfine variable nodes {𝑠𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, literal nodes {𝑥𝑖,¬𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, clause nodes {𝑞𝑗 ∶ 1 ≤ 𝑗 ≤𝑚} and a sink node 𝑑
analogously to as in the proof of Theorem 1 and include the debts as depicted in Fig. 16 so as to obtain our IDM instance (𝐺,𝐷,𝐴0).
Note that the chain gadgets corresponding to the different literal nodes are all distinct and |𝑐𝑗 | denotes the number of literals in the
clause 𝑐𝑗 of 𝜙.

Note that because all debts of (𝐺,𝐷,𝐴0) are due at an exact time, rather than over an interval, reasoning in the AoN variant is
identical to reasoning in the PP variant.

Claim 16. In any valid schedule 𝜎 for (𝐺,𝐷,𝐴0) in which 𝑐 ≥ 0 variable nodes 𝑠𝑖 either pay e3 to 𝑥𝑖 or e3 to ¬𝑥𝑖:

• all 𝑛 variable nodes are bankrupt

Theoretical Computer Science 1028 (2025) 115028

23

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑠𝑖

3

𝑥𝑖

¬𝑥𝑖

𝑞𝑗 𝑑

chain(𝑚+ 1)

chain(𝑚+ 1)

3@1

3@1

1@2 if ¬𝑣𝑖 ∈ 𝑐𝑗

1@2 if 𝑣𝑖 ∈ 𝑐𝑗

|𝑐𝑗 |@2

1@1

1@1

Fig. 16. An IDM instance illustrating the reduction from 3-SAT 3 to Bankruptcy Maximization, using chain gadgets.

• exactly 𝑛 literal nodes are bankrupt

• exactly 𝑐(𝑚+ 1) chain nodes are bankrupt.

Consequently, this amounts to exactly 2𝑛+ 𝑐(𝑚+ 1) bankrupt nodes with any other bankrupt nodes necessarily being clause nodes.

Proof. Suppose that in the valid schedule 𝜎, 𝑠𝑖, for some 1 ≤ 𝑖 ≤ 𝑛, pays e1 to a node from {𝑥𝑖,¬𝑥𝑖} at time 1 and e2 to the other
node from {𝑥𝑖,¬𝑥𝑖} at time 1. Since both 𝑥𝑖 and ¬𝑥𝑖 have e1 at time 1, both must pay e1 to their corresponding chain gadget; so,
none of the nodes of either of these chain gadgets is bankrupt. As any variable and its negation both appear at least once in some
clause of 𝜙, exactly one of the nodes 𝑥𝑖 and ¬𝑥𝑖 is bankrupt at time 2.

Alternatively, suppose that 𝑠𝑗 , for 1 ≤ 𝑗 ≤ 𝑛, pays e3 to either 𝑥𝑗 or ¬𝑥𝑗 at time 1. So, the literal node to which 𝑠𝑗 makes no
payment is bankrupt at time 1 as are all the nodes of its corresponding chain gadget. As any variable and its negation both appear at
least once in some clause of 𝜙, exactly one of the nodes 𝑥𝑗 and ¬𝑥𝑗 is bankrupt at time 2.

In any case, we have: 𝑛 variable nodes that are bankrupt; 𝑛 literal nodes that are bankrupt; and 𝑐(𝑚 + 1) chain nodes that are
bankrupt. This results in 2𝑛+ 𝑐(𝑚+ 1) bankrupt nodes. As the sink node 𝑑 cannot be bankrupt, the claim follows. □

Claim 17. If ((𝐺,𝐷,𝐴0),2𝑛+ 𝑛(𝑚+ 1) +𝑚) is a yes-instance of Bankruptcy Maximization then 𝜙 is a yes-instance of 3-Sat-3.

Proof. Suppose that there exists a valid schedule 𝜎 that results in at least 2𝑛 + 𝑛(𝑚 + 1) + 𝑚 bankruptcies. So, by Claim 16, every
variable node 𝑠𝑖 pays e3 to either 𝑥𝑖 or ¬𝑥𝑖 and also every clause node 𝑞𝑗 is bankrupt in 𝜎. The reason a clause node 𝑞𝑗 is bankrupt
is because there is some literal 𝑣𝑖 or ¬𝑣𝑖 in clause 𝑐𝑗 but where ¬𝑥𝑖 or 𝑥𝑖, respectively, receives no payment from 𝑠𝑖. Dfine the truth
assignment 𝑋 on the variables of 𝜙 so that 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒 iff 𝑥𝑖 receives a payment of e3 from 𝑠𝑖, for 1 ≤ 𝑖 ≤ 𝑛. This truth assignment
satifies every clause of 𝜙. □

Claim 18. If 𝜙 is a yes-instance of 3-Sat-3 then ((𝐺,𝐷,𝐴0),2𝑛+ 𝑛(𝑚+ 1) +𝑚) is a yes-instance of Bankruptcy Maximization.

Proof. Suppose that there is a satisfying truth assignment 𝑋 for 𝜙. Consider the following schedule 𝜎:

• at time 1, every 𝑠𝑖 pays: e3 to 𝑥𝑖 if 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒; and e3 to ¬𝑥𝑖 if 𝑋(𝑣𝑖) = 𝐹𝑎𝑙𝑠𝑒

• if 𝑥𝑖 (resp. ¬𝑥𝑖) received e3 from 𝑠𝑖 at time 1 then:

– at time 1, it pays e1 to its corresponding chain gadget so as to satisfy all debts in the gadget

– at time 2, it pays e1 to each clause node 𝑞𝑗 for which the literal ¬𝑣𝑖 ∈ 𝑐𝑗 (resp. 𝑣𝑖 ∈ 𝑐𝑗)

• if 𝑥𝑖 (resp. ¬𝑥𝑖) received no payment from 𝑠𝑖 at time 1 then at times 1 and 2 then it can make no payments

• each 𝑞𝑗 makes a payment of however many euros it has to 𝑑 at time 2 (note that it never received more than e|𝑐𝑗 |).
The schedule 𝜎 is clearly valid. By Claim 16, we have at least 2𝑛 + 𝑛(𝑚 + 1) bankrupt nodes with any additional bankrupt nodes
necessarily clause nodes. Consider some clause node 𝑞𝑗 containing some literal 𝑣𝑖 so that 𝑋(𝑣𝑖) = 𝑇 𝑟𝑢𝑒. By definition, ¬𝑥𝑖 receives
no payment from 𝑠𝑖 at time 1 and so the debt of e1 at time 2 from ¬𝑥𝑖 to 𝑞𝑗 is not paid. Consequently, 𝑞𝑗 is bankrupt. Hence, we
have exactly 2𝑛+ 𝑛(𝑚+ 1) +𝑚 bankrupt nodes and the claim follows. □

Note that the above reasoning clearly holds in the AoN variant (since in the schedules we consider all debts are paid either in full
or not at all) as well as in the FP variant (since in order for 𝑠𝑖 to bankrupt one of the chains attached to 𝑥𝑖 and ¬𝑥𝑖 it must pay strictly
less than £1 to the bankrupt node and hence at least £2 to the ``surviving'' node). As the construction of ((𝐺,𝐷,𝐴0),2𝑛+ 𝑛(𝑚+1)+𝑚)
can be completed in time polynomial in 𝑛, the result follows. □

Theoretical Computer Science 1028 (2025) 115028

24

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑢

𝐴

𝑣

𝑘

𝑤

𝑎1@[1,2]
. . .

𝑎𝑛@[1,2]
1@1

𝐴@2

Fig. 17. An IDM instance corresponding to an instance of Subset Sum.

Just as we did with Perfect Scheduling in Theorem 6, we can restrict Bankruptcy Maximization in the AoN variant so that
any IDM (𝐺,𝐷,𝐴0) in any instance is such that 𝐺 is a directed path of bounded length (here 2).

Theorem 8. Consider the problem Bankruptcy Maximization restricted so that every instance ((𝐺,𝐷,𝐴0), 𝑘) is such that 𝐺 is a directed
path of length 3. If, further, 𝑇 is restricted to be 2 then the resulting problem is weakly NP-complete in the AoN variant.

Proof. We reduce from the weakly NP-complete problem Subset Sum dfined as follows (see [27]).

Subset Sum

Instance: a multi-set of integers 𝑆 = {𝑎1, 𝑎2,… , 𝑎𝑛} and an integer 𝑘
Yes-instance: there exists a subset 𝑆1 of 𝑆 so that the sum of the numbers in 𝑆1 is 𝑘.

In general, an instance 𝑆 = {𝑎1, 𝑎2,… , 𝑎𝑛} has size 𝑛𝑏 where 𝑏 is the least number of bits required to express any of the integers of
𝑆 in binary. Let 𝑆 be an instance of Subset Sum of size 𝑛𝑏. By doubling all integers if necessary, we may assume that every integer
of 𝑆 is at least 2. Consider the IDM instance (𝐺,𝐷,𝐴0) in Fig. 17 (for which 𝑇 = 2). The value 𝐴 in Fig. 17 is the sum of all integers
in 𝑆 . Note that the time taken to construct (𝐺,𝐷,𝐴0) from 𝑆 is polynomial in 𝑛𝑏.

Claim 19. If ((𝐺,𝐷,𝐴0),1) is a yes-instance of Bankruptcy Maximization then 𝑆 is a yes-instance of Subset Sum.

Proof. Suppose that 𝜎 is a valid schedule within which there is at least 1 bankruptcy in the IDM instance (𝐺,𝐷,𝐴0). The nodes 𝑢
and 𝑤 are never bankrupt; so, 𝑣 must be bankrupt within 𝜎. At time 2, the node 𝑣 necessarily pays off all of the unpaid debts to 𝑤
of monetary amount greater than e1, as it receives sufficient funds from 𝑢 at time 2 to do this. Hence, 𝑣 must be bankrupt at time 1;
that is, 𝑣 does not pay its debt to 𝑤 of monetary amount e1 at time 1. As 𝜎 is valid, 𝑣 is not withholding at time 1 and the only way
for this to happen is for 𝑣 to pay debts to 𝑤 amounting to e𝑘. That is, we have a subset of integers of 𝑆 whose total sum is 𝑘; that
is, 𝑆 is a yes-instance of Subset Sum. The claim follows. □

Claim 20. If 𝑆 is a yes-instance of Subset Sum then ((𝐺,𝐷,𝐴0),1) is a yes-instance of Bankruptcy Maximization.

Proof. Suppose that the subset 𝑆1 of 𝑆 is such that 𝑠𝑢𝑚(𝑆1) = 𝑘. W.l.o.g. let 𝑆1 = {𝑎1, 𝑎2,… , 𝑎𝑟}. Dfine the schedule 𝜎 as: at time
1, 𝑣 pays the debts 𝑎1@[1,2],… , 𝑎𝑟@[1,2]; and at time 2, 𝑢 pays its debt to 𝑣 and 𝑣 pays the debts 𝑎𝑟+1@[1,2],… , 𝑎𝑛@[1,2]. Note
that this is a valid schedule, as no node is withholding at any time, within which 𝑣 is bankrupt. The claim follows. □

The main result follows. □

3.4. Polynomial-time algorithms

In this section we show that Bailout Minimization in the FP variant is solvable in polynomial-time and also that Bailout
Minimization in the PP variant is solvable in polynomial-time when our IDM instances are restricted to out-trees. We begin with
the FP variant result.

Theorem 9. The problem Bailout Minimization in the FP variant is solvable in polynomial time.

Proof. A solution to FP Bailout Minimization is a bailout vector 𝐵 of size |𝑉 | together with a schedule 𝜎 consisting of |𝐸|𝑇
payment values 𝑝𝑡

𝑒
. We describe below how an instance 𝐺,𝐷,𝐴0, 𝑏 of Bailout Minimization can be encoded as a linear program

(LP), which can then be solved in polynomial time.

Our variables are:

• Bailout variables {𝐵[𝑣]|𝑣 ∈ 𝑉 } (altogether |𝑉 | variables),

• Payment variables {𝑝𝑡
𝑒
|𝑒 ∈ 𝑒, 𝑡 ∈ [𝑇]} (altogether |𝐸|𝑇 variables), and

• Income variables {𝐼𝑡
𝑣
|𝑣 ∈ 𝑉 , 𝑡 ∈ [𝑇]}, outgoing variables {𝑂𝑡

𝑣
|𝑣 ∈ 𝑉 , 𝑡 ∈ [𝑇]}, and cash asset variables {𝑐𝑡

𝑣
|𝑣 ∈ 𝑉 , 𝑡 ∈ [0, 𝑇]}

(altogether 3 ⋅ |𝑉 | ⋅ 𝑇 variables).

In the below, for 𝑎, 𝑏 ∈ℕ0, [𝑎, 𝑏] denotes the set {𝑎, 𝑎+ 1,… , 𝑏}, and we write [𝑏] as shorthand for [1, 𝑏]. Our constraints are:

Theoretical Computer Science 1028 (2025) 115028

25

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

• The total bailout is at most 𝑏:∑
𝑣

𝐵[𝑣] ≤ 𝑏

• The starting cash assets of a node (at time 0) are its external assets (specfied by 𝐴0) plus any bailout it receives. For each 𝑣 ∈ 𝑉 :

𝑐0
𝑣
=𝐴0[𝑣] +𝐵[𝑣]

• No debt is paid early, and all payments are non-negative. For each 𝑒 ∈𝐸 and 𝑡 ∈ [0, 𝑇]:

𝑝𝑡
𝑒

{
= 0, if 𝑡 < 𝐷𝑡1

(𝑒)
≥ 0, otherwise

• The income (resp. outgoings) of a node at some time is obtained by summing over payments into (resp. out of) that node at each
time. These then can be used to compute external (cash) assets at all nodes and times. For each 𝑣 ∈ 𝑉 and 𝑡 ∈ [𝑇]:

𝐼𝑡
𝑣
=

∑
𝑒∈𝐸𝑖𝑛(𝑣)

𝑝𝑡
𝑒

(resp. 𝑂𝑡
𝑣
=

∑
𝑒∈𝐸𝑜𝑢𝑡(𝑣)

𝑝𝑡
𝑒
)

𝑒𝑡
𝑣
= 𝑒𝑡−1

𝑣
+ 𝐼𝑡

𝑣
−𝑂𝑡

𝑣

• No bank has negative assets at any point. For each 𝑣 ∈ 𝑉 , 𝑡 ∈ [𝑇]:

𝑒𝑡
𝑣
≥ 0

• Each debt is paid in full within its interval. This guarantees that there are no bankruptcies in the schedule (and that no banks
are withholding, a validity constraint). For each 𝑒 ∈𝐸 with 𝐷(𝑒) = (𝑎, 𝑡1, 𝑡2):∑

𝑡∈[𝑡1 ,𝑡2]
𝑝𝑡
𝑒
= 𝑎

Recall from our discussion of canonical instances in Section 2.4 that we may assume 𝑇 is at most 2|𝐸|. Then we have 𝑂(𝑛𝑚+𝑚2)
variables and 𝑂(𝑛𝑚 + 𝑚2) constraints. If the largest integer in the input instance 𝐺,𝐷,𝐴0 , 𝑏 required 𝛽 bits to encode, then our
constructed LP has size polynomial in 𝑛 + 𝑚 + 𝛽. Any assignment to 𝐵 and to the payment variables 𝑝𝑡

𝑒
satisfying the above is

necessarily a perfect valid schedule for ((𝐺,𝐷,𝐴0), 𝑏). As linear programs can be solved in polynomial-time, our result follows. □

Note the limitations of the use of linear programming for other problems. For Bailout Minimization in the PP variant, proceeding
as in the proof of Theorem 9 results is an integer linear program, the solution of which is NP-complete in general. Moreover, we have
already proven Perfect Scheduling, the special case of Bailout Minimization with 𝑏 fixed to 0, to be NP-complete in the PP
variant through the proofs in Theorems 3, 4 and 5. As regards trying to use linear programming for Bankruptcy Minimization in
the FP variant, it is not possible to express a constraint on the number of bankruptcies through a linear combination of the payment
variables; indeed, we have already proven Bankruptcy Minimization in the FP variant to be NP-complete in Theorems 1 and 2.

For the AoN and PP variants, by restricting the temporal properties of the IDM instances considered, we obtain tractability of

Bailout Minimization, namely when all debts are due at an exact time.

Theorem 10. The problem (AoN/PP/FP) Bailout Minimization is solvable in polynomial time when restricted to inputs (𝐺,𝐷,𝐴0) such
that 𝐷𝑡1

=𝐷𝑡2
.

Proof. Let (𝐺,𝐷,𝐴0) be an IDM instance satisfying the above. In such an instance, all debts are due at an exact point in time, rather
than an interval. For convenience, we use 𝐷𝑡 as shorthand for either of 𝐷𝑡1

or 𝐷𝑡2
. By definition, for any bailout vector 𝐵 (including

the all-zero vector) a perfect schedule for (𝐺,𝐷,𝐴0 +𝐵) is one in which every debt is paid in full and on time. Let 𝜎 be the schedule
dfined by 𝑝𝐷𝑡(𝑒)

𝑒 =𝐷𝑎(𝑒) for each edge 𝑒, with all other payment variables equal to zero. Clearly, for any vector 𝐵, a perfect schedule
for (𝐺,𝐷,𝐴0 +𝐵) exists if and only if 𝜎 is a valid schedule (and hence a perfect schedule).

Moreover, we can efficiently compute a vector 𝐵 of minimum sum such that 𝜎 is a perfect schedule for (𝐺,𝐷,𝐴0 +𝐵). For each
vertex 𝑣 and time 𝑡, compute 𝑐𝑡

𝑣
under 𝜎 for the instance (𝐺,𝐷,𝐴0). Note that if (𝐺,𝐷,𝐴0) does not admit a perfect schedule then 𝑐𝑡

𝑣
will

be negative for some 𝑣 and 𝑡, and 𝜎 is not a valid schedule for that instance (without a bailout). Denote the minimum (again, possibly
negative) cash assets of 𝑣 at any time by 𝑐min

𝑣
. Compute 𝑏𝑣 ∶= max(−1 ⋅ 𝑐min

𝑣
,0) for each 𝑣, and let 𝐵 = (𝑏𝑣|𝑣 ∈ 𝑉). By construction,

𝜎 is a perfect schedule for (𝐺,𝐷,𝐴0 +𝐵), and 𝜎 is not a perfect schedule for (𝐺,𝐷,𝐴0 +𝐵′) for any 𝐵′ with
∑
(𝐵′) <

∑
(𝐵).

All of our arguments hold in all three variants (AoN, PP, and FP), and the result follows. □

Interestingly, Theorem 10 is the only positive result we derive for the All-or-Nothing setting. We also obtain tractability results
for the problem PP Bailout Minimization if we restrict the structure of IDM instances.

Theoretical Computer Science 1028 (2025) 115028

26

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

Theorem 11. The problem Bailout Minimization in the PP variant is solvable in polynomial-time when our IDM instances are restricted
to out-trees.

Proof. Let ((𝐺,𝐷,𝐴0), 𝑏) be an instance of Bailout Minimization so that 𝐺 is an out-tree. Suppose that 𝐺 has node set {𝑢𝑖 ∶ 1 ≤
𝑖 ≤ 𝑛}. We need to decide whether we can increase the initial external assets of each node 𝑢𝑖 by 𝑏𝑖 so that

∑
𝑖 𝑏𝑖 ≤ 𝑏 and (𝐺,𝐷,𝐴0 +𝐵)

has a perfect schedule, where 𝐵 = (𝑏1, 𝑏2,… , 𝑏𝑛); that is, whether (𝐺,𝐷,𝐴0) is ‘𝑏-bailoutable’ via a 𝑏-bailout vector 𝐵. Our intention is
to repeatedly amend (𝐺,𝐷,𝐴0) so that (𝐺,𝐷,𝐴0) is ‘𝑏-bailoutable’ iff the resulting IDM instance is ‘𝑏′-bailoutable’, for some amended
𝑏′; in such a case, we say that the two problem instances are equivalent. We will then work with the (simplfied) amended instance.

We proceed as follows. First, identify nodes 𝑣 for which, at any time 𝑡, the sum of all debts 𝑣 must pay by time 𝑡 minus the sum
of all debts which could be paid to 𝑣 by time 𝑡 exceeds 𝑣’s initial external assets 𝑐0

𝑣
. We call these nodes prefix-insolvent. Note that

if a node 𝑣 is prefix-insolvent then under any perfect schedule 𝜎, we would have 𝐼 [𝑡]𝑣 + 𝑐0
𝑣
< 𝑂

[𝑡]
𝑣 , violating a validity constraint, and

hence there is no such perfect schedule. Also note that every insolvent node is prefix-insolvent (namely by taking 𝑡 = 𝑇). For any node
that is prefix-insolvent, increase the initial external assets by the minimal amount that causes the node to cease to be prefix-insolvent
and simultaneously decrease the bailout amount by this value. Our new instance is clearly equivalent with our initial instance. If, in
doing this, the bailout amount becomes less than 0 then we answer ‘no’ and we are done. So, we may assume that none of our nodes
is prefix-insolvent.

Before we start, we make a simple amendment to the debts 𝐷: we replace any debt from node 𝑢 to node 𝑣 of the form 𝑎@[𝑡1, 𝑡2],
where 𝑎 > 1, with 𝑎 distinct debts 1@[𝑡1, 𝑡2]. Our resulting instance, with bailout 𝑏, is equivalent to our initial instance, with bailout 𝑏,
as we are working within the PP variant. This amendment simplfies some of the reasoning coming up. Note that it may be necessary
to simulate this operation rather than actually performing it (since if 𝑎 is exponential in the instance size then the operation takes
exponential time), but that the reasoning which follows can easily be ``scaled up'' to deal with non-unit amounts.

Consider a leaf node 𝑣 and its parent 𝑢 in the out-tree 𝐺. Replace every debt of the form 1@[𝑡1, 𝑡2] from 𝑢 to 𝑣 by the debt 1@𝑡2
and denote the revised instance by (𝐺,𝐷′,𝐴0). Let 𝜎 be a perfect valid schedule for (𝐺,𝐷,𝐴0 +𝐵) (here, and throughout, we write
𝐵 to denote some 𝑏-bailout vector; that is, some assignment of resource to the nodes of 𝐺 so that the total bailout amount does
not exceed the total available 𝑏). Dfine the schedule 𝜎′ for (𝐺,𝐷′,𝐴0 + 𝐵) by amending any payment from 𝑢 to 𝑣 of some debt
1@[𝑡1, 𝑡2] so that the payment is made at time 𝑡2. The schedule 𝜎′ is clearly a perfect valid schedule for (𝐺,𝐷′,𝐴0 +𝐵). Furthermore,
any perfect valid schedule for (𝐺,𝐷′,𝐴0 +𝐵) is a perfect valid schedule for (𝐺,𝐷,𝐴0 +𝐵). Hence, we can replace ((𝐺,𝐷,𝐴0), 𝑏) by
((𝐺,𝐷′,𝐴0), 𝑏), as these instances are equivalent. We can proceed as above for every leaf node and its parent and so assume that all
debts from a parent to a leaf are due at some specific time only; that is, have a singular time-stamp and are of the form 1@𝑡. Note
also that no node of 𝐺 is insolvent.

Suppose that we have two leaf nodes 𝑣 and 𝑤 with the same parent 𝑢. We can replace 𝑣 and 𝑤 with a ‘merged’ node 𝑣𝑤 so that
all debts from 𝑢 to 𝑣 or from 𝑢 to 𝑤 are now from 𝑢 to 𝑣𝑤. Our initial problem instance is clearly equivalent to our amended problem
instance (note that we never assign bailout resource to either 𝑣 or 𝑤 as this is pointless). We can proceed likewise for all such triples
(𝑢, 𝑣,𝑤). Hence, we may assume that our digraph 𝐺 is such that: no two leaves have a common parent; all debts to a leaf node have
monetary amount e1 and have a singular time-stamp; and no node in 𝐺 is prefix-insolvent.

Suppose that we have a leaf node 𝑤 that is the only child of its parent node 𝑣 whose parent is 𝑢 (such a node 𝑤 exists: take a leaf
of the tree that is furthest away from the root). We may assume that 𝑣 has no initial external assets as we would simply use these
assets to pay as many debts to 𝑤 as possible (in increasing order of time-stamp); that is, we could remove all these debts from 𝐷
along with the corresponding amount from the initial external assets of 𝑣. If the result of doing this is that there are no debts from 𝑣
to 𝑤 then we remove 𝑤 from 𝐺 and any remaining initial external assets from 𝑣. We would then repeat all of the above amendments
until it is the case that our nodes 𝑢, 𝑣 and 𝑤 are such that 𝑣 has no initial external assets.

By the above, every debt from 𝑣 to 𝑤 is of the form 1@𝑡. Let 𝑡′ be the minimum time-stamp for all debts from 𝑣 to 𝑤 and let 𝑑𝑣
be a debt from 𝑣 to 𝑤 of the form 1@𝑡′. Consider the debts from 𝑢 to 𝑣: these have the form 1@[𝑡1, 𝑡2]. There are various cases:

(a) there is a debt 𝑑𝑢 from 𝑢 to 𝑣 of the form 1@[𝑡1, 𝑡2] where 𝑡2 ≤ 𝑡′

(b) there is no debt from 𝑢 to 𝑣 of the form 1@[𝑡1, 𝑡2] where 𝑡2 ≤ 𝑡′ but there is a debt from 𝑢 to 𝑣 of the form 1@[𝑡1, 𝑡2] where
𝑡1 ≤ 𝑡′ ≤ 𝑡2

(c) there is no debt from 𝑢 to 𝑣 of the form 1@[𝑡1, 𝑡2] where 𝑡1 ≤ 𝑡′.

The nodes 𝑢, 𝑣 and 𝑤 can be visualized as in Fig. 18(d) and the three cases above in Fig. 18(a)--(c).

Case (a): We amend 𝐺 by: introducing a new node 𝑣′ whose parent is 𝑢 and a new debt 𝑑′ from 𝑢 to 𝑣′ of the form 1@[𝑡1, 𝑡2]; removing
the debt 𝑑𝑢 from 𝑢 to 𝑣; and removing the debt 𝑑𝑣 from 𝑣 to 𝑤. Denote this revised IDM instance by (𝐺′,𝐷′,𝐴0). Suppose that there
exists a perfect valid schedule 𝜎 for (𝐺,𝐷,𝐴0 +𝐵). Dfine the schedule 𝜎′ for (𝐺′,𝐷′,𝐴0 +𝐵) from 𝜎 by: changing the payment from
𝑢 to 𝑣, at time 𝑡 where 𝑡1 ≤ 𝑡 ≤ 𝑡2 ≤ 𝑡′ and covering the debt 𝑑𝑢, so that the payment is made from 𝑢 to 𝑣′ at time 𝑡 (so as to cover the
new debt 𝑑′); and dropping the payment, at time 𝑡′, that covers the debt 𝑑𝑣. The resulting schedule 𝜎′ is clearly valid and perfect.
Conversely, suppose that we have a perfect valid schedule 𝜎′ for (𝐺′,𝐷′,𝐴0 +𝐵). Dfine the schedule 𝜎 for (𝐺,𝐷,𝐴0 +𝐵) from 𝜎′

by: changing the payment from 𝑢 to 𝑣′ at time 𝑡 where 𝑡1 ≤ 𝑡 ≤ 𝑡2 ≤ 𝑡′ and covering the debt 𝑑′, so that the payment is made from 𝑢 to
𝑣 at time 𝑡, so as to cover the debt 𝑑𝑢; and using the e1 received by 𝑣 so as to cover the debt 𝑑𝑣 from 𝑣 to 𝑤. The resulting schedule
𝜎 is clearly a perfect valid schedule for (𝐺,𝐷,𝐴0 + 𝐵). Consequently, ((𝐺,𝐷,𝐴0), 𝑏) and ((𝐺′,𝐷′,𝐴0), 𝑏) are equivalent and we can
work with ((𝐺′,𝐷′,𝐴0), 𝑏).

Theoretical Computer Science 1028 (2025) 115028

27

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

𝑡1[]𝑡2

𝑡3[]𝑡4

𝑡5[]𝑡6

𝑡7[]𝑡8

𝑡′

(a)

𝑡1[]𝑡2

𝑡3[]𝑡4

𝑡5[]𝑡6

𝑡7[]𝑡8

𝑡′

(b)

𝑡1[]𝑡2

𝑡3[]𝑡4

𝑡5[]𝑡6

𝑡7[]𝑡8

𝑡′

(c)

𝑤

𝑣

𝑢

1@[𝑡1, 𝑡2]
1@[𝑡3, 𝑡4]

…

1@𝑡′

1@𝑡′′

…

(d)

𝑤

𝑣

𝑢

𝑣′

1@[𝑡1, 𝑡2]
1@[𝑡3, 𝑡4]

…

1@𝑡′

1@𝑡′′

…

1@𝑡′

(e)

Fig. 18. Cases when a leaf has a parent with one child in our algorithm for PP Bailout Minimization on out-trees.

Case (b): Let 𝐷𝑢 be the set of debts from 𝑢 to 𝑣 and let 𝐷𝑣 be the set of debts from 𝑣 to 𝑤. Order the 𝑘 debts of 𝐷𝑣 in increasing order
of time-stamp as 𝑑𝑣 = 𝑑1, 𝑑2,… , 𝑑𝑘 where the corresponding time-stamps are 𝑡′ = 𝑡1, 𝑡2,… , 𝑡𝑘 (there may be repetitions). Suppose
that for some 1 ≤ 𝑖 ≤ 𝑘, the number of debts in 𝐷𝑢 of the form 1@[𝑡1, 𝑡2] with 𝑡1 ≤ 𝑡𝑖 is strictly less than 𝑖. Consequently, at time 𝑡𝑖,
the debt 𝑑𝑖 cannot be paid and we necessarily need to give 𝑣 some bailout amount, e𝑐 > 1 say, to cover the 𝑐 debts that cannot be
paid by 𝑣 at time 𝑡𝑖. We do this and reduce the overall bailout amount by e𝑐. We then delete debts 𝑑1, 𝑑2,… , 𝑑𝑐 from 𝐺 and remove
the bailout amount of e𝑐 from 𝑣. If doing this results in there being no remaining debts from 𝑣 to 𝑤 then we delete 𝑤 from 𝐺.
Irrespective of this, the resulting instance ((𝐺′ ,𝐷′,𝐴0), 𝑏′), where 𝑏′ = 𝑏− 𝑐, is equivalent to ((𝐺,𝐷,𝐴0), 𝑏). We would then repeat all
of the amendments above and so w.l.o.g. we may assume that we are in Case (b) and for every 1 ≤ 𝑖 ≤ 𝑘, the number of debts in 𝐷𝑢

of the form 1@[𝑡1, 𝑡2] with 𝑡1 ≤ 𝑡𝑖 is at least 𝑖. In particular, there are at least 𝑘 debts in 𝑁𝑢.

Suppose that 𝜎 is a valid perfect schedule for (𝐺,𝐷,𝐴0 + 𝐵), for some 𝐵 where 𝑣 receives a bailout amount of e𝑐 > 0. Suppose
further that there is no 𝐵′ where there is a valid perfect schedule for (𝐺,𝐷,𝐴0 +𝐵′) with 𝑣 receiving a bailout of less than e𝑐. The
reason that 𝑣 receives the bailout amount of e𝑐 is that in the schedule 𝜎, if we ignore the payments by 𝑣 that use the bailout amount
at 𝑣 then there are 𝑐 debts from 𝑑1, 𝑑2,… , 𝑑𝑘 that are not paid on time; let us call these debts the ‘bad’ debts. Note that for each
bad debt, there is a debt from 𝑢 to 𝑣 that might have been paid at a time early enough to cover the debt but wasn’t. Let 𝑒1 , 𝑒2,… , 𝑒𝑐
be distinct debts from 𝐷𝑢 that might have been paid earlier so as to enable the payment of the bad debts. Amend the bailout 𝐵 so
that the e𝑐 formerly given as bailout to 𝑣 is now given to 𝑢 and denote this revised bailout by 𝐵′. Revise the schedule 𝜎 so that for
each 1 ≤ 𝑖 ≤ 𝑐, e1 of bailout at 𝑢 is used to pay the debt 𝑒𝑖 at the earliest time possible. Doing so results in us being able to pay all
bad debts on time; hence, we have a perfect schedule for (𝐺,𝐷,𝐴0 +𝐵′) where 𝑣 receives no bailout. This yields a contradiction and
so if there is a bailout 𝐵 and a valid perfect schedule for (𝐺,𝐷,𝐴0 + 𝐵) then there is a bailout 𝐵′ and a valid perfect schedule for
(𝐺,𝐷,𝐴0 +𝐵′) where 𝑣 receives no bailout funds. We shall return to this comment in a moment.

From the debts of 𝐷𝑢, we choose a debt 𝑑𝑢 = 1@[𝑡1, 𝑡2], where 𝑡1 ≤ 𝑡′ ≤ 𝑡2, so that from amongst all of the debts of 𝐷𝑢 of the form
1@[𝑡3, 𝑡4], where 𝑡3 ≤ 𝑡′ ≤ 𝑡4, we have that 𝑡2 ≤ 𝑡4; that is, from all of the debts of 𝐷𝑢 that ‘straddle’ 𝑡′, 𝑑𝑢 is a debt whose right-most
time-stamp is smallest. We amend 𝐺 by: introducing a new node 𝑣′ and a new debt 𝑑′ from 𝑢 to 𝑣′ of the form 1@𝑡′; removing the
debt 𝑑𝑢 from 𝑢 to 𝑣; and removing the debt 𝑑𝑣 from 𝑣 to 𝑤. Denote this revised IDM instance by (𝐺′,𝐷′,𝐴0); it can be visualized as
in Fig. 18(e).

Suppose that 𝜎 is a valid perfect schedule for (𝐺,𝐷,𝐴0 +𝐵), for some 𝐵. From above, we may assume that there is no bailout to
node 𝑣 in 𝐵. Consider the payment by 𝑣 to 𝑤 of the debt 𝑑𝑣. If the actual e1 that pays this debt came from the payment of a debt
from 𝐷𝑢 ⧵ {𝑑𝑢} of the form 1@[𝑡3, 𝑡4] (where 𝑡3 ≤ 𝑡′ ≤ 𝑡4), then we can amend 𝜎 so that we use this e1 to pay the debt 𝑑𝑢 at the
time 𝑡′ and use the e1 that paid the debt 𝑑𝑢 to pay the debt 1@[𝑡3, 𝑡4] (at whatever time 𝑑𝑢 was paid); that is, we swap the times of
the payment of the debts 𝑑𝑢 and 1@[𝑡3, 𝑡4] in 𝜎 except that we now pay 𝑑𝑢 at time 𝑡′. If the actual e1 that pays 𝑑𝑣 came from the
payment of 𝑑𝑢 then we can amend the payment time of 𝑑𝑢 to 𝑡′ (if necessary).

Build a schedule 𝜎′ in (𝐺′,𝐷′,𝐴0 + 𝐵) from 𝜎 by: instead of paying 𝑑𝑢 (at time 𝑡′), we pay the new debt 𝑑′ from 𝑢 to 𝑣′; and
we remove the payment of the debt 𝑑𝑣 . The schedule 𝜎′ is clearly a valid perfect schedule of (𝐺′ ,𝐷′,𝐴0 +𝐵). Conversely, if 𝜎′ is a
valid perfect schedule of (𝐺′,𝐷′,𝐴0 +𝐵), we can build a schedule 𝜎 for (𝐺,𝐷,𝐴0 +𝐵) from 𝜎′ by: instead of paying the debt 𝑑′ (at

Theoretical Computer Science 1028 (2025) 115028

28

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

time 𝑡′), we pay the debt 𝑑𝑢 at time 𝑡′; and we use this e1 to pay immediately the debt 𝑑𝑢. The schedule 𝜎 is clearly a valid perfect
schedule of (𝐺,𝐷,𝐴0 +𝐵). Hence, ((𝐺,𝐷,𝐴0), 𝑏) and ((𝐺′,𝐷′,𝐴0), 𝑏) are equivalent and we can work with ((𝐺′,𝐷′,𝐴0), 𝑏).
Case (c): Suppose that there is no debt from 𝑢 to 𝑣 of the form 1@[𝑡1, 𝑡2] where 𝑡1 ≤ 𝑡′. This case cannot happen as we have ensured
that no node of 𝐺 is insolvent.

By iteratively applying all of the amendments to the instance ((𝐺,𝐷,𝐴0), 𝑏), as laid out above, we reduce ((𝐺,𝐷,𝐴0), 𝑏) to an
equivalent instance ((𝐺′,𝐷′, (𝐴′)0), 𝑏′) where 𝐺 consists of a solitary directed edge and all debts have a singular time-stamp. The
process of reduction can clearly by undertaken in time polynomial in the size of the initial instance ((𝐺,𝐷,𝐴0), 𝑏) and the resulting
instance ((𝐺′,𝐷′, (𝐴′)0), 𝑏′) can clearly be solved in time polynomial in the size of the initial instance ((𝐺,𝐷,𝐴0), 𝑏). Hence, Bailout
Minimization is solvable in polynomial-time. □

Our polynomial-time algorithm for Bailout Minimization, and so Perfect Scheduling, in the PP variant in Theorem 11 when
we restrict to out-trees contrasts with the NP-completeness of Perfect Scheduling when we restrict to directed acyclic graphs or
multiditrees, as proven in Theorem 3 and Theorem 4, respectively.

4. Conclusion and open problems

This paper introduces the Interval Debt Model (IDM), a new model seeking to capture the temporal aspects of debts in financial
networks. We investigate the computational complexity of various problems involving debt scheduling, bankruptcy and bailout with
different payment options (All-or-nothing (AoN), Partial (PP), Fractional (FP)) in this setting. We prove that many variants are hard
even on very restricted inputs but certain special cases are tractable. For example, we present a polynomial time algorithm for PP
Bailout Minimization where the IDM graph is an out-tree. However, for a number of other classes (DAGs, multitrees, total assets are
e1), we show that the problem remains NP-hard. This leaves open the intriguing question of the complexity status of problems which
are combinations of two or more of these constraints, most naturally on multitrees which are also DAGs, an immediate superclass of
our known tractable case.

An interesting result of ours is the (weak) NP-completeness of Bankruptcy Minimization on a fixed, 32-node footprint graph
(with edge multiplicity unbounded) in Theorem 2. It is noteworthy that constantly many nodes suffice to express the complexity of
any problem in NP, and this leads to several open questions. Does the same hold when integers must be encoded in unary? We know
this is true for the AoN case (as shown in Theorem 6). What is the smallest number 𝑛 such a family of 𝑛-node (FP/PP) Bankruptcy
Minimization instances is NP-complete? From the other side, what is the largest number 𝑛 such that any 𝑛-node (FP/PP) Bankruptcy
Minimization instance may be solved in polynomial time, and with what techniques?

We prove that FP Bailout Minimization is polynomial-time solvable by expressing it as a Linear Program. Can a similar argument
be applied to some restricted version of FP Bankruptcy Minimization (which is NP-Complete, in general)? A natural generalization is
simultaneous Bailout and Bankruptcy minimization i.e. can we allocate e𝑏 in bailouts such that a schedule with at most 𝑘 bankruptcies
becomes possible. Variations of this would be of practical interest. For example, if regulatory authorities can allocate bailouts as they
see fit, but not impose specific payment times, it would be useful to consider the problem of allocation of e𝑏 in bailouts such that
the maximum number of bankruptcies in any valid schedule is at most 𝑘. Conversely, where financial authorities can impose specific
payment times, the combination of the problems Bankruptcy Minimization and Bailout Minimization would be more applicable.

Finally, can we make our models more realistic and practical? How well do our approaches perform on real-world financial
networks? Can we identify topological and other properties of financial networks that may be leveraged in designing improved
algorithms? What hardness or tractability results hold for variants in which the objective is, instead of the number of bankruptcies,
the total amount of unpaid debt (or any other objective, for that matter)?

CRediT authorship contribution statement

Tom Friedetzky: Supervision. David C. Kutner: Writing -- original draft. George B. Mertzios: Supervision. Iain A. Stewart:

Supervision. Amitabh Trehan: Supervision.

Funding

This work was partially supported by Engineering and Physical Sciences Research Council grant EP/P020372/1.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
ifluence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Theoretical Computer Science 1028 (2025) 115028

29

T. Friedetzky, D.C. Kutner, G.B. Mertzios et al.

References

[1] L. Eisenberg, T.H. Noe, Systemic risk in financial systems, Manag. Sci. 47 (2) (2001) 236--249.

[2] L.C. Rogers, L.A. Veraart, Failure and rescue in an interbank network, Manag. Sci. 59 (4) (2013) 882--898.

[3] S. Schuldenzucker, S. Seuken, S. Battiston, Finding clearing payments in financial networks with credit default swaps is PPAD-complete, in: 8th Innovations in
Theoretical Computer Science Conference, ITCS, in: LIPIcs, vol. 67, 2017.

[4] P.A. Papp, R. Wattenhofer, Sequential defaulting in financial networks, in: 12th Innovations in Theoretical Computer Science Conference, ITCS, in: LIPIcs,
vol. 185, 2021.

[5] N. Bertschinger, M. Hoefer, D. Schmand, Flow allocation games, Math. Oper. Res. (2024).

[6] P.A. Papp, R. Wattenhofer, Network-aware strategies in financial systems, in: ICALP 2020, vol. 168, 2020.

[7] B. Egressy, R. Wattenhofer, Bailouts in financial networks, CoRR, arXiv:2106.12315, 2021.

[8] P. Kanellopoulos, M. Kyropoulou, H. Zhou, Forgiving debt in financial network games, in: IJCAI-22, 2022.

[9] P. Kanellopoulos, M. Kyropoulou, H. Zhou, On priority-proportional payments in financial networks, Theor. Comput. Sci. 1014 (2024) 114767, https://doi.org/

10.1016/j.tcs.2024.114767.

[10] A.G. Haldane, R.M. May, Systemic risk in banking ecosystems, Nature 469 (7330) (2011) 351--355.

[11] M. Bardoscia, P. Barucca, S. Battiston, F. Caccioli, G. Cimini, D. Garlaschelli, F. Saracco, T. Squartini, G. Caldarelli, The physics of financial networks, Nat. Rev.
Phys. 3 (7) (2021) 490--507.

[12] L. Eisenberg, A summary: Boolean networks applied to systemic risk, in: Neural Networks in Financial Engineering, 1996, pp. 436--449.

[13] J.-C. Rochet, X. Vives, Coordination failures and the lender of last resort: was Bagehot right after all?, J. Eur. Econ. Assoc. 2 (6) (2004) 1116--1147.

[14] W. Bagehot, Lombard Street: a Description of the Money Market, HS King & Company, London, 1873.

[15] M. Papachristou, J. Kleinberg, Allocating stimulus checks in times of crisis, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 16--26.

[16] B. Tesfaye, N. Augsten, M. Pawlik, M. Böhlen, C. Jensen, Speeding up reachability queries in public transport networks using graph partitioning, Inf. Syst. Front.
24 (2022) 11--29.

[17] J. Enright, K. Meeks, G.B. Mertzios, V. Zamaraev, Deleting edges to restrict the size of an epidemic in temporal networks, J. Comput. Syst. Sci. 119 (2021) 60--77.

[18] D.C. Kutner, L. Larios-Jones, Temporal reachability dominating sets: contagion in temporal graphs, in: K. Georgiou, E. Kranakis (Eds.), Algorithmics of Wireless
Networks, Springer, Cham, 2023, pp. 101--116.

[19] P. Holme, J. Saramäki (Eds.), Temporal Networks, Springer, London, 2013.

[20] O. Michail, An introduction to temporal graphs: an algorithmic perspective, Internet Math. 12 (4) (2016) 239--280.

[21] D. Kempe, J.M. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, in: Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing (STOC), 2000, pp. 504--513.

[22] N. Klobas, G.B. Mertzios, H. Molter, R. Niedermeier, P. Zschoche, Interference-free walks in time: temporally disjoint paths, in: Proceedings of the 30th Interna

tional Joint Conference on Artficial Intelligence (IJCAI), 2021, pp. 4090--4096.

[23] E.C. Akrida, G.B. Mertzios, P.G. Spirakis, V. Zamaraev, Temporal vertex cover with a sliding time window, J. Comput. Syst. Sci. 107 (2020) 108--123.

[24] Audience participation at the Cambridge LIPNE workshop on computational complexity and economic decision making, 2024.

[25] C.A. Tovey, A simplfied NP-complete satifiability problem, Discrete Appl. Math. 8 (1984) 85--89.

[26] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of Computer Computations, in: The IBM Research
Symposia Series, Plenum Press, New York, New York, 1972, pp. 85--103.

[27] M.R. Garey, D.S. Johnson (Eds.), Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, United States, 1979.

Theoretical Computer Science 1028 (2025) 115028

30

http://refhub.elsevier.com/S0304-3975(24)00645-5/bib92842490198AD4FDF0A43BE79A317825s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib6BB59A15680A1F9CF38D4AED8FEA711Ds1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib0D08C38DCD21E8F2E452ACDAE41D6A82s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib0D08C38DCD21E8F2E452ACDAE41D6A82s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib245A8DB2E59C370BA690AAB3C922521Bs1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib245A8DB2E59C370BA690AAB3C922521Bs1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib9B6B546E13A0888755D612C014FCBE50s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibD490F5D2D5724D59070F136A3A1C91F2s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibD7EEDDF59BFE1FB77A09DFC929E8CB7As1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibC229BC07B02E4781BB9D634547C646C4s1
https://doi.org/10.1016/j.tcs.2024.114767
https://doi.org/10.1016/j.tcs.2024.114767
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibFABD33613A6288F7A4E18887D7D60FD1s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib406A39E3A2FC8DEBEA412F37672B9223s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib406A39E3A2FC8DEBEA412F37672B9223s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib6E2FF74D596647E91D9E473CC6748936s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib58FF468C0AF5DCA9E4CE1F8426C743F3s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibD23E04E98BDED4538BCA6C7B41B38F2Fs1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib99CFB4CFC19263C78B2B19DD186E138Fs1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibAD0A94A2E37F1D350F65AAA2F10C9A07s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibAD0A94A2E37F1D350F65AAA2F10C9A07s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib3153C34A62DF16681144299AC3EEAC9As1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib660983B7A9F4D193CF38BB9AB3B88701s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib660983B7A9F4D193CF38BB9AB3B88701s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib6E8088B83A700B2DC82212F24F42798Es1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibB38B6D8CC22E7B663DD01EF4E052CA90s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib44C29429D50FFFA145CFC2DD0746EDA0s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib44C29429D50FFFA145CFC2DD0746EDA0s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibA2405B2B6B7D243CC5F66F36E64EE937s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibA2405B2B6B7D243CC5F66F36E64EE937s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib25E28593339328C77B29A2D2AF47A566s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib8A17584938C9EDFF6124AAD4D2DE3942s1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibE929FC23CBCAE00E198DFC4995C1AF9As1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bibE929FC23CBCAE00E198DFC4995C1AF9As1
http://refhub.elsevier.com/S0304-3975(24)00645-5/bib36E7CD5066A28BFE86B8DB3A22239478s1

	Payment scheduling in the Interval Debt Model
	1 Introduction
	2 The Interval Debt Model
	2.1 An illustrative example
	2.2 Formal setting
	2.3 Schedules
	2.4 Canonical instances
	2.5 Problem definitions
	2.6 Discussion of the model

	3 Our results
	3.1 Hardness results for Bankruptcy Minimization
	3.2 Hardness results for Perfect Scheduling
	3.3 Hardness results for Bankruptcy Maximization
	3.4 Polynomial-time algorithms

	4 Conclusion and open problems
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References

