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Abstract

X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum
reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion
disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency
measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an
XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first
detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results
mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags—effectively
allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum
reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those
expected from standard disk reprocessing by a factor of 2–3. The lags agree with the anticipated disk reverberation
lags when isolating short-timescale variability, namely timescales shorter than the Hβ lag. Modeling the lags
requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from
contemporaneous Hβ-lag measurements. When we divide the campaign light curves, the UVOIR lags show
substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest
that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind
weakens, the lags are dominated by shorter accretion disk lags.

The Astrophysical Journal, 974:271 (20pp), 2024 October 20 https://doi.org/10.3847/1538-4357/ad6b08
© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-8671-1190
https://orcid.org/0000-0002-8671-1190
https://orcid.org/0000-0002-8671-1190
https://orcid.org/0000-0003-0172-0854
https://orcid.org/0000-0003-0172-0854
https://orcid.org/0000-0003-0172-0854
https://orcid.org/0000-0002-3026-0562
https://orcid.org/0000-0002-3026-0562
https://orcid.org/0000-0002-3026-0562
https://orcid.org/0000-0002-8294-9281
https://orcid.org/0000-0002-8294-9281
https://orcid.org/0000-0002-8294-9281
https://orcid.org/0000-0003-3242-7052
https://orcid.org/0000-0003-3242-7052
https://orcid.org/0000-0003-3242-7052
https://orcid.org/0000-0002-0957-7151
https://orcid.org/0000-0002-0957-7151
https://orcid.org/0000-0002-0957-7151
https://orcid.org/0000-0003-1728-0304
https://orcid.org/0000-0003-1728-0304
https://orcid.org/0000-0003-1728-0304
https://orcid.org/0000-0002-2180-8266
https://orcid.org/0000-0002-2180-8266
https://orcid.org/0000-0002-2180-8266
https://orcid.org/0000-0001-8391-6900
https://orcid.org/0000-0001-8391-6900
https://orcid.org/0000-0001-8391-6900
https://orcid.org/0000-0001-9092-8619
https://orcid.org/0000-0001-9092-8619
https://orcid.org/0000-0001-9092-8619
https://orcid.org/0000-0001-5639-5484
https://orcid.org/0000-0001-5639-5484
https://orcid.org/0000-0001-5639-5484
https://orcid.org/0000-0003-2991-4618
https://orcid.org/0000-0003-2991-4618
https://orcid.org/0000-0003-2991-4618
https://orcid.org/0000-0002-2816-5398
https://orcid.org/0000-0002-2816-5398
https://orcid.org/0000-0002-2816-5398
https://orcid.org/0000-0001-6301-570X
https://orcid.org/0000-0001-6301-570X
https://orcid.org/0000-0001-6301-570X
https://orcid.org/0000-0001-9931-8681
https://orcid.org/0000-0001-9931-8681
https://orcid.org/0000-0001-9931-8681
https://orcid.org/0000-0002-1207-0909
https://orcid.org/0000-0002-1207-0909
https://orcid.org/0000-0002-1207-0909
https://orcid.org/0000-0002-0964-7500
https://orcid.org/0000-0002-0964-7500
https://orcid.org/0000-0002-0964-7500
https://orcid.org/0000-0003-4503-6333
https://orcid.org/0000-0003-4503-6333
https://orcid.org/0000-0003-4503-6333
https://orcid.org/0000-0002-2306-9372
https://orcid.org/0000-0002-2306-9372
https://orcid.org/0000-0002-2306-9372
https://orcid.org/0000-0002-2908-7360
https://orcid.org/0000-0002-2908-7360
https://orcid.org/0000-0002-2908-7360
https://orcid.org/0000-0002-6733-5556
https://orcid.org/0000-0002-6733-5556
https://orcid.org/0000-0002-6733-5556
https://orcid.org/0000-0002-1134-4015
https://orcid.org/0000-0002-1134-4015
https://orcid.org/0000-0002-1134-4015
https://orcid.org/0000-0001-5540-2822
https://orcid.org/0000-0001-5540-2822
https://orcid.org/0000-0001-5540-2822
https://orcid.org/0000-0002-9925-534X
https://orcid.org/0000-0002-9925-534X
https://orcid.org/0000-0002-9925-534X
https://orcid.org/0000-0003-0944-1008
https://orcid.org/0000-0003-0944-1008
https://orcid.org/0000-0003-0944-1008
https://orcid.org/0000-0003-4511-8427
https://orcid.org/0000-0003-4511-8427
https://orcid.org/0000-0003-4511-8427
https://orcid.org/0000-0001-5139-1978
https://orcid.org/0000-0001-5139-1978
https://orcid.org/0000-0001-5139-1978
https://orcid.org/0000-0002-4992-4664
https://orcid.org/0000-0002-4992-4664
https://orcid.org/0000-0002-4992-4664
https://orcid.org/0000-0001-8475-8027
https://orcid.org/0000-0001-8475-8027
https://orcid.org/0000-0001-8475-8027
https://orcid.org/0000-0002-6766-0260
https://orcid.org/0000-0002-6766-0260
https://orcid.org/0000-0002-6766-0260
https://orcid.org/0000-0001-7351-2531
https://orcid.org/0000-0001-7351-2531
https://orcid.org/0000-0001-7351-2531
https://orcid.org/0000-0003-1183-1574
https://orcid.org/0000-0003-1183-1574
https://orcid.org/0000-0003-1183-1574
https://orcid.org/0000-0003-2398-7664
https://orcid.org/0000-0003-2398-7664
https://orcid.org/0000-0003-2398-7664
https://orcid.org/0000-0002-9238-9521
https://orcid.org/0000-0002-9238-9521
https://orcid.org/0000-0002-9238-9521
https://orcid.org/0000-0001-9191-9837
https://orcid.org/0000-0001-9191-9837
https://orcid.org/0000-0001-9191-9837
https://orcid.org/0000-0003-1810-0889
https://orcid.org/0000-0003-1810-0889
https://orcid.org/0000-0003-1810-0889
https://orcid.org/0000-0003-0931-0868
https://orcid.org/0000-0003-0931-0868
https://orcid.org/0000-0003-0931-0868
mailto:clewin@mit.edu
https://doi.org/10.3847/1538-4357/ad6b08
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad6b08&domain=pdf&date_stamp=2024-10-16
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad6b08&domain=pdf&date_stamp=2024-10-16
http://creativecommons.org/licenses/by/4.0/


Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Supermassive black holes (1663);
Reverberation mapping (2019); Accretion (14); Gaussian Processes regression (1930); Time series analysis (1916)

1. Introduction

Active galactic nuclei (AGN) are powered by accretion of
material onto a supermassive black hole—a process that in turn
releases enough energy in the form of electromagnetic radiation
and mechanical outflows that is thought to play a critical role in
the evolution of the host galaxy (for a review, see Fabian 2012).
We are unable to spatially resolve the innermost regions around
the black hole, including the accretion disk and the broad-line
region (BLR), except for a few cases (e.g., Gravity Collabora-
tion et al. 2018; Russell et al. 2018; GRAVITY Collaboration
et al. 2020). The central ionizing source irradiates these
circumnuclear regions, which then respond after a time delay
on the order of the light travel time to each emitting region.
Reverberation mapping is a technique that allows us to
constrain the spatial separation of circumnuclear regions by
instead measuring these light travel times, or time lags (e.g.,
Blandford & McKee 1982; Peterson et al. 2004; Bentz et al.
2009; Fausnaugh et al. 2016; Cackett et al. 2018; Edelson et al.
2019; Cackett et al. 2020). If we assume that the emission
observed at each wavelength is dominated by a given region,
then the light travel time between regions can be estimated
from the time delays between variability in different wave
bands.

X-ray reverberation mapping probes the innermost accretion
disk by measuring the time delays between X-ray bands; most
commonly, between an energy band dominated by the
continuum of the central X-ray corona and another dominated
by the reflection (i.e., the X-ray spectral signatures of
reprocessing, including the soft excess below ∼2 keV and the
Fe Kα line at 6.4 keV; Ross & Fabian 2005; García &
Kallman 2010; Zoghbi et al. 2011; De Marco et al. 2013;
Uttley et al. 2014; Kara et al. 2016). Whereas X-ray
reverberation mapping accesses radii up to hundreds of
gravitational radii (Rg=GM/c2), continuum reverberation
mapping in the ultraviolet, optical, and infrared (UVOIR)
reveals reprocessing by the remainder of the accretion disk and
the BLR, up to radii of ∼105 Rg (for a recent review, see
Cackett et al. 2021). In the canonical picture, coronal X-rays
are thermally reprocessed by the disk (i.e., the disk is heated
and then re-emits at longer wavelengths), producing correlated
variability with a (light-crossing time) delay. The coronal
X-rays reach the inner/hotter parts of the disk before reaching
the outer/colder parts, thus producing longer time lags at
longer wavelengths. To be specific, the lag amplitudes are
expected to follow τ∝ λ4/3 when assuming the temperature
profile of a standard (e.g., Shakura & Sunyaev 1973) accretion
disk (Collier et al. 1998, 1999; Cackett et al. 2007). The
normalization of this relation depends on the mass and
accretion rate of the black hole, in addition to physical
properties of the disk (Fausnaugh et al. 2016).

Recent campaigns using high-cadence observations from
Swift and ground-based telescopes have been carried out for
∼10 AGN (e.g., McHardy et al. 2014; Shappee et al. 2014;
Edelson et al. 2015; Fausnaugh et al. 2016; Cackett et al. 2018;
McHardy et al. 2018; Edelson et al. 2019; Cackett et al. 2020;
Hernández Santisteban et al. 2020; Kara et al. 2021; Vincentelli
et al. 2021; Kara et al. 2023). In addition to these was
AGN STORM, the large coordinated campaign for NGC 5548

(De Rosa et al. 2015), which combined monitoring by Swift
(Edelson et al. 2015) with spectroscopic monitoring by the
Hubble Space Telescope (HST) and ground-based photometry
(Fausnaugh et al. 2016) and spectroscopy (Pei et al. 2017).
Among many fascinating results was the discovery of the
“BLR holiday” (Goad et al. 2016), a period 75 days after
the start of the HST campaign in which the variations of the
continuum and emission lines decorrelated. This decoupling
was attributed to line-of-sight obscuration by a variable disk
wind (Dehghanian et al. 2019a, 2019b).
These campaigns have expanded our catalog of continuum

lag measurements tremendously, but have also solidified
several mysteries from how the lags depart from theory. While
the lags have been well described by the expected τ∝ λ4/3

relation, the normalizations of this relation have been larger
than predicted, typically by a factor of 2–3 (see, e.g., Edelson
et al. 2015, 2019; Fausnaugh et al. 2016; Cackett et al. 2020;
Kara et al. 2021, to name a few). The lags in the U band near
3500Å are especially longer than predicted, exceeding even
the best-fit τ∝ λ4/3 relation by roughly a factor of 2 (see Figure
5 in Edelson et al. 2019). Most importantly, the observed UV
and X-ray variations have not been strongly correlated (and are
notably less correlated than that in the UV and optical, e.g.,
Starkey et al. 2017; Edelson et al. 2019; Cackett et al. 2020;
Hernández Santisteban et al. 2020; Cackett et al. 2023), or, in
some cases, completely uncorrelated (e.g., Schimoia et al.
2015; Buisson et al. 2018). This lack of correlation challenges
our knowledge of the source of AGN disk heating and
reverberation. These results are difficult to reconcile with the
standard disk reprocessing picture in which the coronal X-rays
are expected to generate the variability at longer wavelengths.
Low X-ray–UV correlations have been interpreted, however, as
a limitation of measuring the lags using the cross-correlation
function (CCF), which assumes a static configuration for the
source, while the X-ray corona is most likely dynamic
(Panagiotou et al. 2022b).
An understanding of the ubiquity of X-ray–UV lag

discrepancies in these campaigns arose from spectroscopic
monitoring of NGC 4593 by HST (Cackett et al. 2018). The
HST lags revealed that the U-band excess measured in the
Swift light curves was actually part of a previously unresolved
discontinuity in the lags at the Balmer jump (3646Å). This
discovery corroborated the theory that reprocessing by the BLR
diffuse line and continuum is “contaminating” the disk
reprocessing lags; that is, the response of the BLR elongates
the lags across all UVOIR bands, but most significantly at the
Balmer and Paschen jumps (Korista & Goad 2001; Lawther
et al. 2018; Korista & Goad 2019; Netzer 2020, 2022). Disk
variability occurring on long timescales, such as temperature
fluctuations that move radially inward and/or outward, may
also play a role in elongating the lags (Arévalo et al.
2008, 2009; Kelly et al. 2009; Burke et al. 2021).
With the BLR positioned at larger radii than the disk (or at

least where reprocessing by the disk occurs most prominently),
the BLR is expected to affect the lags on timescales longer than
those of the disk. An approach that computes the lags
separately for different timescales is therefore pivotal in order
to distinguish reprocessing from the disk versus the BLR.
Instead, the CCF method of Peterson et al. (1998) has been

2

The Astrophysical Journal, 974:271 (20pp), 2024 October 20 Lewin et al.

http://astrothesaurus.org/uat/16
http://astrothesaurus.org/uat/1663
http://astrothesaurus.org/uat/2019
http://astrothesaurus.org/uat/14
http://astrothesaurus.org/uat/1930
http://astrothesaurus.org/uat/1916


used by a vast majority of the campaigns, which has been
shown to be dominated by the variability on long timescales
and thus reprocessing by the BLR (Cackett et al. 2022; Lewin
et al. 2023). A common approach for removing the long-
timescale contributions from the BLR is to first “detrend” the
light curves by subtracting from the time series a low-degree
polynomial or a moving boxcar average (e.g., McHardy et al.
2018; Hernández Santisteban et al. 2020; Pahari et al. 2020;
Vincentelli et al. 2021; Cackett et al. 2023; Lewin et al. 2023).
In some cases (e.g., NGC 4593 and Fairall 9; McHardy et al.
2018; Hernández Santisteban et al. 2020), applying this
technique to the campaign light curves resolved the lag
discrepancies, resulting in lags consistent with those expected
from disk reprocessing.

The lags can also be computed as a function of temporal
frequency directly using Fourier techniques (hereafter, the
frequency-resolved lags).31 This approach isolates the varia-
bility on specific timescales, allowing for a more straightfor-
ward analysis and robust modeling of the geometry required to
reproduce the lags (using transfer functions). Initially, the CCF
lags are generally consistent with the lags at low frequencies
(Cackett et al. 2022; Lewin et al. 2023); after detrending the
light curves, the CCF lags agree with higher-frequency lags
(e.g., detrending with a low-degree polynomial in Mrk 335
accessed frequencies higher by a factor of 2–3; Lewin et al.
2023). As a result, Fourier techniques have played a critical
role in AGN timing analysis: isolating low frequencies reveals
lags commonly attributed to propagating fluctuations in the
mass-accretion rate (Lyubarskii 1997; Kotov et al. 2001;
Arévalo & Uttley 2006; Secunda et al. 2023; Yao et al. 2023),
and, at high frequencies, the signatures of reprocessing (i.e.,
reverberation) by the innermost accretion flow (e.g., Zoghbi
et al. 2011; De Marco et al. 2013; Kara et al. 2016).

Computing the frequency-resolved lags, however, requires
the light curves to be evenly sampled—a criterion satisfied
more commonly by X-ray light curves. Several methods have
been developed to compute the frequency-resolved lags from
unevenly sampled light curves. Briefly, the maximum like-
lihood technique of Miller et al. (2010) and Zoghbi et al. (2013)
consists of fitting a model for the power spectral density (PSD),
which is then used to compute the cross-spectrum and thus the
frequency-resolved lags. Another method is modeling the
variability in each band using Gaussian processes (GPs), from
which one can then draw evenly sampled realizations of the
light curves used to constrain the frequency-resolved lags. For
context, GPs have been applied in machine learning research
extensively for decades, especially after Neal (1995) demon-
strated that infinitely complex Bayesian neural networks
converge to GPs. In the astrophysics community, GPs have
shown success for modeling light curves of asteroids (Willecke
Lindberg et al. 2021), stars (Brewer & Stello 2009; Czekala
et al. 2017; Nicholson & Aigrain 2022), and AGN (Kelly et al.
2014; Kovačević et al. 2018; Wilkins 2019; Griffiths et al.
2021; Lewin et al. 2022, 2023), as well as for generative
modeling (e.g., quasar spectra; Eilers et al. 2022). When
modeling AGN variability, GPs have been found to preserve
both the underlying autocorrelation functions, and thus the PSD
(Wilkins 2019; Griffiths et al. 2021), and the phase information
between light curves. Indeed, time lags have been recovered

within a fractional error of a few percent using simulations and
real data (Wilkins 2019; Lewin et al. 2022, 2023).
Frequency-resolved lags have been computed for three

reverberation mapping campaigns so far: NGC 5548 and
Fairall 9 (both using the maximum likelihood technique;
Cackett et al. 2022; Yao et al. 2023) and Mrk 335 (using
GPs; Lewin et al. 2023). In all sources, the lags at low
frequencies exceed those expected from disk reprocessing by a
factor of 2–3. At higher frequencies, the lags decrease in
amplitude, and agree with disk reprocessing when homing in
on timescales shorter than the BLR radius inferred from the Hβ
lag (Cackett et al. 2022; Lewin et al. 2023). The U-band lag
excesses were also absent at these high frequencies, further
corroborating the BLR as a leading culprit causing the lag
discrepancies. In both cases, simple disk models could not
reproduce the long low-frequency lags. Instead, an additional
model component was required to account for reprocessing
from beyond the disk, namely at a radius consistent with that of
the BLR.
AGN STORM 2 is the next large multiwavelength reverbera-

tion mapping campaign, featuring 15 months of high-cadence
monitoring of the nearby Seyfert 1 galaxy Mrk 817
(z= 0.031455) by HST, Swift, NICER, and ground-based
telescopes, with spectroscopy and photometry in the optical
and near-IR presented in J. Montano (2024, in preparation).
Several simultaneous observations were also carried out by
XMM-Newton and NuSTAR. Kara et al. (2021, hereafter
Paper I), presented the results of the first three months of the
campaign, including the unprecedentedly low X-ray flux due to
obscuration. Homayouni et al. (2023, hereafter Paper II),
presented the HST observations, including UV emission-line
reverberation results. Partington et al. (2023, hereafter
Paper III), presented the NICER observations, with spectral
analysis revealing that the variable observed X-ray flux is
coincident with changes in the column density and ionization
of the aforementioned obscurer. Cackett et al. (2023, hereafter
Paper IV), presented the Swift observations with a focus
on the UV/optical continuum variability and reverberation.
Homayouni et al. (2024, hereafter Paper V) further studied the
varying response of the broad UV emission lines found in
Paper II. The variability of the disk is studied in Paper VI
(Neustadt et al. 2024), using temperature fluctuation maps
resolved both in time and radius. Zaidouni et al. (2024,
hereafter Paper IX), presented the XMM-Newton and NuSTAR
observations, including analysis of high-resolution grating
spectra revealing that the obscurer is a multi-phase disk wind.
Here, in Paper VII, we present frequency-resolved timing

analysis of the XMM-Newton, Swift, and ground-based light
curves, in effect mapping the innermost accretion disk (X-ray
reverberation mapping), out to the outermost disk and the BLR
(UVOIR continuum reverberation mapping). In Section 2, we
introduce the observations and data reduction. In Section 3, we
detail the methods, namely Fourier analysis and GP regression,
used to produce the results presented in Section 4. The results
are modeled in Section 5 and discussed in Section 6.

2. Observations

2.1. Swift + Ground-based Campaign

The Neil Gehrels Swift Observatory (Gehrels et al. 2004)
performed daily monitoring of Mrk 817 for 15 months (2020
November 22 through 2022 February 24), and these Swift

31 All mentions of “frequency” refer to temporal frequency, the inverse of
which describes the timescale of the variability, as opposed to the frequency of
light (wavelength or energy will always be used).
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AGN STORM 2 results were initially presented in Paper IV
(Cackett et al. 2023). Our analysis focuses on data collected
simultaneously by Swift and ground-based telescopes in the
420 day time window THJD = 9177–9597 shown in Figure 1,
where the Truncated HJD (THJD) is defined as THJD = HJD–
2450000. This time range is roughly 90% of that used by
Cackett et al. (2023), since we exclude the last ∼40 days of the
campaign to remove a large gap in the Swift data resulting from
the observatory entering safe mode due to the failure of a
reaction wheel. Interpolating over this gap using GP regression
results in larger uncertainties on the lags, although the results
are consistent with those shown here. The Swift X-ray light
curves were produced using the Swift-XRT data products
generator (Evans et al. 2007, 2009).32 The background-
subtracted count rates were produced with per-observation
binning in a soft band (0.3–1.5 keV) and a hard band
(1.5–10 keV). We refer the reader to Cackett et al. (2023) for
details on the Swift UVOT data reduction.

The ground-based observations were carried out by the
following observatories: Las Cumbres Observatory Global
Telescope network (Brown et al. 2013), Liverpool Telescope
(Steele et al. 2004), the Calar Alto Observatory, Wise
Observatory (Brosch et al. 2008), the Yunnan Observatory,
and the Zowada Observatory (Carr et al. 2022). The
intercalibrated ground-based photometry is presented in
J. Montano (2024, in preparation). The SDSS ¢ ¢ ¢ ¢ ¢u g r i z and
Pan-STARRS zs filters were used, with the measurements in
both the SDSS and Pan-STARRS z-labeled filters combined.
We hereafter refer to the filters as the ugriz bands. The ground-
based Johnson/Bessel B, V filters are denoted Bg, Vg to avoid
confusion with the Swift filters. We refer the reader to Kara
et al. (2021) for details on the ground-based data reduction, and
a full description of the ground-based campaign and photo-
metry will be presented by J. Montano (2024, in preparation).

2.2. XMM-Newton

XMM-Newton carried out a total of four observations
throughout the AGN STORM 2 campaign, which were
presented in Paper IX (Zaidouni et al. 2024). For all but one
observation, the X-ray flux was an order of magnitude fainter
than historical observations, due to obscuring gas along the line
of sight. It was serendipitous that the 2021 April observation
(obsid: 0882340601) coincided with the only prominent X-ray
flare observed in the campaign on THJD = 9329, as shown in
Figure 1. The high-resolution grating spectra of this observa-
tion showed strong narrow absorption lines, from which
Zaidouni et al. (2024) revealed that the obscuring gas is a
multi-phase, ionized wind. The observation also provides a
fortuitous opportunity for timing analysis, with high-amplitude
variability exhibited by the light curves in Figure 2.

We performed the same standard data reduction procedure as
Zaidouni et al. (2024): the EPIC-pn data were reduced using
the XMM-Newton Science Analysis System (SAS V. 19.0.0).
The light curves were extracted using circular source and
background regions, both with 35 arcsec radii, and then binned
to 30 s bins. Both regions are located on the same chip and not
near the edges of the chip. We avoided background flares by
constructing a good time interval filter with a background
count rate cutoff of 0.4 cts s−1, in addition to avoiding
spurious detections using the conditions “PATTERN�4” and

“FLAG== 0.” Soft photon background flares were also
cleaned from both ends of the observation, resulting in a final
exposure of ∼120 ks.

3. Methods

We aim to measure how the variability operating on different
timescales/frequencies in each wave band lags or leads that of
another. Computing these frequency-resolved lags using Four-
ier techniques requires the data to be evenly sampled (i.e.,
without gaps). While this criterion is satisfied in the case of the
XMM-Newton observation, the sampling rate of the Swift and
ground-based telescope data constantly changes over the course
of the campaign. This obstacle is commonly overcome by
either maximizing the likelihood of a model for (1) the PSD
directly (e.g., Zoghbi et al. 2013) or (2) the observed variability
to infer data in the gaps (i.e., regression).
Here, we choose the latter by modeling the observed

variability in each wave band using GPs, allowing us to draw
equally sampled light-curve realizations from which we
compute the frequency-resolved lags. Since the variability
differs across wave bands, a unique GP is trained in each band
in a self-contained manner (independent of the data in the other
bands). The conditional posterior from which the realizations
are drawn is informed by the empirical variability operating on
all timescales present in the light curve. The realizations should
thus reflect the underlying variability process, as previously
demonstrated via the faithful recovery of underlying AGN
autocorrelation functions when averaging across realizations
(Griffiths et al. 2021). Previous work has also shown that GP
regression preserves the phase information (i.e., time lags)
between light curves with data quality similar to that of our
Swift and ground-based data (e.g., Wilkins 2019; Lewin et al.
2023). We nonetheless demonstrate the successful recovery of
simulated time lags given our specific data quality below in
Appendix C, where we present the effects of GP regression on
the lags and their uncertainties for the data quality in all wave
bands.

3.1. Fourier-resolved Timing Analysis

We compute the lags as a function of frequency using a
standard procedure involving Fourier techniques (for a review,
see Uttley et al. 2014). For the regularly sampled XMM-
Newton observation, we can perform the procedure immedi-
ately: the cross-spectrum is computed between a light curve
dominated by reflection (0.3–1 keV) and another dominated by
the direct continuum of the corona (1–4 keV). These energy
bands were selected based on the spectral features shown in
Figure 2, namely the soft excess commonly attributed to
reprocessing/reflection below 1 keV (e.g., Ross & Fabian 2005;
García et al. 2014) and a featureless power law from 1 to 4 keV.
This selection is in agreement with modeling of the spectral
energy distribution (SED) in Paper IX (Zaidouni et al. 2024).
The cross-spectrum is then binned into coarser frequency bins,
each centered at frequency νi. The phase of the cross-spectrum
at each frequency is converted to a final time lag by dividing by
2πνi, producing a lag–frequency spectrum.
We also measure how nine finer energy bands lag or lead a

common reference band—in this case, the 0.3–10 keV broad-
band—in a given frequency range (i.e., a lag–energy
spectrum). In this case, the light curve in each energy band
of interest is subtracted from that of the reference band to32 https://www.swift.ac.uk/user_objects/index.php
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remove Poisson noise that would otherwise be correlated
between light curves. The lag–energy spectrum reveals how
each energy band contributes to the lags, and thus is useful for
studying the causal relationship between different spectral
components (Uttley et al. 2014).
In order to compute the frequency-resolved lags for the

irregularly sampled Swift and ground-based observations, we
instead apply the aforementioned procedure to GP realizations
of the light curve. As introduced in Section 3.2, these
realizations have been informed by the empirical variability
at all timescales present in the data. A lag–frequency spectrum
is then computed for each of the 1000 realization pairs (1000
realizations in each wave band of interest and in the UVW2
reference band). The final lag–frequency spectrum and 1σ
uncertainties are produced by computing the mean and standard
deviation of this distribution of 1000 lag–frequency spectra.
This number of realizations was selected based on convergence
of the lag distribution: a two-sample C-vM test between the
empirical cumulative distribution function (ECDF) of the lags
produced from the first 1000 samples to that from 5000
samples results in a p-value of ∼0.3, and we are thus unable to
reject the null hypothesis that both distributions are the same.
The minimum frequency accessible using this approach is

limited by the length of the light curve (n = L1min for length
L), whereas the maximum frequency is set by the sampling rate
( ( )n = Dt1 2max for sampling rate Δt). The XMM-Newton
observation allows us to probe frequencies on the order of
10−5

–10−3 Hz, equivalent to studying radii from ∼1 to 100 Rg,
i.e., the innermost accretion disk. The Swift and ground-based
data allow us to study variability operating on much longer

Figure 1. AGN STORM 2 light curves from Swift and ground-based
telescopes from THJD = 9177–9597. The ground-based filters are lowercase,
except for the ground-based Johnson/Bessel Bg, Vg. A dashed vertical line in
the X-ray bands indicates the XMM-Newton observation used in our analysis.
The average of 1000 GP realizations is shown by colored lines, with 1σ shaded
regions.

Figure 2. Top: light curves in three energy bands for the XMM-Newton
observation used in our analysis. The lower-energy bands spanning 0.3–4 keV
exhibit clear variability, from which we compute frequency-resolved time lags
probing the innermost accretion flow. Bottom: the XMM-Newton spectrum
from the same observation divided by a power-law model with a photon index
of 2. Purple horizontal lines visualize the 0.3–1 keV and 1–4 keV energy
ranges used in the timing analysis to isolate reflection and the direct coronal
continuum, respectively.
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timescales, down to frequencies on the order of 10−3 day−1,
equivalent to radii from ∼100 to 105 Rg, thus probing the
outermost parts of the accretion disk and the BLR.

3.2. Gaussian Process Regression

We include a brief overview of GP regression here, but refer
the reader to more detailed introductions by Rasmussen &
Williams (2006), Wilkins (2019), and Griffiths et al. (2021).

We can consider our light curve data to be a vector of fluxes
d observed at times t. The “Gaussian” in “Gaussian process”
arises in that we assume the data have been drawn from a
multivariate Gaussian distribution; or, in other words, that the
observed data are a realization drawn from a GP posterior. This
procedure assumes the data are normally (or log-normally)
distributed, the validity of which we explore in Appendix A,
where we conclude that the data in all wave bands agree better
with a log-normal distribution and thus train the GPs on the
log-transformed flux values. The properties of this multivariate
Gaussian is informed by the data, including the mean
function ( ) [ ( )]=m t f t ( [ ]x denotes the expected value of
x and f (t) the function of fluxes observed at time ti), and the
covariance function, hereafter referred to as the kernel
function, ( ) [( ( ) ( ))( ( ) ( ))]¢ = - ¢ - ¢k t t f t m t f t m t,  .

The mean function is taken to be m= 0, as it is common
practice to first standardize the data (subtract the mean of the
light curve before dividing by the standard deviation). The
kernel function encodes how the light curve deviates from the
mean and thus models the observed variability. Functional
forms for the kernel function commonly depend on the
separation in time between points (i.e., ( ) ( )¢ = - ¢k t t k t t, ),
thus modeling the empirical variability on every timescale
present. The choice of kernel function form has been found to
impact the significance of lag recovery, depending on the data
quality (Griffiths et al. 2021; Lewin et al. 2022). We detail the
selection of the functional form of the kernel function in
Appendix B, choosing between kernel functions that have
shown success in modeling AGN variability for a wide range of
data quality (e.g., Wilkins 2019; Griffiths et al. 2021; Lewin
et al. 2022, 2023). In summary, the rational quadratic kernel
performs the best statistically in all bands, although the final
lags are consistent across the three kernel forms. At all
frequencies, the lags agree within 5% of each other on average,
with the lag uncertainties agreeing within 10%. Every
functional form comes with its own hyperparameters (θ), each
encoding a property of the variability, for instance timescales
and amplitudes. These hyperparameters are determined by
maximizing the likelihood of the model given the observed
data; or, more commonly, by minimizing the negative log
marginal likelihood (NLML; Equation (17) in Griffiths et al.
2021).

Equally sampled realizations with flux values d* can then be
generated by taking random draws from the conditional
distribution (d*|d) (Equation (5) in Wilkins 2019), which is
defined by the optimized Gaussian and the observed flux
vector d.

The architecture used for GP model training and subsequent
regression was created by using Scikit-learn33 and the
X-ray timing analysis package pyLag34 (Wilkins 2019).

4. Results

4.1. Innermost Disk: X-Ray Reverberation Mapping

Due to heavy obscuration studied throughout the campaign
in Paper III (Partington et al. 2023), the average X-ray flux is an
order of magnitude lower than that observed at the time of the
flare simultaneous with the XMM-Newton observation. The
flare revealed prominent X-ray variability, as shown by the
light curves in Figure 2, providing a momentary glimpse of the
innermost accretion disk that we aimed to study with X-ray
timing analysis.
Here, we present the frequency-resolved X-ray time lags of

Mrk 817 computed from the ∼120 ks XMM-Newton observa-
tion using the procedure described in the previous section. The
lags span temporal frequencies of 10−5

–10−3 Hz and were
computed between an energy band dominated by the coronal
continuum (1–4 keV, hereafter the hard band) and another band
dominated by the reprocessed emission (0.3–1 keV, hereafter
the soft band).
The resulting lag–frequency spectrum and associated (bias-

subtracted) coherence values are shown on the left side of
Figure 3. The lag–frequency spectrum exhibits a shape typical
for AGN (e.g., Zoghbi et al. 2010; De Marco et al. 2013; Kara
et al. 2013): at low frequencies, the hard band lags the soft
band, whereas at slightly higher frequencies, the soft band
instead lags the hard band (i.e., a soft lag, 150± 68 s in the
(1–3)× 10−4 Hz bin). This is the first detection of a soft lag in
this source, as the only archival XMM-Newton observation of
Mrk 817 (previous to the STORM 2 campaign) was 11 ks long
(Winter et al. 2011). Both the measured lag amplitude and
frequency of this soft lag are consistent with the lag–mass
scaling relations found by De Marco et al. (2013), which
predict a lag amplitude of 210± 80 s at (1.6± 0.3)× 10−4 Hz
for a black hole mass of MBH= 3.85× 107Me. The hard and
soft lags have high coherence (>0.90 for the hard lag and
>0.75 for the soft lag), indicating a high degree of linear
correlation between light curves.
In both frequency ranges at which we detect a hard or soft

lag, we computed a lag–energy spectrum by measuring how the
variability in finer energy bands lags or leads a common
(0.3–10 keV) reference band. The lag–energy spectrum at low
frequencies (the top right panel of Figure 3) increases roughly
monotonically with energy. This common shape in the lag–
energy spectrum (e.g., Kara et al. 2016) is often attributed to
fluctuations in the mass-accretion rate that propagate inward
from colder to hotter regions, thus resulting in soft photons that
respond before the hard photons (Lyubarskii 1997; Kotov et al.
2001; Arévalo & Uttley 2006). The lag–energy spectrum when
isolating the higher frequencies where we detected a soft lag
(the bottom right panel of Figure 3) instead shows an
anticorrelation between lag and energy, except for the
6–10 keV bin. The lag–energy spectrum thus appears similar
to previous AGN lag spectra exhibiting reverberation signa-
tures, including peaks in the lags below 1 keV where we expect
the so-called soft excess, and in the 6–10 keV bin where we
expect the Fe K. We measure a ∼500 s difference in the lag
between the 6–10 keV and 3–6 keV bins, albeit with large
uncertainties due to low signal-to-noise ratio. This difference is
consistent with the expected amplitude of the Fe K lag based on
the lag–mass scaling relation confirmed by Kara et al. (2016).

33 https://scikit-learn.org/
34 http://github.com/wilkinsdr/pylag
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4.2. Outermost Disk/BLR: UVOIR Continuum Reverberation
Mapping

Here, we present the frequency-resolved UVOIR time lags of
Mrk 817 computed from the AGN STORM 2 Swift and
ground-based campaign light curves shown in Figure 1. Given
the length of the campaign, we computed the lags using two
treatments of the light curves: (1) using the full 420 day light
curves and (2) when splitting the light curves into three epochs
of equal length (140 days). These epochs fortuitously coincide
with periods of high (Epochs 1 and 3) and low (Epoch 2)
average column density in the obscurer, according to the
NICER spectral analysis in Paper III (Partington et al. 2023).
The Swift X-ray–UV lags were also measured, but a tentative
lag (with coherence less than 0.2) is measured in only the
second epoch as a result of the X-ray flare. As such, the X-ray–
UV lags are only discussed when presenting the epoch-
resolved lags (Section 4.2.2).

4.2.1. Full Campaign Lags

The lags and bias-corrected coherence were computed with
respect to the UVW2 band centered at 1928Å for the full
420 day Swift and ground-based light curves in six bins
spanning 7× 10−3

–100 day−1. This frequency range translates
to light travel times from the black hole out to roughly 105 Rg,
thus probing reprocessing by the outermost accretion disk and
the BLR (Cackett et al. 2021). The lowest frequency we probe
is set by the length of the observation, but we expect to see

contributions from emission by the dusty torus on these long
timescales Netzer (2022), which may complicate the analysis.
The lags as a function of frequency for all of the wave bands

are shown in Figure 4, alongside lag models detailed in the
following section. These lags are also provided in the Appendix
(Table 1). Both lags and their coherence values decrease with
frequency, similar to those reported for NGC 5548 (Cackett
et al. 2022) and Mrk 335 (Lewin et al. 2023). The lags continue
to increase at lower frequencies (i.e., the lags do not level out),
indicating additional reprocessing beyond timescales of
20 days. This is consistent with reprocessing by the BLR
based on the 23 day Hβ lag measured in Paper I (Kara et al.
2021).
The average coherence measured in the two lowest

frequency bins is high at >0.9 and >0.75, respectively. The
coherence is notably lower—producing larger uncertainties on
the lags—in the ground-based u, Bg, and z bands, presumably
due to coarse data sampling near the end of the campaign. We
nonetheless verified that simulated lags are faithfully recovered
in these cases where GP regression over substantial gaps
produces substantive drops in coherence, as detailed in the
Appendix. The drop in coherence on short timescales (even
without the use of GPs) suggests that white noise dominating
the variability at higher frequencies may be breaking the
correlation between light curves, although the washing out of
variability in the disk may also be playing a role.
The lags in the lowest three frequency bins are presented as a

function of wavelength in Figure 5. Each set of lags is generally

Figure 3. Key X-ray XMM-Newton time lag results: Left: lag–frequency spectrum with bias-subtracted coherences computed between a reflection-dominated band
(0.3–1 keV) and a continuum-dominated band (1–4 keV). A positive lag indicates the hard band lagging the soft band. Right: the lag–energy spectrum when isolating
low frequencies (upper) reveals lags increasing with energy, commonly attributed to the inward propagation of mass-accretion rate fluctuations. The lag–energy
spectrum at high frequencies (lower) instead exhibits features consistent with reverberation (albeit at low significance, due to larger uncertainties above 3 keV),
including peaks in the lags below 1 keV where we expect the soft excess, and in the 6–10 keV bin where we expect the Fe K.
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well described by a τ∝ λ4/3 relation, as expected from
reprocessing by a standard accretion disk (Cackett et al.
2007). In detail, the lags in each frequency range were
independently fit with the function [( ) ]t t l l= - 10 0

4 3 ,
fitting for the normalization (τ0) given the reference band rest-
frame wavelength for the UVW2 band (λ0= 1869Å). This
results in the following best-fit normalization values for the
three lowest frequency bins (in order of increasing frequency):
τ0= 1.00± 0.05, 0.58± 0.03, and 0.23± 0.01 days. We also
note a discrepancy between the lags in the U and u bands: in
the lowest frequency bin, the ground-based u-band lag is >1σ
larger than that in the Swift U band. A very similar discrepancy
was found in NGC 5548 (Cackett et al. 2022).

As a point of comparison, we modeled the frequency-
resolved lags expected from disk reprocessing given the mass
and accretion rate of Mrk 817 by generating impulse-response
functions, as detailed in Section 5. The lags at low frequencies
(<0.05 day−1, corresponding to timescales >20 days; see the
two leftmost panels in Figure 5) are significantly longer than
those predicted by the disk reprocessing model–on average, by
over a factor of 3 in the lowest frequency bin and a factor of 2
in the second-lowest frequency bin. This discrepancy is the
most significant in the u band (3465Å), where the lag exceeds
the τ∝ λ4/3 fit by a factor of 2 in the lowest frequency bin, as
also found in the CCF lags in Paper IV (Cackett et al. 2023).
Similar levels of disagreement from disk reprocessing have
been reported by previous continuum reverberation mapping
campaigns, including especially long lags in the U band (e.g.,
Cackett et al. 2018; Edelson et al. 2019; Hernández Santisteban
et al. 2020; Vincentelli et al. 2021; Kara et al. 2023).

At higher frequencies (>0.05 day−1, corresponding to
timescales <20 days; see the rightmost panel in Figure 5), the
lags have decreased in size and show general agreement with
the disk reprocessing model. The U-band excess is also absent
at these frequencies, with the lag now within 1σ from the
τ∝ λ4/3 fit. Given the Hβ lag measured in Paper I
(τHβ= 23.2± 1.6 days; Kara et al. 2021), these findings are
similar those in Mrk 335 and NGC 5548: the lags are consistent
with disk reprocessing (including the U-band excess) when
homing in on timescales shorter than the Hβ lag indicative of
the BLR size scale. These results thus further support that
reprocessing by the BLR is producing the longer-than-
predicted lags reported by previous campaigns, as discussed in
Section 6.

4.2.2. Epoch-resolved Lags

To study how the UVOIR lags evolve over the course of the
420 day Swift and ground-based campaign, we evenly split the
campaign into thirds and computed the lags in the three
resulting 140 days epochs delineated at THJD = 9317, 9457.
For convenience, the epochs are labeled in the UVW1 light
curve in the top panel of Figure 6. This number of equal
segments was selected to probe the same low-frequency range,
given that the lowest frequency probed is set by the length of
the observation. We also noticed that the epochs correspond
approximately to periods of high and low column density of the
obscurer reported from the NICER spectral analysis in Paper III
(Partington et al. 2023). As shown in the top panel of Figure 6,
Epochs 1 and 3 coincide with periods of similarly high average
column density ( ¯ =-N 10 cm 12.6H

22 2 and 12.9, respectively),

Figure 4. Lags as a function of frequency in the UVOIR bands (with respect to the UVW2 reference band), with corresponding bias-corrected coherence values below.
The accessible frequencies (∼10−2

–100 day−1, i.e., ∼10−8
–10−6 Hz), are over two orders of magnitude lower than those studied using the XMM-Newton observation.

The lags predicted by the disk reprocessing model (orange) given the mass and accretion rate of Mrk 817 poorly describe the measured lags at low frequencies. The fit
improves significantly when we include a simple model component to account for additional contribution to the lags from a distant reprocessor (final model in blue).
The radius of this reprocessor is constrained at ∼23 days, consistent with previous measurements of the Hβ lag indicative of the BLR size scale.
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whereas Epoch 2 instead overlaps with a period of lower
average column density (lower by over a factor of 2 than the
other epochs; ¯ =-N 10 cm 6.1H

22 2 ). The data quality does not
vary dramatically across the three epochs, especially between
Epochs 1 and 2, although notable gaps are present in the u, Bg,
and z bands in Epoch 3. Given these large u and Bg data gaps,
we instead rely on the Swift U and B bands in this epoch. We
nonetheless demonstrate that simulated lags are successfully
recovered in all epochs and wave bands (see Appendix C).

The low-frequency lags (at frequencies 0.014–0.048 day−1,
equivalent to timescales of 20–70 days) computed for each
epoch are presented in the bottom panel of Figure 6.35 These
lags are also provided in the Appendix (Table 2). The epoch-
resolved lags show an expected anticorrelation between
amplitude and frequency, but with notably larger uncertainties
than the full campaign lags, with data gaps taking up a larger
fraction of the data.

We perform the same procedure as the lags computed using
the full campaign: the low-frequency lags in each epoch are fit
with a τ∝ λ4/3 relation (i.e., fitting [( ) ]t t l l= - 10 0

4 3 for
the normalization τ0), as expected from standard accretion disk
reprocessing (Cackett et al. 2007). We also compare the lags to
those predicted by the disk reprocessing model, as detailed in
Section 5.

The lags in higher-column-density Epochs 1 and 3 (left and
right panels in Figure 6) are generally consistent, producing
best-fit normalizations of τ0= 0.69± 0.03 and 0.66±
0.05 days, respectively. These lags are longer than those
predicted by the disk reprocessing model by a factor of 2–3.

Similar to the lags computed from the full campaign, we also
observe a U-band lag excess in both the first and third epochs,
where the lag surpasses the τ∝ λ4/3 best fit by roughly 110%
in Epoch 1 and 80% in Epoch 3.
The lags in lower-column-density Epoch 2 (middle panel in

Figure 6) are systematically shorter than those measured
in the other two epochs: the best-fit normalization of
τ0= 0.35±0.02 days is smaller by over a factor of two than
the normalizations of the other epochs, and >10σ from that
measured in Epoch 1. Again, the data quality in Epochs 1 and 2
is consistent in general, and we do not find systematically
poorer recovery of simulated lags in this epoch. Unlike
Epochs 1 and 3, however, the lags in Epoch 2 are nearly
consistent with those expected from disk reprocessing. This
includes a lack of the U-band excess observed in the other
epochs (the τ∝ λ4/3 fit lies within 1σ from the U-band lag in
Epoch 2). We find in Section 6 that, if we extend the time range
of Epoch 2 to include the first half of Epoch 3 where the
column density is still low, the lags become fully consistent
with the disk reprocessing model. The measured bias-
subtracted coherences are high at these low frequencies, with
an average coherence of 0.93 in Epoch 2 and 0.79 in Epochs 1
and 3.
In order to evaluate how the variability changes across

epochs, we computed the PSD in each UVOIR band per epoch
using the GP realizations. The PSDs are then fit with a power
law P(ν)= Aνβ at frequencies <0.1 day−1. These frequencies
are low enough to avoid white noise while including timescales
where we expect to see reprocessing by the disk. The best-fit
PSD slopes (β) range from −3.5 to −2.4 depending on the
band and epoch, which are similar to those found for other
AGN (Edelson et al. 2014; Panagiotou et al. 2022b). The
respective average PSD slopes of each epoch are −3.3± 0.2

Figure 5. UVOIR lags as a function of wavelength in the lowest three frequency bins. The lags are fit with a τ ∝ λ4/3 relation (dashed blue line), with best-fit
normalization values (τ0) shown. We compare the lags to the expected lag–wavelength relation given the mass and accretion rate of Mrk 817 using the disk
reprocessing model in each frequency range (dashed orange line). At higher frequencies, the lags approach the expected lag–wavelength, with the lags in the 0.05
−0.11 day−1 range (rightmost panel) roughly consistent with the disk reprocessing model. If this discrepancy is due to additional reprocessing from beyond the disk, it
is occurring on timescales longer than 20 days, which is consistent with the BLR size scale inferred from the 23 days Hβ lag.

35 The low-frequency range of the epoch-resolved lags (0.014–0.048 day−1) is
very similar to one of the frequency bins of the full campaign lags
(0.02–0.05 day−1). Adjusting the epoch-resolved frequency range to be
identical to the full campaign bin produces results consistent within error.
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(Epoch 1), −2.7± 0.3 (Epoch 2), and −2.9± 0.4 (Epoch 3).
This indicates there is more power at high frequencies relative
to low frequencies that in Epochs 2 and 3 than in the first
epoch. It may be that the first half of Epoch 3, which we found
contributes to shorter lags similar to those in Epoch 2 (see
Figure 7), is contributing to a shallower slope of the epoch’s
PSD. Splitting Epoch 3 to test this, however, renders us unable
to meaningfully constrain the slope of the Epoch 3 PSD. An
advantage of a frequency-resolved analysis is that the under-
lying slope of the PSD does not systematically skew the
measured lags and thus the inferred size scale, as is the case for
the CCF approach, due to the variability amplitude being
strongest on the longest timescales.

These significant changes in the lags from epoch to epoch
provide a unique opportunity, especially to explore the origin
of the perplexingly long lags reported from previous continuum
reverberation mapping campaigns. In summary, we measure

longer UVOIR lags at times of higher column density,
similar to the UV emission-line lags presented in Paper V
(Homayouni et al. 2024). Potential explanations are discussed
in Section 6.
We measure a (Swift) X-ray–UV lag in only the second

epoch, which is unsurprising given the low X-ray flux
throughout the rest of the campaign. Figure 8 presents the
X-ray–UV lags in both the soft (0.3–1.5 keV) and hard
(1.5–10 keV) bands. Similar to the frequency-resolved lags in
Mrk 335 (Lewin et al. 2023), the X-ray lags the UV at low
frequencies; in this case, the soft and hard bands lag the UV by
3 and 4 days, respectively, in the 0.014–0.048 day−1 frequency
range. This lag is visualized with the X-ray and UVW2 light
curves shown in the same figure. While there are some notable
features that could explain the lag, it is also possible that the
lags are being produced by the overall (long-timescale)
negative slope present in both bands.

Figure 6. Top: obscurer column density over the course of the campaign from the NICER spectral analysis in Paper III (Partington et al. 2023). Dashed lines
demarcate the three 140 day epochs in which we compute the lags. Epochs 1 and 3 coincide with times of higher average column density, and Epoch 2 with times of
lower average column density. Middle: UVW1 light curve from Figure 1. Bottom: lags as a function of wavelength at frequencies of 0.014−0.048 day−1, equivalent to
timescales of 20−70 days. The lags are fit with a τ ∝ λ4/3 relation (dashed blue line), with best-fit normalization values (τ0) shown. We compare the lags to the
expected lag–wavelength relation given the mass and accretion rate of Mrk 817 using the disk reprocessing model in each frequency range (dashed orange line). The
lags in Epochs 1 and 3 are a factor of 2 longer than those measured in Epoch 2.
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These lags appear contrary to the central reprocessing
picture, in which the coronal X-rays are reprocessed by
circumnuclear material to generate delayed variability at longer
wavelengths. In Mrk 335, the positive X-ray lag was explained
by reprocessing by photoionized gas near the BLR that
dominates the X-ray spectrum below 2 keV (Lewin et al.
2023). We are similarly able to reproduce the observed X-ray–
UV lags with additional reprocessing from beyond the disk at
the same radius consistent with the BLR used to describe the
UVOIR lags. Nonetheless, the lags may be the result of
propagating fluctuations in the mass-accretion rate (Arévalo &
Uttley 2006) or reprocessing by the obscuring disk wind
positioned at ∼4 lt-days from the black hole (Zaidouni et al.
2024).

5. Modeling the UVOIR Lags

We aim to model the frequency-resolved UVOIR lags of
Mrk 817 presented in the previous section. We are particularly
interested in (1) the agreement (or lack thereof) between the
measured lags and disk reprocessing and (2) the geometry and
degree of additional reprocessing required to reproduce the
measured lags. We model the anticipated disk reprocessing lags
by applying the model of Cackett et al. (2007). The model is
parameterized by the temperatures of the disk at an arbitrary
radius of 1 lt-day during a faint state and a bright state (TB, TF).
The CCF lags depend on these temperatures (Equation (13)
in Cackett et al. 2007); as such, we determine the temperatures
by fitting them to the (CCF) lag–wavelength relation expected
from standard disk reprocessing (Equation (12) in Fausnaugh
et al. 2016). Assuming a black hole mass of MBH= 3.85×
107Me and an Eddington ratio of LBol/LEdd= 0.2 for
Mrk 817, a lag normalization of τ0= 0.31 days is anticipated.
Reproducing this normalization with the Cackett et al.
(2007) model results in temperatures of TF= 5900 K and
TB = 11,400 K.

In order to compute the frequency-resolved lags, we first
generate the impulse-response function for each wave band
using Equation (7) in Cackett et al. (2007). We assume an
inclination of 19° (Miller et al. 2021), although changes in
inclination have a minor effect the model. The transfer function
in each band of interest is then multiplied by the complex

conjugate of the reference band (UVW2) transfer function to
account for the reference band also being a reprocessed light
curve (for details, see Cackett et al. 2022).36 This product of
transfer functions is a cross-spectrum, and thus the phase lag is
converted to time lag by dividing by 2πν, where ν is the
frequency of the bin.
The resulting lags from the disk reprocessing model are

shown as a function of frequency in Figure 4. Moving from
high-to-low frequencies is equivalent to moving outward in the
disk: The model predicts longer lags at larger radii until
reaching a radius of maximum reprocessing, beyond which
reprocessing becomes negligible and the lag becomes constant
(at low frequencies).

5.1. Modeling the Full Campaign Lags

The disk model is consistent with the lags at high
frequencies (>0.05 day−1), but undershoots the lags at low
frequencies by a factor of 3–4 on average. The reduced chi-
squared of the disk model is c = =n 375.6 72 5.22 , which does
not include the X-ray bands (we observe a significant lag only
in the epoch-resolved lags). The model is qualitatively different
from the observed lags at frequencies below 0.05 day−1: the
disk model predicts a constant lag, whereas the lags continue to
increase at lower frequencies. This indicates additional
reprocessing at larger radii not being accounted for by the
disk model.
These results are similar to those found from modeling the

frequency-resolved lags in NGC 5548 (Cackett et al. 2022) and
Mrk 335 (Lewin et al. 2023): the low-frequency lags cannot be
reproduced with disk models alone, even with higher
temperatures producing larger effective radii of reprocessing.
Instead, the lags are successfully modeled by including an
additional impulse-response function, corresponding to repro-
cessing from a more distant reprocessor. In both sources, the
best-fit radius of this distant reprocessor is consistent with the
BLR size scale inferred from previous Hβ measurements.
We apply this procedure in an attempt to model our lags

using a phenomenological log-normal impulse-response

Figure 7. Left: lags as a function of wavelength at frequencies of 0.014–0.048 day−1, equivalent to timescales of 20–70 days computed during periods of relatively
high and low obscurer column density. The lags are fit with a τ ∝ λ4/3 relation (dashed blue line), with best-fit normalization values (τ0) shown. The expected lag–
wavelength relation of the disk reprocessing model is shown in orange. The disk model lies within 1σ from the τ ∝ λ4/3 best fit for the unobscured lags. Upper right:
obscurer column density over the course of the campaign from the NICER spectral analysis in Paper III (Partington et al. 2023). Lower right: UVW1 light curve from
Figure 1. Dashed lines demarcate the two time ranges used to compute the lags. The obscured time range is the same as the original Epoch 1 used in the epoch-
resolved analysis. The unobscured time range combines the original Epoch 2 with the (unobscured) first half of the original Epoch 3. We do not use the last 75 days of
the campaign (the second half of the original Epoch 3) when the column density is high in this analysis, and thus it is not shown. The lags shown here can be found in
Table 3.

36 As a reminder, the transfer function is obtained by taking the Fourier
transform of the impulse-response function.
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function as in Cackett et al. (2022) and Lewin et al. (2023):
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where the median (eM) and standard deviation (S) are
determined by minimizing the total chi-squared. While this is
a phenomenological model, it can be interpreted as reproces-
sing from beyond the disk, and gauges the geometry (radius

and width) of the distant reprocessor required to reproduce the
observed lags. While the standard deviation of the component
is a proxy for the width of the reprocessor, the two are not
interchangeable. For context, this log-normal impulse response
is a smoother alternative to the popular top-hat response
function used to model reprocessing by a spherical shell (Uttley
et al. 2014). The log-normal response function is also
asymmetric, with a tail to long lags.
The final impulse-response function is a linear combination

of the disk model (ψdisk) and the distant reprocessor model
(ψBLR):

( ) ( ) ( ) ( ) ( )y y y= - +t f t f t1 , 2tot disk BLR

where f is the fractional contribution of the distant reprocessor
component to the final model. We fit for this fraction in each
band independently, akin to the BLR diffuse line and
continuum varying across wave bands (Korista & Goad 2001;
Lawther et al. 2018; Korista & Goad 2019; Netzer 2022). For
clarity, the BLR fraction does not represent the fraction of the
observed flux originating from the BLR. Instead, the model
parameter has a nonlinear relationship with the amount that the
observed lags exceed the disk model. Modeling the lags in
NGC 5548 and Mrk 335 in this way produced f values as a
function of wavelength that are qualitatively similar to the BLR
continuum (Figures 7 and 8 in Cackett et al. 2022; Lewin et al.
2023, respectively). This includes higher f values (i.e., the
distant reprocessor contributed more to the total model)
required in the U band versus neighboring bands.
The final disk+BLR model (shown in Figure 4) is a

significant improvement in reproducing the lags at low
frequencies compared to the disk model: the reduced chi-
squared is improved to c = =n 47.9 57 0.842 from c =n 5.22

in the case of the disk model. The median of the BLR model—
a proxy for the size scale of additional reprocessing needed to
reproduce the lags—is constrained to eM= 22.5± 3.6 days.
This radius is consistent with that of the BLR based on Hβ lag
measurement from Paper I (τHβ= 23.2± 1.6 days; Kara et al.
2021). The standard deviation of the component is constrained
to S= 4.3± 0.8 days. This value is larger by over a factor of 4

Figure 8. Left: lags and bias-subtracted coherence values as a function of frequency computed between the Swift X-ray bands (SX: 0.3–1.5 keV, HX: 1.5–10 keV)
and the UVW2 band. A positive lag indicates that the X-ray variability lags the UV, opposite to the negative lag predicted by the disk model (orange). These lags can
be reproduced by including a model component corresponding to reprocessing at a radius consistent with the BLR (blue). Right: (a) Swift 0.3–10 keV and (b) UVW2
light curves. Dotted lines visualize the 3.5 day lag (the average of the SX and HX vs. UVW2 lags) between these two bands. Both bands exhibit a similar decrease in
flux over time, which may be producing these measured lags on long timescales.

Figure 9. Fraction of the total impulse-response function model made up the
BLR component. The BLR contributes more to the total model during times of
high obscuration (Epoch 1, blue) than when obscuration is low (Epoch 2,
orange), with the full campaign BLR fractions most often between those of
these two epochs. The BLR fractions for Epoch 1 and the full campaign show a
local maximum in the U band near 3500 Å, consistent with the Balmer jump in
the diffuse line and continuum. For comparison, the inlay is Figure 9 from
Korista & Goad (2019), which displays the ratio of the diffuse line and
continuum emission to the total SED as a function of wavelength, with x-axis
aligned to match our plot.

12

The Astrophysical Journal, 974:271 (20pp), 2024 October 20 Lewin et al.



than that found when the same modeling treatment was applied
to the frequency-resolved lags in NGC 5548 and Mrk 335
(Cackett et al. 2022; Lewin et al. 2023). In Section 6, we
demonstrate that this larger standard deviation can be produced
as a result of averaging over lags produced at different radii in
different epochs.

The best-fit BLR fractions are presented in Figure 9. Like
NGC 5548 and Mrk 335, the shape of the BLR fraction as a
function of wavelength shows several similarities to that of the
BLR diffuse line and continuum (overlaid in the bottom of the
same figure for reference). Most notable are a local maximum
in the U band, a change in slope in before and after the Balmer
jump, and larger BLR fractions at longer wavelengths (Korista
& Goad 2001, 2019).

5.2. Modeling the Epoch-resolved Lags

The UVOIR lags show systematic changes between the three
epochs defined by splitting the 420 day light curves evenly into
three segments. Epochs 1 and 3 exhibit similar (low-frequency)
lags (see Figure 6), producing lag normalizations within 1σ of
each other. The lags in Epoch 2, however, are shorter than
those in the other epochs by over a factor of 2 on average.

We apply the same procedure as the full campaign lags to the
lags in each epoch: We evaluate the performance of the disk
model, and then include the distant reprocessor component to
constrain the geometry (namely, the median and standard
deviation in radius) of the reprocessor needed to describe the
low-frequency lags. As shown in Figure 6, the shorter lags in
Epoch 2 are nearly consistent with the disk model, whereas the
lags in Epochs 1 and 3 exceed the disk model by a factor of∼3 on
average. This is reflected by the reduced chi-squared values
totaled across all UVOIR bands and frequencies: c =n

2

=48.3 60 0.8 in Epoch 2, versus c = =n 416.2 60 6.92 and

c = =n 104.8 50 2.12 in Epochs 1 and 3, respectively (fewer
degrees of freedom as the u, Bg bands are not used in Epoch 3).
We then include the log-impulse distant reprocessor model

component, fitting for the median and standard deviation in
each epoch independently. The reduced chi-squared signifi-
cantly improves in Epochs 1 and 3: c = =n 35.1 45 0.782

(Epoch 1) and c = =n 26.1 37 0.702 (Epoch 3). The fit statistic
for Epoch 2 improves slightly to c = =n 32.0 45 0.712 , as
expected given the low contribution of the BLR component
needed to describe the lags. The best-fit model parameters
agree within 1σ across epochs, suggesting that the same distant
reprocessor is contributing to the low-frequency lags in all
epochs. The best-fit medians are all consistent with the BLR
size scale inferred from the 23 day Hβ lag (Kara et al. 2021),
with eM= 22.3± 6.3 days in Epoch 1, eM= 24.3± 5.8 days in
Epoch 2, and eM= 24.0± 7.4 days in Epoch 3. The best-fit
standard deviations of the distant reprocessor are S= 0.9± 0.7
in Epoch 1, S= 1.7± 0.9 in Epoch 2, and S= 1.9± 1.2 in
Epoch 3. These values are over a factor of 2 smaller than that
required to describe the full campaign lags (S= 4.3 ±
0.8 days), and are similar to previous values to model the lags
in NGC 5548 (S= 1.1± 0.2; Cackett et al. 2022) and Mrk 335
( = -

+S 0.9 days;0.1
0.2 Lewin et al. 2023). These statistics are used

in the next section to demonstrate that the larger standard
deviation of the BLR component required to describe the full
campaign lags can be reproduced by averaging over lags
produced at different effective radii in different epochs.
The similar lags in Epochs 1 and 3 require the BLR model to

compose a high fraction of the total model, with an average
BLR fraction of f= 0.74± 0.09, 0.70± 0.14 in Epochs 1 and
3, respectively. The BLR fraction in Epoch 2 is lower by almost
a factor of 2 ( f= 0.40± 0.11), as expected given that the low-
frequency lags in this epoch are nearly consistent with disk
reprocessing. In Section 6, we discuss that line-of-sight

Figure 10. One possible explanation for the longer UVOIR lags at times of higher column density involves a disk wind, as informed by spectral analysis in Papers III
and IX (Partington et al. 2023; Zaidouni et al. 2024). At times of high column density (upper), the wind is launched into our line of sight. We measure long continuum
lags because the BLR is exposed to the ionizing source, contributing to longer lags. These additional regions of reprocessing respond on longer timescales than the
disk and produce a U-band excess (middle: demonstrative light curves, with obscured light indicated by dashed lines). At times of low column density (lower), the
dense base of the wind intercepts the ionizing flux from reaching the BLR. The measured lags are dominated by disk and wind reprocessing, resulting in shorter lags
that lack a significant U-band excess.
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obscuration by a disk wind may be obscuring our view of
reprocessing by the disk more significantly in Epochs 1 and 3,
producing longer lags from instead viewing mostly reproces-
sing at larger radii, including the BLR. In this scenario, we
expect higher values for the BLR fraction in Epochs 1 and 3
given that the median response radius of the reprocessor is not
changing significantly, which is consistent with the results.

The hard and soft (Swift) X-ray bands were found to lag the
UVW2 band by 4.1± 0.5 and 3.0± 0.4 days, respectively, in the
lowest frequency bin in Epoch 2 (see Figure 8). This indicates that
the hard X-rays lag the soft by ∼1 day. A simple order-of-
magnitude comparison to the XMM-Newton hard lag reveals that
the lags are consistent after adjusting for the difference in
frequency: τ= 105 s, ν= 10−8 Hz for Swift versus τ= 102 s,
ν= 10−5 Hz for XMM-Newton. This assumption is motivated by
theoretical work for the frequency-amplitude scaling of inward-
propagating fluctuations in the mass-accretion rate (Lyubarskii
1997; Kotov et al. 2001; Arévalo & Uttley 2006), and suggests
that the lags may originate from this same physical process.

We also modeled the X-ray–UV lags on their own to gauge the
region of reprocessing capable of reproducing these positive lags.
The best-fit parameters of the BLR component are consistent with
those constrained with the UVOIR lags: the median/effective
radius is eM= 25.0± 8.7 days, with a standard deviation of
S= 2.5± 1.5 days. Nonetheless, the coherence is moderate
(∼0.5–0.7), and more notably that the signal-to-noise ratio is
low in these bands. As such, these results are tentative, albeit
similar to Mrk 335, where the soft X-rays were also measured to
lag the UV (Lewin et al. 2023). It is nonetheless worth mentioning
that the variability we see in this low-column-density epoch more
directly reflects variations in the intrinsic X-ray continuum rather
than in the transparency of the obscuration.

6. Discussion

6.1. Contamination of the Disk Continuum Reverberation Lags
by the Broad-line Region

The lag measurements from recent, high-cadence monitoring
campaigns of AGN using Swift and ground-based telescopes
have consistently deviated from theoretical predictions. First,
the normalizations of the expected τ∝ λ4/3 relation are
typically a factor of 2–3 larger than predicted given the black
hole mass and accretion rate. The lags have been especially
long in the U band (3465Å), exceeding the best-fit τ∝ λ4/3

relation even with the large normalizations by a factor of ∼2
(Cackett et al. 2018; Edelson et al. 2019; Hernández
Santisteban et al. 2020; Vincentelli et al. 2021; Kara et al.
2023). These U-band excesses are commonly attributed to the
diffuse line and continuum of the BLR (Korista & Goad 2001;
Lawther et al. 2018; Korista & Goad 2019; Netzer 2022).

The lags at frequencies below 0.05 day−1 are longer than
those expected from disk reprocessing given the mass and
accretion rate of Mrk 817. The lags at frequencies above
0.05 day−1 are instead well described by the disk reprocessing
model, including the lag in the U band. If the discrepancies
from disk reprocessing at low frequencies are due to
contamination from a distant reprocessor, then the reprocessing
is occurring on timescales longer than 1/0.05= 20 days. This
timescale is consistent with the outer parts of the BLR
according to the 23 day Hβ lag in Paper I (Kara et al. 2021).
Nonetheless, a small lag excess remains above this frequency
beyond 6000Å that resembles the Paschen continuum,

suggesting that BLR reprocessing continues to smaller radii.
This is consistent with the extent of the BLR inferred from the
lags in Paper I, which range from the UV to Hβ and span from
a few light days to beyond 23 light days.
If we instead fit the disk model temperatures to the measured

lags in the lowest frequency bin, an Eddington ratio an order of
magnitude higher than observed is required (L/LEdd= 6.7
versus 0.2; Kara et al. 2021). The assumptions of the thin-disk
model are not expected to hold at this accretion rate (Netzer &
Trakhtenbrot 2014; Wang et al. 2014; Du et al. 2018). To avoid
this unlikely conclusion, we included a simple log-normal
impulse-response function to account for additional reproces-
sing from beyond the disk. The inclusion of this component
significantly improves the description of the lags (c =n 0.842

versus c =n 5.22 from the disk model alone).
Similar to the modeling results in Mrk 335 and NGC 5548,

the required median radius of the component (22.5± 3.6 days)
is consistent with the 23 days Hβ lag (Kara et al. 2021).
Photoionization models have shown that the mean emissivity
radius of the diffuse continuum is smaller than that of Hβ by a
factor of ∼2–3 (Korista & Goad 2019; Netzer 2020, 2022).
Given that the log-normal distribution is right-skewed, the
distribution peaks at a value smaller than the median; in other
words, the radius of maximum reprocessing is smaller than the
median value. A median of 23 days and a standard deviation of
1 day found from fitting the individual epochs places the radius
of maximum reprocessing at 8.2 days, with significant
reprocessing down to a few days. This radii range is consistent
with the lags from Paper I indicative of the size scale of the
BLR and the aforementioned modeling by Korista &
Goad (2019).
The standard deviation of this additional component, which

is related to the width of the extended reprocessor, is
constrained to 4.3± 0.8 days. This value is over a factor of 4
larger than that required to describe the lags in NGC 5548 and
Mrk 335 (using the same log-normal and disk model; Cackett
et al. 2022; Lewin et al. 2023). Modeling the lags in each epoch
results in a smaller standard deviation (∼1 day). This suggests
that the larger standard deviation may be the result of
combining epochs across which the lags differ notably, for
instance due to reprocessing at different radii in different
epochs. This idea agrees with the full campaign lags being
roughly an average of the shorter lags in Epoch 2 and longer
lags in Epochs 1 and 3. To test this idea, we compute an
effective radius of reprocessing for each epoch (in each wave
band) by using the best-fit BLR fraction ( f ) and radius (RBLR):
Reff= (1− f )Rdisk+ fRBLR. We then compute the standard
deviation of the effective radii across the three epochs to
compare to the large standard deviation required to model the
full campaign lags. The radius of disk reprocessing (Rdisk)
depends on wavelength and is computed using Equation (12) in
Fausnaugh et al. (2016). We set RBLR= 23 days to match the
Hβ lag, which is consistent with the best-fit median in all
epochs. The resulting standard deviation of effective radii
across the three epochs ranges from 2.5 to 6 days, depending on
the band, or 4.1± 1.0 days on average. This is consistent with
the larger standard deviation needed to reproduce the full
campaign lags, thus indicating this value could be the result of
averaging over lags produced at different effective radii in
different epochs. Specifically, the effective radii of reproces-
sing averaged across bands are 17.5 days (Epoch 1), 9.1 days
(Epoch 2), and 13.0 days (Epoch 3).
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We caution that our modeling of the lags is limited: we apply
a single model for disk reprocessing and a simple analytic
treatment for the extended reprocessor/BLR. As such,
additional modeling with more physical models is warranted,
such as those that include a more realistic treatment of
the coronal geometry (Kammoun et al. 2021a, 2021b), the
thickness of disk (Starkey et al. 2023), and models for the BLR
(Korista & Goad 2019; Netzer 2020). Modeling of the lags
from inwardly propagating fluctuations in the mass-accretion
rate (e.g., Lyubarskii 1997; Neustadt et al. 2024) is also of
importance.

6.2. The Connection between Time Lags and the Obscurer

There are several key observables presented here and in
previous AGN STORM 2 papers that need to be explained:

1. Paper III (Partington et al. 2023) found the line-of-sight
X-ray column density and the equivalent width of the
blueshifted broad UV absorption troughs vary together on
timescales of ∼100 days. Here, we separated the
observations into three epochs corresponding to these
periods of high (Epochs 1 and 3) and low (Epoch 2)
column density.

2. Paper IX (Zaidouni et al. 2024) found concurrent X-ray
and UV absorption lines with the same velocity profile,
i.e., from the same outflow. It is estimated that the
launching radius of the outflow is roughly 1000 Rg (2–3
light days) and that the time it takes the wind to travel
from the disk into our line of sight is 100–200 days.

3. Paper IV (Cackett et al. 2023) found that, while the
UVW2 and HST emission at shorter wavelengths is
usually highly correlated, there is a relative excess of the
UVW2 emission compared to all HST bands when the
column density is high during the campaign corresp-
onding to our Epoch 1.

4. Paper V (Homayouni et al. 2024) found that the C IV lag
changes dramatically over time, with the longest lag
occurring when the UVW2/HST correlation weakens
and the column density is relatively high in Epoch 1.

5. Here, we find the continuum lags vary significantly from
epoch to epoch. The lags are over a factor of 2 larger
when the column density is high (Epochs 1 and 3) than
when the column density is low (Epoch 2).

The results presented in this paper demonstrate that the
continuum lags can be strongly affected by the presence of a
variable obscurer. While a holistic analysis that includes
modeling changes in the emission and obscuration is required
to fully characterize the lags, here we present one possible
explanation, illustrated in Figure 10. In this physical picture,
the epoch-to-epoch changes in the lags are due to changing
obscuration by an accretion disk wind, launched at ∼1000 Rg.
We can think of this as a limit cycle, where the wind is first
launched from the disk, and has a high column density. The
wind is lifted from the disk, becoming more clumpy and of
lower column density, as it reaches our line of sight. This wind
moving from the disk surface and up into our line of sight
explains the changes in X-ray column density and UV
absorption troughs on timescales of 100–200 days (Papers III
and IX).

In the context of our delineated “epochs,” the disk limit cycle
begins with the high column density wind being launched from
the disk in Epoch 2. This wind intercepts the radiation to the

BLR, thus leading to relatively short lags.37 As the wind is
lifted from the diskʼs surface and into our line of sight
(Epochs 1 and 3), it becomes more clumpy and lower column
density, and the BLR is exposed to the ionizing source, thus
producing longer lags that are indeed dominated by the diffuse
BLR continuum. It is also in these epochs where the longest
C IV lags are observed (Paper V).
This model is appealing in that it fits within the larger

context of UVOIR campaigns, where in all the unobscured
AGN, we observe lags that are ubiquitously longer than
predicted by disk reprocessing by a factor of 2 or more. It is for
this reason that studies have invoked more distant reprocessing
from the diffuse BLR (e.g., Korista & Goad 2001; Lawther
et al. 2018; Korista & Goad 2019; Netzer 2022). However, here
in Epoch 2 in the campaign of Mrk 817, we observe (to our
knowledge, for the first time), lags that are fully consistent with
expectations from disk reprocessing alone. Perhaps it is
precisely because this source has a time-variable obscurer that,
at some unobscured epochs, we see short lags more consistent
with just the disk.
There are important details to modeling that will be

discussed in H. Netzer et al. (2024, in preparation). For
instance, because the wind base is a high column density,
photoionized plasma, it is expected to radiate its own
reprocessed emission at a radius of a few light days from the
black hole. In this model, in Epoch 2, the lags are dominated by
the reradiation from the wind base, which is still effectively
located at a smaller radius than the diffuse BLR.
While this model explains many of the observations from

Papers I–IX, there are some caveats that require future work.
For instance, it remains unclear how the emission-line fluxes fit
into the picture. Paper V shows the C IV flux has its strongest
response relative to the continuum when the C IV and
continuum lags are shortest (Epoch 2, Phase C). Yet this result
implies a strong contribution to continuum lag measurements
from the BLR, contrary to our observation of short continuum
lags consistent with primarily disk emission. It is difficult to
imagine how this picture could produce the short lags that are
fully consistent with reprocessing by just the disk at times of
low column density, given that BLR reprocessing is present at
all times in the Paper V scenario. Moreover, one might expect
that in Epoch 2, where, in our model, the obscurer does not
affect the continuum as much, and the lags do not require
contributions from the BLR, we would expect a larger
correlation between X-rays and UVOIR, but this is not
observed. Some of this is likely because the obscuration is
still present (albeit at a lower level), but may also require
examination of effects of dynamic variability of the X-ray
corona (Panagiotou et al. 2022a) and/or fluctuations in the disk
properties in response to FUV or X-ray heating (Gardner &
Done 2017; Sun et al. 2020; Chen et al. 2024; Secunda et al.
2024).
While this physical model does broadly explain many of the

main results of the AGN STORM 2 campaign, a more holistic
approach to modeling the changes in emission and obscuration
will be needed in order to disentangle contributions from the
disk, obscurer, and BLR. The specifics of a more complete

37 This interpretation that the observed continuum lags become shorter with
decreasing column density is further supported if we extend Epoch 2 to include
the first part of Epoch 3, when the column density was still relatively low
(considering THJD = 9317–9525). As shown in Figure 7, the lags become
even shorter than those from the original Epoch 2 and are fully consistent with
the disk reprocessing model, including a resolution of the U-band excess.
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model predicting the time lags together with the emission/
absorption line kinematics will be examined in detail in
forthcoming works.

7. Conclusions

We present the frequency-resolved lags of AGN Mrk 817
computed from 14 months of high-cadence data by Swift and
ground-based telescopes, in addition to an XMM-Newton
observation, as part of the AGN STORM 2 campaign. For the
first time, X-ray reverberation lags, which probe the innermost
accretion disk, are detected during a simultaneous UVOIR disk
reverberation mapping campaign, which reveal reprocessing all
the way out to the outer disk and the BLR—thus, producing a
(reverberation) map effectively spanning the entire accretion
disk and the inner accretion flow. Here are the main results:

1. The XMM-Newton lags (see Figure 3) reveal the first
detection of a soft lag in this source. Both the frequency
and amplitude of this lag are consistent with reverberation
by the innermost accretion flow based on lag–mass
scaling relations (De Marco et al. 2013). The lags at
lower frequencies instead exhibit canonical hard lags
commonly attributed to propagating fluctuations in the
accretion rate.

2. The Swift/ground-based lags in the UVOIR bands
computed using the full campaign light curves are longer
than those expected from standard disk reprocessing at
low frequencies, by over a factor of 3 on average
(<0.05 day−1, i.e., timescales longer than 20 days; see the
two leftmost panels in Figure 5). The lag discrepancy in
the U band is especially large, exceeding the best-fit
τ∝ λ4/3 relation by a factor of 2. These discrepancies are
similar to those reported in previous continuum rever-
beration mapping campaigns.

3. At higher frequencies (>0.05 day−1, i.e., timescales
shorter than 20 days), the UVOIR lags are instead well
described by standard disk reprocessing, including a
resolution of the U-band excess. In other words, the lag
discrepancies resolve at timescales shorter than the
23 days Hβ lag indicative of the BLR size scale,
supporting that reprocessing from the BLR at farther
radii is “contaminating” the disk reprocessing lags.

4. The UVOIR lags are well described when an additional
model component accounts for reprocessing from a
distant reprocessor (see Figure 4). The best-fit radius of
the reprocessor at 22.5± 3.6 days is consistent with the
∼23 days Hβ lag measured in Paper I (Kara et al. 2021).
The required width of the reprocessor (∼4 days) is
substantially larger than that measured from previous lag
modeling, which may be the result of averaging over lags
produced at different effective radii in different epochs.

5. The UVOIR lags computed when splitting the campaign
into three 140 days epochs show substantial variations.
The lags in Epochs 1 and 3 are generally consistent, but
longer than those in Epoch 2 by over a factor of 2 (see
Figure 6). According to the NICER spectral analysis in
Paper III (Partington et al. 2023), the average column
density of the obscurer in Epochs 1 and 3 is higher than
that in Epoch 2. We suggest that, when the obscurer is
strongest, additional reprocessing by the BLR elongates
the lags. As the wind weakens, the lags are instead
dominated by shorter accretion disk lags as the re-

emerging, dense base of the wind shields the BLR from
the ionizing source.
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Appendix A
Assuming a Normal Flux Distribution

Here, we assess whether we can assume Gaussianity of the
observed Swift and ground-based flux distributions in order to
model the observed variability using GPs. In the case that the
empirical fluxes instead follow a log-normal distribution (as
reported by previous AGN timing analyses, e.g., Uttley et al.
2005), we would train the GP on the log-transformed flux values
and then exponentiate the realizations drawn from the resulting
conditional posterior. The Cramér–von Mises (C-vM) test
(Cramér 1928) evaluates the goodness of fit of the empirical
cumulative distribution function (ECDF) by that of the null
hypothesis. For context, this test is an alternative to the more
popular Kolmogorov–Smirnov (K-S) test (Massey 1951), but is
more sensitive to small-scale differences in the ECDF (Babu &
Feigelson 2006). For each Swift and ground-based light curve, we
perform two C-vM tests: one using a normal distribution null
hypothesis, and the other using a log-normal null hypothesis.
For the X-ray bands, only the normal null hypothesis C-vM

tests result in p-values less than 0.01 (hard band: p∼ 10−3, soft
band: p∼ 10−6), indicating a low probability that the data
follows a normal distribution. The log-normal tests in these
bands, however, do produce p-values greater than 0.01,
indicating that we cannot reject that the X-ray fluxes are log-
normally distributed at the 1% confidence level. For the
UVOIR bands, the C-vM tests produce p-values ranging from
0.01 to 0.36, with a mean p-value of ¯ = p 0.10 0.07 for the
normal null hypothesis tests and ¯ = p 0.16 0.10 for the log-
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normal null hypothesis tests. While neither null hypothesis can
be rejected at the 1% confidence level, the log-normal tests
result in higher p-values on average. As a result, we choose to
train the GPs on the log-transformed flux values in all bands.

Appendix B
Selecting the Kernel Function Form

There are infinite possible kernel function forms, as kernel
functions are closed under addition. This motivates thorough
(potentially unlimited) investigation when modeling new
variability/processes (e.g., creating kernel functions using
deep neural networks; Wilson et al. 2015). In our case,
previous work (e.g., Wilkins 2019; Griffiths et al. 2021; Lewin
et al. 2022, 2023) has tested the efficacy of several kernel
function forms for modeling AGN variability for a wide range
of data quality, including for Swift campaigns with data quality
similar to ours (Griffiths et al. 2021; Lewin et al. 2023). We
evaluate the same three kernel function forms as the
aforementioned works: the squared exponential (SE), rational
quadratic (RQ), and Matérn-1

2
(hereafter M-1

2
) kernels. We refer

to Wilkins (2019) for an introduction to these functional forms.
As introduced in Section 3.2, we optimize the kernel

function hyperparameters by maximizing the likelihood of the
observed data given the GP model (i.e., minimize the NLML).
We compare the efficacy of these kernel function forms by
comparing (1) the optimized NLML values and (2) the mean-
squared error (MSE) when the model predicts the last 20% of
the light curve after training (i.e., optimizing the hyperpara-
meters) using the first 80% of the light curve. We perform this
comparison in each band, given that both the data quality and
empirical variability vary across wave bands (see Figure 1).

We find the RQ kernel to statistically perform the best in all
bands, with the M-1

2
kernel performing only slightly poorer, and

the SE kernel notably worse than the others. The NLML averaged
across bands (lower indicates higher likelihood of the data given
the model) is 27.8 for RQ, 29.8 for M-1

2
, and 89.1 for SE. The

MSE statistics more noticeably distinguishes the RQ and M-1

2
kernels, with the average MSE across bands being 1.2 for RQ, 1.5
for M-1

2
, and 2.7 for SE. These results are in general agreement

with previous GP modeling of AGN light curves (Wilkins 2019;
Griffiths et al. 2021; Lewin et al. 2022, 2023). As an additional
check, we compared the lags and their uncertainties that result
from all four combinations of using RQ and M-1

2
to model each

band and the UVW2 reference band. The lags are consistent within
1σ across kernel forms. At all frequencies, the lags agree within
5% of each other on average, with the lag uncertainties agreeing
within 10%.

The kernel comparison above was performed using the full
420 day light curves, in preparation for computing the lags
presented in Section 4.2.1. Modeling the full campaigns with a
single GP (per wave band) assumes consistent variability on
both long and short timescales. In other words, a single set of
hyperparameters is used to describe the variability of the entire
campaign. In Section 4.2.2, however, we find that the UVOIR
lags do vary significantly over the course of the campaign—
splitting the light curves into three 140 day epochs produces
lags in the second epoch over a factor of 2 shorter on average
than those measured in the first and third epochs. This suggests
non-stationarity in the source variability. We check how the
modeling affects the epoch-resolved lags by recomputing the
lags using a separate GP per epoch to better account for

changes in the variability. The resulting lags are very consistent
with those from using a single GP per wave band to model the
entire campaign, as the lags agree within 5% on average at all
frequencies. We find similar agreement when using either the
RQ kernel or the M-1

2
kernel to model the individual epochs.

Appendix C
Recovering Simulated Time Lags

Here, we investigate how GP regression affects time lag
recovery for our specific observations by simulating lags
representative of our real measurements. In Section 4, we
present the lags measured from (1) the full 420 days Swift and
ground-based light curves and (2) three 140 day epochs. In both
cases, we simulated the light curves of each wave band with
lengths, means, and standard deviations matching those of the
observations. The light curves were simulated using the method
of Timmer & Koenig (1995), for which we assume a power-
law PSD with a slope matching the best-fit slopes measured in
Section 4. At frequencies lower than those probed in the lag
analysis—0.007 day−1 for the full campaign and 0.014 day−1

for the epoch-resolved lags—the PSD slope is set to 0. In order
to simulate time lags representative of our measurements, we
convolve the light curves with the final (best-fit) impulse-
response functions used to model the lags in Section 5; that is,
the total model composed of the BLR and disk components.
Just like the measured lags, a different model is used for each
band and for each time range considered, resulting in 50
models used in total (12 UVOIR bands in 4 time ranges, and 2
X-ray bands for Epoch 2, the only epoch in which an X-ray/
UV lag is detected).
To most accurately reproduce the empirical data quality, the

simulated light curves were then “thinned,” meaning that we
considered only points in time that match the actual light curve
in each band. In other words, the vector of time values should
be roughly indistinguishable between the real and simulated
light curves. In order to simulate white noise, each flux value
was then redrawn from a Gaussian distribution with a mean and
standard deviation set by the flux and uncertainty, respectively,
at each point.
After we generated these simulated light curves, we

performed the same analysis on them as on the data presented
in the paper. The variability in each band was then modeled by
a GP, using the same kernel form (RQ) applied to the
observations. The lags and their associated coherence values
were then computed in the same frequency bins as the actual
analysis. We compare these GP-recovered lags and coherences
to those computed when the simulated light curves were
instead binned to the average empirical sampling rate. In this
case, Fourier techniques can be applied to the light curves
immediately without GPs to compute the lags. As such, we use
this comparison to gauge the effects of GPs on the lags,
coherences, and their uncertainties, given the specific data
quality.
The simulated lag recovery for both sampling rates is

presented in Figure A1. The results agree with those found by
Wilkins (2019) and Lewin et al. (2023): we find, as expected,
GP regression to more significantly affect the lag uncertainties
and coherences than the sizes of the lags themselves. In all
cases (regarding bands, frequencies, and treatment of the light
curves), the GP-recovered lags are consistent within 1σ with
those computed in the equal-sampling case. The true lag also
lies within 1σ in all cases. For the lags computed using the full
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light curves, the GP-recovered lags are within 3% on average
from those computed from the light curves with equal
sampling, although the uncertainties are larger by approxi-
mately 30% on average. For the best- and worst-performing
bands (g and u, respectively), the GP lags agree within 1% and
5% with those in the equal-sampling case.

The coherences predicted by the simulated light curves after
the use of GPs are generally consistent with those measured by
the actual data. The effects of GPs on the coherence are minor

at low frequencies (<0.02 day−1), where the coherence is
typically lower than that in the equal-sampling case by only
∼0.1. This is likely because the GP most easily preserves the
overall (long-term) light-curve shape and thus the correlated
variability operating on long timescales. The coherence at high
frequencies, however, is lower by 0.25–0.4 on average,
depending on the band. At these high frequencies, the
amplitude of the variability approaches that of the uncertainty
on the data itself; thus, short-timescale variability is produced

Figure A1. The lags and associated coherences computed with respect to the UVW2 band using simulated light curves in the g, u bands (upper, lower) for the full
campaign (left panels) and in Epoch 2 (right panels). The injected/true lags indicated by the black curves are the final models used to reproduce the actual, measured
lags in these bands. We use unevenly sampled light curves with time bins matching the observations, thus requiring GPs to compute the lags (orange). We compare
these results to evenly sampled light curves (blue), from which the lags can be computed without GPs. Shaded regions indicate 1σ lag uncertainties.

Table 1
Time Lags Measured with Respect to UVW2 (1928 Å) Using the Full 420 Day Campaign

Filter Lag (days) in Frequency Range

0.01–0.02 day−1 0.02–0.05 day−1 0.05–0.11 day−1 0.11–0.22 day−1 0.22–0.48 day−1 0.48–1.00 day−1

UVM2 0.37 ± 0.32 0.34 ± 0.27 −0.03 ± 0.25 −0.31 ± 0.39 −0.02 ± 0.14 −0.01 ± 0.18
UVW1 0.67 ± 0.32 0.59 ± 0.26 0.07 ± 0.24 −0.09 ± 0.53 −0.01 ± 0.11 0.00 ± 0.14
U 1.55 ± 0.35 0.83 ± 0.31 0.19 ± 0.36 −0.11 ± 0.65 0.02 ± 0.15 0.00 ± 0.19
u 2.61 ± 0.48 1.12 ± 0.72 −0.09 ± 0.53 −0.24 ± 1.29 −0.04 ± 0.67 0.01 ± 0.36
Bg 1.33 ± 0.56 0.66 ± 0.46 0.47 ± 0.38 −0.12 ± 0.87 −0.02 ± 0.26 0.00 ± 0.25
B 1.51 ± 0.45 0.40 ± 0.37 0.44 ± 0.32 −0.07 ± 0.37 0.02 ± 0.10 0.00 ± 0.13
g 2.47 ± 0.28 1.04 ± 0.24 0.52 ± 0.19 0.06 ± 0.50 −0.01 ± 0.09 0.00 ± 0.08
Vg 3.06 ± 0.33 1.45 ± 0.27 0.59 ± 0.29 0.01 ± 0.56 −0.03 ± 0.10 −0.01 ± 0.11
V 2.68 ± 0.58 1.99 ± 0.38 0.57 ± 0.47 0.06 ± 0.48 0.03 ± 0.19 0.02 ± 0.23
r 4.13 ± 0.26 2.15 ± 0.22 0.89 ± 0.24 0.18 ± 0.47 0.02 ± 0.10 0.00 ± 0.11
i 4.67 ± 0.31 3.36 ± 0.25 1.32 ± 0.30 0.26 ± 0.52 0.04 ± 0.11 0.01 ± 0.14
z 5.50 ± 1.33 3.54 ± 1.40 1.93 ± 3.01 0.05 ± 1.77 0.02 ± 0.83 0.00 ± 0.41
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in the gaps that is uncorrelated between light curve realizations
of different wave bands.

In Section 4.2.1, we split the data into three epochs to probe
changes in the lag over the course of the campaign. It was thus
of particular importance to verify that applying GPs to different
data qualities (although the data quality in Epochs 1 and 2 is
similar in general; see Figure 1) does not result in systematic
changes in lag recovery. This does not appear to be the case,
given that the GP-recovered lags in all bands and epochs agree
with those that would have been measured had the data been
equally sampled. Regardless, the true lag lies within 1σ for
both sets of lags in all cases. Specifically, the GP-recovered
lags lie within 2% (Epochs 1 and 2) and 4% (Epoch 3) on
average from those computed in the equal-sampling case. Even
in the poorest-data-quality scenario (the z band in Epoch 3, as
the u, Bg bands are not used for Epoch 3 in the epoch-resolved
analysis), the lags agree within 7% at all frequencies. The

uncertainties are larger on average by roughly 50% in Epochs 1
and 2, and more significantly by 70% in Epoch 3.
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Table 3
Time Lags at Low Frequencies Computed During Periods of Relatively High

and Low Obscurer Column Density

Filter Lag (days) in Time Range

Obscured Unobscured

UVM2 0.32 ± 0.26 0.26 ± 0.22
UVW1 0.48 ± 0.25 0.29 ± 0.20
U 1.26 ± 0.27 0.64 ± 0.23
u 1.69 ± 0.34 −0.05 ± 0.46
Bg 1.66 ± 0.35 0.40 ± 0.26
B 1.22 ± 0.29 0.38 ± 0.39
g 1.90 ± 0.17 0.40 ± 0.24
Vg 2.24 ± 0.22 0.72 ± 0.19
V 2.05 ± 0.37 0.96 ± 0.29
r 2.59 ± 0.19 1.02 ± 0.17
i 3.13 ± 0.20 1.30 ± 0.18
z 4.29 ± 0.41 1.18 ± 0.70

Note. Measured with respect to UVW2 (1928 Å) at frequencies of 0.014–0.048
day−1, equivalent to timescales of 20–70 days. These data are plotted in
Figure 7.

Table 2
Time Lags at Low Frequencies When Evenly Dividing the Campaign into

Three Epochs

Filter Lag (days) in Time Range

Epoch 1 Epoch 2 Epoch 3

UVM2 0.32 ± 0.26 0.40 ± 0.29 0.46 ± 0.33
UVW1 0.48 ± 0.25 0.60 ± 0.27 0.17 ± 0.31
U 1.26 ± 0.27 0.80 ± 0.29 1.19 ± 0.40
u 1.69 ± 0.34 0.80 ± 0.53 1.48 ± 1.24
Bg 1.66 ± 0.35 0.94 ± 0.29 1.59 ± 1.57
B 1.22 ± 0.29 0.29 ± 0.33 1.04 ± 0.40
g 1.90 ± 0.17 0.88 ± 0.20 0.82 ± 0.43
Vg 2.24 ± 0.22 0.84 ± 0.26 1.78 ± 0.44
V 2.05 ± 0.37 0.92 ± 0.31 2.01 ± 0.54
r 2.59 ± 0.19 1.32 ± 0.20 2.76 ± 0.35
i 3.13 ± 0.20 1.87 ± 0.20 3.38 ± 0.45
z 4.29 ± 0.41 2.19 ± 0.28 6.09 ± 3.43

Note. Measured with respect to UVW2 (1928 Å) at frequencies of 0.014–0.048
day−1, equivalent to timescales of 20–70 days.
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